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Abstract—Service selection is crucial to service composition in determining the composite Quality of Service (QoS). The proliferation

of composable services on the Internet and the practical need for timely delivering optimized composite solutions motivate the adoption

of population-based algorithms for QoS-aware service selection. However, existing population-based algorithms are generally

complicated to use, and often used as a general approach to solving different optimization problems. We propose to develop

specialized algorithms for QoS-aware service selection, based on the artificial bee colony algorithm (ABC). ABC is a new and simpler

implementation of swarm intelligence, which has proven to be successful in solving many real-world problems, especially the numerical

optimization problems. We develop an approximate approach for the neighborhood search of ABC, which enables effective local search

in the discrete space of service selection in a way that is analogical to the search in a continuous space. We present three algorithms

based on the approach. All the three algorithms are designed to improve the performance and meanwhile preserve the simplicity of

ABC. Each algorithm applies a different technique to leverage the unique characteristics of the service selection problem. Experimental

results show higher accuracy and convergence speed of the proposed algorithms over the state of the art algorithms.

Index Terms—Service composition, artificial bee colony algorithm (ABC), optimization, approximation

✦

1 INTRODUCTION

S ERVICE Oriented Computing (SOC) represents the
paradigm where business functionalities are encapsu-

lated into interoperable services and consumed through a
standard publishing, discovery, composition, and deploy-
ment process [1]. As a key technique of SOC, service com-
position supports the dynamic selection and orchestration
of existing services to build new composite services on
demand [2]. Service composition has two distinctive advan-
tages: i) high efficiency and cost-effectiveness in building
new web-based applications by maximally reusing the ex-
isting services, and ii) enhanced functionality that is capable
of satisfying complex requirements that cannot be easily
fulfilled by the original simple services [3].

The quality of Service (QoS) is considered essential for
service composition in meeting business requirements and
improving user experience [4], [5]. The QoS of composite
services, or composite QoS, is usually optimized through the
selection of an appropriate set of services to participate
the composition, i.e., QoS-aware service selection [6]. The
basic QoS-aware service selection problem (SSP) consists of
a requirement specification (i.e. a set of QoS requirements), a
composite process (i.e., a workflow specifying the functional
units and their dependencies in terms of control flow and
data flow), and sets of candidate services. Each set corre-
sponds to a functional unit (or task) of the composite process
and contains the candidate services for the same task. A
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solution to the SSP represents a feasible plan of designating
an appropriate service (i.e., component service) to each task to
optimize the composite QoS.

Take the personal information integration service
(PIS) [7] in E-Commerce (Fig. 1) for example. This service
orchestrates five functionalities to collect and upload user
information and online reviews to the cloud. To start, the
user provides some basic inputs, such as name, emails,
or accounts on a few websites. Then, the account discovery
service discovers user’s accounts in a series of social and
business websites via profile matching [8]. Profile extraction
and reviews extraction are invoked concurrently to extract
user’s personal profiles and reviews, respectively, from the
matched websites. After consolidating the data extracted
from different sources via record mergence, the cloud migration
service automatically uploads the consolidated data to a
cloud storage using the prepared account. For this service,
we only list a few services (most of which are published in
the form of RESTful APIs) that can fulfill the functionality
of each task. Given a general-purpose composite process,
there might be hundreds or thousands of available services
for each task. The varying performance and cost of these ser-
vices make it important to select an appropriate service for
each task so that the overall performance of the composite
service could be optimized, with user’s constraints on the
budget and configuration efforts satisfied.

The SSP is generally recognized as a challenging problem
for two reasons. First, it is inherently NP-hard [6]. Second,
the number of web-based services have exploded in the last
decade [9], which expands the problem scale exponentially.
Although several efforts, such as those using determinis-
tic algorithms, heuristic algorithms, and population-based
algorithms, have been contributed to the field, there is an
urgent need for novel solutions to the SSP for the following
reasons:
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Fig. 1. The composite process for personal information integration.

Applicability. Practical applications often require solving the
problem efficiently so that they can deal with a large
volume of requests in a limited time [10]. Deterministic
algorithms cannot fulfill this task due to their geometrically
increasing computational complexity, while heuristic meth-
ods feed on additional information that requires human
analysis and inputs [11]. Heuristic algorithms also suffer
from unpredictable performance depending on whether an
effective heuristic is defined. In contrast, the population-
based algorithms exhibit the anytime behavior [12], which
enables them to provide a best-so-far solution at any time
of request while still keeping improving the solution over
time. However, population-based algorithms are only appli-
cable if they can converge in a reasonable time. While both
the exploration and exploitation abilities are essential for
an evolution process, existing population-based algorithms
commonly generate new solutions by reusing the informa-
tion of previous solutions [13]. As a result, they are often
poor at exploitation [14], which degrades their convergence
speed.

Easiness of usage. It is usually required in practice that an
algorithm should be simple enough to be easily adapted
to different problem scenarios. However, population-based
algorithms generally require tuning their parameters to each
specific problem (or at least a class of problems) to achieve
satisfactory performance [16]. Even for the same compos-
ite process, the optimal parameter settings of the same
algorithm may differ from case to case, depending on the
problem-specific features such as the number of candidate
services, the QoS distribution of candidate services, and
the user’s QoS constraints. For all cases, poorly-configured
parameters could lead to undesirable QoS. A rule of thumb
is that the fewer control parameters of an algorithm, the
easier is the algorithm configuration.

Problem-specific improvement. To solve a problem effectively,
it is often desirable to modify the algorithm towards fully
leveraging the unique characteristics of the problem. How-
ever, existing modifications to the population-based algo-
rithms fall either too generic or too specific to the prob-
lems [17]. When applying the algorithms to a new problem
such as the SSP, the former makes it difficult to leverage
the unique characteristics of SSP, which limits the optimiza-
tion effects, and the latter, in many cases, directly impedes
it from being applicable to the SSP. Moreover, many en-
hancement approaches to the population-based algorithms,
especially the hybrid approaches, require introducing new

parameters. This adds up to the control complexity and
further increases the difficulty of applying these algorithms
to new problem scenarios.

In this paper, we address the above challenges based
on the artificial bee colony algorithm (ABC). ABC was
first introduced by D. Karaboga in 2005 for solving nu-
merical optimization problems [18] and has been attracting
increasing attentions since. It is a nature-inspired algo-
rithm that achieves swarm intelligence by simulating the
foraging behavior of honey bees. Compared with peering
algorithms, ABC promises to achieve competitive or even
better performance while requiring significantly fewer con-
trol parameters and simpler steps [18]. Besides continuous
optimization, ABC has now been applied to various dis-
crete optimization problems, such as the Travel Salesman
Problem (TSP), Job-shop Scheduling Problems (JSP), and
Structure Design Problems, and has been verified by many
practical applications [19].

Our approach is based on two major considerations.
The first consideration is about the high performance and
easiness of usage of ABC. Although there is no solid proof
that ABC is superior to other population-based algorithms
in addressing the SSP, plenty of evidence indicates that ABC
is at least no worse than them. In addition, our investigation
(see Table 1) shows ABC is simpler in terms of having fewer
control parameters than the dominant population-based
algorithms. The second consideration is that our approach
should keep its simplicity when improving the performance
of ABC. In particular, we propose an approximate approach,
which aims at improving the performance of ABC in a
manner that is customized to the unique characteristics of
SSP. In this way, the SSP can be solved effectively and
efficiently and the simplicity of ABC can be maximally
preserved. The contributions of this paper are fourfold:

• We develop a discrete version of ABC for the SSP
and propose an approximate approach to leverage
the unique characteristics of SSP. This approach is
able to achieve an approximation of the optimal con-
tinuity property of continuous optimization through
improved neighborhood search.

• We analogically prove the rationale of the proposed
approach by mapping the neighborhood structure of
the proposed approach to that of the ABC in solving
the continuous optimization problems.

• We present three algorithms based on the approach,
each adopting a different technique to realize the ap-
proximation. The time complexity of the algorithms
is also analyzed.

• We conduct extensive experiments to evaluate the
effectiveness of our approach. Implications on how
to use these algorithms are discussed based on the
evaluation results.

