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Abstract—Multitasking has become omnipresent in daily 

activities, and increased brain connectivity under high 

workload conditions has been reported. Moreover, the 

effect of fatigue on neural activity has been shown in 

participants performing cognitive tasks, but the effect of 

fatigue on different cognitive workload conditions is 

unclear. In this study, we investigated the effect of fatigue 

on changes in effective connectivity (EC) across the brain 

network under distinctive workload conditions. There were 

133 electroencephalography (EEG) datasets collected from 

sixteen participants over a five-month study in which high-

risk, reduced, and normal states of real-world fatigue were 

identified through a daily sampling system. The 

participants were required to perform a lane-keeping task 

(LKT) with/without multimodal dynamic attention-shifting 

(DAS) tasks. The results show that the EC magnitude is 

positively correlated with the increased workload in normal 

and reduced states. However, low EC was discovered in the 

high-risk state under high workload condition. To the best 

of our knowledge, this investigation is the first EEG-based 

longitudinal study of real-world fatigue under multitasking 

conditions. These results could be beneficial for real-life 

applications, and adaptive models are essential for 

monitoring important brain patterns under varying 

workload demands and fatigue states. 

 
Index Terms—multitasking, real-world fatigue, driving, EEG, 

longitudinal recording, effective connectivity 

 

 

I. INTRODUCTION 

NDIVIDUALS often handle multiple tasks simultaneously 

during daily activities. Examples include individuals 

listening to music while walking or running and students 

taking notes while listening to a class lecture. Although 

simultaneously performing multiple tasks is normal in our daily 

life, it may cause distractions that lead to serious consequences, 

especially during driving. Distracted driving causes a driver’s 

reaction time to be fifty percent slower than normal [1], and 

many reasons for distraction or attention switching exist, such 

as mobile phone calls, texting or listening to the radio while 
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driving [1-3]. The factors that contribute to a driver's impaired 

attention are related to a driver’s mental status [1] and the 

surrounding environment [3-5]. 

    Driver fatigue is one of the factors that should be considered 

when analysing vehicle crashes [6]. Fatigue may lead to torpid 

reactions to the surrounding environment, such as steering the 

car or hitting the brakes. Across previous studies, fatigue was 

estimated to be responsible for between 10 and 20 percent of 

vehicle crashes reported in the US in 2016 [7] and led to 21 

percent of all fatal crashes and 13 percent of severe injuries 

between 2009 and 2013 [8]. Therefore, there is a need to 
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Fig. 1. Experimental design. (a) Virtually simulated environment for the 

driving task. (b) Two buttons were placed on the wheel for the dynamic 

attention shift (DAS) task response. (c) Experimental design; case 1: Lane-
keeping task (LKT) only; case 2: concurrent LKT and visual DAS (DASV) dual 

tasks; case 3: concurrent LKT and auditory DAS (DASA) dual tasks. 
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regulate drivers to avoid using distracting devices, such as cell 

phones, while driving. Furthermore, understanding the 

mechanism of driver performance could help to avoid potential 

accidents on the road. 

    Cognitive states are believed to be associated with 

behavioural performance [9, 10]. In addition, neurophysiology 

is a valid approach for exploring cognitive states [11-15], and 

many studies have explored the link between fatigue and 

electroencephalography (EEG) power spectra [16-23]. 

Researchers have reported that the powers of the theta (4-7 Hz) 

and alpha (8-12 Hz) bands concurrently increase in bilateral 

occipital brain regions [24]. An online, closed-loop system was 

developed to monitor user alertness and improve user responses 

during driving based on EEG power spectra [25, 26].  

    Furthermore, there has been increasing interest in 

neuroimaging research regarding brain connectivity [27, 28], 

which can be classified into three main types [29]: structural 

connectivity (SC), functional connectivity (FC) and effective 

connectivity (EC). SC reflects the anatomical networks, FC is 

associated with the correlations among brain regions while the 

brain is processing information, and EC involves the causal 

dependencies among brain regions. FC uses an undirected 

graph that can describe the statistical associations among 

regions; however, EC uses a directed graph that illustrates the 

causal relationships among regions. Hence, an EC study can 

provide information about how the information flow is 

exchanged among brain regions. Therefore, EC results can be 

used to interpret how information is exchanged among brain 

areas in a task-related period. Many studies have shown 

increased across-network FC while performing cognitive tasks 

[30], including visual attention [31, 32], working memory (2-

back task) [33] and movie watching [34] tasks. Studies have 

indicated that connectivity is correlated with the task load. As 

the load increases, more brain regions are activated to 

communicate, exchange information and process external 

environmental stimuli, and the across-network brain 

connectivity may therefore increase. However, notably, FC has 

also been reported to decrease across the brain network during 

semantic similarity tasks [35] and movie watching [34]. 

