
Spectrum-Guided Adversarial Disparity Learning
Anonymous Author(s)

ABSTRACT
It has been a significant challenge to portray intraclass disparity

precisely in the area of activity recognition, as it requires a robust

representation of the correlation between subject-specific variation

for each activity class. In this work, we propose a novel end-to-

end knowledge directed adversarial learning framework, which

portrays the class-conditioned intraclass disparity using two com-

petitive encoding distributions and learns the purified latent codes

by denoising learned disparity. Furthermore, the domain knowledge

is incorporated in an unsupervised manner to guide the optimiza-

tion and further boost the performance. The experiments on four

HAR benchmark datasets demonstrate the robustness and general-

ization of our proposed methods over a set of state-of-the-art. We

further prove the effectiveness of automatic domain knowledge

incorporation in performance enhancement.
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1 INTRODUCTION
Sensor technologies have inspired a wide range of applications that

help people’s daily lives in many realms, such as visual recogni-

tion [5], brain-computer interface [8, 20], and activity recognition

[26, 30]. One of the major components of sensing applications is

to establish commonly-used and robust systems over diverse sce-

narios. The intraclass disparity can be caused by the variety of

subjects’ temporal conditions and unique physical characters: peo-

ple have varying habits and body shapes; they may make different

movements when performing the same activities, and sensors may

perceive differently, given the same person performing the same

activities. We call such variability within a class intraclass dispar-
ity. The intraclass disparity will significantly impair the systems’

performance in dealing with new subjects or new environments.

The typical work to address this challenge [5, 6] constructs a

dictionary or a projection based on the existing subjects to conjec-

ture the possible variations that may occur in less-seen subjects;

the models can thus gain robustness through embracing the varia-

tion during training. However, such studies primarily rely on the

number of known subjects, which we call subject-dependent stud-

ies. Therefore, the model may suffer from significant performance

degradation when handling new subjects, due to the proprietary

characteristics in existing subjects.

In light of generative models’ excellent performance on sparse

data, recent studies are increasingly applying generative networks

to improve models’ robustness on new subjects. Given that genera-

tive models usually perform better on sparse data, However, most

subject-independent studies [1, 22, 27, 32] are still limited in consid-

ering the intraclass disparity as meaningless noise, which neglect

the point that intraclass disparity is related to the subject and the

class type. They are still inaccurate in exhibiting the relationship

between the subject variation and the class, e.g., subject variation

within a class should be conditionally constrained.

Besides, signal data may be segmented imprecisely, and the seg-

ments may include gaps and noises. Further, the segments carry

nonequivalent amounts of information, which is difficult to mea-

sure in the time domain. Since any signal wave in the time do-

main also presents as a variable in the frequency domain, Spectrum
represents the corresponding frequency composition of signals.

Thus, it is promising to use frequency-domain features (e.g., am-

plitude and entropy) [3] as the domain knowledge to analyze the

segments. Take amplitude spectrum [29] for example. Valid infor-

mation frequencies offer peak amplitudes than gaps and noises. We

can thereby measure the amounts of information and mitigate the

impact of imprecise segmentation. The only issue is the heuristic,

hand-engineered, case-specific nature of signal domain analysis,

which limits its applicability.

To address the limitations in existing intraclass disparity re-

search, we propose a novel Spectrum-guided Adversarial Autoen-

coder (SAAE) for Human Activity Recognition (HAR). HAR is chal-

lenging due to its low signal-to-noise ratio. SAAE utilizes two com-

petitive encoding distributions to make intraclass disparity class-

conditioned and further eliminates the subject variation through a

denoising structure. This way, the purified latent codes will be ro-

bust to handle new subjects. The advantages of SAAE are two-fold.

First, SAAE applies a learnable prior distribution, which enables

posterior distribution to learn class-related distribution. The poste-

rior distribution learns to generate the intraclass disparity with the

class information in prior distribution, while the discriminator and

decoder further supervise the prior distribution to learn the pure

information by fixing posterior distribution. Second, SAAE auto-

mates spectrum analysis as domain knowledge, leading to enhanced

robustness of the data segmentation. The proposed automatic spec-

trum score function is capable of dynamically weighting signals

and then adjusting the optimization of adversarial training.

We make several contributions in this paper:

• We introduce the signal theory and design a principled unsu-

pervised score function to weight signals dynamically. The

score function analyzes signals in the frequency domain

to measure the signal information amount and to provide

domain knowledge in optimization.

• We propose a novel Spectrum-guided Adversarial Autoen-

coder (SAAE), which fuses automating spectrum analysis

and adversarial training in a unified network. SAAE utilizes

two competitive encoding distributions supervised by pre-

diction validity to extract and denoise the learned intraclass

disparity. We also analyze and prove the effectiveness of

intraclass disparity learning through competitive encoding

distributions training.
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Figure 1: Illustration of SAAE. First, we take two samples of the same class to explain the three phases in optimization: signal
weight measurement in spectrum analysis, decomposition in the regularization phase, and denoising in the reconstruction
phase. Spectrum analysis (in the middle) transforms signals and projects the corresponding amplitude spectra into signal
weightsWA for reconstruction by Sζ . The class weightWc is summarized from all signals under a class to assist regularization.
Decomposition feeds the disparity δ (labeled ‘invalid’) and pure information γ (labeled ‘valid’) to the discriminator to decom-
pose the original data. Denoising takes δ as noises and uses an autoencoder to denoise the disparity components. Then, after
optimization, the encoding distribution aφ (γ |x) could extract information γ purified from intraclass disparity δ , which enables
discriminator D to precisely predict the activities.

• We compare SAAE with both state-of-the-art adversarial

autoencoders and human activity-related algorithms in the

subject-independent experiments. The superior performance

of SAAE on four benchmark datasets demonstrates its ef-

fectiveness in solving the intraclass disparity problem on

unknown subjects. We further exhibit the effectiveness of

intraclass disparity learning through convergence analysis

and spectrum analysis.

