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Forensic DNA profiling utilizes autosomal short tandem repeat (STR) markers to establish
identity of missing persons, confirm familial relations, and link persons of interest to crime
scenes. It is a widely accepted notion that genetic markers used in forensic applications
are not predictive of phenotype. At present, there has been no demonstration of forensic
STR variants directly causing or predicting disease. Such a demonstration would have
many legal and ethical implications. For example, is there a duty to inform a DNA donor if
a medical condition is discovered during routine analysis of their sample? In this review,
we evaluate the possibility that forensic STRs could provide information beyond mere
identity. An extensive search of the literature returned 107 articles associating a forensic
STR with a trait. A total of 57 of these studies met our inclusion criteria: a reported link
between a STR-inclusive gene and a phenotype and a statistical analysis reporting a
p-value less than 0.05. A total of 50 unique traits were associated with the 24 markers
included in the 57 studies. TH01 had the greatest number of associations with 27
traits reportedly linked to 40 different genotypes. Five of the articles associated TH01
with schizophrenia. None of the associations found were independently causative or
predictive of disease. Regardless, the likelihood of identifying significant associations is
increasing as the function of non-coding STRs in gene expression is steadily revealed.
It is recommended that regular reviews take place in order to remain aware of future
studies that identify a functional role for any forensic STRs.

Keywords: short tandem repeat, phenotype, forensic marker, DNA profiling, junk DNA, non-coding STRs

INTRODUCTION

Short tandem repeats (STRs) are short repeated sequences of DNA (2–6 bp) that account for
approximately 3% of the human genome (Lander et al., 2001). The number of repeat units is
highly variable among individuals, which offers a high power of discrimination when analyzed for
identification purposes. It is a widely accepted notion that STRs are non-coding in nature and are
therefore not implicated in gene expression (Tautz and Schlotterer, 1994; Ramel, 1997; Butler, 2006;
Biscotti et al., 2015). There is increasing evidence, however, that non-coding DNA sequences such
as STRs may be involved in gene regulation via various mechanisms, hence being associated with
phenotype (Sawaya et al., 2013; Chen et al., 2016).

The first STR markers used in forensic casework were selected in 1994 by the Forensic Science
Service (FSS) in the United Kingdom for a quadruplex amplification system consisting of four
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tetranucleotide STRs—TH01, vWA, FES/FPS, and F13A1
(Kimpton et al., 1994). These markers were deemed suitable
for PCR amplification due to their simple repeat sequences
and their propensity to display regularly spaced alleles differing
by four bases; however, the quadruplex system did not offer
a high level of discrimination. In 1997, the Federal Bureau of
Investigation (FBI) nominated 13 autosomal STR loci to form the
core of the Combined DNA Index System (CODIS), a database
consisting of profiles contributed by federal, state, and local
forensic laboratories. Two of the markers initially selected by
the FSS (vWA and TH01) were included within the core CODIS
set, whereas FES/FPS and F13A01 were eventually discarded
due to low levels of polymorphism. The core set was reviewed
in 2010 with an additional seven STRs being implemented from
January 1, 2017. The majority of commercially available DNA
profiling kits are manufactured to include the core CODIS STR
loci (Butler, 2006). In accordance with the DNA Identification
Act of 1994, CODIS is bound by stringent privacy protection
protocols, in that the stored DNA samples and subsequent
analyses be used strictly for law enforcement identification
purposes. The DNA Analysis Backlog Elimination Act of 2000
reaffirms that the markers used for forensic applications were
specifically selected because they are not known to be associated
with any known physical traits or medical characteristics.