The remainder of this paper is organized as follows.
Section 2 provides some basic notions of the SSP and ABC.
Section 3 presents the assumption, formalization, and un-
derlying rationale of the approximate approach. Section 4
describes the proposed algorithms and analyzes the time
complexity. Section 5 reports the experimental results. Fi-
nally, Section 6 overviews the related techniques and Sec-
tion 7 provides some concluding remarks.
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TABLE 1
A Summary of Population-Based Algorithms

Algorithm Info. carrier Solution carrier Optimization approach Control parameter*

Particle swarm
optimization

particles particle positions
combining global and local

experience to amend particle move
SN, w, c1, c2, Vmax, Vmin , MCN

Ant colony
optimization

ants paths of ants
using feedback on historical paths

to guide ants’ path seeking
SN, α(1) , β(1) , τ , η, MCN

Simulated annealing molecules molecule positions
gradually reducing the probability

of accepting inferior positions
SN, T0 , λ, β(2) , MCN

Genetic algorithm individuals chromosome codings
performing selection, crossing,
and mutation on individuals

SN, α(2) , β(3) , MCN

Artificial bee colony
algorithm

foraging bees food-source positions
combining exploration and
exploitation to food sources

SN, SQ, MCN

* Note that we add superscripts to differentiate the parameters denoted by the same symbols. For all algorithms, SN and MCN denote the size
of information carriers and the maximum number of iteration, respectively. For the other parameters, w is the inertia weight, c1 and c2 are the
acceleration constants, Vmax and Vmin are the lower and upper boundaries of the search space, respectively. τ is the amount of pheromone
deposited for transition between states, α(1) controls the influence of τ , η is the desirability of state transition, β(1) controls the influence of η.
T0 is the initial temperature, λ controls the annealing speed, β(2) is the probability of keeping an inferior position. α(2) is the crossover rate,
β(3) is the mutation rate. SQ is the criterion for abandoning a food source. More details about these algorithms can be found in [15].

2 PRELIMINARIES

2.1 Problem Formalization

Zeng et al. [6] first formalize the SSP as a combinatorial
optimization problem and solve it via a Mixed Integer
Programming (MIP) model. Suppose M is the number of

tasks in the composite process, Su = {s1u, s
2
u, ..., s

N(u)
u } is

the candidate services for task u, and D is the number of
QoS attributes. The MIP model of SSP is represented by:

Maximize
∑D

i=1
wifi({

∑N(u)

v=1
pvus

v
u|u = 1, 2, . . . ,M})

s.t. fi({
∑N(u)

v=1
pvus

v
u|u = 1, 2, . . . ,M}) ≥ Li,

∑D

i=1
wi = 1, pvu ∈ {0, 1},

∑N(u)

v=1
pvu = 1

i = 1, 2, ..., D, u = 1, 2, ...,M, v = 1, 2, ..., N(u) (1)

where wi is the weight of attribute i, fi(·) is the function
used for calculating the composite value of attribute i,
Li is the lower bound for attribute i (suppose all upper
bounds are transformed into lower bounds), and pvu ∈ {0, 1}
indicates whether service v is selected for task u.

There are four basic types of structural patterns for
the composition workflow, namely the Sequential, AND-
split/AND-join, XOR-split/XOR-join, and Loop [4]. The forms
of the aggregation functions are specific on the composition
workflow (which is an embedded hierarchy of the structural
patterns) and the specific QoS attribute. For example, given
a sequential composite process, the overall response time is
the sum of the response time of all sequential components
(in which case, fi equals to the sum function), while the
overall throughput takes the minimum (where fi equals to
the minimum function). In contrast, for a parallel composite
process (defined by AND-split/AND-join), the overall re-
sponse time is calculated by the maximum function. Since
previous researchers have done sophisticated studies on
this subject, in this paper, we simply adopt the calculation
methods in [4] to define the aggregation functions.

We denote each composite solution by an M -tuple, i.e.,
SC = (s∗1, s

∗
2, ..., s

∗
M ), where each element stands for a

service selected for the corresponding task, i.e., s∗u ∈ Su

for each u ∈ {1, 2, ...,M}. For a candidate solution to be
optimal, it should not only satisfy the QoS constraints but
also achieve the maximal objective value of Eq. (1).

2.2 The Original ABC

ABC involves two basic concepts: food source and bee colony,
where food-source positions represent possible solutions.
Three types of bees, namely employed bees, onlooker bees, and
scout bees, work together to enable the food-source positions
to evolve during the iterative process of ABC. Usually,
employed bees and onlooker bees each takes half of the pop-
ulation and can mutually transform. In particular, onlooker
bees represent the greedy mechanism of ABC. They wait in
the hive to be designated to their destination food sources
according to certain probabilities. The probabilities are de-
termined by the evaluation results of food sources and used
to differentiate the exploitation efforts on the food sources.
Once an onlooker bee is designated to a food source, it
turns into an employed bee. Employed bees represent the
exploitation (or local search) part of ABC, each responsible
for exploiting (i.e., searching within the neighborhood of)
a destination food source. Scout bees are sent only when
a food source has been exploited consecutively for certain
times without better food sources found. In such cases, this
food source would be abandoned and a scout bee would
be sent to explore a brand new food source. Scout bees
represent the exploration mechanism of ABC. They ensure
ABC can jump out of local optimum.

Fig. 2 illustrates the optimization mechanism of ABC. In
this example, source A is evaluated to be better than B, so
onlooker bees have a higher chance of exploiting the neigh-
borhood of A—in this example, the neighborhoods of A and
B are visited twice and once, respectively. Each employed
bee returns carrying only information about the better one
of the original destination (e.g., A) and a neighboring source
(e.g., A1, which is a new source). For this example, source C
meets our abandon criterion. Therefore, it is abandoned and
replaced by a new source named C∗.

Algorithm 1 shows the procedure of the original ABC.
Given a continuous function, ABC regards each variable
of the function as a dimension of optimization. It includes
three basic parameters, namely food-source number (SN),
the maximum number of iteration (i.e., the termination
condition, MCN), and the maximum times of retries before
sending the scout bees (i.e., the threshold for abandoning an
existing food source, SQ). ABC involves four main phases
as follows:
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Fig. 2. An illustrative example of the optimization mechanism of ABC.

Initialization phase. SN solutions are randomly generated,
where a solution Xi = (xi,1, xi,2, . . . , xi,D) is generated for
each i ∈ {1, 2, . . . , SN} by the following equation:

∀j = 1, 2, . . . , D

xi,j = xmin
j + rand(0, 1) · (xmax

j − xmin
j ) (2)

where D is the dimensionality (i.e., the number of QoS
attributes), rand(0, 1) is a function that produces random
decimals between (0, 1), xj

max and xj
min are the upper and

lower bounds for dimension j, respectively.

Employed bee phase. A neighboring solution is generated for
each current solution. Only the better one of the original
and the newly generated solution is preserved. A neigh-
boring solution of Xi (i ∈ {1, 2, . . . , SN}), say X ′i =
(x′i,1, x

′
i,2, . . . , x

′
i,D), is generated by modifying a random

dimension value of Xi by the following equation:

j ∈ {1, 2, . . . , D}

x′i,j = xi,j + rand(−1, 1)(xi,j − xk,j) (3)

where j is the dimension on which the value is to be
modified, k ∈ {1, 2, ..., SN}, and k 6= i; rand(−1, 1) is a
function that generates random value in the range of [−1, 1].

Onlooker bee phase. Each current solution is associated with
a probability according to which it is selected to perform
neighborhood search. The probability of selecting the ith
solution, say pi, is calculated by the following equation:

pi = fiti/
∑SN

j=1
fitj (4)

where fiti is the evaluation result, i.e., the normalized
objective value of Eq.(1), of solution i, i = 1, 2, . . . , SN .

Scout bee phase. A random new solution is generated in the
same way as it is initialized by Eq. (2).