2 METHODOLOGY
This section introduces themethodology of AAE for class-conditioned

intraclass disparity and domain knowledge assistance. AAE con-

sists of two phases: intraclass disparity extraction and denoising.

AAE leverages the domain knowledge obtained from frequency-

domain analysis and an automated spectrum guide function for

optimization.

2.1 Intraclass Disparity Learning
This section first declares the class conditioned intraclass dispar-

ity definition, and then propose a two-phase AAE which utilizes

two competitive encoding distributions to handle the intraclass

disparity learning. We discuss the Reconstruction phase and the Reg-
ularization phase of AAE from the generative perspective and the

discriminator’s perspective, respectively. We further prove AAE’s

effectiveness in learning and denoising intraclass disparity.

2.1.1 Notations for Adversarial Autoencoder. Following the nota-
tions in Kingma et al.’s work [16], we denote by pdata (x) the ob-
served data distribution, p(x) the model distribution of reconstruct-

ing data, q(z |x) the encoding distribution, and p(x |z) the decoding
distribution. The distribution q(z |x) encodes the original data into
latent codes z, which denotes the latent representation for data

reconstruction. Suppose the intraclass disparity δ confuses pure

information γ in a linear relationship, we define the latent repre-

sentation z is composed by

γ ∼ qφ (γ |x), δ ∼ qη (δ |x)

z := γ + δ

where qφ (γ |x),qη (δ |x) denote the pure information and disparity

encoding distributions, respectively.

2.1.2 Reconstruction Phase. In this phase, we use the denoising au-

toencoder to denoise disparity and reconstruct the signal waveform.

We consider the signal waveform reconstruction with the following

requirements: (i) the decoder should be able to reconstruct original

data by z = γ + δ ; (ii) γ should be able to learn the representative

and invariant waveform information; (iii) δ should be the confusion

factor in waveform only related to class information.



Spectrum-Guided Adversarial Disparity Learning San Diego ’20, June 03–05, 2018, San Diego, California

Given the optimal disparity δ , the reconstruction can be demon-

strated as a denoising autoencoder from such disparity. The au-

toencoder fuses the learned disparity δ with raw data as inputs and

then train autoencoder to recover the original data. Thus, the model

will be less sensitive to the disparity components. In conventional

denoising autoencoders [28], the disparity part in original data is

vague; thus, they fuse the noise in raw data (e.g., Gaussian noise).

Different from the meaningless noise, the proposed disparity en-

coder qη (δ |x) can extract the disparity components, which will be

proved to be the disparity with class information in the regular-

ization phase by the adversarial training. Therefore, we move the

fusion process after encoding.

The requirement (i)-(iii) can be explained with the following

definitions. Let γ be pure latent codes and fix the optimal disparity

distribution to let δ be the constant noise. Then, the purified latent

code z = γ and the confused code z
′

= γ + δ . The condition proba-

bility distribution of z
′

on x is qφ (z
′

|x). Consider an approximate

posterior distribution between x and z:

qφ (z |x) =

∫
z′
c(z |z

′

)qφ (z
′

|x)dz
′

where c(z |z
′

) is the observed probability distribution between con-

fused codes and pure codes. Then, given the decoding distribution

pθ (x, z) = pθ (x |z)p(z), the lower bound of the autoencoder may be

formed in the following way [13] by Jensen’s inequality:

loдpθ (x) = loдEqφ (z
′
|x )Ec(z |z′ )[

pθ (x, z)

qφ (z |z
′
)
]

≥ Eqφ (z
′
|x )Ec(z |z′ )[loд

pθ (x, z)

qφ (z |z
′
)
]

Therefore, the lower bound of autoencoder can be sorted into mini-

mizing the negative weighted likelihood Lr ec :

min

φ ,θ
qφ (γ |x)[−loд

pθ (x,γ )

c(γ |z
′
)
] (1)

2.1.3 Regularization Phase. In this phase, we consider the encod-

ing distribution regularization. The conventional AAE [1] only

applies binary discriminator which only predicts ’real’ or ’fake’

data to regularize generation distribution as a fixed prior distri-

bution by similarity, which fails to portray the class-conditioned

intraclass disparity. Therefore, we propose a multi-label classifier

and a learnable prior distribution to improve the conventional AAE

by concluding the following requirements: (i) discriminator should

be able to distinguish γ and δ based on the information validity

in prediction; (ii) γ represents the generalized class information

without subject variation; (iii) δ represents the subject variation

conditioned on activity.

As mentioned above, some intraclass disparity exists due to the

motion and body shape variance. The similarity distribution reg-

ularization will keep this disparity in the representations. Thus,

we derive the original binary classifier to a multi-label classifier

to distinguish the validity of learned representations. The repre-

sentations without disparity should be more robust in predicting

different subjects, while the disparity representations will impair

the performance. Note that, we only consider the case that the

dataset contains the class information; otherwise, the prediction

validity cannot be measured. Then, we can explain requirement

(ii)-(iii) by denoting the low-validity distribution in regularization

as the disparity distribution and high-validity distribution as the

pure information in class prediction. The requirements (i) can be

modified to let discriminator predict whether the latent codes are

‘valid’ or ‘invalid’ according to the likelihood of correct predictions.

First, we discuss the Categorical Cross Entropy (CCE) for multi-

label classification:

CCE(y, ŷ) = −
C∑
i
yi loд(ŷi )

= log(ŷc )

(2)

where y denotes a one-hot probability distribution of ground truth;

ŷc represents the discriminator probability of true label c; |Xc |
denotes the number of the samples in class c . Due to the activity

type and the subject variance, the information amounts carried

by signals are varying from each other and thus we apply the

mean class spectrum weights of the ground truth to leverage the

discriminator training.