The markers nominated for CODIS were specifically chosen
due to their location within non-coding regions of the genome;
however, claims that non-coding regions play no functional role
have been contested in recent years (Cole, 2007; Kaye, 2007;
Sarkar and Adshead, 2010). There is increasing evidence that
there may be associations between certain STR alleles and medical
conditions (von Wurmb-Schwark et al., 2011; Meraz-Rios et al.,
2014). This should not be confused with situations where alleles
or loci are diagnostic for medical conditions (e.g., trisomy).
Additionally, the ability to infer biogeographical ancestry (BGA)
from forensic STRs is possible (Graydon et al., 2009; Algee-
Hewitt et al., 2016) with investigators using population-specific
STR data as intelligence to guide enquiries (Lowe et al., 2001).
BGA is correlated with some phenotypes such as blue eye
color in Europeans (Gettings et al., 2014) and lighter skin color
with increasing distance from the equator (Relethford, 1997).
However, the STR genotype per se is not causative of BGA
phenotype in any direct sense and is mostly associated with
BGA as a result of genetic drift (as STRs for forensic use have
been selected to exhibit Hardy Weinberg equilibrium). In the
event that any CODIS markers are in future found to be linked
to a medical condition or physical trait, the analysis of the
DNA sample must still be used only for identification purposes
pursuant to the DNA Identification Act of 1994.

Katsanis and Wagner (2013) assessed 24 CODIS loci for
phenotypic associations, but found no evidence to support
the disclosure of any biomedically relevant information. For
example, despite the fact that the locus TH01 was associated
with as many as 18 traits: from alcoholism to spinocerebellar
ataxia, the authors state that association with these traits does
not necessarily imply that individual genotypes are causative or
predictive of a particular trait. Following this, a statement issued
by the Scientific Working Group of DNA Analysis Methods

[SWGDAM] (2013) restated that although alternate discoveries
may be made in the future, current understanding is that the
CODIS loci do not reveal any information beyond identity.
There has only been one STR to date that has been removed
from consideration as a marker used in human identity testing
(Szibor et al., 2005). The STR locus HumARA is located within
a coding region on the X-chromosome and has been linked to
muscular dystrophy. HumARA is a trinucleotide repeat and these
are known to be more prone to disease-causing expansions than
tetranucleotide repeats (Orr and Zoghbi, 2007; Castel et al., 2010;
Hannan, 2018).

MATERIALS AND METHODS

A systematic search of the literature was conducted across
three databases (Web of Science, PubMed, and Google
Scholar) between August and December 2018. Population
data studies, allele frequency studies, validation studies,
technique developments, single case reports, mutation analyses,
off-ladder allele identification, loss of heterozygosity studies,
and locus characterizations were excluded. Additional papers
were located by back referencing relevant or similar studies.
Following the literature search, each STR was analyzed in the
University of California Santa Cruz (UCSC) Genome Browser
(Human GRCh38/hg38 Assembly) using the following tracks:
Mapping and Sequencing—Base Position-dense; STS Markers-
full, Gene and Gene Prediction—GENCODE v29-full; NCBI
RefSeq-pack, Phenotype and Literature—OMIM Alleles-full;
OMIM Pheno Loci-full; OMIM Genes-full; HGMD Variants-full;
GWAS Catalog-full, Regulation—ENCODE Regulation-show;
RefSeq Func Elems-full, Variation—Common SNPs(151)-full;
FlaggedSNPs(151)-full, Repeats—Microsatellite-full; Simple
Repeats-full. The STRs investigated included the 20 CODIS core
loci used by the FBI, three extra loci currently used in Australia
(Penta E, Penta D, D6S1043), and SE33 which is a core STR
in the German national database and has subsequently been
incorporated into several European kits.