Although previous studies have provided insights into 

complex brain networks that are correlated with task costs, 

whether fatigue state variability during the performance of a 

task is related to fluctuations in brain network organization 

remains unknown. Fonseca, et al. [36] showed evidence of the 

relationship between sleep-related fatigue and EC in a 

simulated driving experiment. Borragán, et al. [9] showed that 

prefrontal connectivity decreased with participants’ fatigue 

levels, which were defined by sleep deprivation. In addition, 

considering time-on-task as fatigue, Huang, et al. [37] showed 

evidence of compensation between cortico-cortical EC and 

driving performance, ranging from alertness to an intermediate 

level of vigilance. Furthermore, this compensation seemed to 

decline from an intermediate to drowsy level of vigilance [37]. 

However, the changes in brain connectivity remained unclear 

considering both factors, multitasking, and real-world fatigue. 
In previous studies [9], fatigue levels have been monitored by 

sleep deprivation, which is not sufficiently natural. Although 

several studies have identified evidence of the fatigue state and 

multitasking factors influencing brain connectivity, there is still 

limited information on the effects of both factors on brain 

neural networks during cognitive tasks. In this study, we used a 

state-of-the-art biomathematical fatigue model called Sleep, 

Activity, Fatigue, and Task Effectiveness (SAFTE) to assess 

fatigue levels. Notably, longitudinal recording can benefit from 

tracking personal real-world fatigue for further applications, 

such as behaviour prediction or task assignment. To do so, we 

investigated the ECs of network patterns under different task 

load conditions and dynamic fatigue states. The fatigue state 

was measured based on a biomathematical fatigue model [38]. 

We hypothesized that the EC in high-attention load conditions 

(concurrent dual tasks) enhances brain network activation 

compared to that induced under low-attention load conditions 

(e.g., a single task). Furthermore, we hypothesized that EC 

varies under different fatigue states for each task condition. 

II. RELATED WORK 

    Brain connectivity has been extensively investigated under 

altered task load conditions, revealing increasing brain 

connectivity with the level of the task load demand [30-34]. 

Furthermore, results have shown that brain connectivity can be 

physiologically modulated, including by anaesthesia, fatigue, 

and ageing [39]. For instance, a study based on resting-state 

fMRI demonstrated a significantly decreased interhemispheric 

correlation in the motor cortices after a muscle fatigue task [40]. 

Studies on simulated driving scenarios have shown a clear 

relationship between connectivity among brain areas and 

fatigue related to prolonged driving [41, 42]. Al-Shargie, et al. 

[42] revealed that the brain connectivity network is negatively 

correlated with increasing fatigue level, defined as prolonged 

time-on-task driving. Furthermore, another study of simulated 

driving scenarios using effective brain connectivity highlighted 

the relationship between driving performance and effective 

connectivity, suggesting that EC patterns are affected by 

distinctive sleep-related fatigue [36]. Moreover, impairments in 

prefrontal cortical connectivity led to decreased attention in 

cognitive fatigue, which was defined as sleep-related fatigue 

[9]. 

 

 
 
Fig. 2. Flow chart of EEG analysis. The green blocks indicate pre-processing 

steps at the channel level, the blue blocks indicate source processing steps, and 
the orange blocks indicate effective brain connectivity estimation steps.  
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    Nevertheless, research has generally focused on the effects 

of brain connectivity on task load conditions or the fatigue 

status rather than considering both factors together. There is 

still limited information about the effect of sleep-related fatigue 

on brain connectivity under different workload conditions. In 

this study, we investigated brain connectivity under different 

task load conditions in various fatigue states. We hypothesized 

that brain connectivity is positively correlated with the task load 

demand; however, this correlation is dependent on the fatigue 

state of participants.  