2.3 The Discrete ABC for SSP

The original ABC is only applicable to continuous opti-
mization problems. Therefore, we need to derive a discrete
version of ABC, or discrete ABC, for the SSP. The discrete
ABC follows a similar procedure to that of the original ABC,
but differs in three aspects: encoding of candidate solutions,
termination condition, and the equations used in the four

Algorithm 1 Procedure of the basic ABC
Input: the number of food sources SN; termination condition MCN; condition for

sending scout bees SQ

Output: an approximate optimal SSP solution z
// Initialization Phase

1: Initialize SN solutions by Eq. (2)
2: while MCN has not been reached do

// Employed Bee Phase

3: for all x ∈ the SN solutions do
4: x∗ ← generate a neighboring solution of x by Eq. (3)
5: x← the better one of x and x∗

6: end for
// Onlooker Bee Phase

7: Calculate probability for each solution by Eq. (4)
8: for each of the totally SN rounds of iteration do
9: x← probabilistically choose one from the SN solutions

10: x∗ ← generate a neighboring solution of x, by Eq. (3)
11: x← the better one of x and x∗

12: end for
// Scout Bee Phase

13: if SQ has been reached then
14: y ← find the worst of the SN solutions
15: y ← generate a new solution by Eq. (2))
16: end if
17: Update the best solution achieved so far, namely z, with the best of the

SN solutions
18: end while
19: return z

phases [20]. The following shows details about the three
aspects, respectively.

Encoding. Instead of regarding each continuous variable as
a dimension in the original ABC, the discrete ABC regards
each task of the composite process as a dimension. The di-
mension value can be any identifier that uniquely identifies
a candidate service of this task. In particular, we designate
a unique sid to each service as its dimension value. In
addition, we define the sids of the candidate services for the
same task as a series of consecutive integers. For example,

given the candidate services for task i, {s1u, s
2
u, ..., s

N(u)
u },

they are designated with sids of 1, 2, . . . , N(u), respectively.

Termination condition. To measure the convergence speed
easily, we define GSQ in replacement of MCN as the termi-
nation condition of the discrete ABC. Similar to SQ, GSQ
denotes the maximum times of retries before the algorithm
terminates. According to this criterion, the discrete ABC
terminates only when no better solution is found for GSQ
consecutive rounds of iteration (i.e., when the algorithm is
believed to converge).

In the following, we describe the four phases of the
discrete ABC by reusing the notations in Section 2.1.

Initialization phase. For each i ∈ {1, 2, ..., SN}, a composite
solution CSi = (si,1, si,2, ..., si,M ) is generated by ran-
domly selecting a candidate service for every task:

∀u = 1, 2, . . . ,M

si,u = 1 + round(rand(0, 1) · (N(u)− 1)) (5)

where si,u is an sid, round(·) is the rounding function.

Employed bee phase. A neighboring solution of CSi, namely
CS′i = (s′i,1, s

′
i,2, . . . , s

′
i,M ), is generated by replacing a ran-

dom component service of CSi by the following equation:

u ∈ {1, 2, . . . ,M}

s′i,u = si,u + round(rand(−1, 1)(si,u − sk,u)) (6)

where k ∈ {1, 2, ..., SN}, k 6= i.
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Onlooker bee phase. The probabilities are calculated in the
same way as they are in the original ABC.

Scout bee phase. A new random solution is generated in the
same way as it is initialized by Eq. (5).

Note that Eq. (5)(6) have implications on the structure of
SSP’s solution space. According to Eq. (5), an initial com-
posite solution (e.g., CS) belongs to a Cartesian product:

CS ∈ S1 × S2 × . . .× SM (7)

where Su is the set of candidate services for task u.
According to Eq. (6), the neighborhood of an arbitrary

composite solution actually covers the entire solution space
of the SSP. Suppose CS′ is a neighboring solution of CS. It
belongs to the Cartesian product excluding CS—a solution
cannot be a neighboring solution of itself:

CS′ ∈ (S1 × S2 × . . .× SM )/{CS} (8)

It is easy to see from above definitions that the neighbor-
hood search of the discrete ABC is quite similar to a random
search. We believe a better neighborhood search strategy
could greatly improve the performance of the discrete ABC.

3 APPROACH OVERVIEW

Our approach is based on two observations. First, the ex-
ceptional performance of ABC in numerical optimization
largely depends on its local search ability. As the means
of deriving new solutions based on the existing ones, local
search is considered local because a new solution is similar
(in terms of evaluation results) to the original solution.
While similar variable values in continuous optimization
naturally lead to similar function values, the discrete ABC,
in contrast, does not guarantee such property. This sets the
main clue for our improving the discrete ABC in addressing
the SSP. Second, SSP has some unique characteristics that
can be leveraged to customize the discrete ABC. In partic-
ular, since a composite service comprises multiple services,
any changes to its component services leads to variation in
the composite QoS. Although we cannot precisely control
the variation in the composite QoS (like we do for contin-
uous functions), we can limit the magnitude of variation
during each neighborhood search, by restricting the changes
in its component services’ QoS. The idea is to achieve a
neighborhood search approximating to that of the original
ABC so that the performance of the discrete ABC can be
improved and the simplicity can be preserved.

3.1 The Optimality Continuity Assumption

As mentioned above, similar variable values of continuous
functions lead to similar function values. We assume this
property may account for the exceptional performance of
ABC in addressing the numerical optimization problems.
In the following, we formalize the concept of optimality
continuity to describe this property.

Definition 1. (Optimality Continuity). Given a function y =
f(x) (x ∈ X), a variable value x′ ∈ X , and an arbitrary
gap in the function values of f(·), namely ∆y (> 0), we
claim that an optimization problem regarding f(·) possesses
the optimality continuity property, if there exists a variable
value x′′ ∈ X (x′′ 6= x′), satisfying |f(x′)− f(x′′)| ≤ ∆y.

x'

x1

x2

x

f(x)

(a) Continuous optimization

s13 s22 s32 s44

s12 s21 s32 s44

s11 s21 s32 s44

s13 s21 s32 s44
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s13 s21 s32 s42

s13 s21 s32 s43

s13 s21 s31 s44

s13 s21 s33 s44

21

41
33

36

48

43

48

33
30

(b) Service Selection

Fig. 3. Neighborhood search in different types of problems.

In above definition, the optimization problem regarding
f(·) refers to any constrained/unconstrained optimization
problem in the form of max f(x) or min f(x). Apparently,
this property is acquired by any continuous function, which
is differentiable. Note that, both x′ and x′′ are vectors if f(·)
is a multivariate function.

The optimality continuity property is crucial to the
neighborhood search because it provides a way of inferring
the similarity of function values by examining the similarity
of variable values. Based on this property, a neighboring
solution is assured to have similar evaluation results with
the original solution (from which it is derived). As an exam-
ple, Fig. 3a shows the neighborhood search for optimizing a
univariate continuous function using ABC. Given a variable
value x and corresponding function value f(x), two similar
values of f(x), namely f(x1) and f(x2), can be obtained by
investigating the similar values of x (i.e., x1 and x2) during
the neighborhood search.

The optimality continuity property naturally suggests
measuring the similarity of solutions in terms of their evalu-
ation results. However, all existing ABC-based approaches to
the SSP define solutions’ neighborhood relations based on
their coding similarity. In all these approaches, a solution is
encoded as a combination of sids and a neighboring solution
is generated by replacing a random sid of the combination
with another one. In this case, the similarity between two
solutions is measured by the number of identical services in
the counterpart positions of their codings, which contradicts
with our optimality continuity intuition.

We argue that existing neighborhood search of ABC does
not guarantee the optimality continuity property in address-
ing the SSP. According to the coding-based neighborhood
measure, two neighboring solutions of the same solution
may have significantly different evaluation results from
each other as well as from the original solution. Consider
a composition workflow that consists of four sequential
tasks, where {s11, s12, s13}, {s21, s22}, {s31, s32, s33} and
{s41, s42, s43, s44} are the candidate services for the four
tasks, respectively. Each service is described by a sin-
gle attribute value, i.e., {11, 8, 5}, {12, 3}, {20, 7, 25}, and
{17, 24, 9, 6} for the above services, respectively. Suppose
the composite service is evaluated by summing up the
attribute values of all its component services. Given an SSP
solution, say (s13, s21, s32, s44), eight candidate neighboring
solutions can be identified by existing neighborhood search
approach, with their evaluation values shown in Fig. 3b. It
can be seen that many neighboring solutions have signifi-
cantly different evaluation results (e.g., 48 and 43) from the
original solution (the result of which is 5+12+7+6=30).
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3.2 The Approximation Approach

Since the optimality continuity property is not naturally
possessed by the ABC-based approaches to the SSP, an
alternative is to pursue an approximation of this property.
We employ new neighborhood search strategies to achieve
the approximation dynamically along with ABC’s iterative
optimization process. Another reason that motivates our
modification to the neighborhood search is the possible
ineffectiveness of ABC in dealing with different problem
scenarios. The original neighborhood definition assigns each

solution with a fixed number (i.e.,
∑M

u=1 N(u)−1) of neigh-
boring solutions, where M is task number and N(u) is the
number of candidate services for task u. This number is the
same for all solutions and cannot be manually adjusted. For
example, a solution to the optimization problem in Fig. 3b
constantly has eight neighbors. Unfortunately, in study-
ing topological structures for particle swarm optimization
(PSO) [21], Kennedy et al. theorized that populations with
fewer connections (or neighbors) tend to perform better on
highly multimodal problems while highly interconnected
populations would be better for unimodal problems. Ac-
cording to this theory, ABC would be unsuitable for mul-
timodal problems when the neighbor size is large and for
unimodal problems when the neighbor size is small. Thus,
the neighborhood search is preferably improved towards
acquiring an adjustable neighbor size to achieve better ap-
plicability of ABC.

