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Abstract 

This study aims to analyze and model cathodic H2 recovery (rcat), coulombic efficiency (CE) 

with inputs of voltage, electrical conductivity (EC) and anode potential, and H2 production 

rate and total energy recovery with inputs of rcat and CE in a microbial electrolysis cell using 

artificial neural network (ANN) and adaptive network-based fuzzy inference system (ANFIS) 

procedures. Both ANN and ANFIS models demonstrated great goodness of fit for rcat, CE, H2 

production rate and total energy recovery prediction with high R2 values. The sum square 

error values for rcat (0.0017), CE (0.0163), H2 production rate (0.1062) and total energy 

recovery (0.0136) in ANN models were slightly higher than those in ANFIS models at 

0.0005, 0.0091, 0.1247 and 0.0148 respectively. Sensitivity analysis by ANN models 

demonstrated that voltage, EC, rcat and rcat were the most effective factors for rcat, CE, H2 

production rate and total energy recovery, respectively. 

 

Keywords: ANN; ANFIS; Bio-hydrogen; Machine learning; MEC; Modelling 
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1. Introduction 

Energy has been the driving force of economic development since industrial revolution. It has 

been estimated that the world will require 57% more energy by 2050 considering 1.1% annual 

growth of world population (Divya Priya et al., 2020). In addition, water scarcity is 

considered as one the most important global concerns (Nouri et al., 2019; Zarei et al., 2020). 

Since natural gas, coal and oil are three of the most important finite sources of the energy at 

present, and global large-scale use of such fossil fuels emits many inorganic and organic 

pollutants such as CO, NOx and carcinogenic polycyclic aromatic hydrocarbons (King et al., 

2004; Organ et al., 2020), exploring appropriate solutions to tackle these challenges is of great 

responsibilities (Divya Priya et al., 2020; Gielen et al., 2019; Hosseinzadeh et al., 2020b; Mu 

et al., 2020). There are various strategies to manage each of these challenges separately; 

however, development of a technology which simultaneously address all of these challenges, 

is timely and innovative. 

Microbial fuel cell (MFC) and microbial electrolysis cell (MEC) are regarded as two 

rewarding technologies in which electroactive microorganisms use the organic matter to 

produce energy (Cario et al., 2019; Gandu et al., 2020; Jiang et al., 2020). There are two 

common configurations for these processes either as single or dual chamber, in both of which 

two electrodes as anode and cathode are installed and electrically connected by an external 

circuit. In anode chamber, the electron reducing bacteria oxidizing the organic matter donate 

electron to the anode through three different methods including direct electron transfer, 

electron transfer through the membrane proteins of the bacteria e.g. nanowires, through 

soluble mediators, which are present in electrolyte (Cui et al., 2015; Logan et al., 2006). High 

electrical conductivity (EC) of the electrolyte simplifies the electron transfer and reduces 

internal resistance resulting in greater energy recovery (Lefebvre et al., 2012). However, there 

is limited information regarding the importance of EC in comparison to the other factors and 

the simultaneous effect of EC on cathode recovery and Coulombic efficiency (CE), and the 
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behavior of the separate parts of the MEC at different levels of EC. CE is defined as the ratio 

of the potential electrons which can be drawn from the substrate and transferred to the anode 

per the actual ones (Tang et al., 2014). Operating conditions specially the level of anode 

potential have great importance in selection of the types of the microbial communities 

activating on anode surface as oxidizers and affecting the CE, and consequently, the energy 

recovery (Chou et al., 2014). The ratio of the actual recovered H2 moles to the possible ones 

according to the measured current is regarded as the cathodic H2 recovery which can be 

affected by different factors such as resistance which can be affected by EC (Call and Logan, 

2008). The outputs of the MEC systems are usually determined by the hydrogen production 

rate in MEC, and total energy recovery (Call and Logan, 2008). CE and cathodic H2 recovery 

directly affect both of these parameters, yet there is no study in this regard. In addition, there 

is information deficiency on the importance of CE and cathodic H2 recovery in energy 

efficiency of MECs.  In order to enhance the performances of such processes, operating 

process at optimum condition is regarded as one of the plausible options, which is frequently 

neglected. There are two  strategies using  modelling or laboratory experiments to optimize 

such processes, and modelling is much cheaper and faster than the laboratory experiments 

(Pinto et al., 2012). Therefore, with optimization of this process, it is potentially able to 

alleviate water scarcity, produce energy and reduce environmental pollution simultaneously. 