III. MATERIALS AND METHODS 

    This study took a five-month period – one semester – to 

collect all the datasets. Prior to the start of the main experiment, 

the recruited participants were given and agreed with the 

guidelines of the experimental protocol. There were nine data 

collections for each participant with varied fatigue status, which 

was monitored with a Readiband device (Fatigue Science 

Readiband, Vancouver, BC; http://www.fatiguescience.com/). 

The experimenter called participants to join the experiment on 

the morning of the day if their fatigue status was suitable for the 

expected fatigue group. Each participant needed to wear the 

Readiband device during the entire experimental period (five 

months). The experimental design was based on a simulated 

driving scenario [43-46] with three distinctive task conditions 

to induce different task load levels. 

A. Participants 

    Data were recorded from 16 participants (aged 22.7±1.6 

years). All participants had normal or corrected-to-normal 

vision, and no participants took medications known to affect 

cognitive functions or had a history of alcohol or drug abuse. 

All participants were students at National Chiao Tung 

University (NCTU) in Taiwan who voluntarily participated in 

this study and provided informed consent. All the components 

of this study were approved by the Institutional Review Board 

of NCTU and performed according to the Declaration of 

Helsinki. The participants received monetary compensation for 

their participation.  

B. Fatigue state 

We applied a biomathematical fatigue model (SAFTE) to 

estimate the participants’ fatigue states in real time [38]. 

Notably, the SAFTE model was built based on the work/sleep 

patterns of participants to predict cognitive performance. In 

addition, the SAFTE model records data on circadian rhythm, 

homeostatic drive, and sleep inertia, thus characterizing the 

sleep-wake histories of the participants to evaluate their fatigue 

state. SAFTE results have been validated as neurobehavioural 

performance predictors in both experimental and real-life 

environments [38, 47, 48]. In this study, the fatigue state was 

measured by the Readiband device, which employs the SAFTE 

model to estimate fatigue based on psychology. The 

effectiveness score (ES) is an automatically continuous output 

from the Readiband device based on the data collected over the 

previous three days. Each day, the ES index value (range from 

0-100) was sent to a server cloud, and the experimenter decided 

whether the participant was in a suitable state to record the data. 

The participant had to come to the laboratory within 10 hours 

after receiving the phone call from the experimenter to collect 

the data. Therefore, in principle, the participant wore the 

Readiband every day within the experimental period. The new 

ES was checked again before the participants performed the 

experiment. The fatigue level of each participant was classified 

based on the new ES score for analysis in this study. 

C. Experimental paradigm 

This study adopted the event-related lane-departure 

paradigm in a realistic driving simulator environment [43-46] 

to assess EC under the dual-task condition at varying fatigue 

states. 

Two tasks, a lane-keeping task (LKT) and a dynamic 

attention shift (DAS) task, were designed in the experimental 

protocol of this study. The LKT simulated a participant driving 

a car on a 4-lane road (two lanes in each direction with constant 

speed at 100 km/h) at night without other traffic, as shown in 

Fig. 1a. Throughout the entire experiment, the participants 

were required to maintain travel in the third lane, as shown in 

Fig. 1c. The car randomly drifted to the left or right in equal 

proportions. At the time of the onset of deviation, the 

participants were instructed to control the steering wheel to 

move the car back into the third lane as quickly as possible. The 

period from the deviation onset to the time point of turning the 

steering wheel was defined as the driving reaction time (RT, in 

milliseconds). 

Drivers may sense stimuli that are not directly associated 

with driving. Two modalities of the DAS tasks, including visual 

and auditory stimuli, were introduced to manipulate the 

attention level of drivers. Moreover, the tasks were designed to 

be as simple as possible to ensure noise-free brain dynamics. In 

the DAS task, each participant was required to respond to a 

target, an animal name, and ignore the nontargets by pressing 

the left or right buttons, which were mounted on the steering 

wheel (Fig. 1b). A target appeared in the form of written 

 

Fig. 3. Reaction time and effectiveness score. Reaction time of lane-keeping 

task (LKT) across three tasks (LKT, DASV, DASA) in three fatigue groups 

(Normal, Reduced, High-risk).  
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(visual) red letters on the screen or spoken words (auditory). 

The participants were involved in three task cases based on the 

LKT and DAS task combinations. The first case was LKT only 

(single task), the second case was concurrent LKT and visual 

DAS (DASV) dual tasks, and the third case was concurrent LKT 

and auditory DAS (DASA) dual tasks in a random order (Fig. 