We can find that CCE loss is equivalent to the negative log-

likelihood of the true prediction probability. Thus, minimizing the

CCE loss equals maximizing the validity (i.e., the likelihood of

correct prediction). We utilize the adversarial regularization to op-

timize requirements (ii)-(iii) and then conclude three requirements

in an adversarial format.

Given data (X ,Y ), the competitive distribution (i.e., the encoder

of γ ) enables the generator distribution (i.e., the encoder of δ ) to
learn the class conditioned intraclass disparity by optimizing the

loss function Lr eд :

min

η
max

φ ,d
Eγ∼qφ (γ |x )[logD(γ )c ] + Eδ∼qη (δ |x )[log(1 − D(δ )c )] (3)

where d denotes the parameters of the multi-label discriminator D;
Dc denotes the probability of correct predictions, respectively.

Proof. We set up parameters, φ,d,η, before the optimization,

and the network has enough capacity to acquire optimal solutions

φ
′

,d
′

,η
′

. When φ is fixed, we can take the pure information en-

coding distribution as the ‘real’ data distribution. According to the

Proposition 2 in Goodfellow et. al’s work [9], at each iteration,

the generator (i.e., the disparity encoding distribution qη′ (δ |x))

will converge to the ‘real’ data distribution (i.e., the pure informa-

tion distribution qφ (γ |x)). Hence, the network can converge when

qη′ (δ |x) = qφ (γ |x). In other words, the disparity encoder will learn

the extracted class information distribution which regularizes the

disparity to be conditioned on class. Then, qη (δ |x) can represent a

local optimal solution from last iteration, and the optimal φ
′

will be

optimized to let discriminator differentiate the validity of disparity

and information. Therefore, qφ ′ (γ |x) will generate the pure infor-

mation apart from the previous disparity validated by Dd . Thus,

when the network converges, we can get a local optimal distribution

pair qη (δ |x) and qφ ′ (γ |x) to decompose latent codes into disparity

and pure information, respectively. □

As mentioned in proof, the optimization Dd ′ converges to pre-

cisely predicting qφ (γ |x) and qη′ (δ |x), and qφ ′ (γ |x) is optimized

to be distinct from qη′ (δ |x). In other words, qφ ′ (γ |x) is invisible to
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discriminator Dd ′ . Thus, only if the qφ ′ (γ |x) learn the purified data

will Dd ′ predict the accurate classification. To further analyze the

loss functions of proposed disparity learning, we specify the details

of two competitive encoding training and name the two steps of

the min-max optimization of Lr eд as pure loss and disparity loss

according to the corresponding encoding distributions:

Lpur := max

φ ,d
Eγ∼qφ (γ |x )[logD(γ )c ] + Eδ∼qη (δ |x )[log(1 − D(δ )c )]

Ldis := min

η
Eδ∼qη (δ |x )[log(1 − D(δ )c )]

(4)

We exhibit curves of Lpur , Ldis to display the convergence of two

competitive encoding losses and the training classification perfor-

mance of usingDd ′ predicting the purified representations qφ ′ (δ |x)

in Section 3.4 Convergence Analysis, which proves the intraclass

disparity learning and denoising.

2.2 Principled Spectrum Analysis
Considering the gaps and noises inside data segmentation, invalid

segments will obstruct the models from learning factual patterns.

Most deep learning algorithms only analyze data in the time domain,

where it is difficult to analyze information components. Therefore,

we introduce the domain knowledge of signal theory to leverage

the model optimization according to the information amount from

the frequency domain. This section will introduce the principles

of spectrum analysis and the fused Spectrum-guided Adversarial

Autoencoder, respectively.

Time	Domain Frequency	DomainActivity

Figure 2: An illustrative example of demonstrating spec-
trum analysis in the frequency domain.We present two arbi-
trary data segments while a subject is doing the ‘weightlift-
ing’ activity. It is represented as a typical time-series se-
quence in the time domain. By introducing the domain-
specific knowledge in the theory of signal processing. It can
be transformed into a more robust representation by auto-
matic spectrumanalysis proposed in thiswork, i.e., peak am-
plitudes are indicated with dotted lines.

2.2.1 Notations for Spectrum Analysis. The spectrum analysis fo-

cuses on the patterns of signals in the frequency domain, which is

transformed from the time domain. Since sensors are only able to

record signals in a certain sampling rate, let x[n] be the observed sig-
nals in such discrete-time domain. We can obtain the corresponding

frequency domain data X and amplitude spectrum A that records

the signal strength of each frequency via Fourier transform[25]:

X [n] = F (x[n])

=

N−1∑
n=0

x[n] · e−
i2π
N kn k ∈ [0,N − 1]

A[n] = |X [n]|

(5)

where A[n] denotes the amplitude of frequency n; N denotes the

discrete time point number of the sampled signal; i, e represent the
imaginary number and the mathematical constant. The amplitude

spectrum is perfectly symmetric, so we only analyze the positive

frequency part, k ∈ [0,N − 1].
Our goal is to design an amplitude spectrum guide function

Sζ (A[i]) → R, which canmeasure the importance of each frequency

according to the signal strength. We define the mean score of the

amplitude spectrum to represent the signal information amount

(i.e., the signal importance) in the numerical format. To ease our

illustration, we express the mean score of an arbitrary frequency

set T evaluated by spectrum guide function Sζ as

Sζ (T ) =

∑
i ∈T Sζ (i)

|T |

where ζ denotes the function parameters; |T | represents the element

number of T . Therefore, the signal importance can be measured by

its amplitude spectrum Sζ (A).
To automate the spectrum analysis, we analyze amplitude spec-

trum in terms of the frequency set. According to [29], the signal

information is mainly composed of some frequencies with the high-

est signal strengths. We let U be the frequency set of the highest

amplitudes (i.e., information) and I be the frequency set of the

lowest amplitudes (i.e., gap and noise):

∀i ∈ U ,∀j ∈ I ,A[i] ≫ A[j]

s .t . U ∩ I = ∅, U , I ⊆ A
(6)

whereU , I are two subsets of A.

