CETZ1 IN CELL SHAPE CONTROL OF HALOARCHAEA:

UNDERSTANDING THE FUNCTIONAL DIVERGENCE OF TUBULIN SUPERFAMILY PROTEINS

Kariyawasam W. T. Roshali Thavindra de Silva

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

The ithree Institute and School of Life Sciences, University of Technology Sydney

November 2019

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Kariyawasam W. T. Roshali Thavindra de Silva declare that this thesis, is submitted in fulfilment of the requirements for the award of PhD, in the School of Life Sciences/ Faculty of Science at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature removed prior to publication.

Signature

Date: 02/09/2019

TABLE OF CONTENT

Certificate of Original Authorship	iii
List of Figures	viii
List of Tables	xi
Abbreviations	xii
Publications and Conference Proceedings	xiv
Acknowledgement	XV
Abstract	xvi

1	Intr	ntroduction		
1.1 Overview of the research problem		19		
	1.2	Cyt	oskeleton	20
	1.3	Tub	oulin superfamily proteins	22
	1.4	Mic	rotubules	23
	1.4.	.1	Relationship of tubulin structure and conformation with the function	24
	1.4.	.2	Microtubule dynamics and regulation	28
	1.4.	.3	Microtubule isoforms and post-translational modifications	33
	1.5	Cel	l division in bacteria by FtsZ	34
	1.5.	.1	FtsZ Polymerisation and structure	34
	1.5.	.2	FtsZ controls prokaryotic cell division	35
	1.6	Tub	pulins in archaea	39
	1.6.1		Archaea	39
1.6.2		.2	FtsZ and divergent tubulin superfamily members in archaea	41
	1.6.	.3	Cell-structure-related euryarchaeota tubulin/FtsZ proteins (CetZ) in	
	Hal	lofera	ax volcanii	42
	1.7	Ain	ns of the present study	48
2	Ger	neral	Materials and Methods	49
	2.1	Bac	terial strains and plasmids	50
	2.2	Gro	wth media	51
	2.3	Che	micals, reagents and solutions	53
2.4 Growth conditions and preparation of <i>E. coli</i> cell		Gro	with conditions and preparation of <i>E. coli</i> cells	55
	2.4.	1	Normal growth conditions for <i>E. coli</i>	55
	2.4.	2	Preparing chemically competent cells of <i>E. coli</i>	55
	2.4.	3	Preparing electrocompetent cells of <i>E. coli</i>	55
	2.5	Tra	nsformation of <i>E. coli</i>	56

2.5.1	<i>E. coli</i> transformation by heat shock
2.5.2	<i>E. coli</i> transformation by electroporation
2.6 Ge	neral growth conditions for <i>Haloferax volcanii</i>
2.7 Ha	<i>loferax volcanii</i> transformation
2.8 Co	mmon genetic techniques
2.8.1	Measuring DNA concentration and storage
2.8.2	Extraction of gDNA and plasmid DNA58
2.8.3	Demethylation of plasmid DNA
2.8.4	Agarose gel electrophoresis
2.8.5	Polymerase chain reaction (PCR)
2.8.6	General cloning protocol60
2.8.7	Sanger sequencing61
2.9 Ge	neral protein analysis techniques61
2.9.1	Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).
	61
2.9.2	Western Blot
2.10 Co	mmon techniques used to analyse different cellular parameters
2.10.1	Imaging cell shapes using microscopy
2.10.2	Cell circularity analysis
2.10.3	Cell volume and cell count analysis by Coulter counter
3 Conditi volcanii	onal Pleomorphology and Differentiation in the Model Archaeon <i>Haloferax</i> 65
3.1 Ab	stract
3.2 Int	roduction67
3.3 Re	sults
3.3.1	H. volcanii growth and pleomorphology in nutrient-limited batch culture
	69
3.3.2	Improved growth of <i>H. volcanii</i> in TE-supplemented media71
3.3.3	<i>H. volcanii</i> forms rods during the onset of growth in culture73
3.3.4 develop	The interplay between conditions controlling <i>H. volcanii</i> morphological ment
3.3.5 develop	Microfluidic flow chamber visualization of <i>H. volcanii</i> cellular ment
3.3.6	Potential role of secreted signals in cell elongation during early growth.78
3.3.7	Reversibility and specificity of the TE-starvation cell elongation response. 78