1). While the target was displayed on the screen, the time from 

the target onset to the time of button pressing was defined as the 

DAS RT. 

The Institutional Review Board of NCTU (Taiwan) approved 

this study. All participants underwent an orientation session that 

described the experimental procedures and the participant 

responsibilities during the long-term study; they were informed 

of the experimental materials, features, and processes and were 

required to read and sign a consent form prior to the 

experiments. 

D. Data acquisition 

All participants ideally performed this experiment nine 

times; however, participant S06 participated five times; S08 

participated six times; S14 participated six times; and S16 

participated eight times. In total, 133 datasets were collected 

over six months. Each experimental session lasted 

approximately 2 hours (including experimental setup), and the 

sessions were conducted at roughly two-week intervals for each 

participant. 

In each morning, the experimenter checked the ES of each 

participant and decided whether they were suitable for the 

experiments. The participants were asked to come to the 

experiment if their ES was in the suitable range of the fatigue 

groups (three datasets with ESs higher than 90, 3 datasets with 

ESs from 70 to 90, and 3 datasets with ESs less than 70). The 

participants normally joined the experiment within 10 hours of 

the call from the experimenter. All participants read the consent 

form and experimental description 10 minutes prior to the 

experiment. ESs were logged again before the participants 

performed the experiment. The participants were divided into 

three different fatigue groups with the new threshold, which is 

slightly different from the original proposal from Fatigue 

Science. The same fatigue group threshold that was used in 

previous work on the psychomotor vigilance task (PVT) [48] 

was also used in this study. There were three fatigue groups: the 

normal fatigue group (ESs greater than 91.5 % (ESmean+ESstd), 

the high-risk fatigue group (ESs less than 72.6 % (ESmean-ESstd) 

and the reduced fatigue group (remaining datasets). The EEG 

signals were recorded by the Synamps2 system (Compumedics 

Neuroscan Inc., Abbotsford, VIC) using 64 channels with 

Ag/AgCl electrodes and two references at the left and right 

mastoids (A1 and A2) according to the international 10-20 

system. All electrode impedances were maintained under 5 kΩ 

and were recorded with a sample rate of 1000 Hz and 32-bit 

quantization. The participants were subsequently seated in the 

car in a well sound-proofed, magnitude wrap-around virtual 

reality driving laboratory. Participants took part in four sessions 

throughout the experiment for one EEG dataset, and each 

session contained 60 trials per task condition (LKT, DASV and 

DASA) in random order. Participants had a rest time of 5-10 

minutes between sessions. 

E. EEG data processing 

Raw EEG data were subjected to bandpass filtering at 1-50 

Hz before being downsized to a sample rate of 250 Hz using the 

EEGLAB toolbox [49] in MATLAB (version 2013b, 

MathWorks Inc., Natick, MA) (Fig. 2). Some portions of the 

data included artificial noise, which was manually removed. 

The artefact noise was defined by the raw data quality, such as 

the value having a strong peak compared to the remaining data. 

Pre-processed EEG data were subsequently subjected to 

independent component analysis (ICA) [50] to decompose the 

independent sources of information. The function ‘runica.m’ in 

EEGLAB was used to decompose the independent components 

(ICs), which form the EEG data (the maximum step was 2014, 

and the error was less than 10-7). Then, a dipole fitting routine 

was applied to find the IC locations. Subsequently, the non-

brain components were removed (48.3±5.4 ICs) based on their 

IC properties, such as the location, topography, and power 

spectrum. The main non-brain components were the eye 

blindness, eye movement, muscle and sensor noise 

components. Next, the remaining brain components (13.5±5.3 

ICs) were back projected to the EEG channel space. 

Subsequently, the data were divided into task conditions with 

a given epoch length of [-1 2.5] seconds following the task 

event onset. The period from [-1 0] seconds of the epoch was 

used as correction baseline for all the epoch data. Then, the bad 

epochs under those task conditions were rejected based on their 

extreme values (threshold was set to 100 µV). Next, the EC 

 

Fig. 4. Topographical comparison of significant EEG effective 

connectivity differences (p<0.05) among task conditions. The first column 
shows a comparison of the concurrent dual-task DASV and LKT (V); the 

second column shows a comparison of the concurrent dual-task DASA and 

LKT (A); and the third column shows a comparison of the concurrent dual-
task DASA and DASV (AV). The line colors indicate the differences in 

connectivity strength between electrode pairs, with red indicating positive 

differences (more information flow) and blue indicating negative differences 
(less information flow). The directions of the arrows represent the direct paths 

of interchannel information flow. 
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levels were estimated in the channel domain from the cleaned 

datasets. 