2.2.2 Spectrum Analysis Principles. The spectrum analysis princi-

ples are based on intra-relationship and inter-relationship in signals,

which describe the relationship of frequencies within a signal and

between signals, respectively. We illustrate the proposed princi-

ples by recalling the phenomenon in Fig. 2: Differing from time-

segments, given two arbitrary data segments clipped from a series

of noisy continuous signals with gaps, we can easily tell the main

composition (i.e., orange and green peak points) and the class of

two segments in the frequency domain. Also, we can easily see

the green segment contains more information because its curve

has more strengths than green segment’s, especially around peak

points. The conventional band-pass filter analysis [29] manually se-

lects the frequencies with the highest strengths, i.e., the peak points.

To automate the spectrum analysis, we transform the frequency

selection to weight frequencies based on frequency set analysis and

propose two principles:

(1) Given an amplitude spectrum A, ∀i ∈ U ,∀j ∈ I , function Sζ
should satisfy

Sζ (A[i]) − Sζ (A[j]) ∝ A[i] −A[j]
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(2) Given the certain frequency’s amplitudes from two arbitrary

different spectra Aa,Ab , ∀i ∈ A, function Sζ should satisfy

Sζ (Aa [i]) − Sζ (Ab [i]) ∝ Aa [i] −Ab [i]

The principle (i) describes the traditional band-pass filter theory

[29]: if the frequencyA[i] is the most significant frequency (i.e., the

information frequency), A[i] should have much higher amplitudes

than others’. Since principle (i) only considers the intra-amplitude

difference relationship, we further derive the principle (ii) to com-

plement the inter-relationship.

Beginning with principle (i), refer to Eq. (6), we consider the

information setU and the noise set I (including noise and gaps)

meet the significant amplitude difference requirement. To replace

the traditional case-specific band selection, we utilize the infor-

mation setU to represent the frequencies where information may

exist. Then, we can maximize the below loss function LN to let Sζ
satisfy principle (i):

max

ζ
Sζ (U ) − Sζ (I ) (7)

Proof. For any two frequencies i, j , the score function Sζ should

let the weight difference between i, j as great as possible, so we

should maximize the loss function that Sζ (A[i]) − Sζ (A[j]). Then,
for any two subsetsU , I ,∑

i ∈U

∑
j ∈I

Sζ (A[i]) − Sζ (A[j]) = |U | · |I | · (Sζ (U ) − Sζ (I ))

∝ Sζ (U ) − Sζ (I )

where |U |, |I | denote the element number subsets. Thus, optimizing

Sζ (U ) − Sζ (I ) is equivalent to the raw formula. □

Further, we utilize principle (ii) to distinguish different signal

weights. Similar to principle (i), we can easily conjecture the ampli-

tude difference relationship between the particular frequencies of

two spectra in the frequency-set format:

Sζ (Aa ) − Sζ (Ab ) ∝
1

N − 1

N−1∑
i

Aa [i] −Ab [i]

= Aa −Ab

Then, for arbitrary spectra Aa > Ab , we can minimize the fol-

lowing loss function LO to meet principle (ii):

min

ζ
|(Sζ (Aa ) − Sζ (Ab )) − α · (A

O
a −A

O
b )| (8)

where α denotes the proportionality constant.

2.2.3 SpectrumGuide Function. To put the proposed principles into
practice, we further pose a value range in the function Sζ (A) →
(0, 1) (0 means extremely insignificant and 1 means extremely sig-

nificant), and thus the optimal maximum of Sζ (U )−Sζ (I ) should be
1. Maximizing LN is equivalent to minimising 1−LN . The empirical

proportionality constant holds α = 1.

With the above empirical setting, the expected range ofA should

be (0, 1). To match the different analysis perspectives, we propose

to rescale the amplitudes by min-max normalization in two folds.

Assuming the spectrum set An×m
:= {A1,A2, . . . ,An } contains n

spectra withm frequency channels. We normalize each spectrum

Ai in frequency-level and sample-level to be consistent with two

principles (Section 2.2). DenoteANi andAOi to represent the normal-

ized data of intra- and inter-relationships for an arbitrary spectrum

Ai , respectively:

ANi := {
Ai j − A

min
i

Amax
i − Amin

i
: Ai ∈ R

1×m, j ∈ [1,m]}

AOi := {
Ai j − A

min
j

Amax
j − Amin

j
: Aj ∈ R

n×1, j ∈ [1,m]}

(9)

where Ai ,Aj denote a row and column vector of A, respectively;

Amin
i ,Amax

i ,Amin
j ,Amax

j denote the minimum and maximum

of each row or column. Then, the score function evaluates the ith
frequency using both intra and inter normalized features by

Sζ (A[i]) = Sζ ({A
N [i],AO [i]})

To ensure U and I satisfy our definitions, we empirically take

the 20% of frequencies with the highest amplitudes as U and the

lowest 50% as I in AN . With the min-max normalization, the mean

amplitude difference between U and I will be large enough to

distinguish the noise and information.

The optimization of the score function Sζ can be demonstrated by

two steps: (i) for any amplitude spectrumA, update ζ by minimizing

1 − LN ; (ii) for any amplitude spectrum pair (Aa,Ab ), update ζ
by minimizing LO . We can then unify the steps to optimize ζ by

minimizing a pairwise loss function LS (Aa,Ab ):

LS (Aa,Ab ) = Sζ (Ia ) − Sζ (Ua ) + Sζ (Ib ) − Sζ (Ub ) + 2

+|Sζ (Aa ) − Sζ (Ab ) − (A
O
a −A

O
b )|

s .t . Aa := {ANa ,A
O
a },Ab := {ANb ,A

O
b }

(10)

where the first line denotes 1 − LN for ANa ,A
N
b and the second line

is LO for spectrum pair. Note, we adopt a Fully Connected (FC)

layer followed by Sigmoid as Sζ to match the value range in the

definition, and then the optimization will be a traditional regression

problem, which can be converged [15].