In addition, the determination of the most effective part of the process as well as the 

importance of the variables in process will be crucial to optimize and improve the efficiency 

of processes. 

Artificial neural network (ANN), which is inspired from the structure of the human brain, 

is considered as one of the promising procedures to master different types of correlations 

existing between various dependent and independent variables. To learn these correlations, 

ANN procedure does not need to fully comprehend the mechanistic nature and the 

mathematical background of the processes (Hosseinzadeh et al., 2020a; Rego et al., 2018). 
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However, adaptive neuro-fuzzy inference system (ANFIS) developed by Jang (1993) 

combines the ANN learning abilities with the capabilities of fuzzy logic systems for 

uncertainty explanation (Betiku et al., 2016). Since the performances of these two machine 

learning models are dependent upon the type of the applications, there are diverse applications 

of simultaneously using these procedures in various fields (Betiku et al., 2016; Dastorani et 

al., 2010; Entchev and Yang, 2007; Hosseinzadeh et al., 2020b; Izadi et al., 2019; 

Mehdizadeh et al., 2016).  However, there was no study which used these two models in MEC 

processes. Since these two procedures do not need any detailed knowledge of the process, 

they can be a promising option for the simulation of the MEC process (Tsompanas et al., 

2019). 

Using ANN and ANFIS models, this study therefore aims to model the effects of applied 

voltage, electrical conductivity and anode potential on cathodic H2 recovery and coulombic 

efficiency. Secondly, the effects of coulombic efficiency and cathodic H2 recovery on total 

energy and cathodic H2 recoveries using ANN and ANFIS procedures in a single chamber 

MEC are examined. In addition, the relative importance of the effective factors in the output 

of this process is determined by sensitivity analysis. 

 

2. Materials and methods 

2.1. Data collection and processing 

To generate sophisticated and rigorous analyses of the process, the experimental results of one 

single chamber reactor were used to develop computer models under similar conditions of 

buffer solutions, feeding, configuration of the reactor, electrode type and composites. Call and 

Logan (2008) experimentally studied the effects of applied voltage, EC, anode potential, CE 

and cathodic H2 recovery on H2 production rate and total energy recovery in a single chamber 

MEC reactor. The reported experimental results were extracted by Plot Digitizer. In order to 

reduce the complexity of the computation and avoid overtraining, the input and output 
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experimental data were randomized (Sharma et al., 2016) in a range from 0.1 to 0.9 using Eq. 

1:  

proportion of normalized 𝑥𝑖 =  
𝑥𝑖− minimum value of data

maximum value of data − minimum value of data
× (0.9 − 0.1) + 0.1  

 (1) 

 

2.2. ANN  

Four different feed-forward ANN models were developed by MATLAB R2018b to model CE 

and cathodic H2 recovery with EC, applied voltage and anode potential as inputs; H2 

production rate along with total energy recovery with inputs of CE and cathodic H2 recovery. 

The number of neurons in input and output layers were as same as the number of input and 

output variables in each model. To determine the appropriate number of neurons in hidden 

layer, 1 to 20 neurons were loaded over different training approaches to develop many 

models, among which the most accurate model was selected according to the obtained mean 

square error (MSE) (Eq. 2), R-squared (R2) (Eq. 3) and correlation coefficient (R) (Eq. 4) in 

models of all, training, validation and test datasets (Baziar et al., 2017). In this study, 80% of 

the data (19 data points) was employed to train (13 data points), validate (3 data points) and 

test (3 data points) the developed models. The remaining 20% of the data (5 data points) was 

used for additional test. In the first part, 80% of the data was divided into three subdivisions 

of training, validation and testing datasets with 70%, 15% and 15% consecutively. Gradient 

descent with momentum (traingdm), scaled conjugate gradient (trainscg), resilient back-

propagation (trainrp) and Levenberg-Marquardt (trainlm) as four various backpropagation 

training algorithms were employed to select the best training algorithm in modelling of 

cathodic H2 recovery, CE, H2 production rate and total energy recovery. It is worth 

highlighting that the modelling process was carried out with five repetitions to improve the 

prediction performances as well as the precisions of the models and diminish the MSE.  
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𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝑝𝑟𝑑,𝑖 − 𝑦𝐴𝑐𝑡,𝑖)