F. Effective connectivity 

All datasets with preprocessing steps were used to calculate 

the effective brain connectivity. A multivariate linear dynamic 

(autoregressive) model was fit to the process activation time 

series after the stimulus onset to the aligned RT at 667 

milliseconds. 

Time series of EEG data were subsequently extracted for all 

frequency bands: delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 

Hz), and beta (13-30 Hz). 

EC was estimated based on the Granger causality (GC) to 

obtain the flow of information exchanged among the brain 

regions. GC was introduced for the first time in econometric 

time series analysis [51]. Time series data set X1t was deemed 

Granger causal to another time series X2t when knowledge of 

the history of X1t could improve the prediction of X2t. 

Multiple-channel data X at time t can be represented in 

stationary, stable vector autoregressive (VAR) form with order 

p as follows: 
 

𝑋𝑡 = 𝑣 + ∑ 𝐴𝑘𝑋𝑡−𝑘+𝑢𝑡,

𝑝

𝑘=1

 
(1) 

where p is the model order, v is the mean of X, 𝐴𝑘 is the model 

coefficient matrix, and 𝑢𝑡 is the zero-mean white noise process. 

In this study, the model fitting parameter p was selected based 

on the Akaike information criterion (AIC): 
 

𝐴𝐼𝐶(𝑝) = 𝑙𝑛|�̃�(𝑝)| +  
2

�̂�
𝑝𝑀2, (2) 

where 𝑙𝑛|Σ̃(𝑝)| is the determinant logarithm of the estimated 

noise covariance matrix for the VAR model with order p fit to 

M-channel data and �̂� is the total number of data points (sample 

data points per trial x N trials). 

The model fitting result was subsequently validated by three 

tests: 

1) Whiteness test: This test was performed to ensure that the 

residuals of the fitted model were small and uncorrelated 

(white). The fitted model was evaluated based on two tests 

of whiteness: the autocorrelated function test (ACF) and 

Portmanteau test. Passing values were determined based on 

the Box-Pierce (BPP), Ljung-Box (LBP), and Li-McLeod 

(LMP) statistical tests [52, 53]. 

2) Percentage of consistency (PC) test: This test was used to 

check the fraction of the correlation structure of the 

modelled data compared to that of the original data [54]. A 

high PC indicates a good model for generating the original 

data. 

3) Stationary of the model test: This test was performed to 

ensure that the original data and VAR[p] model met the 

stationary and stable property requirements, thus ensuring 

that the VAR[p] process will not diverge to infinity [52]. 

After the modal validation step, the causal magnitude was 

estimated via the following formula: 

 

𝐹𝑖𝑗 = 𝑙𝑛 (
𝛴𝑖𝑖

𝛴𝑖𝑖
) = 𝑙𝑛 (

𝑣𝑎𝑟(𝑥𝑡
(𝑖)

|𝑥(.)
(𝑖)

)

𝑣𝑎𝑟(𝑥𝑡
(𝑖)

|𝑥(.)
(𝑖)

, 𝑥(.)
(𝑗)

)
) , (3) 

where 𝐹𝑖𝑗 indicates the GC from process j to process i. 

Finally, Wilcoxon signed-rank tests were used to test the 

significance of the differences among conditions while 

 

Fig. 5. Topographical comparisons of significant EEG effective connectivity differences (p<0.05) among task conditions in each fatigue group. (a) Normal. 
(b) Reduced. (c) High risk. The first column shows a comparison between the concurrent dual-task DASV and LKT (V); the second column shows a comparison 

between the concurrent dual-task DASA and LKT (A); and the third column shows a comparison between the concurrent dual-task DASA and DASV (AV). The 

line colors indicate the differences in connectivity strength between electrode pairs, with red indicating positive differences (more information flow) and blue 

indicating negative differences (less information flow). The directions of the arrows represent the direct paths of interchannel information flows. 
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correction using false discovery rate (FDR, p<0.05). Source of 

Information Flow (SIFT) [55] from the EEGLAB-compatible 

toolbox was used to estimate the EEG ECs. All data processing 

steps are shown in Fig. 2. 