2.2.4 Spectrum-guided Adversarial Autoencoder. Given a set of sig-

nals with labels (X ,Y ), we calculate the spectrum weighted loss

function for an arbitrary signal (xi ,yi ) as follows:

min

φ ,θ
Sζ (Axi )Lr ec ; min

η
max

φ ,d
wcLr eд

wc =
1

|Xc |

∑
xi ∈Xc

Sζ (|F (xi )|)

s .t . Xc := {xi : yi = c}

(11)

where AXi denotes the amplitude spectrum of xi ;wc denotes the

weight of xi ’s class. We apply two weighting methods in SAAE.

Since the reconstruction phase focuses on a single signal waveform,

we leverage different signals by its own spectrum. The regular-

ization phase focuses on the class conditioned disparity, so we

leverage signals by overall class information amount distribution.

The optimization algorithm is shown in Algorithm 1.
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Algorithm 1 Adversarial Autoencoder Training

1: Input Labeled observations (X ,Y )
2: Output qη ,qφ ′ ,Dd ′ , Sζ ′

3: Initialize network parameters ζ , θ ,φ,η,d
4: while epoch < max epoch do
5: Sample a minibatch {(x1,y1), (x2,y2), ..., (xk ,yk )}
6: for i ← 1 to N − 1 do
7: Axi ← |F (xi )|

8: Calculate ANxi ,A
O
xi

9: Sample random spectrum pairs {P1, P2, ..., Pk }

10: L
′

S ←
1

k
∑k
1
LS (Pi )

11: ζ
′

← Adam(L
′

S )

12: for i ← 1 to k do
13: Freeze ζ

′

,wAxi ← Sζ (Axi )

14: for c ← 1 to C do
15: Wc ← {wAxi : yi = c}

16: wc ←Wc

17: w ← {wc : c ∈ [1,C]}

18: L
′

r ec ←
1

k
∑k
i Lr ec (xi ,wAxi )

19: φ
′

, θ
′

← Adam(L
′

r ec )

20: L
′

r eд ←
1

k
∑k
i Lr eд(xi ,w)

21: φ
′

,d
′

,η
′

← Adam(L
′

r eд)

3 EXPERIMENTS
In this section, we report our comparative experiments and ablation

studies in subject-independent settings on four real-world bench-

mark datasets to evaluate SAAE’s robustness and the impact of the

spectrum guide function.

3.1 Datasets
We evaluate our approach using four public real-world datasets:

1) MHEALTH [2], a sports activity dataset that records signals of

motion and inertial measurement unit (IMU) sensors for 12 different

sports activities; 2) PAMAP2 [21], an original daily activity dataset

related to 18 daily activities collected from IMUs deployed at differ-

ent areas of body; 3) UCIDSADS [4], concerning 19 daily and sports

activities performed with speed and amplitude variations recorded

by motion sensors and IMUs; and 4) OPPORTUNITY [23], concern-

ing 17 hand activities recorded by various body-worn, object-based,

and ambient sensors. Considering not all subjects performed all

activities in PAMAP2, we excluded six activities (watching TV,

computer work, car driving, folding laundry, house cleaning, and

playing soccer) and one subject, who conducted very few activities

from our experiments.

3.2 Experiment Setting
We execute Leave-One-Subject-Out experiments (with the test sub-

ject being excluded from training) to evaluate algorithms’ robust-

ness on varying subjects, where we set the time windows as 20

with 50% overlapping to pre-process the time-sequence data. We

compare our algorithm, SAAE with five state-of-the-art HAR mod-

els and three AAE models, and show a further study on iAAE, a

version of the proposed intraclass disparity learning adversarial

autoencoder without the knowledge (spectrum) guide function.

• MC-CNN [31]: a state-of-the-art Convolutional Neural Network

(CNN) that captures temporal correlations along the time axis

• Bi-LSTM-S [11]: a bi-directional Long Short-termMemory (LSTM)

that captures both forward and backward time information

• ConvLSTM [19]: a hybrid model that combines both CNN and

LSTM to capture both the spatial and temporal correlations.

• En-LSTM [10]: an LSTM-based method that combines multiple

individual LSTM learners with epoch-wise bagging

• AttConvLSTM [18]: a hybrid model that applies attention layer

to learn weighted information

• AAE [17]: a benchmark of adversarial autoencoder with FC

layers which utilizes adversarial training to regularize autoen-

coder

• ConvAAE [1]: a state-of-the-art adversarial autoencoder algo-

rithm with convolutional layers to learn the long-time multi-

channel sensor information for gesture recognition

• DAAE [7]: a convolutional adversarial autoencoder further en-

hanced with denoising operation to extract the pure informa-

tion from low signal-to-noise ratio data

We take MC-CNN as the base model for the encoder, three decon-

volutional blocks, namely the deconvolutional layer, the rectified

linear unit (ReLU), and the batch normalization layer for the de-

coder, an FC layer, and a softmax function for the discriminator.

The detail of Two FC layers and a sigmoid function for spectrum

score function Sζ are shown in the supplementary Section A. Our

model applies the same encoder-decoder structure as in DAAE but

differs in using the adversarial structure and the spectrum guide

function. To show the robustness of methods, we use the same

hyperparameter settings over all the subjects in the same datasets.

For SAAE, we set the learning rate of the spectrum score function

of to 1e-4 for the four datasets, the learning rates of the adversarial

network to 5e-5 for PAMAP2 and 2e-4 for the other datasets.