3.3. bate	8 The requirement of tubulin-like protein CetZ1 for rod cell formation in ch culture	
3.4	Discussion	
3.5	Materials and Methods	
3.5.	1 Archaeal strains	
3.5.	2 Culture media and general growth conditions	
3.5.	3 Nutrient depletion in liquid cultures	
3.5.	4 Time-course studies of rod development	
3.5.	5 Microscopy	
3.5.	6 Coulter cytometry	
3.5.	7 Western blotting	
4 Cha new kno	racterisation of CetZ1 localisation in <i>Haloferax volcanii</i> morphogenesis using a ockout strain and fluorescent protein fusion	
4.1	Introduction	
4.1.	1 <i>Haloferax volcanii</i> gene knockout system	
4.1.	2 The discovery of CetZ1 function in cell shape control	
4.1.	<i>3</i> Previous studies of CetZ1 localisation in <i>Haloferax volcanii</i>	
4.1.	4 Designing functional fusion proteins in biology95	
4.1.	5 Aims and the content of the results chapter	
4.2	Results	
4.2.	1 Design, construction and complementation of CetZ1 knockout strains .100	
4.2. fusi 109	2 Design, construction and complementation of CetZ1 fluorecent protein ons	
4.2.	3 The localisation of CetZ1 in <i>Haloferax volcanii</i> during morphogenesis 118	
4.3	Discussion	
4.4	Methods	
4.4.	1 Construction of plasmids containing the knock-out regions128	
4.4.	2 Construction of knockout strains	
4.4.	3 Construction of vectors with CetZ1 fluorescent protein fusion130	
4.4.	4 Testing the complementation of CetZ1 fluorescent fusion proteins132	
4.4.	5 Motility assay	
4.4.	6 Early-log phase rod assay	
5 Chapter 05: <i>In vivo</i> characterisation of CetZ1 function via site-directed mutagenesis 134		
5.1	Introduction	

5.2	Re	sults	137
5 c	5.2.1 compor	Use of CetZ1 site-directed mutants for identification of structural nents in CetZ1 important for <i>Haloferx volcanii</i> motility and morpho	genesis
			137
5	5.2.2	CetZ1 localisation dynamics in the point mutants	146
5.3	Di	scussion	155
5.4	Me	ethods	158
5	5.4.1	Construction of point mutants	158
5	5.4.2	Construction of fluorescent fusion proteins of CetZ1 point mutant	s160
5	5.4.3	Early-log phase rod development	160
5	5.4.4	Live cell imaging	160
5	5.4.5	Cell volume and cell count analysis by Coulter counter	161
6 A	Analys	is of In Vitro Interactions of CetZ1	162
6.1	Int	roduction	163
6	5.1.1	Models for subunit polymerisation	163
6	5.1.2	The polarity of the cytoskeletal filaments	165
6.2	Re	sults	168
6	5.2.1	Optimisation of CetZ1 purification	168
6	5.2.2	Optimised condition for CetZ1 polymerisation	172
6	5.2.3	In vitro polymerisation of selected CetZ1 point mutants	178
6	5.2.4	CetZ1 aggregated multimers can directly bind to the lipids	181
6.3	Di	scussion	185
6.4	Me	ethods	188
6	5.4.1	Overproduction of the protein and preparation of the cell lysate	188
6	5.4.2	The purification of untagged CetZ1	189
6	5.4.3	Purification of archaeal membrane lipids and liposome preparation	n189
6	5.4.4	Ultracentrifuge co-sedimentation assay	190
6	5.4.5	Ultracentrifuge co-pelleting assay	191
6	5.4.6	90 ⁰ Light scattering assay	191
6	5.4.7	Malachite Green GTPase assay	
7 I	Discuss	sion	194
7.1	Ex	ternal signals that induce the <i>H. volcanii</i> rod formation	
7.2	Ce	tZ1 in modulating <i>H. volcanii</i> cell shape	198
8 A	Append	lix: Supplementary Data	201
9 F	Referen	nces	