We formalize the approximate optimality continuity in SSP
as follows:

Definition 2. (Approximate Optimality Continuity). Given
an objective function of the SSP, fitness(·), a candidate
solution to SSP, CS′, and a predefined gap in the function
values of fitness(·), ∆fitness, which satisfies ∆fitness ∈
(0,∆max), we claim that an ABC-based approach pos-
sesses the optimality continuity property, if |fitness(CS′)−
fitness(CS′′)| ≤ ∆fitness stands for every neighbor of
CS′, say CS′′.

In the above definition, ∆max is the maximum gap
between two functions values of fitness(·) and ∆fitness
is the threshold used for adjusting the neighbor size.

Definition 2 is believed to approximate Definition 1
because it only satisfies the general requirements of Defini-
tion 1. In particular, Definition 2 only ensures the neighbor-
ing solutions are sufficiently similar to the original solution,
but does not differentiate the neighboring solutions. Similar
to continuous optimization, where the function value is
altered by adjusting its variable values, in implementing the
approximation, we confine the change of composite QoS
by restricting the scope of services that can be selected
to replace an original service during each neighborhood
search. In particular, given a service, we define its neigh-
boring services as those services that have similar QoS. We
hereby generate neighboring solutions by combining the
neighboring services of every component service of the
given solution. Suppose CS = (s1, s2, . . . , sM ) is a solution
to the SSP. A neighboring solution of CS, say CS′, belongs
to a Cartesian product:

CS′ ∈ NS1 ×NS2 × . . .×NSM (9)

where NSi is the set of all neighboring services of si.

TABLE 2
Examples of Continuous Functions

Continuous function Numerical example

f(x) = 100− x2, |x| < 10
|f(−2)− f(2)| < |f(1)− f(2)|,

but |(−2)− 2| > |1− 2|

f(x) = 2x2 + (x− 4)2, |x| < 10
|f(0)− f(2)| < |f(3)− f(2)|,

but |0− 2| > |3− 2|

3.3 The Rationale

We discuss the rationale of our approximate approach by
providing analogies to continuous numerical functions in
the following two aspects:

Optimization principle. The optimality continuity property
is naturally possessed by continuous functions and can be
directly used for the neighborhood search of ABC. Although
the SSP does not naturally possess this property, we define
new neighborhood search strategies for ABC to approximate
the property. For both cases, a solution is similar to its
neighbors in their evaluation results. Therefore, the opti-
mization principles for continuous functions and the SSP
are essentially the same. The only difference is that the
property inherently exists for continuous optimization but
is artificially approximated for the SSP.

Reachability of qualified neighbors in neighborhood search. Our
implementation of the approximate approach (as described
by Eq. (9)) does not guarantee that all qualified neighbors1

are reachable by the neighborhood search. For example,
consider an SSP solution (namely x̂) that consists of three
sequential services and is evaluated by the sum of the values
of the three services on a single attribute. Suppose 9, 13, and
20 are the attribute values of its three component services,
respectively. The QoS of x̂ can be represented by either a
vector (9, 13, 20) or a scalar 42 (i.e., sum(9, 13, 20)). Suppose
two services are recognized as neighbors if the difference
between their attribute values is no larger than 2. Then
a solution with the QoS vector of (10, 15, 22), namely x′,
should be identified as a neighboring solution of x̂ because
|9 − 10| ≤ 2, |13 − 15| ≤ 2, and |20 − 22| ≤ 2. In contrast,
given another solution x′′, which has the QoS vector of
(6, 20, 19), it should not be recognized as a neighboring
solution because |9 − 6| > 2 and |13 − 20| > 2, although it
is actually more similar to x̂ with respect to the scalar QoS,
i.e., |sum(10, 15, 22)− 42| = 5 > 3 = |sum(6, 20, 19)− 42|.
In fact, the complexity of finding all the qualified neighbors
is comparable with that of the SSP. Hence, it makes sense
to cover only partial qualified neighbors in identifying the
neighboring solutions. Note that ABC does not guarantee to
identify all qualified neighbors in continuous optimization
as well. For non-monotone continuous functions, regardless
of it being unimodal or multimodal, two very different
variable values may result in similar function values. Table 2
provides some examples verifying this point.

Based on the above discussion, we conclude that our
approximate approach is essentially the same as the continu-
ous optimization in terms that all neighborhood search leads
towards solutions with similar objective values and that
not all the solutions satisfying the neighborhood criterion

1. Qualified neighbors are those solutions that satisfy the neighborhood
criterion.
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are identified as neighboring solutions. The approximate
approach allows ABC to traverse the discrete search space
of SSP in a manner that is analogical to that of exploring a
continuous search space, which is expected to improve the
performance of ABC in addressing the SSP.

4 THE ALGORITHMS

According to Eq. (9), the critical point for implementing the
approximate approach turns into identifying the neighbor-
ing services for each component service of a given solution.
We derive three algorithms based on the discrete ABC, each
adopting a different technique to facilitate the neighborhood
search. Since replacing multiple component services simul-
taneously could lead to significant computational overhead,
all our algorithms replace only one component service at a
time in generating a neighboring solution.

4.1 Individual-Based Algorithm

Individual-based algorithm (IBA) is a straight implemen-
tation of Definition 2. The idea is to use predefined QoS
thresholds to identify the neighboring services. In particular,
IBA defines a maximum gap between services’ QoS. The
gap could be either a vector—when there are multiple QoS
attributes, or a scalar—when there exists only a single QoS
attribute. Given a service to be replaced, all the functionally-
equivalent services to it are examined and a service is
recognized as a neighbor of this service only when their
QoS difference is smaller than the gap.

To reduce complexity, IBA uses a ratio R to define the
maximum gap between services in different QoS attributes.
We formalize the neighborhood relation of IBA as follows:

Definition 3. (Neighborhood Definition of IBA). Given two
candidate services for the same task, namely s′ and s′′ (s′ 6=
s′′), we claim that s′′ is a neighboring service of s′, if |qi(s

′)−
qi(s

′′)| < R · |qmax
i − qmin

i | holds for every QoS attribute
qi (i = 1, 2, . . . , D).

In above definition, qi denotes attribute i, qi(·) is the
value of the input service on attribute i, qmax

i and qmin
i are

the upper and lower bounds for attribute i, respectively, and
D is the total number of QoS attributes.

In adopting IBA, the method for generating neighboring
solutions in the discrete ABC (as described by Eq. (6))
should be replaced. Suppose Su (u ∈ {1, 2, ...,M}) is the
set of all candidate services for task u. Given a current so-
lution CSi = (si,1, si,2, ..., si,M ), IBA obtains a neighboring
solution of CSi, namely CS′i, by the following procedure:

1: procedure OBTAIN A NEIGHBOR FOR IBA(CSi)
2: k ← rand(1, 2, . . . ,M)
3: NSi,k ← {s|s ∈ Sk ∧ s 6= si,k ∧ |qj(s)− qj(si,k)| < R · |qmax

j
−

qmin
j
|,∀j ∈ {1, 2, ...,D}}

4: s′
i,k

= rand(NSi,k)

5: return CS′

i
= (si,1, si,2, ..., si,k−1, s

′

i,k
, si,k+1..., si,M )

6: end procedure

In above procedure, IBA first selects a task, e.g., task
k, randomly from the totally M tasks of the composite
process (line 2), which makes si,k the component service
to be replaced. It follows by examining all the candidate
services for task k to identify the neighboring services of

+, +, +

−, +, + +, −,  + +, +, −

−, −, + −, +, − +, −, −

−, −, −

Top layer

Bottom layer

2nd layer

3rd  layer

Fig. 4. An example lattice of service subsets.

si,k, namely NSi,k (line 3). Finally, IBA selects a neighboring
service randomly from NSi,k, namely s′i,k (line 4), and
derives CS′i by replacing si,k with s′i,k while reusing all the
other component services of CSi (line 5).