3.3 Overall Comparison
The results (Table 1) show our models outperforming all other

algorithms on the four datasets and having the smallest standard

deviations, demonstrating the effectiveness of SAAE and its variant,

iAAE (without Spectrum knowledge) on four benchmark datasets.

We can easily observe that the proposed models, iAAE and SAAE,

consistently outperform all other baselines and hold the smallest

standard deviation. In terms of F1-score, SAAE improves about 2%,

3%, 4%, and 6% in four datasets, It also indicates the robustness in

handling intraclass variance of new subjects.

3.4 Further Analysis
Effectiveness of Adversarial Training SAAE achieves a 4.3%

improvement in accuracy, 4.8% in precision, and 5.2% in F1 Score

comparing with a set of encoder-decoder based methods. It demon-

strates the advantage of our proposed competitive encoding dis-

tribution learning against conventional adversarial training ap-

proaches.

We further show comparisons on MHEALTH at the individual

level (Fig. 3) (a). For instance, MC-CNN can achieve 97% accuracy on

subject 9 while only 87% in subject 3, revealing that MC-CNN may
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Table 1: Overall Comparison of SAAE over Four Benchmark Datasets

MHEALTH

Metrics MC-CNN Bi-LSTM ConvLSTM En-LSTM AttConvLSTM

Acc 0.927(0.031) 0.899(0.044) 0.913(0.038) 0.860(0.089) 0.921(0.042)

Pre 0.935(0.039) 0.871(0.062) 0.893(0.051) 0.848(0.085) 0.899(0.052)

F1 0.922(0.037) 0.879(0.054) 0.899(0.047) 0.846(0.088) 0.908(0.050)

Metrics AAE ConvAAE DAAE iAAE SAAE

Acc 0.907(0.054) 0.826(0.061) 0.947(0.049) 0.955(0.028) 0.958(0.028)
Pre 0.905(0.067) 0.804(0.078) 0.941(0.063) 0.960(0.026) 0.963(0.026)
F1 0.897(0.063) 0.809(0.072) 0.941(0.060) 0.957(0.028) 0.960(0.030)

PAMAP2

Metrics MC-CNN Bi-LSTM ConvLSTM En-LSTM AttConvLSTM

Acc 0.803(0.133) 0.715(0.200) 0.757(0.158) 0.734(0.157) 0.741(0.146)

Pre 0.806(0.134) 0.711(0.241) 0.730(0.202) 0.739(0.196) 0.739(0.120)

F1 0.781(0.154) 0.687(0.230) 0.724(0.192) 0.720(0.180) 0.718(0.150)

Metrics AAE ConvAAE DAAE iAAE SAAE

Acc 0.727(0.194) 0.713(0.147) 0.774(0.180) 0.837(0.112) 0.840(0.109)
Pre 0.771(0.195) 0.730(0.155) 0.805(0.153) 0.855(0.096) 0.855(0.101)
F1 0.746(0.215) 0.693(0.168) 0.764(0.197) 0.831(0.124) 0.836(0.122)

UCIDSADS

Metrics MC-CNN Bi-LSTM ConvLSTM En-LSTM AttConvLSTM

Acc 0.879(0.067) 0.889(0.049) 0.897(0.046) 0.831(0.043) 0.887(0.048)

Pre 0.872(0.095) 0.897(0.066) 0.896(0.063) 0.841(0.065) 0.882(0.072)

F1 0.855(0.087) 0.877(0.061) 0.884(0.059) 0.811(0.055) 0.868(0.064)

Metrics AAE ConvAAE DAAE iAAE SAAE

Acc 0.846(0.045) 0.815(0.033) 0.889(0.047) 0.918(0.044) 0.929(0.040)
Pre 0.857(0.055) 0.790(0.047) 0.907(0.041) 0.926(0.045) 0.935(0.048)
F1 0.824(0.056) 0.785(0.040) 0.875(0.056) 0.906(0.052) 0.919(0.047)

OPPORTUNITY

Metrics MC-CNN Bi-LSTM ConvLSTM En-LSTM AttConvLSTM

Acc 0.635(0.050) 0.575(0.096) 0.537(0.088) 0.531(0.107) 0.566(0.092)

Pre 0.637(0.024) 0.599(0.101) 0.482(0.124) 0.534(0.094) 0.587(0.093)

F1 0.613(0.042) 0.549(0.098) 0.464(0.116) 0.485(0.113) 0.530(0.107)

Metrics AAE ConvAAE DAAE iAAE SAAE

Acc 0.624(0.061) 0.609(0.078) 0.625(0.069) 0.664(0.056) 0.680(0.049)
Pre 0.663(0.025) 0.661(0.062) 0.618(0.076) 0.698(0.053) 0.713(0.048)
F1 0.603(0.064) 0.597(0.077) 0.598(0.075) 0.655(0.055) 0.674(0.046)

perform badly while dealing with the new subject whose samples

are deviating a bit more from the common distribution of training

subjects. In contrast, SAAE steadily improves the performance on

most subjects, especially subject 3 and subject 7, which proves its

robustness, reliability, and potential to be deployed in real-world

applications.

Effectiveness of Spectrum Analysis Compared with SAAE and

iAAE, the spectrum guide function can further enhance the perfor-

mance by around 1% in each subject, validating the effectiveness

of frequency domain analysis in model learning. We also take the

subject 1 in MHEALTH as an instance to illustrate the spectrum

analysis’s effectiveness in optimization. Our convergence compar-

ison of discriminator D (Fig. 3 (b)) shows spectrum information

(i.e., domain knowledge) can better exclude the disparity during

optimization.

Hyper-parameter Analysis. We change the learning rates of dif-

ferent components to explore the optimal hyper-parameters. We

set learning rate as 1e-4 for spectrum score function and 2e-4 for

AAE as default, and plots the mean accuracy of one-our subject-

independent experiments when learning rates range from [5e-5,5e-

4] in Fig. 3 (c). We can observe that SAAE is stable over different

parameters and constantly outperforms the best state-of-the-art.

