
GPU Accelerated Multiple-Relaxation-Time Lattice Boltzmann

Simulation of Convective Flows in a Porous Media

M. M. Mollaa1, M. J. Haqueb, M. A. I. Khan c and S. C. Sahad

a Department of Mathematics & Physics, North South University, Dhaka, 1229, Bangladesh.
b Department of Electrical & Computer Engineering, North South University, Dhaka, 1229, Bangladesh.

cSchool of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
dDepartment of Mechanical Engineering, University of Technology Sydney, Sydney, Australia.

Abstract

A two-dimensional (2D) multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) is
used for porous media with the Brinkman-Forchheimer extended Darcy model to investigate the
natural and mixed convection flows in a square cavity. This Brinkman-Forchheimer model is
directly used through the forcing moments as source term. A Tesla K40 NVIDIA graphics card
has been used for the present Graphics Process Unit (GPU) parallel computing via Compute
Unified Device Architecture (CUDA) C platform. The numerical results are presented in terms
of the velocity, temperature, streamlines, isotherms and local and average Nusselt numbers. For
the wide range of Rayleigh numbers, (Ra = 103 to 1010), Reynolds numbers, Darcy numbers and
the porosities, the average Nusselt number is compared with the available results computed by
finite element method (FEM) and single-relaxation-time (SRT) lattice Boltzmann method and
the agreement shows quite well. The results are also validated with the previous experimental
results. The simulations speed up maximum 144x using CUDA C in GPU comparing with the
time of FORTRAN 90 code using a single core CPU simulation.
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NOMENCLATURE

English Symbols:

A aspect ratio

c lattice speed (m.s−1)

cs sound speed (m.s−1)

Da Darcy number

ei discrete velocity components (m.s−1)

f momentum distribution function

G buoyancy term

Gr Grashof number (gβ(Th − Tc)H/ν)

g acceleration due to gravity (m.s−2)

g thermal distribution function

H height of the cavity (m)

K permeability of the porous media

M collision matrix for D2Q9 model

m moment vectors

mep equilibrium moment vectors

N collision matrix for D2Q5 model

Nu local Nusselt number

Nu Average Nusselt number

p pressure (Pa)

Pr Prandtl number (ν/α)

Re Reynolds number (UH/ν)

Ra Rayleigh number (gβ(Th − Tc)H/να)

t time (s)

T temperature of the fluid (K)

Tw wall temperature (K)

Tm mean temperature of the fluid (K)

U bulk velocity (m.s−1)

ux, uy velocity along the horizontal and vertical directions (m.s−1)

x, y horizontal and vertical coordinate (m.s−1)

Greek Symbols:

α thermal diffusivity (m2.s−1)

ǫ porosity of the media

µ viscosity of fluid (kg.m−1s−1)

ν kinematic viscosity (m2.s−1)

Ω Collision operator

ρ density of fluid (kg.m−3)

τ relaxation time (s)

θ non-dimensional temperature
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1. Introduction

In recent years, Graphics Process Units (GPUs) play a large role in using High-Performance
Computing (HPC) due to the significant larger performance than the traditional Central Process
Unit(CPU) based processors. A GPU has many slim processing units on a single chip and
performs in parallel a very large number of operations on a correspondingly large number of
operands. GPU computing is a heterogeneous simulation system, a small part is run sequentially
by the CPU and the major part is run in GPU. It has already been established that the GPU
parallel computing is well accepted due to the remarkable floating point arithmetic performance.
Now the GPU is considered a computational accelerator processing a massively multi-threaded
architecture which has been widely used for graphical and general purpose computations, such
as molecular dynamics simulations and computational fluid dynamics [1, 2].

Fluid flow and convection heat transfer through porous media is an interesting and useful
research area due to its application in the fields of science and engineering, such as hydrology,
civil and mechanical engineering, chemical engineering and petroleum engineering, thermal
management of electronic cooling and the improvement of heat transfer system, (Guo and
Zhao [3]). Guo and Zhao [4] first proposed Bhatnagar-Gross-Krook (BGK) or single-relaxation-
time lattice Boltzmann method for the isothermal incompressible flow in porous media. In their
model, porosity parameter introduced through equilibrium distribution function and added the
forcing term into the evolution equation to account for the linear and nonlinear drag forces
of media using Darcy’s term and {blueForchheimer’s term. They successfully applied their
model for the two-dimensional (2D) Poiseuille flow, Couette flow, and lid-driven cavity flow
and compared their LBM results with the analytical and finite difference solutions. Latter
on, Guo and Zhao [3] extended their study of the convective heat transfer using the same
single-relaxation-time lattice Boltzmann method (SRT-LBM) and successfully simulated the
temperature field for the natural convection of side-heated cavity and mixed convection of the
channel flow through porous media.