2𝑁
𝑖=1         (2) 

𝑅2 = 1 −
∑ (𝑦𝑝𝑟𝑑,𝑖−𝑦𝐴𝑐𝑡,𝑖)𝑁

𝑖=1

∑ (𝑦𝑝𝑟𝑑,𝑖−𝑦𝑚)𝑁
𝑖=1

                   (3) 

𝑅𝑥𝑦 =
∑(𝑥𝑖−�̅�)(𝑦𝑖−�̅�)

√(𝑥𝑖−�̅�)2 ∑(𝑦𝑖−�̅�)2
                           (4) 

 

2.3. ANFIS 

ANFIS, which is a combination of the ANN learning ability and fuzzy logic systems 

reasoning capability, with six layers of output, total output, defuzzy, product and normalized, 

fuzzy and input was applied to model the response variables. In contrast to the fuzzy and 

defuzzy layers in which the adaptive nodes are variable and are determined at the train phase, 

the number of nodes in remainder layers are steady. The training approach is similar to that in 

the ANN models (Souza et al., 2018). 

The Gaussian (gaussmf), trapezoidal (trapmf), difference between two sigmoidal 

(dsigmf), generalized bell-shaped (gbellmf), Gaussian combination (gauss2mf), and triangular 

(trimf) membership function (MF) in the function genfis1 of the MATLAB R2018b were used 

to construct the system of fuzzy inference for ANFIS. The least square estimations coupled 

with the back-propagation algorithms were combined together and employed to model the 

process as a hybrid optimization approach (Souza et al., 2018).  

 

2.4. Comparison between ANFIS and ANN models 

In order to evaluate and compare the precision of the developed ANFIS and ANN models, 

four indices including determination coefficient (R2) (Eq. 3), adjusted-R2 (adj-R2) (Eq. 5), sum 

squared error (SSE) (Eq. 6) and root mean square error (RMSE) (Eq. 7) were employed. In 

principle, the lower the values of the MSE, SSE and RMSE and the higher the values of the 

R2 and adj-R2, the higher the precision and goodness of fit of the model (Hosseinzadeh et al., 
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2018; Hosseinzadeh et al., 2020b). It should be stressed that all of the extracted data were 

used to compare the developed models.   

𝑅2𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 1 −
(1−𝑅2)(𝑁−1)

𝑁−𝑝−1
                           (5) 

𝑆𝑆𝐸 = ∑ (𝑦𝑝𝑟𝑑,𝑖 − 𝑦𝑒𝑥𝑝,𝑖)
2𝑁

𝑖=1                               (6) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑝𝑟𝑑,𝑖 − 𝑦𝐴𝑐𝑡,𝑖)

2𝑁
𝑖=1                      (7) 

where yprd,i and 𝑦𝐴𝑐𝑡,𝑖 are the predicted and actual proportions of dependent variables 

(outputs), consecutively; ym and N are the mean of actual proportion of dependent variables 

and the total number of data points, respectively. 

 

2.5. Sensitivity analysis  

An equation-based approach (Eq. 8) as sensitivity analysis firstly presented by Garson 

(Hosseinzadeh et al., 2020b), was used to determine the importance portion of the various 

effective factors on the response factors. In ANN models developed, the effective portions of 

the EC, applied voltage and anode potential on the CE% and cathodic H2 recovery, and the 

effective portions of the CE% and cathodic H2 recovery on H2 production rate and total 

energy recovery were evaluated in a MEC process. 