The spectrum learning rate merely influences the model perfor-

mance while AAE’s learning rate will slightly affects the results.

With larger learning rate of AAE, the results gradually become bet-

ter, which means SAAE could act better than our provided result.

Convergence Analysis. Fig. 3 (d) - (h) plot the averaged loss over
four datasets. We can observe that Lr ec , Ldis , Lpur could quickly

converge around 1000 iterations and then remain stable, where

Ldis and Lpur represent the min-max competition loss functions

of intraclass disparity and purified information, respectively. The

convergence of Lpur and Ldis reveals the SAAE’s capability of

optimizing the corresponding encoding distributions as expected.
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Figure 3: Experiment Analysis.

Besides, the discriminator can precisely predict the pure informa-

tion components, which proves that SAAE is capable of learning

to exclude the disparity components in latent codes through the

adversarial training. The spectrum loss LS drops rapidly at first and

then smoothly decreases until convergence over iterations.
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Figure 4: Visualization of rawdata and SAAE’s learned latent
codes.

Visualization of Learned Representation. Fig. 4 visualizes the
raw data and the learned features. The original dimension is re-

duced by t-Distributed Stochastic Neighbor Embedding (t-SNE).

The learned features are more similar within classes yet more dis-

similar between classes over the sample space than the raw features,

indicating the effectiveness of the network’s feature learning.

4 RELATEDWORK
The previous research on intraclass disparity falls into two cate-

gories: subject-dependent and subject-independent models. Some

of the subject-dependent algorithms attempt to discover patterns

by case-specific analysis: Ren et al. [27] captured the community in

natural activities through hand trajectory; Tapia et al. [22] designed

a more comprehensive system to record the invariant features of

angle movement through wireless sensors.

Another thread of subject-dependent research uses deep neural

networks to learn representations for automated feature design

and then activity recognition. Such methods focus on capturing

the discriminative representations in the signal streams. Yang et

al. [31] applied convolution and pooling filters along the temporal

dimensions to catch the difference in the long-term time sequence

signals; Fransisco et al. [19], who further improved CNNwith LSTM

but still neglect the varying information amounts in signals. To

validate the significance of signals, Vishvak et al. [18] integrated a

temporal attention module that aligns the output vector of the last

time step with other steps’ to learn a relative importance score to

modify the learning process. However, subject-dependent methods

fail to consider the unique patterns that may occur in new subjects,

as the common patterns in existing subjects may not include all the

potential conditions.

Subject-independent studies aim to enhance the generalization

ability of models into precise recognition of new persons. Sani et al.

[24] proposed to construct a support set and match the most similar

instances to ease the unique patterns’. Yu et al. [10] ensembled the

models from different iterations and promise a more generalized

model. The above non-generative models still lack generalization

due to the model limitation. Balabka et al. [1] applied AAE to ap-

proximate a generalized distribution to simulate human activity

distributions. Thus, the encoder in AAE could be more generalized

and robust when handling new subjects. Zhang et al. [32] fused the

advantages of variational autoencoders and generative adversar-

ial networks and designed a regularized latent representations for
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generation. However, these works exclusively analyzed the time-

domain information and all considered the intraclass disparity as

meaningless noise and failed to extract the disparity distribution

by adversarial training.

Besides analyzing raw data patterns, some hand-engineered do-

main knowledge was introduced to further extract high-level dis-

criminative information to assist predictions. The commonly used

features include time-domain features (e.g., mean, variance, skew-

ness) and frequency-domain features (e.g., power spectral density)

[14]. Some studies design new features containing temporal and

structural information. For example, Hammerla et al. [12] proposed

the Empirical Cumulative Density Function (ECDF) feature to ex-

tract the spatial information of the signal frames. Such methods are

generally heuristic and lack generalization in different scenarios.

Our work differs from the studies above on two aspects: utiliza-

tion of spectrum analysis and specific intraclass disparity distri-

bution learning. We implement and embrace spectrum analysis

as a tool in AAE to leverage the optimization based on signal in-

formation amount. Further, we specify and precisely portray the

class-conditioned intraclass disparity in a learnable competitive

encoding distribution, which enables AAE effectively to extract and

to denoise such disparity.

5 CONCLUSION
We propose novel spectrum-guided disparity learning, or SAAE, to

address intraclass variability. We design two competitive encoding

distributions under a unified adversarial training framework, rather

than a fixed prior distribution, to learn robust embeddings that can

be generalized to new subjects. We further incorporate the domain-

specific knowledge in an unsupervised manner. We experimentally

validate our model on four representative benchmark dataset with

state-of-the-art methods. The results demonstrate the superior per-

formance and robustness of the proposed model in predictions on

unknown subjects. Given SAAE’s promising performance in han-

dling intraclass disparity, we will extend it to handle more complex

scenarios in the future.
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A NETWORK ARCHITECTURE
We plot the detailed network structure in Fig. 5. The decoder and

encoders consist of three independent blocks and two encoders

share the same structure. The architectures of Block are shown in

Fig. 6 and the parameters are shown in Table 2. Specially, Conv

Block 3 & 6 and Deconv Block 3 do not have Maxpool layer. The

stride of layers are 1 and padding way is 0 as default. Discriminator

D is composed of one FC layer, so the input dim equals the output

element number of encoders and output dim equals the target class

number. Given a amplitude spectrumA ∈ R1×m , then the Spectrum

Score Function Sζ consists of two FC layers: first layer takes 2 ·m

dimension input (i.e.,AN andAO and keeps the same output dimen-

sion; second layer generatesm-dimension outputs representing the

corresponding weights for the frequencies in spectrum.
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Conv	Block	2

Conv	Block	3

Deconv	Block	3

Deconv	Block	2
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Figure 5: Network Detail
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Figure 6: Module Detail

Table 2: Block Parameters.