Following Guo and Zhao [4], Seta et al. [5, 6] studied the Poiseuille flow and natural con-
vection flow in a side-heated cavity filled with porous media using the SRT-LBM for the non-
Darcy regime considering the Rayleigh number 103 ≤ Ra ≤ 106. For the high Rayleigh number
103 ≤ Ra ≤ 1010, an extensive investigation has been done by Vishnampet et al. [7] considering
the Darcy and non-Darcy regime using SRT-LBM and compared their results with available
numerical and experimental results. The above-mentioned SRT-LBM has many advantages
in the computational viewpoint, is intrinsic parallelism of the algorithm and the simplicity of
programming over traditional finite difference, finite volume and finite element methods. It has
been successfully used in various complex fluid system, such as, multiphase flow [8], suspension
in fluids [9], magneto-hydrodynamics flow [10, 11], nanofluids [12] and flow through porous
media with variable porosity [3]-[7]. Even though these advantages, it has some shortcomings,
leads numerical instability when the dimensionless relaxation time τ is close to 0.5 [13].

It has already been established that the shortcomings in SRT-LBM are removed by using the
multiple-relaxation-time lattice Boltzmann method (MRT-LBM). The MRT-LBM is numeri-
cally more stable, and it has more degrees of freedom than the SRT-LBM. Initially, Lallemand
and Luo [14] constructed a generalized lattice Boltzmann equation in moment space rather than
in discrete velocity space based on d’Humieres [15], that is now familiar as multiple-relaxation-
time lattice Boltzmann method. Lallemand and Luo [14] analyzed the stability of the model
and compared with the BGK LB equation model and found that the mechanism of separate
relaxations for the kinetic modes leads to a model which was much more stable than the BGK
LB equation model. There are many studies have been done by MRT-LBM, and from them,
some are cited in the following sections.

Hua et al. [16] simulated high Reynolds number flow in a lid-driven cavity by MRT-LBM
for Re ranges from 20000 to 100000 and they mentioned that was the first attempt to simulate
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2D cavity flow for maximum Re = 100000. Using the MRT-LBM two lid-driven cavity flow had
been investigated by Guo et al. [17]. Du et al. [13] proposed an incompressible MRT-LB model
and simulated the lid-driven cavity flow for Re = 100000. They also simulated the double shear
layer flow for high Reynolds number and showed that the numerical results are better than that
of SRT-LBM. Computation of channel flow past a square cylinder with an upstream control,
bi-partition has been done using the MRT-LBM by Moussaoui et al. [18].

Du and Liu [19] investigated the natural convection flow in a side-heated cavity using the
MRT-LBM for the fluid flow and SRT-LBM for the temperature field. Computation of heat
transfer and fluid flow in an obstructed channel was done by Moussaoui et al.[20]. They solved
the fluid flow LB equation using the MRT technique and the energy equation for temperature by
the finite difference method. Few articles are available in the literature with double MRT-LBM
for velocity and thermal flow simulation. Guo et al. [21] investigated the mixed convection
flow in a slender rectangular cavity with the D2Q9 model for velocity and D2Q5 model for
the temperature simulation. For the pure fluid flows and heat transfer simulation have been
studied in [22, 23, 24, 25, 26] using double MRT-LBM. These studies are conducted the CPU
simulations.

Multi relaxation time lattice Boltzmann simulations of transitional flows in a deep 2D lid-
driven cavity is investigated by [27] using GPU computing. They concluded that the GPU
showed the efficient performance for larger grid size problems. Xu et al. [28] have studied the
double MRT lattice Boltzmann simulation of lid-driven and side-heated cavity flows using GPU
in the directive-based OpenACC platform and found that the optimized data layout gives a
better performance over CPU. Ren and Chan [29, 30] studied SRT-LBM simulation of natural
convection flow using the GPU in CUDA platform. They also investigated the SRT-LBM for
velocity and MRT-LBM for total enthalpy simulation of PCM melting process in an enclosure
using GPU computing [31].