𝐼𝑗 =

∑ ((
|𝑊𝑗𝑚

𝑖ℎ |

∑ |𝑊𝑘𝑚
𝑖ℎ |𝑁𝑖

𝑘=1

)×|𝑊𝑚𝑛
ℎ𝑜 |)𝑚=𝑁ℎ

𝑚=1

∑ {∑ (
|𝑊𝑘𝑚

𝑖ℎ |

∑ |𝑊𝑘𝑚
𝑖ℎ |𝑁𝑖

𝑘=1

)×|𝑊𝑚𝑛
ℎ𝑜 |𝑚=𝑁ℎ

𝑚=1 }𝑘=𝑁𝑖
𝑘=1

  × 100                                          (8) 

where Ij is the importance of the input, Nh and Ni are the proportion of the hidden layer 

neuron and proportion of independent variables consecutively; W, h, i and o are related to 

ANN weight, hidden, input and output layers correspondingly; the n, m and k are the neuron 

number of the output, hidden and input layers respectively (Hosseinzadeh et al., 2020a).  

To assess the importance of the independent variables in dependent variables in ANFIS 

models developed, six single factor models were built for each of the EC, anode potential, 
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applied voltage with both of CE% and cathodic H2 recovery under the best conditions 

obtained, and four other single factor models were developed for each of CE% and cathodic 

H2 recovery with H2 production rate and total energy recovery. 

 

3. Results and discussion  

3.1. ANN models for CE, cathodic H2 recovery, H2 production and energy recovery 

3.1.1. Selection of backpropagation training algorithm 

Normally the higher proportions of the correlation coefficient (R) as well as the lower 

proportions of the MSE, the greater strength of the training algorithms (Jacob and Banerjee, 

2016; Zhao et al., 2019). With respect to the results obtained, Levenberg-Marquardt was 

selected as the best training algorithm for CE, cathodic H2 recovery, H2 production rate and 

total energy recovery training processes. 

3.1.2. Neuron number optimization 

According to the best developed model in best training algorithm, a neuron with smallest 

MSE in all data (train, validation and test data) was chosen as the best neuron number 

(Elmolla et al., 2010). Based on the developed models, the neurons 7, 7, 11 and 17 were 

selected as the best for cathodic H2 recovery, CE, H2 production rate and total energy 

recovery respectively. Finally, the obtained appropriate topologies were 3-7-1 and 3-7-1 for 

cathodic H2 recovery and CE consecutively. In addition, 2-11-1 and 2-17-1 were selected as 

the best topologies for H2 production rate and total energy recovery correspondingly. It is 

worth highlighting that the first and last number in each topology demonstrate the number of 

independent and dependent variables in each model. 

3.1.3. Validation and testing of the models 

Two 15% of the train datasets which was 80% of the all data were used to validate and test 

the developed models. The ANN model used for prediction of the cathodic H2 recovery and 

CE are presented in Eq. 9, and that of the H2 production rate and the total energy recovery is 
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presented in Eq. 10. Figs 1 and 2 demonstrate the scattergrams with correlation coefficients of 

all data (train, validation and test data) in one graph, and their residual errors for the cathodic 

H2 recovery, CE, H2 production rate and total energy recovery models consecutively.  

𝐴𝑁𝑁 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑢𝑟𝑒𝑙𝑖𝑛(𝐿𝑊 × 𝑡𝑎𝑛𝑠𝑖𝑔(𝐼𝑊 × [𝑉𝑜𝑙𝑡𝑎𝑔𝑒; 𝐸𝐶; 𝑎𝑛𝑜𝑑𝑒 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙] + 𝑏1) +

𝑏2)                            (9) 

𝐴𝑁𝑁 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑢𝑟𝑒𝑙𝑖𝑛(𝐿𝑊 × 𝑡𝑎𝑛𝑠𝑖𝑔(𝐼𝑊 × [𝐶𝑎𝑡ℎ𝑜𝑑𝑖𝑐 𝐻2 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦; 𝐶𝐸] + 𝑏1) + 𝑏2)    

(10) 

As can be seen in Figs 1a and 1b, the values of parameter R for cathodic H2 recovery and 

CE were 0.9994 and 0.9985 respectively, while R values for the H2 production rate and total 

energy recovery were 0.9441 and 0.9939. In addition, the MSE values of these four models 

were 0.0001, 0.0001, 0.0073 and 0.004 respectively.  