RESULTS AND DISCUSSION

A total of 57 association studies sourced from three databases
met our inclusion criteria: a reported link between a STR-
inclusive gene and a phenotype and a statistical analysis reporting
a p-value less than 0.05. Fifty unique traits were identified
across the 24 markers (Supplementary Table 1). Schizophrenia
was the trait most frequently described with a total of 11
studies reporting data on 14 different polymorphisms potentially
associated with eight loci. Two separate articles investigated the
allelic frequency amongst people who attempted suicide and
reported a significantly higher frequency amongst 10 different
alleles of seven forensic loci. The intronic STR TH01 had
the greatest number of studies with 26 reports describing 27
traits potentially linked to 40 different genotypes. Five of these
studies were investigating a link to schizophrenia, reporting five
polymorphisms that are possibly associated with the disease.
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No studies associating alleles or genotypes with phenotype were
found for Penta E, Penta D, D3S1358, SE33, or D10S1248;
however, one study by Shi et al. (2012) investigated the method of
diagnosing Down syndrome by testing for a trisomy at the Penta
D locus as it is located on chromosome 21. Similarly, six of the
10 articles included for D21S11 were investigating the marker’s
efficiency in genetic tests for Down syndrome.

Of the 57 articles proposing an association between a forensic
STR and a phenotype, none of them confirmed any particular
genotype to be solely causative of a phenotype. Despite 13
of the STRs being located within a functional gene, there
were no entries in the Online Mendelian Inheritance in Man
(OMIM) database relating any STR-inclusive regions of these
genes with a disease. A stand-out result is the number of
studies reporting an association between a phenotype with
polymorphisms at the TH01 locus.

TH01
TH01 is located within the first intron of the tyrosine hydroxylase
(TH) gene and is commonly characterized by the repeat motif
[AATG]n or alternatively by the [TCAT]n motif, according
to GenBank top strand nomenclature. TH is the rate-limiting
enzyme involved in the biosynthesis of the catecholamines
dopamine, epinephrine, and norepinephrine. Catecholamines
act as both neurotransmitters and hormones that assist in
maintaining homeostasis (Eisenhofer et al., 2004). As such, a
strong relationship has been reported in the literature (Eisenhofer
et al., 2004; Ng et al., 2015) between variations in the expression
of TH and the development of neurological, psychiatric, and
cardiovascular diseases.

Previous studies (McEwen, 2002; Antoni et al., 2006; Bastos
et al., 2018) have shown that increased levels of epinephrine
and norepinephrine are expressed in individuals experiencing
acute or chronic stress. Wei et al. (1997) found that individuals
carrying the TH01-9 allele showed the highest levels of serum
norepinephrine amongst a population of unrelated healthy
adults, whereas carriers of the TH01-7 allele showed the lowest.
Barbeau et al. (2003) investigated the relationship between
the number of TH01 repeats and hemodynamic parameters
in subjects at rest and in response to applied stressors. The
results of this study indicate that the 6 and 9.3 TH01 alleles
are associated with a decrease in the hemodynamic responses to
stress, offering a protective effect to individuals carrying those
alleles. Carriers of the TH01-6 allele displayed a lower heart
rate reactivity when exposed to stressors with increasing age
than those without the TH01-6 allele. Furthermore, individuals
carrying TH01-9.3 showed no increase in systolic blood pressure
in response to stress, whereas those not possessing the TH01-
9.3 allele demonstrated a significant increase in systolic blood
pressure reactivity with increasing age. Conversely, the TH01-
7 allele was found to be detrimental to blood pressure in those
with a greater body mass index (BMI). Subjects carrying TH01-
7 displayed a higher resting systolic blood pressure as BMI
increases and increased heart rate reactivity in response to
stressors with increasing BMI.

TH01-7 was also reported to be significantly more prevalent
in patients prone to depression (Chiba et al., 2000). The TH01-8