In this paper, a multiple-relaxation-time lattice Boltzmann method is used for porous media
with the Brinkman-Forchheimer extended Darcy model to investigate the natural and mixed
convection flows in a side or top heated square cavity using GPU computing via CUDA C
platform. A FORTRAN 90 code has also been used for comparing the CPU simulation time
with the simulation by CUDA C in GPU. The Brinkman-Forchheimer model is used as a source
term as forcing moments . Following [21]-[25] in double MRT-LBM, the fluid flow is simulated
by D2Q9 model and the temperature field by D2Q5 model. In the natural convection simulation,
the Rayleigh number is considered from Ra = 103 to 1010, Darcy number Da = 10−2 to 10−7

and the porosity parameter is ǫ = 0.4 and 0.6. The Reynolds numbers Re = 400 and 1000 and
the Grashof number Gr = 100 are considered for the mixed convection case with the same ǫ.

2. Governing Equations in Macro Scale

The non-dimensional governing equations for the laminar natural and mixed convection
incompressible 2D flows for porous media are [32]:
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where ux and uy are the velocities of the fluid along the x and y directions, p is the pressure,θ
is the temperature of the fluid and ǫ is the porosity of the porous media. Here A, B and C
varies for the natural and mixed convection case and D is the body force term for the porous
media that is given in the next section. In the Natural convection case: A = Pr, B = RaPr,
C = 1 and in the Mixed convection case: A = 1/Re, B = Gr/Re2 and C = 1/RePr, where Pr
is the Prandtl number, Re is the Reynolds number, Ra is the Rayleigh number and Gr/Re2

is the Richardson number respectively. For the present simulation, the corresponding lattice
Boltzmann model of the above equations are described below:
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Figure 1: Lattice discrete velocity structure as in (Trouette [25]) (a) D2Q9 and (b) D2Q5 model.

3. Formulation of the problem in LBM

In this paper, it has been employed D2Q9 lattice model MRT-LBM for simulating the fluid
velocity field and D2Q5 lattice model MRT-LBM (Trouette [25]) for simulating the temperature
distribution, which is briefly described below:

3.1. Multiple-Relaxation-Time Lattice Boltzmann for Fluid Flow

The multiple-relaxation-time lattice Boltzmann equation for fluid flow the collision operation
can be generalized as

fi(x + ei∆t, t + ∆t) − fi(x, t) = −Ω [fi(x, t) − f eq
i (x, t)] + ∆tFi(x, t) (5)

where Ω is the collision operator and Fi are components of the body force which will be defined
later on. It is convenient to perform the collision process in the momentum space instead of
velocity space. So Eq. (5) can be transformed as

f(x + ei∆t, t + ∆t) − f(x, t) = −M−1S [m(x, t) − meq(x, t)] + M−1

(

I − S

2

)

F(x, t) (6)

where f = (f0, f1, f2, ......, fn)T and m and meq are vectors of moments, m = (m0, m1, m2, ......, mn)T

and meq = (m0
eq, m1

eq, m2
eq, ......, mn

eq)T as well as the forcing components are F = (F0, F1, F2, ......, Fn)T .
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The mapping between velocity and moment spaces can be transformed by linear transformation
m = Mf and f = M−1m. The matrix M for D2Q9 is

M =



















































1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1



















































(7)

The collision matrix S in a moment space is a diagonal matrix. The nine eigen-values of S are
all between 0 and 2 so as to maintain linear stability and the separation of scales, which means
that the relaxation times of non-conserved quantities are much faster than the hydrodynamic
time scales. The LBGK model is the special case in which the nine relaxation times are all
equal, and the collision matrix S = 1

τ
I, where I is the identity matrix. The diagonal collision

matrix S can be written as

S = diag[s0, s1, s2, s3, s4, s5, s6, s7, s8] (8)

where s0 = s3 = s5 = 1.0, s1 = s2 = 1.4, s4 = s6 = 1.2 and s7 = s8 = 1

τ
. Here τ is the

relaxation time relates to the kinematic viscosity of fluid

ν = c2

s∆t(τ − 1/2) (9)

where c2

s = 1

3
. The body force F encompasses the viscous diffusion, the inertia due to the

presence of a porous media, and an external term (Seta et al. [5]). The widely used Ergun’s
relation [33], the body force for the porous media can be defined as

F = D + ǫG (10)

F = −ǫν

K
u − 1.75√

150ǫK
|u|u + ǫG (11)

where K
def
= DaH2 is the permeability of the porous medium and G = gβ(T − Tm) is the

buoyancy term. Here Da is the Darcy number, H is the height of the cavity and Tm = Th + Tc

is the reference temperature, Th and Tc indicate the temperature for the heated and cold walls
respectively.
Including the porosity in the equilibrium moment vector meq is
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meq
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meq
6 = −jy (12g)

meq
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(

jx
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2
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ǫ
(12h)

meq
8 =

jxjy

ǫ
(12i)

where jx = ρux and jy = ρuy. Here ux is the horizontal and uy is the vertical velocity
components of the fluid.