Name #Kernel Kernel Shape Maxpool

Conv Block 1&4 50 (5,1) (2,1)

Conv Block 2&5 40 (5,1) (2,1)

Conv Block 3&6 20 (2,1) none

Deconv Block 1 40 (5,1) (2,1)

Deconv Block 2 50 (5,1) (2,1)

Deconv Block 3 2 (2,1) none

A.1 Supplementary Experiment
Due to the space limitation, we pose the other three datasets’ anal-

ysis, i.e., specific subject accuracy reports, spectrum guided fitting

curves, and embedding comparison in Fig. 7.

From (a)-(c), we can observe the subject variation in other three

datasets, especially the subject 8 in PAMAP2 and subject 8 in UCID-

SADS, while SAAE achieves stable performance over these unstable

subjects. Also, SAAE improves all three subjects in OPPORTUNITY

dataset. (d)-(f) further provide the discriminator fitting curves of

subject 1 on other three datasets, which indicates the effectiveness

of domain knowledge in diverse scenarios. (g)-(l) exhibit the data

distributions before and after SAAE’s purification. We can easily

see that points of same classes become more gathered and there

are fewer scattered points over all three datasets.

We also exhibit the Confusion matrices over four datasets to

assist proving our algorithm’s outperformance and robustness. Fig.

8 plots a subject’s confusion matrix of the corresponding datasets.

We can observe that the classification on MHEALTH is solid, and

only a few samples are misclassified. The prediction in PAMAP2

shows that it is difficult to learn the generalized representations in

some classes, where the misclassified samples spread over other

multiple diverse activities. However, there exist the interclass simi-

larity in UCIDSADS and OPPORTUNITY. Most of the classes can

be precisely predicted in these two datasets, but the misclassified

samples mainly gather in one class. For instance, the misclassified

samples of class 9 (running) centers in class 10 (exercise in steps) in

UCIDSADS, which indicates the interclass similarity between class

9 and class 10.
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Figure 7: Performance on differnet subjects.

0 1 2 3 4 5 6 7 8 9 10 11

Predicted Activity

0

1

2

3

4

5

6

7

8

9

10

11

T
ru

e
 A

ct
iv

it
y

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.01 0.01 0.00 0.97 0.01 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.97

0.0 0.2 0.4 0.6 0.8 1.0

(a) MHEALTH

0 1 2 3 4 5 6 7 8 9 10

Predicted Activity

0

1

2

3

4

5

6

7

8

9

10

T
ru

e
 A

ct
iv

it
y

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.49 0.30 0.00 0.20 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.94 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.35 0.59 0.06 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.03 0.00 0.73 0.00 0.24 0.00 0.00 0.00 0.00

0.00 0.00 0.01 0.00 0.03 0.68 0.04 0.23 0.02 0.00 0.00

0.00 0.00 0.20 0.00 0.01 0.09 0.64 0.07 0.00 0.00 0.00

0.00 0.02 0.17 0.00 0.01 0.03 0.03 0.74 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.98 0.00 0.01

0.00 0.00 0.00 0.01 0.06 0.00 0.01 0.00 0.00 0.93 0.00

0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.33 0.03 0.00 0.59

0.0 0.2 0.4 0.6 0.8 1.

(b) PAMAP2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Predicted Activity

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

T
ru

e
 A

ct
iv

it
y

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.01

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.05 0.01 0.06 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.08

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.10

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.77 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99

0.0 0.2 0.4 0.6 0.8 1.0

(c) UCIDSADS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Predicted Activity

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Tr
u
e 

A
ct

iv
it
y

0.41 0.07 0.11 0.04 0.02 0.00 0.03 0.00 0.01 0.00 0.00 0.06 0.01 0.00 0.21 0.04 0.00

0.09 0.29 0.15 0.06 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.07 0.03 0.01 0.25 0.03 0.00

0.02 0.01 0.66 0.22 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.02 0.00

0.00 0.04 0.28 0.53 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.03 0.07 0.00

0.00 0.00 0.07 0.01 0.15 0.00 0.29 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00

0.00 0.03 0.04 0.02 0.06 0.11 0.09 0.02 0.00 0.01 0.00 0.00 0.01 0.00 0.60 0.00 0.00

0.00 0.00 0.10 0.00 0.01 0.00 0.71 0.00 0.07 0.02 0.00 0.00 0.00 0.00 0.09 0.00 0.00

0.01 0.01 0.17 0.03 0.03 0.04 0.38 0.09 0.04 0.05 0.00 0.00 0.00 0.00 0.15 0.01 0.00

0.00 0.00 0.13 0.06 0.00 0.00 0.19 0.00 0.55 0.05 0.00 0.00 0.00 0.00 0.03 0.00 0.00

0.00 0.02 0.10 0.03 0.01 0.01 0.15 0.01 0.27 0.39 0.00 0.00 0.00 0.00 0.03 0.00 0.00

0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.14 0.10 0.01 0.02 0.08 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.09 0.75 0.06 0.01 0.00 0.04 0.05

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.14 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.58 0.04 0.00 0.00

0.00 0.00 0.01 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.94 0.01 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.01 0.04 0.04 0.00 0.00 0.86 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.97

0.0 0.2 0.4 0.6 0.8

(d) OPPORTUNITY

Figure 8: Confusion matrices of four datasets.


	Abstract
	1 Introduction
	2 Methodology
	2.1 Intraclass Disparity Learning
	2.2 Principled Spectrum Analysis

	3 Experiments
	3.1 Datasets
	3.2 Experiment Setting
	3.3 Overall Comparison
	3.4 Further Analysis

	4 Related Work
	5 Conclusion
	References
	A Network Architecture
	A.1 Supplementary Experiment