4.2 Partition-Based Algorithm

Partition-based algorithm (PBA) organizes the candidate
services into partially ordered subsets to facilitate the neigh-
borhood search. The idea of service partitioning is first
introduced in [22], which we find effective for improving
the online efficiency of service selection by ABC. PBA im-
plements the partitioning by first dividing the range of each
QoS attribute into consecutive yet non-overlapping inter-
vals. Since each service is described by multiple attribute
values, the combination of these intervals separates the
candidate services into subsets (or partitions). The services
in the same subset have similar QoS and the final number of
subsets equals the number of combinations regarding each
task. Suppose K is the number of intervals on each attribute
and D is the number of QoS attributes, the resulting subset
number is KD.

The subsets form a lattice according to their dominance
relations in QoS. For example, Fig. 4 shows a lattice of subsets
formed by dividing the range of each attribute into two
intervals (denoted by + and −) on three attributes. This
lattice contains four layers, where an upper-layer service
dominates all its lower-layer services in QoS. The lattice
facilitates service selection in two aspects. First, PBA can
leverage the dominance relations to prune the dominated
services prior to service selection. PBA goes through a top-
down process to examine the subsets layer by layer and
keeps only the subsets contained by the first non-empty
layer. For the example in Fig. 4, PBA first checks whether the
top-layer set (denoted by (+,+,+)) contains any services.
It will use the services of the top-layer if the answer is true
and only turns to the second layer if no service exists in
the top-layer set. This process continues until the topmost
non-empty layer is found. In the worse case, only the
bottom layer is non-empty and PBA will use all candidate
services for selection. Second, based on the lattice, PBA is
able to identify neighboring services by groups. Given a
service, PBA identifies its neighboring services as all the
other services in the same subset of it. We formalize the
neighborhood relation of PBA as follows:

Definition 4. (Neighborhood Definition of PBA). Given a
candidate service s′ and the corresponding subset B′ in the
lattice, where s′ ∈ B′, we claim that s′′ is a neighboring
service of s′, if s′′ ∈ B′ and s′′ 6= s′.
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In adopting PBA, a neighboring solution of a current so-
lution CSi = (si,1, si,2, . . . , si,M ), namely CS′i, is obtained
by the following procedure:

1: procedure OBTAIN A NEIGHBOR FOR PBA(CSi)
2: k ← rand(1, 2, ...,M)
3: NSi,k ← {s|s ∈ B′ ∧ si,k ∈ B′ ∧ s 6= si,k}
4: s′

i,k
= rand(NSi,k)

5: return CS′

i
= (si,1, si,2, ..., si,k−1, s

′

i,k
, si,k+1..., si,M )

6: end procedure

Similar to IBA, PBA first randomly selects a task, e.g.,
task k, from the M tasks (line 2), and then identifies all
the other services within the same subset as si,k, namely
NSi,k, as the neighboring services of si,k (line 3). Finally,
PBA selects a service randomly from NSi,k, namely s′i,k
(line 4), and derives CS′i by replacing si,k with s′i,k while
reusing all the other component services of CSi (line 5).

4.3 Experience-Based Algorithm

Experience-based algorithm (EBA) aims at leveraging his-
torical optimization experience to facilitate future neighbor-
hood search. It is based on the practical knowledge that the
QoS requirements regarding the same domain service are
frequently similar and the optimality distribution of the SSP
is relatively stable [23]. EBA uses such knowledge but does
not totally rely on it. Instead, it incorporates the knowledge
in terms of probabilities for selecting neighboring services.

Given a service, EBA assumes equal probabilities of two
types of services to be selected as its neighboring services:
the services in the same group as the service and those
outside the group. We formalize the neighborhood relation
of EBA as follows:

Definition 5. (Neighborhood Definition of EBA). Given a
candidate service s′ and the corresponding service group G′

(s′ ∈ G′), we claim that the services in G′ (except s′) have a
probability of 0.5 to yield a neighboring service of s′ and so do
the other services for the same task as s′.

In adopting EBA, a neighboring solution of a current
solution CSi = (si,1, si,2, ..., si,M ), namely CS′i, is obtained
by the following procedure:

1: procedure OBTAIN A NEIGHBOR FOR EBA(CSi)
2: k ← rand(1...M)
3: s′

i,k
= RWS({(s, p(s))|s 6= si,k})

4: return CS′

i
= (si,1, si,2, ..., si,k−1, s

′

i,k
, si,k+1..., si,M )

5: end procedure

In above procedure, (s, p(s)) is a couple representing a
candidate service s and the corresponding probability p(s).
Sk is the set of all candidate services for task k. RWS(·)
is a selection operator, which takes the couples as input
and probabilistically selects a single service as output using
the Roulette Wheel Selection (RWS) method. The operator
ensures that the service with a higher probability has a
better chance to be selected.

EBA assumes that plenty of historical solutions to the
SSP are available for analysis. It first clusters the candidate
services into groups for each task, by using clustering al-
gorithms2, and then builds mappings among the groups

2. Our previous study [24] has revealed that service clusters are
more promising than service partitions for carrying the optimization
experience in addressing the SSP.

associated with different tasks, based on statistical analysis
of the historical solutions. The mappings are described as
conditional probabilities, which can be used to prioritize
the groups in obtaining a neighboring service. Given the
current solution, CSi, of which a neighboring solution is
to be generated, and the component service that is to be
replaced in CSi for generating the neighboring solution,
namely si,k, suppose the candidate services for each task
are clustered into C groups and si,k ∈ Gn

k , where Gn
k is the

nth group for task k (n ∈ {1, 2, . . . , C}, k ∈ {1, 2, . . . ,M}).
p(s) is calculated as follows:

p(s) =

{

1
2|Gn

k
\{si,k}|

s ∈ Gn
k (s 6= si,k)

pm
k

2|Gm
k
| s ∈ Gm

k (m 6= n)
(10)

where pmk is the conditional probability of Gm
k .

EBA calculates pmk as the probability of Gm
k condi-

tioned by a combination of groups on all other tasks
(G1, G2, ..., Gk−1, Gk+1, ..., GM ), where each group in this
combination contains a corresponding service in CSi, i.e.,
∀x ∈ {1, 2, ..., k − 1, k + 1, ...,M}, si,x ∈ Gx. More specifi-
cally, pmk is calculated by the following equation:

pnm = p(Gn
m|G1, G2, . . . , Gm−1, Gm+1, . . . , GM )

=
|{CS|CS ∈ HS ∧ (∧j∈Isj ∈ Gj) ∧ sm ∈ Gn

m}|

|{CS|CS ∈ HS ∧ (∧j∈Isj ∈ Gj)}|
(11)

where HS is the set of historical solutions to the SSP. CS is
a solution in HS, CS = (s1, s2, ..., sM ). I is a set of index
for the tasks, I = {1, 2, ...,m− 1,m+ 1, ...,M}.

The probabilistic neighborhood search strategy ensures
that EBA can leverage the historical optimization experi-
ence. Meanwhile, it guarantees that every service has an
opportunity to be selected as a neighboring service during
the neighborhood search.

4.4 Theoretical Analysis

In this section, we analyze the time complexity and discuss
the feasibility of combining the proposed algorithms.

4.4.1 Complexity Analysis

Given each solution, the discrete ABC randomly replaces a
component service of the solution to generate a neighboring
solution, which incurs the time complexity of O(1). For SN
solutions, the total time complexity of neighborhood search
sums up to O(SN). During each round of iteration, ABC
performs two times of neighborhood search (during the em-
ployed bee phase and the onlooker bee phase, respectively)
and one random selection (during the scout bee phase).
Suppose MCN is the maximum number of iteration, the time
complexity of the discrete ABC is O(MCN · SN).

The individual-based algorithm (IBA) requires a one-
pass scan over each dimension of the candidate services
to identify a neighboring service. Therefore, the time com-
plexity for each neighborhood search is O(N ·D), where N
is the number of candidate services and D is the number
of QoS attributes. Considering totally SN solutions and a
maximum of MCN iterations, the time complexity of IBA is
O(MCN · SN ·N ·D).