Based on the built models, the cathodic H2 recovery, CE, H2 production rate and total 

energy recovery in the single chamber MEC can be predicted up to 99.83%, 98.19%, 87.05% 

and 98.07%.  The best liner fit equations of the developed models for the cathodic H2 

recovery, CE, H2 production rate and total energy recovery are presented in equations 11-14 

correspondingly.   

y = 1.0037 x - 0.0077        (R2 = 0.9983)                 (11) 

y = 1.0132 x - 0.0027        (R2 = 0.9819)                 (12) 

y = 0.7285 x + 0.1278       (R2 = 0.8705)                 (13) 

y = 0.9171 x + 0.0605       (R2 = 0.9807)                 (14) 

 

Moreover, additional tests were carried out to check the strengths of the developed ANN 

models in prediction of the response variables. According to the findings of the additional 

tests, the paired values of the R2 and MSE parameters were 0.9988 and 0.0002 for cathodic H2 

recovery, 0.9356 and 0.0029 for CE, 0.8469 and 0.0132 for H2 production rate, and 0.9940 
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and 0.0023 for total energy recovery. Fig. 3 depicts both actual and predicted values of the 

outputs in additional tests for all ANN models.  

Tsompanas et al. (2019) showed a great capability of the ANN models for an MFC 

system. The production of voltage with inputs of cathode size, electrodes location, cylinder 

materials and logarithmic value of load resistance was modelled with R2 of 0.9932. 

Furthermore, Jaeel et al. (2016) constructed an ANN model for power generation in an MFC 

with inputs of anode inclined angle, flow rate and time. The developed model with topology 

of 3-16-1 and R2 of 0.99889 could mimic well the actual data (Jaeel et al., 2016). Moreover, 

Sewsynker et al. (2015) applied five ANNs with topologies of 6-(6, 8, 11, 12, 14)-1 to model 

the H2 production in MECs, and they reported average R2 values of 0.85. Therefore, the 

application of ANN model in this and other research indicated the great potential of this 

procedure for process modelling. 

 

3.2. ANFIS models for cathodic H2 recovery, CE, H2 production rate and total energy 

recovery 

The Sugeno fuzzy inference system (FIS) structure showing superior strength than the 

Mamdani FIS was used to model the cathodic H2 recovery, CE, H2 production rate and total 

energy recovery in a single chamber MES process. In addition, the hybrid approach for 

optimization of the neural networks was used to model all outputs. 

In this work, all data were divided into 80% for training and 20% for testing. The results 

of ANFIS models including prediction of the outputs in train and test phases for cathodic H2 

recovery, CE, H2 production rate and total energy recovery models are depicted in Fig. 4, and 

their residual errors are displayed in Fig. 5. The MSE values for the cathodic H2 recovery 

models are 0.0001 and 3.7013×10-8 in training and 0.0001 and 0.0016 in testing, and their R2 

are 1 and 0.9834 in training and 0.9972 and 0.9858 in testing. In comparison, the MSE values 

for H2 production rate and the total energy recovery models were 0.0057 and 0.0105 in 
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training and 0.0004 and 0.0016 in testing, with the R2 values of 0.9000 and 0.9870 in training 

and 0.9785 and 0.9864 in testing datasets. At each epoch, the generalization capacity of the 

FIS was evaluated using the testing datasets. It is worth highlighting that the error sizes in 

ANFIS are demonstrative of mapping function compatibility and differences among the actual 

and predicted values of the outputs. The factors of the membership function were regulated to 

construct an appropriate goodness of fit for the predicted values of the response variables and 

the experimental ones.   

In order to improve ANFIS models, six various MFs including trapezoidal (trapmf), 

difference between two sigmoidal (dsigmf), generalized bell-shaped (gbellmf), Gaussian 

combination (gauss2mf), Gaussian (gaussmf) and triangular (trimf) were employed. 