allele was found more frequently in suicide attempters (Persson
et al., 1997), individuals with depression (Serretti et al., 1998),
and individuals with delusional disorder (Morimoto et al., 2002).
Persson et al. (2000) investigated the influence of the number of
TH01 repeats on 30 personality dimensions. Subjects possessing
the TH01-8 allele scored higher in the neuroticism facets with
significant differences observed between individuals displaying
anger, hostility and vulnerability (Persson et al., 2000), compared
to non-TH01-8 allele carriers. Nine repeats at the TH01 locus
were associated with delusional disorder (Morimoto et al., 2002)
and extraversion (Tochigi et al., 2006). Furthermore, Yang et al.
(2011) conducted a number of association studies in China
and reported that the frequency of TH01-9.3 was higher in
those displaying suicidal behavior, and TH01-10 was significantly
overrepresented in individuals demonstrating violent behavior
including sexual assaults (Yang et al., 2010) and in males with
impulsive violent behavior (Yang et al., 2013). TH01 was also
linked to various disease states such as schizophrenia (Jacewicz
et al., 2006b), predisposition to malaria (Gaikwad et al., 2005;
Alam et al., 2011), sudden infant death syndrome (SIDS)
(Klintschar et al., 2008; Courts and Madea, 2011), and Parkinson’s
disease (Sutherland et al., 2008).

As previously mentioned, TH catalyzes the conversion
of tyrosine to levodopa (L-DOPA) which is then converted
to dopamine. Dopamine can be further converted into
norepinephrine and epinephrine. In vitro experiments have
previously demonstrated that TH01 can regulate TH gene
transcription, displaying a quantitative silencing effect (Albanèse
et al., 2001). TH01 alleles inhibited transcription proportionally
to the number of repeats. Given that so many vital functions
rely on the presence of dopamine and its metabolites (Wei
et al., 1997; Meiser et al., 2013), malfunctions of dopaminergic
pathways have been associated with the development of
numerous psychological diseases (Meiser et al., 2013), and in
this review, TH01 was largely connected with schizophrenia
(Kurumaji et al., 2001) and Parkinson’s disease (Meiser et al.,
2013). The longer TH01-9.3 and TH01-10 alleles, predicted to
yield less dopamine, were found more frequently in individuals
displaying traits indicative of dopaminergic dysfunction
such as impulsive violent behavior (Yang et al., 2013), sexual
assault (Yang et al., 2010), and addiction (Sander et al., 1998;
Anney et al., 2004).

Some contradictory associations were observed between TH01
and certain phenotypes. For instance, De Benedictis et al.
(1998) reported a significant association of >9 TH01 repeats
with longevity in male Italian centenarians. Contrariwise, von
Wurmb-Schwark et al. (2011) were unable to replicate this result
when using the same study design on a German population,
just as Bediaga et al. (2015) were also unable to confirm an
association in a northern Spanish population. Similarly, there
are conflicting reports on the association of TH01-9.3 with
SIDS across European populations. In 2008, Klintschar et al.
(2008) found that the frequency of the TH01-9.3 allele was
significantly higher in SIDS patients than in controls in a German
population. This association was further confirmed by Courts
and Madea (2011). On the contrary, Studer et al. (2014) were
unable to replicate this result in a Swiss population. Further
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population-based association studies are needed to confirm the
existence of associations between TH01 and these phenotypes.

None of the studies investigating TH01 have identified any of
the associated genotypes as being causative of disease; therefore,
the associations mentioned should only be considered as possible
or potential. Many of the traits reported to be associated with
TH01 are multifactorial, meaning they are affected by both genes
and the environment, such as in the case of Parkinson’s disease
(Meiser et al., 2013) and schizophrenia (Zhuo et al., 2019).

Potential Associations of Other STR
Markers
Schizophrenia is a complex heritable mental health disorder
characterized by delusions, hallucinations, and impaired social
cognition. It is understood that schizophrenia is polygenic with
disease burdening alleles being distributed across multiple
loci (Giusti-Rodríguez and Sullivan, 2013; Zhuo et al.,
2019). Consistent with this notion, our study revealed that
schizophrenia was associated with the greatest number of STRs:
FGA, TH01, vWA, D2S441, D2S1338, D8S1179, D16S539, and
D18S51. One study (Jacewicz et al., 2006a) found that longer
repeats in D18S51 and D2S1338 were significantly more frequent
in patients than in controls. This trend is consistent with the
expansion of trinucleotide repeats in other major psychiatric
disorders. Although the inherent complexity of the disease has
posed a challenge to researchers, neurotransmitter abnormalities
have long been acknowledged as a major contributing factor in
the pathogenesis of schizophrenia (Mäki et al., 2005; Modai and
Shomron, 2016).