List of Figures

Figure 1.1: Three main types of cytoskeletal components in cells.	21
Figure 1.2: Important structural features in tubulin heterodimer	24
Figure 1.3: Straight and bent conformations of tubulin dimers and models proposed	for
the role of GTP in adapting these conformations into the microtubule lattice	
Figure 1.4: The structure of the y- tubulin ring complex (y- TuRC)	28
Figure 1.5 : <i>The effect of</i> β : <i>T238A mutation on microtubule dynamics.</i>	31
Figure 1.6: Z ring formation in Haloferax volcanii, the model haloarchaeon used in	this
study	36
Figure 1.7: An overview of cell division (left) apparatus and cell elongation (right)	
apparatus	
Figure 1.8: Different cell shapes in haloarchaea	40
Figure 1.9: A phylogenetic overview of tubulin superfamily	43
Figure 1.10: Evidence indicating CetZ1 is not essential for cell division, and it is	
needed for the shapeshift form plate shape to rod shape	44
Figure 1.11: Current evidence that displays CetZ1 cytoskeletal dynamics	45
Figure 1.12: Evidence showing CetZ1 can assemble into a quaternary structure	47
Figure 3.1: Effects of nutrient depletion on H. volcanii growth and morphology in	
liquid culture	70
Figure 3.2: Media supplementation with trace elements (TE) solution improves grow	vth
and cell shape uniformity in H. volcanii	72
Figure 3.3: <i>H. volcanii forms rods during the early stages of growth at low ODs in</i>	
liquid batch culture	73
Figure 3.4: Assays for H. volcanii reversible morphological transitions during the	
growth cycle.	74
Figure 3.5 : <i>Time-lapse microscopy of H. volcanii (H98 + pTA962) with and without</i>	<u>,</u>
trace elements	77
Figure 3.6: CetZ1 is essential for rod development during early-growth after colony	
resuspension and during TE-depletion.	80
Figure 4.1 : Summary of H. volcanii gene knockout system based on pyrE2 genetic	~ ~
marker.	92
Figure 4.2: Motility and cell shape comparison of WI and cetZI knockout cells	93
Figure 4.3: CetZ1 localisation in the W1 background.	94
Figure 4.4 : Effect of linker rigidity on FRET efficiency and the separation between a	1
CFP and YFP jusion protein.	9/
Figure 4.5: Schematic representation of the cetZ1 (HVO_2204) deletion construct	101
Figure 4.0 : Schemalic representation showing the steps in the construction of new	102
Eiguno 4.7 : Diagnostic tosta to confirm the Acet 71 studies	103
Figure 4. 1. Diagnostic lesis to conjirm the $\Delta cell I$ strains	104
Figure 4.6. Complementation of Cel21 junction in cel21 in-jrame and out-oj-frame	106
кпоскошs comparea to н. voicanti н20 (W1) strain	100