According to the developed models, trimf was chosen as the best MF for the ANFIS models 

developed for cathodic H2 recovery, CE, H2 production rate and total energy recovery. The 

results of the developed ANFIS models for all four outputs were assessed under linear states. 

Table 1 presents the attained results for ANFIS models of cathodic H2 recovery, CE, H2 

production rate and total energy recovery under different MFs.  

As is evident in Table 1, the trimf from the approach of hybrid optimization with linear 

output was the best membership function for all of the cathodic H2 recovery, CE, H2 

production rate and total energy recovery. In addition, a great dependence between the errors 

in train and test phases, membership functions and the approach of the optimization can be 

observed.   

Zareei and Khodaei (2017) applied ANFIS to model the biogas production from maize 

straw and cow manner with inputs of stirring intensity of the substrates, total solid content and 

C/N ratio. The obtained R2 for the developed ANFIS model was 0.99 (Zareei and Khodaei, 

2017) indicating high strength of the ANFIS models in various processes, being in agreement 

with the present study.  In addition, Sargolzaei et al. (2012) modeled the flux and rejection of 

a membrane by ANFIS, in which flow rate, temperature, pH and feed COD concentration 
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were considered as the inputs. The obtained average testing errors of the membrane flux and 

membrane rejection were 0.00215 and 0.00204, respectively demonstrating the high strength 

of the ANFIS models (Sargolzaei et al., 2012). Thus, the high capability of the ANFIS model 

for simulating various processes has been shown.  

 

3.3. Comparison between ANN and ANFIS models  

The values of R2, adj-R2, SSE and RMSE were employed to compare the goodness of fit and 

accuracy of the constructed ANFIS and ANN models for cathodic H2 recovery, CE, H2 

production rate and total energy recovery prediction. The attained proportions of the 

mentioned statistical factors are listed in Table 2. Furthermore, the experimental and predicted 

proportions of the outputs are displayed in Figs 1, 3 and 4.  

According to the obtained Adj-R2 and R2, all of the developed ANFIS models showed 

slightly better performance than the ANN. For example, the ANFIS models of the cathodic H2 

recovery and CE generated lower RMSE and SSE values than the ANN models; however, 

such error indices for H2 and total energy recoveries were slightly higher than those of the 

ANN models. Overall, both of the predictions from ANFIS and ANN models for cathodic H2 

recovery, CE, H2 production and total energy recovery mimicked well with the actual data. 

The demonstrated performances of the ANN and ANFIS models in the present study are in 

good agreement with the study of Rego et al. (2018), in which both ANFIS and ANN well 

modeled the contents of lignin, glucose, xylose and oxidized lignin of sugarcane bagasse in 

the process of sugarcane bagasse delignification. In addition, the ANFIS models showed 

better performance than the ANN only for xylose prediction (Rego et al., 2018).  

 

3.4. Model sensitivity analysis 

The effective portion of the input variables on outputs have been determined based on the 

connection weights of the variables in the developed ANN models. In more detail, the 
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effective portion of the voltage, EC and anode potential on cathodic H2 recovery and CE; 

also, the effective portion of the cathodic H2 recovery and CE on H2 production rate and total 

energy recovery were analyzed by this procedure. The attained weights for the cathodic H2 

recovery, CE, H2 production rate and total energy recovery networks were listed in Tables 3-6 

respectively.  

The importance of the input variables in cathodic H2 recovery, CE, H2 production rate and 

total energy recovery models is displayed in Fig 6. As shown, the most effective parameter in 

cathodic H2 recovery was the applied voltage with 47% and the next parameters with 

decreasing order were EC (28%) and anode potential (25%). Whilst, the most efficient 

parameter for the CE was EC with 41%, and applied voltage and anode potential were ranked 

next with 35% and 24% effectiveness, respectively. For the H2 production rate and the total 

energy recovery, both of the input variables demonstrated approximately equal importance; 

however, the cathodic H2 recovery effect on both of these models was slightly more with 51% 

and 53% consecutively. Similarly, in modeling H2 production by MECs, Sewsynker et al. 