Genetic mutations alone are not enough to trigger the onset
and development of schizophrenia; therefore, further research
is required in order to explore how genetic risk factors interact
with environmental risk factors in the development, onset, and
progression of the condition.

Venous thromboembolism (VTE) is a disorder defined by
the occurrence of deep vein thrombosis and/or pulmonary
embolism. vWF is a glycoprotein that plays a role in platelet
adhesion during coagulation; therefore, it is understood that
alterations in serum levels of vWF can contribute to thrombosis
disorders (Laird et al., 2007). Meraz-Rios et al. (2014) found that
vWA-18, TPOX-9, and TPOX-12 were observed more frequently
in individuals with venous thrombosis in the Mexican mestizo
population. Furthermore, vWA and TPOX have been associated
with chronic myeloid leukemia (Wang et al., 2012).

Trisomys
Down syndrome, or Trisomy-21, can be diagnosed by the
presence of a third allele at chromosome 21. This trisomy can be
present at any polymorphic marker found on chromosome 21,
and there are several studies evaluating the use of D21S11 and
Penta D as effective markers in Down syndrome detection (Yoon
et al., 2002; Liou et al., 2004; Shi et al., 2012; Guan et al., 2013).
Similarly, D18S51 and D13S317 can be used as genetic markers
to diagnose the presence of Edwards syndrome (Trisomy-18)
and Patau syndrome (Trisomy-13), respectively. Trisomys are
an example of a causal association as all individuals with three

chromosomes will be affected. While the presence of an extra
allele at chromosomes 13, 18, or 21 does not reveal a medical
condition unknown to the donor, it does provide additional
identifiable information to investigators.

Cancer
Forensic STRs have been used as genetic markers in several
studies to screen for cancer-related alleles. Hui et al. (2014)
found that two pairs of alleles (D8S1179-16 with D5S818-13
and D2S1338-23 with D6S1043-11) were found more frequently
in gastric cancer patients. Furthermore, a study from China
identified a significant association between homozygous alleles
at D6S1043 and an increased risk of invasive cervical cancer
(Wu et al., 2008). Loss of heterozygosity (LOH) is a genetic
mutation that results in the loss of one copy of a heterozygous
gene, often resulting in cancer due to loss of functional tumor
suppressor genes. LOH in different cancer tissues have been
observed at a number of forensic loci such as CSF1PO, FGA,
vWA, D3S1358, D5S818, D8S1179, D13S317, and D18S51 in
patients with laryngeal cancer (Rogowski et al., 2004). LOH may
alter the results of a DNA profile and should be taken into
consideration in cases where only cancerous tissue is available for
analysis (Peloso et al., 2003; Zhou et al., 2017).

Qi et al. (2018) conducted a study investigating the possibility
of using genetic markers rather than related genes to screen
for predisposition to lung and liver cancer. This study used
CODIS markers to examine the theory of programed onset
which hypothesizes that the occurrence of a chronic disease is
independent of age and may instead depend on a programed
onset pattern. The results showed a significant difference in
the occurrence of lung cancer between those who carried the
D18S51-20 allele and those who did not, and the incidence
of liver cancer between those carrying D21S11-30.2 and
D6S1043-18 alleles and those who did not. While these results
demonstrate CODIS markers being used to predict an individual’s
predisposition to cancer, there are an extensive number of cancer-
related genes in the genome; therefore, the risk of breaching
genetic privacy with this information remains low.

Y and X STRs
The Y chromosome has accumulated male advantage and fertility
genes (Lahn and Page, 1997; Graves, 2006) and so it is possible
that phenotypes associated with maleness are associated with Y
STRs. X-linked phenotypes (as a result of recessive genes on the
X chromosome) are more prevalent in males (because there is
no dominant Y chromosome homolog) so there may also be
associations with X STRs. In fact, X-linked genes have recently
been shown to influence male fertility and sex ratio of offspring
in mice (Kruger et al., 2019).