Figure 4.9: Complementation of rod cell formation by cetZ1 overexpression (4 mM tryptophan) during mid-log growth and cetZ1 WT level expression (2 mM tryptophan) **Figure 4.11**: Screening of IF \triangle cetZ1 complementation by the fluorescently labelled Figure 4.12: The fluorescent (left) and phase-contrast (right) images of the cells from the early-log phase assay in Hv-YPCab+2 mM tryptophan for all CetZ1 fusions with G **Figure 4.13**: Comparison of the complementation of \triangle cetZ1 by CetZ1-mTurquoise2 fusions and the original GFP fusion; pIDJL40.CetZ1.....117 **Figure 4.14**: *The localisation of new CetZ1-mTurquoise2 in motile rods and during* **Figure 4.15**: *CetZ1 localisation during early-log phase assay and trace elements (TE)* **Figure 4.17**: Selected time frames showing CetZ1 localisation dynamics during Figure 5.1: Locations of the CetZ1 point mutations designed to disrupt the lateral Figure 5.2: Expression and motility assays of strains expressing CetZ1 point mutants. Figure 5.3: Cell shapes observed in ID181 expressing the indicated CetZ1 site-directed Figure 5.4: Rod formation by CetZ1 point mutants in the early-log phase assay......144 Figure 5.5: CetZ1-mTurquoise2 localisation during early-log phase assay for point Figure 5.6: CetZ1-mTurquoise2 localisation during early-log phase assay for point Figure 5.7: Comparison of distances of CetZ1 localisations to the cell edge in different Figure 5.8: A comparison of the aspect ratio of the localisations in the double mutant Figure 6.2: The two possible kinetic polarities for polymer growth. Tubulin shows the first top-end growth kinetics in which subunits add to the GTP-bound end of the Figure 6.3: The optimisation of the protein purification buffer with different additives. Figure 6.5: SDS-PAGE analysis of the collected fractions from Ion Exchange and subsequent Gel Filtration......171 **Figure 6.6**: Optimisation of CetZ1 (12 μ M) in vitro polymerisation condition using 90⁰ **Figure 6.7**: The effect of pH on CetZ1 (12 μ M) polymerisation......174 Figure 6.8: Analysis of CetZ1 GTP dependent polymerisation......175

Figure 6.10: Malachite Green Phosphate assay cannot detect CetZ1 GTPase activity.

Figure 6.11: Comparison of gel filtration chromatograms between (A) WT CetZ	l and
CetZ1 point mutants, (B) CetZ1.M-loop, (C) CetZ1.E218A resulted during their	
purification	
Figure 6.12: Analysis of the polymerisation of CteZ1 point mutants, CetZ1, M-le	op and
CetZ1.E218A, via light scattering assay.	
Figure 6.13: Haloferax volcanii lipids	
Figure 6.14: Analysis of CetZ1 lipid-binding via ultracentrifuge co-sedimentation	on
assay	

- Supplementary Data Figure 1. Reversal and specificity testing of TE starvation. *H. volcanii* (H98 + pTA962) colonies from Hv-Ca agar were resuspended in Hv-Ca liquid medium.
- Supplementary Data Figure 2. Effect of spent media on *H. volcanii* cell shape during on-set rod formation.
- Supplementary Data Figure 3. Inclusion body formation depending on the cells' history of starvation.
- Supplementary Data Figure 4. The growth differences in *H. volcanii* during TE depletion.
- Supplementary Data Figure 5. The CetZ1 localisation concerning the local curvature of the cell.
- •
- Supplementary Video 1. *H. volcanii* cell shape change in Hv-Cab (+TE).
- Supplementary Video 2. H. volcanii cell shape change in Hv-Ca (-TE).
- Supplementary Video 3. H. volcanii cell shape change in Hv-YPC (-TE).
- Supplementary Video 4. *H. volcanii* cell shape change in Hv-YPCab (+TE).
- **Supplementary Video 5.** The localisation of CetZ1-mTq2 expressed in ID181 during early-log phase assay.
- **Supplementary Video 6.** The localisation of CetZ1-mTq2 expressed in ID181 during early-log phase assay.
- **Supplementary Video 7.** The localisation of CetZ1.R276E, K277E-mTq2 expressed in ID181 during early-log phase assay.
- **Supplementary Video 8.** The localisation of CetZ1.G108S-mTq2 expressed in ID181 during early-log phase assay.
- Supplementary Video 9. The localisation of CetZ1.C-terminal tail mutantmTq2 expressed in ID181 during early-log phase assay.
- Supplementary Video 10. 3D-SIM images showing localisation of CetZ1-mTq2 expressed in ID181 during early-log phase assay.
- **Supplementary Video 11.** Z-stack of a 3D-SIM images showing localisation of CetZ1.G108G-mTq2 expressed in ID181 during early-phase assay.