The partition-based algorithm (PBA) involves two parts
of time complexity corresponding to the two phases:
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preparatory phase and service selection phase. In the first
phase, PBA partitions each set of candidate services into
subsets, which incurs the time complexity of O(K · D ·
N · M), where M is the number of tasks, N is the num-
ber of candidate services for each task, D is the number
of QoS attributes, and K is the number of intervals for
the range of each QoS attribute. In the second phase,
PBA requires the time complexity of O(kD) to identify
the suitable layer based on the partitions and O(SN) to
perform neighborhood search for each round of iteration.
Hence, the time complexity for the second phase of PBA is
O(kD) +O(MCN · SN).

The experience-based algorithm (EBA) also involves
time complexity of two phases: the service clustering phase
and the service selection phase. In the first phase, EBA
clusters the candidate services and calculates the conditional
probabilities. For a typical clustering algorithm (such as
k-means), the time complexity for clustering M sets of
candidate services is O(M · C · N · MCN), where C is
the number of clusters for each task. Besides, the time
complexity for calculating the conditional probabilities is
O(H · CM ), where H is the number of historical records.
Therefore, the time complexity of the first phase sums up
to O(M · C · N · MCN) + O(H · CM ). For the second
phase, EBA simply performs random selections based on
the clusters and probabilities, so the time complexity for the
second phase of EBA is O(MCN · SN).

4.4.2 Feasibility of Combining the Proposed Algorithms

Despite differed implementations, the proposed algorithms
are generally unsuitable to be combined together for three
reasons. First, they follow exactly the same neighborhood
search philosophy, i.e., in all these algorithms, a neighboring
solution is generated by replacing a component service of
the given solution with a service of similar QoS. Second,
they adjust their neighborhood search via the same ap-
proach, i.e., by controlling the size of possible neighbors,
although they use different parameters (namely the thresh-
old value, partition number, and cluster number for IBA,
PBA, and EBA, respectively) to control this size. Third, the
heuristics used to facilitate their neighborhood search are
specific to their corresponding methods for organizing the
candidate services. The heuristic used in one algorithm is,
therefore, unsuitable to be applied to other algorithms. For
example, applying either the dominance relationship (as
used by PBA) or optimization experience (as used be EBA)
to IBA would lead to the time complexity exponential to the
number of candidate services. This makes it unfeasible to
apply IBA in practice. Also, it is insensible to regard each
partition of PBA as a cluster (as those used in EBA), as the
services in the same partition may not have more similar
QoS. In addition, applying dominance relationship to the
clusters of EBA may not reduce the solution space effec-
tively, as clusters do not have strict dominance relations.

The only feasible way of combining the proposed algo-
rithms is to change the organizational structure of candi-
date services dynamically during the optimization process.
This method, however, requires implementing the service
pruning mechanism as infrastructure instead of part of the
service selection solution, which limits its applicability to
a general service selection problem. For example, we can

first partition the candidate services to rule out the non-
dominant partitions, and then reorganize the services in
the remaining partitions into clusters. The clusters can then
be used directly by EBA. Though viable, this combination
approach requires using the historical solutions produced
based on the reduced rather than the original solution space.
This immediately prohibits EBA from being applicable to
most practical service selection scenarios.

5 EXPERIMENTS

The experiments were intended to answer three questions:
1) how does our approach compare with other approaches?
2) how are the proposed algorithms affected by the param-
eters? and 3) what is the impact of different neighborhood
structures on the evaluation results?

5.1 Experimental Setup

We re-implemented all algorithms in Java based on the Java
source code of ABC provided by D. Karaboga et al.3 and
the C source code of GA provided by D. Cormier and S.
Raghavan4. All experiments were conducted on Intel Dual
CPU T5600 with 1.83 GHz and 1.00GB RAM running under
Windows XP SP3.

We generated the experimental services and their QoS
by referring to the QWS dataset5. The QWS dataset includes
over 2,500 real-world services with their QoS information
measured using commercial benchmark tools. To ensure
impartiality, we generated 90,000 services to form a dataset
comparable with most existing datasets in size. Each service
was described by four QoS attributes, i.e., response time, re-
liability, throughput, and price. We assigned values to these
attributes in a way that conformed to the QoS distribution
of the QWS dataset. In particular, We manually divided the
range of each attribute into 50 intervals and counted the
occurrence of services in these intervals. By making sure that
each interval covered the same proportion of the generated
services, our dataset virtually extended the QWS dataset
homogeneously in terms of QoS.

We created test cases by assigning random values for the
global constraints. First, the average value of each attribute
was calculated for each task based on the QoS of all can-
didate services. Then the average values were aggregated
using existing QoS aggregation methods [6] to obtain a
series of global QoS. Finally, a global constraint was defined
for each attribute by specifying the upper or lower bound
as 0.9 to 1.1 times of the aggregated value.

5.2 Baselines and Metrics

We compare our approach with two classes of baseline
algorithms, i.e., the algorithms comparable to our approach
in terms of control complexity (the first two algorithms
below) and the most recent and effective service selection
algorithms to date regardless of their control complexity (the
last two algorithms):

Basic discrete ABC6, which is illustrated in Section 2.3.

3. http://mf.erciyes.edu.tr/abc/
4. http://www.codebus.net/d-E5yQ.html
5. http://www.uoguelph.ca/∼qmahmoud/qws/
6. We will hereafter denote the basic discrete ABC by ABC, for short.
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Genetic Algorithm (GA), the only population-based algorithm
comparable to our algorithms in terms of control complexity.

ProHR [25], the most recent and effective non-population-
based service selection algorithm, to the best of our knowl-
edge. ProHR has one parameter, i.e., the termination thresh-
old ǫ ∈ (0, 1), and uses Gurobi solver7 as the Mixed Integer
Programming (MIP) solver. Since we assume no precom-
puted skylines, we do not consider the variant of ProHR
that dynamically prunes non-skylines services to avoid the
overhead of computing skyline services at real-time.

Generalized Differential Evolution Algorithm (GDE3), the most
effective population-based service selection algorithm to
date, according to [26]. It has two control parameters be-
sides SN and MCN, i.e., CR—for controlling the crossover
operation, and F—for controlling the convergence rate.

Note that, the only existing improvement methods of
ABC (see Section 6.2 for details) that are applicable to our
ABC-based algorithms are the adaptive large neighborhood
search (ALNS) [27]—which is only applicable to the basic
discrete ABC and IBA, and the crossover operators [28]—
which is applicable to all ABC-based algorithms. We spe-
cially tested the impact of incorporating these improve-
ments on the performance of the ABC-based algorithms
(i.e., ABC, IBA, PBA, and EBA) and observed no significant
difference in their performance before and after incorpo-
rating these improvements. Therefore, the performance of
existing versions of our algorithms (as described in Section
4) already represents the best performance achievable by
our approach.

We evaluate the algorithms using two metrics: optimal-
ity (OPT), i.e., the normalized objective function value of
Eq. (1) obtained by an algorithm, which falls in the range
of (0,1), and Computation time (CT), i.e., the time spent by
an algorithm on obtaining a final solution. The median of
10 runs of each algorithm was obtained to make a reliable
evaluation.

5.3 Comparison of Different Algorithms

We studied the algorithms’ performance under different
problem configurations, with the algorithm-specific param-
eters fixed (the notations are described in Table 3). The
algorithm-specific parameters were configured with their
optimal settings on the experimental dataset, i.e., α = 0.7
and β = 0.2 for GA, ǫ = 0.1 for ProHR, and CR = 0.2
and F = 0.4 for GDE3. For our algorithm, we set threshold
ratio R = 0.3 for IBA, interval number per attribute K = 4
for PBA, and cluster number C = 10 for EBA. The optimal
settings were obtained by tuning the parameters, i.e., both
α and β from 0.1 to 1, R from 0.1 to 0.9, K from 1 to 10,
and C from 5 to 30, with minimum increments of 0.1, 0.1,
0.1, 1, and 5 for the five parameters, respectively. ABC was
executed 3,000 times to obtain historical records for EBA.