IV. RESULTS 

We analysed the behavioural data based on the RT of 

participants. The behaviour results revealed that both task loads 

and fatigue states affected the RT of participants (Fig. 3). Then, 

we further examined the EC magnitude among brain regions 

across four frequency bands, including the delta, theta, alpha, 

and beta bands (Fig. 4, Fig. 5 and Fig. 6). The EC results 

showed significantly increased brain connectivity with 

increasing task load level in both the normal and reduced 

fatigue groups. In contrast, the opposite trend was observed in 

the high-risk fatigue group. The results demonstrated that 

fatigue and the task load affected brain connectivity. 

A. Behavioural performance 

 The performance of the participants was assessed using the 

RT required to respond to the first stimulus onset, either by 

steering a car back into a fixed lane or pressing the bottom for 

the DAS task after the deviation onset for LKT. The average 

RTs were compared among three task conditions (LKT: lane-

keeping task only, DASV: concurrent LKT and visual dynamic 

attention shifting, and DASA: concurrent LKT and auditory 

dynamic attention shifting) and three fatigue states (normal, 

reduced and high risk) based on a linear mixed-effects 

approach. As fixed effects, we entered task conditions and the 

fatigue state into the model. As random effects, intercepts for 

subjects were considered. A visual inspection of the residual 

plots did not reveal any obvious deviations from 

homoscedasticity or normality. P-values were obtained by 

likelihood ratio tests of the full model with the effect in question 

and the model without the effect in question. The results 

showed that the task conditions affected RT (χ2(1)=15.746, 

p=0.01518), lowering it by approximately 15.8 ms; the fatigue 

state also affected RT (χ2(1)=22.463, p=0.0009976), lowering 

it by approximately 22.5 ms. There was an interaction between 

the task conditions and fatigue state (χ2(1)=9.6777, p=0.04622) 

(Fig. 3). The high-risk state was significantly different from the 

normal and reduced states (p<0.001), and DASV was 

significantly different from the LKT scenario (p<0.01). A post 

hoc pairwise analysis revealed that the LKT RT in the high-risk 

group was higher than the LKT RT in the normal state 

(p=0.0123), the LKT RT in the reduced state (p=0.0011), the 

DASV RT in the high-risk state (p=0.0382), the DASV RT in the 

normal state (p=0.0069), and the DASV RT in the reduced state 

(p=0.0037). 

B. Comparisons of ECs for single- and dual-task conditions in 

different fatigue states 

A computational analysis was performed with the Interactive 

High-Performance Computing server at the University of 

Technology Sydney (UTS). All comparisons used the 

Wilcoxon signed-rank test with an FDR-adjusted p<0.05. We 

first estimated the significant differences among task load 

conditions with and without considering the fatigue status (Fig. 

4 and Fig. 5). Then, we identified the significant edges to 

estimate the complexity of the brain connectivity network for 

various task loads and fatigue statuses (Fig. 6). 

Overall, the dual-task condition exhibited increased EC 

across the network among the frontal, central, parietal, 

occipital, and temporal areas (Fig. 4, Fig. 5 and Fig. 6) among 

broadband frequencies. Fig. 4 shows a significant difference 

among task load conditions. The dual tasks displayed enhanced 

connectivity compared to the single tasks in both the visual 

DASV and auditory DASA cases (1st and 2nd columns of Fig. 4). 

Moreover, there was an enhancement in information flow when 

comparing DASA and DASV (the 3rd column of Fig. 4). This 

enhancement could be because DASA involves both auditory 

and visual modalities, while DASV dominantly involves visual 

modalities in the given task. Moreover, Fig. 5 shows a 

significant difference among the task load conditions in three 

distinctive fatigue states. There was increased information flow 

while performing dual tasks in both the normal and reduced 

fatigue states. However, the high-risk state exhibited decreased 

 

Fig. 6. Number of significantly different brain connectivity edges for the dual- and single-task conditions across brain networks (p<0.05) for the delta, 

theta, alpha and beta bands. The green background indicates the normal fatigue group, the light green background indicates the reduced fatigue group, the light 

red background indicates the high-risk fatigue group and the blue background indicates the dual- vs single-task cases without considering the fatigue state. The 

number indicates the number of brain connectivity edges with significant differences (p<0.05). The light red/blue bar indicates the increase/decrease in significant 
edge differences in the concurrent dual-task DASV vs single-task LKT comparison. The dark red/blue bar indicates the increase/decrease in significant edge 

differences in the comparison of the concurrent dual-task DASA vs single-task LKT. 
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information flow in multitasking conditions. Furthermore, Fig. 