(2015) conducted the sensitivity analysis against the substrate type, voltage, concentration of 

the substrate, pH, configuration of the reactor and temperature which were found to be the 

most efficient factors in declining order. 

 

4. Conclusions 

This work analyzed and modeled four MEC outputs including cathodic H2 recovery (rcat), CE, 

H2 production and total energy recovery by ANN and ANFIS approaches. Voltage, EC and 

anode potential were the inputs of rcat and CE models, and two outputs (rcat and CE) were 

applied as the inputs for H2 production and total energy recovery. All four ANFIS models 

demonstrated slightly better performance than ANN models. Additionally, sensitivity analysis 

showed voltage with 47% importance for rcat, EC with 41% importance for CE, and rcat with 

51% importance for both H2 production and 53% for total energy recovery. 
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Fig. 1. Correlation coefficients of the developed models by Levenberg-Marquardt training 

algorithm for (1) cathodic H2 recovery, (b) CE, (c) H2 production rate and (d) total energy 

recovery. 
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Fig. 2. Residual errors of the developed models by Levenberg-Marquardt training algorithm 

for (a) cathodic H2 recovery, (b) CE, (c) H2 production rate and (d) total energy recovery. 

 



 

Fig. 3. Additional tests for (a) cathodic H2 recovery, (b) CE, (c) H2 production rate, and (d) 

total energy recovery. 

 



 

Fig. 4. Actual and predicted values of ANFIS models for (a) training data for cathodic H2 

recovery, (b) test data for cathodic H2 recovery, (c) training data for CE, (d) test data for CE, 

(e) training data for H2 production rate, (f) test data for H2 production rate, (g) training data 

for total energy recovery, (h) test data for total energy recovery. 



 

 

Fig 5. The residual errors of ANFIS models for cathodic H2 recovery, CE, H2 production rate 

and total energy recovery 

  



 

 

Fig. 6. Percentage importance of the independent factor for (a) cathodic H2 recovery, (b) CE, 

(c) H2 production rate, and (d) total energy recovery. 



Table 1 

Performance of different membership functions in ANFIS models for cathodic H2 recovery, CE, H2 production rate and total energy recovery. 

Optimization method Output model Model phase MSE/R MF type 

    trapmf trimf dsigmf gaussmf gauss2mf gbellmf 

Hybrid Linear Train MSE 1.27*10-6 3.7*10-8 3.12*10-8 9.72*10-7 5.006*10-8 1.003*10-8 

 CHR (R) 1 1 1 1 1 1 

  Test MSE 0.0048 1.7*10-4 0.0154 0.0032 0.0167 0.0216 

  (R) 0.9923 0.9917 0.9511 0.9844 0.9495 0.9636 

 CE Train MSE 1.41*10-4 1.04*10-4 1.43*10-7 5.13*10-8 1.27*10-8 1.54*10-8 

   (R) 0.9976 0.9986 1 1 1 1 

  Test MSE 0.0662 0.0017 0.0013 0.0023 0.0111 0.0036 

   (R) 0.9647 0.9929 0.9557 0.9801 0.9585 0.9318 

 HPR Train MSE 0.0101 0.0058 0.0084 0.0095 0.0103 0.0060 

  Test (R) 0.8850 0.9487 0.9269 0.9143 0.9172 0.9458 

  Train MSE 0.4683 0.0105 0.1310 0.0219 0.1420 0.0195 

  Test (R) 0.8809 0.9936 0.8516 0.8386 0.5449 0.7873 

 TER Train MSE 6.38*10-4 4.56*10-4 3.89*10-4 3.93*10-4 3.46*10-4 3.4*10-4 

  Test (R) 0.9893 0.9892 0.9953 0.9929 0.9954 0.9959 

  Train MSE 0.0027 0.0016 9.21*10-4 0.0221 0.0517 4.09*10-4 

  Test (R) 0.9953 0.9933 0.9646 0.9617 0.9743 0.9585 

 

Tables



Table 2 

Comparison of ANFIS and ANN models for cathodic H2 recovery, CE, H2 production rate and 

total energy recovery. 