Association Versus Causation
The association of a STR with a trait or disease does not infer
causation. Moreover, some alleles seem to have opposite effects:
TH01 allele 9.3 may help with stress (Zhang et al., 2004) but also
has a potential link with suicide (Persson et al., 1997; Yang et al.,
2011). A genetic variant is considered causative when it is known
that the presence of the variant will produce an effect that in turn
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causes disease (Hu et al., 2018). None of the associations
reported in this study offer proof of causation (except for
trisomys), rather they propose a general relationship between
some STRs used in forensic applications and a phenotype. These
relationships may also be explained by confounding variables,
bias, or by chance in cases where a significant finding is unable
to be replicated by another study. In fact, this review could
be seen as a reflection of the broader so-called “replication
crisis” in science (Schooler, 2014). Many of the studies reported
in this review may not have sufficiently mitigated against the
“multiple comparison problem” where a number of comparisons
will be significant by chance. By setting our p-value threshold
to 0.05, we run the risk that 5% of significant results are
significant by chance.

Many of the traits that can be predicted by genetic analysis
are the result of epistatic interactions between genes and
environmental factors. When considering the associations in
this review, it is not reasonable to suggest that an individual
possessing the more frequently observed allele associated with
a trait will express a specific phenotype. There are many
underlying mechanisms involved in the development of complex
diseases and while the risk of forensic STRs being found to
expose revealing medical information is minimal, the presence
of a particular allele may indicate heightened potential or risk
for a phenotype.

Molecular Mechanisms
While it remains true that forensic markers are located within
non-coding regions, there is growing evidence that STRs in
introns and up- or down-stream of genes may affect phenotype.
STR mutations in the 5′ untranslated region (UTR) are known to
modify gene expression, probably because they serve as protein
binding sites (Li et al., 2004). Mutations in the 3′ UTR result in
extended mRNA which can be toxic to the cell (Li et al., 2004;
La Spada and Taylor, 2010). There are 13 CODIS STRs located
in introns (Supplementary Table 2). Mutations in introns can
affect mRNA splicing which can result in gene silencing or loss
of function (Li et al., 2004; La Spada and Taylor, 2010). The
TCAT repeat in the first intron of TH01 acts as a transcription
regulatory element in vitro (Meloni et al., 1998). Albanèse et al.
(2001) reported a reduction in transcriptional activity of TH
as the TCAT repeat number varied from three to eight. STRs
are also found at high density in promoter regions and it is
highly likely that some are implicated in gene expression by
modulating spacing of regulatory elements (Gemayel et al., 2012;

Sawaya et al., 2013; Gymrek et al., 2016; Quilez et al., 2016;
Gymrek, 2017).

There is now etiological support for STRs as causative
agents for disease in that they are quite plausibly epigenetic
regulators for gene expression when located in introns or up-
or down-stream of genes. This may increase prior support for
the hypotheses of association and thus reduce the required
significance level, as described by Kidd (1993), which is a counter
to the “multiple comparison problem” discussed earlier.

CONCLUSION

While the results of this study did indicate a large number
of phenotypic traits associated with forensic STRs, none were
found to be independently causative or predictive of disease.
Nevertheless, as there are numerous reported instances of
tetranucleotide repeats being implicated in disease and molecular
mechanisms have been demonstrated, there remains a strong
chance that this inference may change in the near future.
One limitation of this study was the sole use of the UCSC
genome browser. Future studies may benefit from using a wider
range of resources and investigating additional markers such
as SNPs in flanking regions, mtDNA and Y-STRs. In the event
that a statistically significant association, causal or predictive
relationship is discovered, it is not necessarily a valid cause for
removal from STR panels, but additional protective measures,
such as tightening legislation surrounding genetic privacy, may
need to be considered to prevent abuse of this information.
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