LIST OF TABLES

Table 2.1 General Bacterial Strains Used in the Present Work 50
Table 2.2 General Archaea Strains Used in the Present Work 50
Table 2.3 General Plasmids Used in This Work 51
Table 2.4 Commonly Used Bacterial Growth Media
Table 2.5 Commonly Used Archaea Growth Media
Table 2.6 Commonly Used Chemicals in the Present Work
Table 2.7 Buffers and General Solutions Used in This Work
Table 2.8 Ingredients of SDS-PAGE Gels 62
Table 4.1 Primers Used for Amplification of Flanking Regions of cetZ1 Deletions128
Table 4.2 Primers Used in Diagnostic PCR of cetZ1 Deletion Strains
Table 4.3 Sequences of the Three Types of Linkers Used in This Study
Table 4.4 Primer Sequences Used for GFP Amplification and the Plasmid Sequence
Confirmations131
Table 5.1 Rod Formation of ID181 by CetZ1 with Point Mutations During Early-log
Phase Assay145
Table 5.2 Primers used to amplify the CetZ1 point mutations 159
Table 6.1 Protein Concentration Gradient used in Malachite Green Phosphate Assay 192

Abbreviations

AMP	Ampicillin
Å	Angstrom
BSA	Bovine Serum Albumin
BLAST	Basic local alignment search tool
DNA	deoxyribonucleic acid
g	Gram
GFP	Green fluorescent protein
GTP	Guanosine triphosphate
GDP	Guanosine diphosphate
h	Hour(s)
kb	Kilo base pair(s)
kDa	Kilodalton(s)
min	Minute(s)
ml	Millilitre(s)
MQW	Milli-Q water
OD	Optical Density
PBS	Phosphate Buffered Saline
PCR	Polymerase Chain Reaction
psi	Pounds per square inch
mRNA	Messenger Ribonucleic acid
М	Molar concentration
Mm	Millimolar concentration

MWCO	Molecular weight cut-off
n	nano
NCBI	National Centre for Biotechnology Information
RT	Room Temperature
rpm	Revolutions per minute
r.m.s.d	Root-mean-square deviation
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel electrophoresis
sec	sec
TBS	Tris Buffered Saline
TEMED	N,N,N',N'-tetramethylethylenediamine
Tris	Tris(hydroxymethyl)methylamine
w	Weight
WT	Wild Type
v	Volume
μ	Micro

PUBLICATIONS AND CONFERENCE PROCEEDINGS

Journal Publications:

- **de Silva, R.T**, Halim, M. F., Pohlschroder, M., Duggin, I. G., 'Cell shape differentiation in *Haloferax volcanii*' Applied Environmental Biology (manuscript to be submitted).
- Liao, Y., Ithurbide, S., de Silva, R. T, Erdmann, S., Duggin, I. G. et al. (2018)
 'Archaeal cell biology: diverse functions of tubulin-like cytoskeletal proteins at the cell envelope', Emerging Topics in Life Sciences. doi: 10.1042/etls20180026.

Conference Proceedings:

- de Silva R.T. Ithurbide S.I., Duggin I.G. (2019) "CetZ1 in cell shape control of haloarchaea: Understanding the functional divergence of tubulin superfamily protein" at Motile and Contractile Systems Gordan Research Conference, USA (oral and poster presentation).
- de Silva R.T. Ithurbide S.I., Duggin I.G. (2019) "CetZ1 in cell shape control of haloarchaea: Understanding the functional divergence of tubulin superfamily protein" at ASMMicrobe19, American Society of Microbiology, USA (late breaker poster presentation).
- de Silva R.T. Ithurbide S.I, Duggin I.G. (2018) "Metal starvation triggers CetZ1depedent cell shape changes in haloarchaea" at Combio 2018, Sydney, Australia (oral presentation).
- de Silva R.T. Ithurbide S.I, Duggin I.G. (2018) "Metal starvation triggers CetZ1dependent cell shape changes Haloferax volcanii" at Molecular biology of archaea: From mechanisms to ecology (MBoA6), EMBO Workshop, Vienna, Austria (poster presentation).

ACKNOWLEDGEMENT

I would like to convey my sincere thanks to all those who encouraged me and supported me in completing my research timely. First and foremost, I am deeply grateful to my supervisor A/Prof. Iain Duggin for all the opportunities, guidance, and support in my progression through the PhD. I deeply enjoyed all the insightful discussions. You have been an excellent mentor.