Table 4 shows the performance of different algorithms
under varying M and N , with D fixed to 4. All the three
algorithms (IBA, PBA, and EBA) consistently outperformed
the baselines in optimality. In most cases, PBA achieved the
best results owing to reduced search space. The optimality
of all baseline algorithms (GA, ABC, ProHR, and GDE3) was

7. http://www.gurobi.com/

TABLE 3
Notations for the Experiments

Type Notation Explanation

Problem-specific
parameter

M Number of tasks in composition
N Number of candidate services per task
D Number of QoS attributes

Algorithm-specific
parameter

α, β Crossover and mutation rates of GA
ǫ Termination threshold of ProHR

CR, F Crossover and convergence factors of GDE3
R Threshold ratio of IBA
K Number of intervals per attribute in PBA
C Number of clusters per task in EBA
H Number of historical records for EBA

not evidently influenced by N , due to the randomness of
their neighborhood search. In contrast, the optimality of our
proposed algorithms rose almost steadily as N increased.

The shortest computation time was mostly achieved
by PBA and EBA, and occasionally by ABC and ProHR
under small problem scales. Compared with PBA, EBA
seemed more promising for dealing with large-scale prob-
lems, as its computation time did not evidently increase
under either larger M or larger N . The computation time
of all algorithms was sensitive to M as they all require
significantly more time to reach the termination conditions
given a larger M . Among the compared algorithms, EBA
was least influenced by M because it hardly requires any
online computation. Only the performance of ProHR and
IBA was significantly influenced by N . But they differ in the
implications of N . For ProHR, a larger N always indicates
larger solution space to search; but for IBA, it simply means
more services to scan against the threshold when identifying
the possible neighbors for a given service.

To explore the impact of D, we set M = 30 and N = 500,
and compared the algorithms’ performance under varying
D within the range of {2, 4, 6, 8}. Table 5 shows the results,
where ↑ and ↓ indicate the performance values increased
or decreased as D grew. The results show most of the
compared algorithms were not significantly influenced by
D, represented by their fluctuating CT and OPT. This ob-
servation conforms to our analysis in Section 4.4.1. Both the
computation time and optimality of IBA and PBA increased
as D grew, but only the computation time of PBA increased
dramatically. This indicates that PBA is especially sensitive
to the size of QoS dimensions and may be unsuitable for
problems that involve many QoS attributes.

5.4 Impact of Parameters

We studied the performance of our proposed algorithms un-
der varying values of algorithm-specific parameters, i.e., the
threshold ratio R ∈ {0.1, 0.2, ..., 0.9} for IBA, interval num-
ber per attribute K ∈ {1, 2, ..., 10} for PBA, and the cluster
number C ∈ {5, 10, ..., 30} and historical record number
H ∈ {200, 600, ..., 2200} for EBA. All experiments were
conducted under a problem scale of task number M=30,
service number per task N=500, and attribute number D=4,
which we believe fits an ordinary practical scenario.

Fig. 5a shows the performance of IBA under varying
threshold value R. As R increased, the neighborhood re-
lations among services became more intense. Meanwhile,
IBA turned more accurate yet time-consuming, as indicated
by a notable increase in both CT and OPT of IBA. Both
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TABLE 4
Comparison of the Algorithms under Different Problem Scales

Metric Algorithm
M=30 M=60 M=90

N=250 N=500 N=750 N=1,000 N=250 N=500 N=750 N=1,000 N=250 N=500 N=750 N=1,000

CT (ms)

GA 1,936 1,973 1,979 1,974 3,629 3,630 3,665 3,684 5,753 5,801 5,826 5,851
ABC 1,903 1,812 1,834 1,834 3,346 3,192 3,407 3,253 5,082 5,223 5,186 5,159

ProHR 1,672 1,723 1,984 2,243 2,010 3,730 5,584 6,324 4,833 6,701 8,826 10,523
GDE3 1,923 1,954 1,945 1,950 3,354 3,428 3,443 3,583 5,192 5,345 5,153 5,263
IBA 2,676 3,860 6,509 8,067 4,509 7,984 10,995 15,659 6,910 12,335 14,978 19,729
PBA 1,496 1,903 2,056 1,684 3,390 3,050 3,389 3,715 4,476 4,714 5,489 5,517
EBA 1,801 1,781 2,140 1,765 3,262 3,390 3,081 3,112 4,078 5,056 4,759 5,184

OPT

GA 0.633 0.629 0.646 0.637 0.620 0.621 0.626 0.622 0.616 0.608 0.610 0.608
ABC 0.641 0.669 0.652 0.670 0.624 0.620 0.631 0.625 0.614 0.612 0.612 0.611

ProHR 0.676 0.721 0.714 0.723 0.621 0.693 0.676 0.662 0.612 0.610 0.612 0.613
GDE3 0.656 0.662 0.659 0.680 0.623 0.624 0.639 0.625 0.619 0.621 0.613 0.621
IBA 0.677 0.721 0.756 0.787 0.647 0.715 0.757 0.765 0.642 0.714 0.730 0.750
PBA 0.676 0.753 0.764 0.800 0.662 0.723 0.770 0.763 0.654 0.712 0.742 0.760
EBA 0.676 0.735 0.752 0.792 0.660 0.708 0.755 0.751 0.652 0.715 0.726 0.761

TABLE 5
Comparison of the Algorithms under Varying Dimensionality

Metric Algorithm D=2 D=4 D=6 D=8

CT (ms)

GA 2,162 1,973 ↓ 2,087 ↑ 1,928 ↓
ABC 2,672 1,812 ↓ 1,859 ↑ 1,562 ↓

ProHR 1,712 1,723 ↑ 1831 ↑ 1,910 ↑
GDE3 1,942 1,954 ↑ 2,012 ↑ 1,958 ↓
IBA 3,859 3,860 ↑ 3,938 ↑ 3,968 ↑
PBA 1,064 1,903 ↑ 6,187 ↑ 35,922 ↑
EBA 1,734 1,781 ↑ 1,656 ↓ 1,485 ↓

OPT

GA 0.670 0.629 ↓ 0.652 ↑ 0.646 ↓
ABC 0.665 0.669 ↑ 0.659 ↓ 0.676 ↑

ProHR 0.730 0.721 ↓ 0.722 ↑ 0.714 ↓
GDE3 0.665 0.662 ↓ 0.659 ↓ 0.653 ↓
IBA 0.720 0.721 ↑ 0.732 ↑ 0.735 ↑
PBA 0.736 0.753 ↑ 0.760 ↑ 0.767 ↑
EBA 0.747 0.735 ↓ 0.744 ↑ 0.742 ↓
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Fig. 5. Performance of IBA and PBA with respect to their respective
parameters.

the computation time and optimality peaked at R = 0.5.
After that, the neighborhood search of IBA gradually trans-
formed into random search as R grew, and finally led to the
premature convergence of IBA, as indicated by the reduced
computation time and inferior optimality.

Fig. 5b shows the performance of PBA with respect
to the number of intervals per attribute K . We observed
that as K grew, the optimality of PBA increased rapidly at
first, but gradually slowed down and turned stable when
K ≥ 9. Meanwhile, the computation time increased nearly
exponentially with K . In particular, when K = 10, the com-
putation time had grown to approximately 20 times of the
value at K = 1. The results suggest that the reduced service
size does not always worth the time spent on performing
the reduction if the K value is set excessively large.

Finally, Fig. 6 shows the performance of EBA with re-
spect to the cluster number C and historical record number

H . In particular, Figs. 6a and 6b show that leveraging more
historical composition records could generally improve the
efficiency and optimality of EBA. Figs. 6c and 6d also show
an improvement in both efficiency and optimality as C in-
creased all through to 20. Beside, Fig. 6d indicates that large
record sizes are more welcomed by a larger cluster number.
However, when C became larger, it simply took more time
to analyze the records without notably improving OPT .
This phenomenon is especially evident when H = 200.

5.5 Discussion

In this section, we provide more insight into the proposed
algorithms by illustrating their underlying neighborhood
structures through a two-dimensional example.

Fig. 7a shows some services for the same task. The
shaded square is a QoS space, where each dimension rep-
resents a QoS attribute. Each dot (or node) represents a
service, of which the location in the square is determined
by its QoS. An edge exists between two nodes if they
are reachable from each other by the neighborhood search.
For the discrete ABC, a service can be replaced by any
other service of the same task. Hence, the nodes are fully
connected, forming a complete graph. We omit to show the
edges in Fig. 7a for the sake of simplicity.