6 shows the total significant edge difference for task load 

conditions fatigue states. The high-risk fatigue state clearly 

displayed the reduced information flow, and the normal and 

reduced fatigue states exhibited enhanced information flow 

during multitasking. 
The increased and decreased edges were identified from the 

EC connectivity matrix after the statistical test of task 

conditions (Wilcoxon signed-rank test, FDR-adjusted p<0.05) 

was performed. Then, the total number of increased and 

decreased edges was determined (Fig. 6). Compared to the 

single-task condition (LKT), more increased edges and less 

decreased edges of brain connectivity were observed in the 

normal and reduced fatigue groups (Fig. 5 and Fig. 6). 

However, there were more decreased edges of brain 

connectivity than increased edges in the high-risk fatigue group 

in the delta, theta, alpha and beta bands. Furthermore, the 

number of significantly increased edges in case A is higher or 

equal to V, indicating enhanced brain connectivity among brain 

regions when the task difficulty increases. Of note, the reduced 

fatigue group showed the highest number of increased edges 

across the delta, theta, alpha and beta bands in both cases V and 

A (with the exception of the delta and theta bands in case V). In 

both the V and A cases, the number of increased edges had an 

inverted U-shaped trend in the alpha and beta bands (Fig. 6). 

The number of increased edges in case A also displayed an 

inverted U-shaped trend in all bands (Fig. 6); however, case V 

exhibited a linear decreasing trend in the delta and theta bands. 

These results indicate the effect of fatigue on brain 

connectivity. 

V. DISCUSSION 

Attention and cognition are complex and dynamic processes 

that involve multiple cortical and subcortical brain regions [56]. 

The resting state and task performance periods are reportedly 

altered at both the neuronal and system levels [56]. During the 

period of performing a task, the brain is typically converted to 

a connective network of a higher order than that in the original 

resting state, and the network is reorganized based on task 

properties. Many studies have reported increased across-

network connectivity during task performance compared to that 

in the resting state during visual attention tasks [31, 32], 

cognitive tasks [30, 57], and working memory tasks [33]. We 

hypothesized that the across-network connectivity of the brain 

might be correlated with the task load. In Fig. 4 and Fig. 5, we 

applied the GC to calculate the differences in EC under different 

fatigue states as participants performed the LKT (single task), 

V (dual task DASV with a single task LKT) and A (dual task 

DASV with a single task LKT) tasks. The LKT requires multiple 

senses to safely control a car, e.g., motor resources to control 

the steering wheel and visual senses to observe road traffic [58]. 

We simulated a real situation on a street in which the 

participants were instructed to keep the car in a fixed lane and 

identify the name of an animal displayed visually or given 

auditorily. The DASV task primarily required a visual modality; 

however, it may have required more memory attention than 

only performing the LKT. Thus, the period from the concurrent 

stimuli event onset to the participant’s first RT is critical 

because more brain resources are required to process 

dual/multiple tasks, including moving the car back into a fixed 

lane and processing external information for the DAS task. Fig. 

4 shows that the information flow was enhanced in the dual-

task compared to that in the single task in the delta, theta, alpha, 

and beta bands. In addition, the DASA task employed an 

auditory modality, which was substantially different from the 

visual modality in the LKT, and the brain therefore tended to 

communicate more. More information flows were exchanged 

within this period, with the exception of connections in the left 

hemisphere in the delta, alpha and beta bands (Fig. 4). These 

results suggested that the communication pathways between the 

frontal-executive and occipito-parietal-perceptual regions were 

influenced by the dual-task conditions, as noted in previous 

studies [59, 60], which reported that enhanced connectivity was 

correlated with the task load. 