My warmest thanks to all my lab mates for making a wonderful vibe to work. I am grateful to Yan Liao, Greg Iosifidis, Taylor Corocher and Carly Italiano for proofreading my thesis. Also, I really enjoyed collaborating with Solenne Ithurbide to make the archaeal world colourful with a new set of fluorescent plasmids. The support received from my labmates, Tamika Blair, Dora Pittrich and Vinaya Shinde are much appreciated.

I would like to extend my thanks to UTS Microbial Imaging Facility. The MIF director A/Prof. Louise Cole and Dr Michael Johnson, for giving me excellent training and Dr Christian Evenhuis for his invaluable help in data analysis.

I am also grateful to ithree Director, Prof. Liz Harry, for her invaluable guidance which helped me to shape my research career, Dr Chris Rodrigues for giving me insightful advice to improve my research and to all my friends at the ithree institute. I must thank Shima Vahdat, Meggie Leung and Shannon Hawkins for making sure that all administrative works are completed timely. My appreciation also extends to Prof.Mecky Pohlschröder from the University of Pennsylvania for collaborating with our research.

I am grateful to all my thesis reviewers for spending their time reviewing my thesis. My warm thanks are due to Ransalu for his indispensable support. Thank you for your patience and encouragement. Last, but not least, I am also greatly indebted to my parents and friends for their affection.

K.W.T. Roshali Thavindra de Silva, ithree Institute, The University of Technology Sydney, 02 September 2019.

ABSTRACT

Cell shape dynamics are important for cell survival. Eukaryotic cytoskeletal protein tubulin plays essential roles in internal structure organisation and cell shape. However, the prokaryotic tubulin homologue, FtsZ, controls the assembly and function of the division ring. The origin of this functional disparity is still unclear. A third group of the tubulin superfamily, CetZ, has been recently identified in archaea and shows characteristics in common with both the tubulin and FtsZ. A conserved member, CetZ1, is required for cell shape changes (from plate to rod) during the development of motile cells in the archaeon, *Haloferax volcanii* (Duggin *et al.*, 2015).

The present study has defined additional culture conditions—metal nutrients depletion and early-log growth—that result in rod development, which has opened new ways of understanding cellular differentiation in archaea. A new $\Delta cetZl$ strain, which can be complemented by resupply of CetZ1 on a plasmid, was also constructed. Using these culture conditions and $\Delta cetZl$, a functional CetZ1-mTurquoise2 fusion was identified after screening numerous fluorescent proteins and linker-peptide combinations. It displayed a patchy and dynamic localisation in discoid cells, then, during rod formation, displayed short dynamic filaments along the edges of the cell's long axis. During cell division, CetZ1 localises at the envelope around the division furrow; this differed significantly from FtsZ localisation pattern.

By using the CetZ1 and CetZ2 crystal structures as a guide, mutants were constructed to probe the functions and interactions of CetZ1 in *H. volcanii*. Mutation in the predicted CetZ1 membrane-interaction and self-association domains prevented rod development. The former displayed filament-like localisation detached from the cell edges, whereas the latter did not localise *in vivo*, consistent with the predictions. The GTPase mutants of CetZ1 prevented rod development but caused more intense and less dynamic localisation suggesting regulation of characteristic GTP-dependent dynamics is critical to CetZ1 function. CetZ1 *in vitro* studies revealed GTP-dependent polymerisation and these polymers were destabilised in predicted self-association mutant. Moreover, a mutation in the C-terminal tail displayed a decreased membrane localization.

These structure-function studies suggest CetZ1 forms polymers that has its longitudinal interactions controlled via the GTPase activity and the lateral interactions mediated by a

region similar to tubulin 'M-loop'. The dynamic localisation of CetZ1 to the cell edges via the C-terminal tail region is essential to modulate the cell shape. Finally, these discoveries support the notion that cell shape control by tubulin superfamily proteins could have predated the emergence of eukaryotic tubulins.