Fig. 7b shows the neighborhood relation between the
services for IBA. Since only similar services (controlled by
R) are recognized as mutual neighbors in IBA, the graph
formed by the services and their interconnections may in-
clude isolated subgraphs, which we call islands. Services
within the same island are all reachable from each other,
either directly or indirectly, during the neighborhood search.
But the services in different islands can only be connected
via global search performed by the scout bees. Different
from IBA, PBA naturally produces a grid of islands (as
shown in Fig. 7c). Each island is a complete subgraph and
corresponds to a partition in the lattice. By ruling out the
redundant partitions, only partial islands (e.g., the three
islands in the top-right part of Fig. 7c if the top-right part
represents better QoS) are finally used for service selection.
PBA also needs the global search performed by the scout
bees to jump among the islands.

Besides producing the islands, EBA incorporates histor-
ical optimization experience in terms of probabilistic con-
nections between the islands (as shown in Fig. 7d). These
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Fig. 6. Performance of EBA with respect to C and H.
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Fig. 7. Neighborhood relations underlying the algorithms.

probabilistic connections equip the neighborhood search of
EBA with certain global search ability, which enables the
neighborhood search to move by a better chance towards
the islands that empirically produce better solutions.

In summary, the neighborhood search of the discrete
ABC virtually explores the entire space, which is exactly
what a scout bee does for global search. In contrast, IBA
ensures that a solution can only be replaced by the solutions
with similar QoS, thus achieving approximate optimality
continuity. PBA and EBA also realize the property but use
different techniques. PBA employs the partitioning tech-
nique to facilitate reduction of solution space while EBA
leverages the optimization experience underlying historical
SSP solutions to enhance the neighborhood search.

Since IBA, PBA, and EBA are all implementations of
approximate optimality continuity, their exceptional perfor-
mance verifies the significance of this property for improv-
ing the performance of ABC in addressing the SSP. Although
all the three algorithms have introduced new parameters,
they are still simpler and much easier to use than most
existing population-based algorithms.

6 RELATED WORK

Last few years have witnessed a multitude of service selec-
tion methods and wide applications of ABC-based methods
in various applications. In this section, we overview the ma-
jor research efforts that are closely related to our approach.

6.1 Current Solutions to the SSP

Traditional approaches use deterministic algorithms to find
the optimal solution of SSP. These approaches work fine
for small problems but cannot scale to large-scale problems
due to their strictly exponential time complexity. Heuristic

algorithms alleviate this problem by using skylines or prun-
ing techniques to reduce the search space. However, their
effectiveness largely depends on the design of appropriate
heuristics. This limits their applicability and effectiveness
on large-scale problems. Since it is unrealistic to pursue
the exact optimal solution under large problem scales,
population-based algorithms [13] are generally employed
in large-scale problems to produce near-to-optimal solutions
and to improve the efficiency. To the best of our knowledge,
ProHR [25] and GDE3 [26] represent the most recent and
effective non-population- and population-based solutions to
the SSP, respectively. For this reason, both of them are used
as baselines in our experiments. For more recent advances
in addressing the SSP, readers may refer to a very recent
survey in [29].

Compared with other population-based algorithms,
ABC has distinctive advantages. First, it is simpler to use
thanks to its simpler steps and fewer parameters. Second,
it is generally believed to have better convergence speed
and accuracy [18]. Although it has been applied to many
problems and verified by various applications [19], it is
rarely adopted to the SSP. In [30], an algorithm named Bees
Algorithm (BA) is adopted to solve the SSP. BA is similar
to but considerably more complex than ABC, with totally
seven control parameters rather than those of three in ABC.

6.2 Modification Approaches for Discrete ABC

Since invented, ABC has been modified into differ-
ent versions (e.g., hybrid, parallel, and cooperative ver-
sions) and applied to various domains to solve the un-
constrained/constrained, continuous/discrete, and single-
objective/multi-objective optimization problems [19]. How-
ever, most existing ABC-based approaches are designed
for solving continuous optimization problems and simply
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adopt the original ABC without making significant mod-
ifications. Given that ABC is more advantageous in ad-
dressing continuous optimization problems than discrete
optimization problems [31] and in view of the significance
of neighborhood search in determining the effectiveness of
ABC, most existing approaches modify the discrete ABC by
improving its neighborhood search abilities. Such improve-
ments are usually achieved by three methods:

Defining problem-specific neighborhood operators. Different
neighborhood operators, including random point-to-point
swap, random point insertion, sub-sequence swap, sub-
sequence insertion, and sub-sequence reversing, are pro-
posed for ABC in addressing the flow shop scheduling [32],
vehicle routing [33], and TSP problems [34]. Ji et al. [35]
propose four operators for ABC, namely addition, deletion,
reversion, and move to train a Bayesian network.

Defining general neighborhood operators. Rahimi-Vahed et
al. [36] propose to use different neighborhood operators
to produce diversified neighbors during the optimization
process. Cui et al. [37] fuse variable neighborhood search
(VNS) into ABC, which allows the neighborhood structure
to change with evolution. The work in [27] use differ-
ent meta-heuristics to achieve adaptive large neighborhood
search (ALNS) of ABC. The effect of ALNS is that the scope
of neighborhood search can be adjusted dynamically during
the optimization process. Ozturk et al. [28] introduce the
single-point-crossover and two-point-crossover operators of
GA to ABC to address a 0/1 knapsack problem.

Defining novel population topology. Kennedy et al. first study
the effect of population topology on PSO [21], where topol-
ogy is a manually-defined structure specifying the neigh-
borhood relationship between the solutions of a specific
optimization problem. They introduce three types of topol-
ogy [38], namely Gbest, Lbest, and Von Neumann, and show
that employing population topology can achieve better per-
formance of PSO in continuous optimization.

6.3 Discussion

Although there exist diverse variants of ABC, they are used
for solving different types of problems. Until now, there is
little research on applying ABC to the SSP. To the best of our
knowledge, we are the first to leverage the advantages of
ABC for addressing the SSP. In the following, we discuss the
three types of improvement methods of ABC, respectively.

Problem-specific operators. Since these improvements are orig-
inally proposed for addressing certain specific problems,
they are generally inapplicable to other problems including
the SSP. For example, none of the problem-specific operators
investigated in Section 6.2 is applicable to the SSP.

General neighborhood operators. These improvements repre-
sent the class of improvements which are designed to be
applicable to a variety of problems. However, as general
improvement approaches, they hardly consider the unique
characteristics of the specific problem. For example, al-
though VNS, ALNS, and the crossover operators are all
applicable to the SSP, their effect is limited as they are not
customized to the SSP. This point is verified by our earlier
studies (as stated in Section 5.2), which show no significant

impact of incorporating these operators on our proposed
algorithms.

Novel population topology. The topology-based approach is
also applicable to the SSP. However, it is based on some pre-
defined static neighborhood relations between all possible
solutions. It takes considerable efforts to build such topol-
ogy, which, on the other hand, easily becomes extremely
large and difficult to handle. Moreover, this approach has
not yet been theoretically justified.

Our approach is based on yet significantly distinguishes
from existing efforts in the following aspects. First, by
pursuing the approximate optimality continuity, we actually
use QoS similarity rather than coding similarity as the cri-
terion to define neighborhood relations. Second, in realiz-
ing the approximation, our approach is implemented in a
way that customizes to the unique characteristics of the
SSP. Third, we comprehensively leverage the neighborhood
search strategies and problem-specific techniques to im-
prove the performance of ABC in addressing the SSP.

7 CONCLUSION AND FUTURE WORK

In this paper, we have proposed an approximate approach
based on the artificial bee colony algorithm to address the
QoS-aware service selection problem (SSP). Our approach
features approximate neighborhood search which is analog-
ical to the neighborhood search of ABC in addressing the
continuous optimization problems. We have formalized the
approximation by leveraging the unique characteristics of
the SSP and discussed the rationale. We further present three
algorithms, which use individual-based, partition-based,
and experience-based methods, respectively, to achieve the
approximation. In addition, we have analyzed the time com-
plexity and the feasibility of combining these algorithms.
Experimental results show our approach is not only easier
to use in terms of having fewer control parameters but
also able to address the SSP with higher accuracy and
convergence speed.

For future work, we plan to extend our approach to
incorporate more features of real-world services, such as the
uncertain QoS, and apply our algorithms to more problem
scenarios such as cloud resource scheduling.
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