Statistical 

index 

Cathodic H2 recovery  CE  H2 production rate  Total energy 

recovery 

ANFIS 

(trimf) 

ANN 

(trainlm) 

 ANFIS 

(trimf) 

ANN 

(trainlm) 

 ANFIS 

(trimf) 

ANN 

(trainlm) 

 ANFIS 

(trimf) 

ANN 

(trainlm) 

SSE 0.0005 0.0017  0.0091 0.0163  0.1247 0.1062  0.0148 0.0136 

RMSE 0.0049 0.0088  0.0203 0.0272  0.0753 0.0695  0.0259 0.0249 

Adj-R2 0.9994 0.9982  0.9888 0.9811  0.8775 0.8646  0.9800 0.9798 

R2 0.9995 0.9983  0.9892 0.9819  0.8828 0.8705  0.9809 0.9807 

 

 

 

Table 3 

Weights and biases of the constructed network for the cathodic H2 recovery.  

Neuron IW LW 

response 

b1 b2 

Independent factor 

Voltage EC Anode potential 

1 -0.93 1.52 -2.06 -0.44 2.61 -0.5735 

2 -2.03 1.41 -0.74 0.23 2.05  

3 2.81 -0.32 -0.30 0.33 -1.36  

4 -2.25 -0.51 1.49 0.14 0.31  

5 0.046 0.98 2.10 -0.06 -1.06  

6 -0.35 -1.72 2.02 -0.40 -2.15  

7 3.61 -0.11 -0.52 1.47 2.98  

 

  



Table 4 

Weights and biases of the constructed network for CE. 

Neuron IW LW 

response 

b1 b2 

Independent factor 

Voltage EC Anode potential 

1 -1.58 -1.62 -1.52 1.47 2.72 0.3840 

2 0.10 -2.70 -1.54 -1.77 1.52  

3 -2.17 2.40 0.80 -0.45 0.53  

4 -1.42 -2.31 0.89 -1.04 -0.36  

5 -1.19 -0.41 -2.56 1.02 -1.91  

6 -0.26 3.26 -2.40 -1.80 0.95  

7 0.44 -1.57 -2.17 -0.45 2.64  

 

  



Table 5 

Weights and biases of the constructed network for the H2 production rate. 

Neuron IW LW 

response 

b1 b2 

Independent factor 

Cathodic H2 recovery CE    

1 2.20 -4.17 -0.54 -4.60 -0.5264 

2 -3.69 -2.79 0.07 3.64  

3 1.46 -4.41 0.20 -2.77  

4 -3.85 2.97 -1.10 1.90  

5 4.42 1.46 -0.17 -0.90  

6 -1.38 4.52 0.87 -0.50  

7 -2.10 -4.17 0.14 -0.88  

8 -1.62 4.29 -0.21 -1.62  

9 -3.92 2.49 -0.21 -2.79  

10 -3.97 2.41 -0.28 -3.72  

11 4.84 0.34 -0.21 4.41  

 

  



Table 6 

Weights and biases of the constructed network for the total energy recovery. 

Neuron IW LW 

response 

b1 b2 

Independent factor 

Cathodic H2 recovery CE 

1 -0.95 -5.57 0.53 5.86 -0.4391 

2 -5.75 -1.61 -0.04 4.76  

3 0.20 5.76 0.34 -4.62  

4 5.81 0.67 0.02 -3.29  

5 5.25 -2.65 -0.13 -2.71  

6 -5.40 2.30 -0.24 1.92  

7 4.08 4.17 0.32 -1.33  

8 -4.64 -3.42 -0.04 0.65  

9 -5.77 -0.31 -0.10 -0.12  

10 -1.69 -5.52 0.22 -0.60  

11 -4.47 -3.63 0.04 -1.52  

12 4.94 -2.93 0.28 2.22  

13 -4.94 -2.80 0.31 -3.11  

14 4.22 -4.06 -0.05 3.48  

15 4.60 3.49 0.67 4.33  

16 -4.63 3.56 -0.35 -4.95  

17 -2.45 -5.23 0.29 -5.77  
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