    The prefrontal area functions in working memory processes 

[61], and this area is active during dual tasks that engage the 

central executive system [62]. We hypothesized that when 

individuals attempt to maintain performance during demanding 

mental tasks (LKT-DASV and LKT-DASA dual tasks), the 

prefrontal region is activated. However, the capacity of the 

brain may be correlated with the fatigue state, as the 

connectivity strength was reduced as a result of the limited 

remaining resources in the high-risk group (Fig. 5 and Fig. 6). 

However, brain connectivity related to fatigue is not well 

understood. Han, et al. [63] showed that brain connectivity 

based on the fatigue state during a driving task linearly 

increased in the delta and theta bands, and Wang, et al. [57] 

showed that compensation occurs among neural activities in 

response to cognitive fatigue. In this study, we demonstrated 

that EC varies under different states of fatigue (ref. Fig. 5 and 

Fig. 6). In the reduced and normal fatigue groups, information 

flows were enhanced under dual-task conditions compared to 

those in the single-task condition across brain regions in the 

delta, theta, alpha and beta bands (ref. Fig. 4, Fig. 5 and Fig. 

6). In contrast, the high-risk group displayed the opposite trend, 

as information flows were reduced across all brain regions, with 

the exception of the frontal region (ref. Fig. 5 and Fig. 6). 

Furthermore, the distribution of the edge differences in 

multitasking (Fig. 6) is likely an inverse U-shape for the three 

distinctive states, which is in line with the results of previous 

studies [57, 64]. A possible explanation for this phenomenon is 

that there may be compensation between brain connectivity and 

the fatigue state of the participants. When a participant is in a 

reduced fatigue state, the brain may compensate for the 

cognitive task load [65]. However, the brain may turn into a 

decompensation state when the participant is in a high-risk 

fatigue state during multitasking [57]. 

Our findings provide new evidence of across-network brain 

connections in different fatigue states and thus serve as a 

promising reference for real-world applications. In contrast to 

the reduced and normal fatigue groups, the high-risk fatigue 

group displayed decreased connectivity among brain regions, 

particularly from or to the occipital and parietal regions. In 

contrast to the intuitive concept that EC increases as the 

workload increases, EC decreases as workload increases for 

individuals with high fatigue. Thus, in real-world applications, 

a single fatigue model cannot fit individuals with different 

fatigue statuses, and multiple fatigue models that can adapt to 
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varying fatigue states are required to address individual 

variations. 

This study also provides a view of the frontal area of the 

brain, an important region that may process information 

independent of the fatigue state. The magnitude of connectivity 

in the frontal region was enhanced in the dual-task compared to 

that in the single task in the three fatigue groups. Most 

importantly, this study identified the brain connectivity related 

to fatigue states. In future work, this study can be extended over 

time to assess the stability of the connectivity pattern. These 

variable or stable patterns could be reflected in the effect of the 

fatigue state on the default brain network. Therefore, the 

resulting features could be used to define the fatigue state of 

participants through the connectivity network.  

In summary, this study explored dynamic EEG changes in 

ECs across different fatigue states during single and dual tasks. 

Overall, increased EC was evident across the entire brain 

network during dual tasks, which involved several brain 

regions. The EEG EC in the high-risk fatigue group decreased 

across all brain regions except the frontal region, which showed 

increased EC in the concurrent dual tasks compared to that in 

the single task. These brain network dynamics may have 

implications for understanding the complex neurophysiology of 

the relationship between real-world fatigue and task conditions. 

VI. CONCLUSION 

In this research, we identified the effect of the fatigue state 

under multitasking conditions on the results of a simulated 

driving experiment in a longitudinal study. There were 133 

datasets recorded by combining EEG, behavioural, and 

physiological data over five months. The fatigue index of each 

participant was monitored and evaluated daily during the entire 

period of the experiment. The results revealed that there was 

enhanced information flow across the network under 

multitasking conditions. Furthermore, this enhancement was 

shown in both the normal and reduced fatigue states during 

multitasking; however, the high-risk state displayed a reduction 

in information flow. These results could be beneficial for real-

life applications, and adaptive models are essential for 

monitoring brain patterns for varying workload demands and 

fatigue states. Further work can be performed by studying the 

dynamic connectivity patterns over time. The pattern of 

temporal connectivity can reflect the effect of fatigue on the 

neural network of the brain. 
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