The discrete velocity components of the two dimensional (D2Q9) lattice model are: (see
Figure 1(a)),

ei =















(0, 0), i = 0

c(1, 0), c(0, 1), c(−1, 0), c(0, −1), i = 1, 2, 3, 4

c(1, 1), c(−1, 1), c(−1, −1), c(1, −1), i = 5, 6, 7, 8

(13)

where, c
def
= ∆x/∆t is the lattice speed, where ∆x = ∆t = 1 .

The macroscopic fluid density ρ and velocity u are obtained from the moments of the
distribution function as follows:

ρ =
8
∑

i=0

fi (14)

u =
1

ρ

8
∑

i=0

fiei +
ǫG

2
(15)

3.2. Multiple-Relaxation-Time Thermal Lattice Boltzmann

Similarly, the multiple-relaxation-time thermal lattice Boltzmann the collision operation can
be written as

g(x + ei∆t, t + ∆t) − g(x, t) = −N−1S [m(x, t) − meq(x, t)] (16)

where g = (g0, g1, g2, ......, gn)T is the thermal distribution function. Here D2Q5 model has been
used for the thermal lattice Boltzmann method. The collision matrix N for D2Q5 is

N =

























1 1 1 1 1

0 1 0 −1 0

0 0 1 0 −1

−4 1 1 1 1

0 1 −1 1 −1

























(17)
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The five eigen-values of S are all between 0 and 2. The diagonal collision matrix S can be
written as

S = diag[s0, sα, sα, se, sν ] (18)

The values of si is given in detail in Troutte [25]. They are

s0 = 1,
1

se

− 1

2
=

1

sν

− 1

2
=

1

6
(19)

1

sα

− 1

2
=

√
3

6
(20)

These parameters corresponds to the thermal diffusivity

α =

√
3(4 + a)

60
(21)

For the D2Q5 thermal LB model, a depends on the thermal diffusivity α and is less than 1 to
avoid the numerical instability.
Corresponding to the distribution function gi, the equilibrium moments meq is

meq
0 = T (22a)

meq
1 = uxT (22b)

meq
2 = uyT (22c)

meq
3 = aT (22d)

meq
4 = 0 (22e)

In this case, for the 5-bit two dimensional (D2Q5)lattice the discrete velocities are (see Fig-
ure 1(b)),

ei =







(0, 0), i = 0

c(1, 0), c(0, 1), c(−1, 0), c(0, −1), i = 1, 2, 3, 4
(23)

The temperature T can be calculated as

T =
4
∑

i=0

gi (24)

3.3. Application of the MRT-LBM to convective flows in a square cavity

To show the applicability of this MRT-LBM for porous media for the convective flows two cases
have been considered, one is for natural convection and the other one is mixed convection flow.
(i) In the cases of natural convective flow, a 2D square cavity filled with porous media in which
the top and bottom walls are adiabatic and, but the left and right walls are isothermal and
maintained at different temperatures Th and Tc, respectively. Here Th = 1.0 and Tc = 0.0 which
is shown in Figure 2(a). (ii) Figure 2(b) for the mixed convection flow, the top wall is moving
along the horizontal direction and maintained at a constant temperature Th = 1.0 and at the
bottom wall Tc = 0.0. The left and right walls are adiabatic. For the present problem, the
Boussinesq approximation is used in which all fluid properties are assumed to be constant, but
the density whose variation with temperature is allowed through the buoyancy term.
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Figure 2: Schematic model for convective flows in square cavity: (a) Natural convection and (b) Mixed convection
case.

3.4. Boundary Conditions

For the no-slip wall the bounce-back boundary condition is applied on velocity fields. As like
Trouette [25], the incoming unknown distribution function fi(xf , t+∆t) is equal to the outgoing
post-collision distribution function f c

i (xf , t):

fi(xf , t + ∆t) = f c
i (xf , t) (25)

At a wall with a fixed temperature Tw, the following boundary condition is applied for the
D2Q5 model MRT thermal lattice Boltzmann simulation:

gi(xf , t + ∆t) = −gc
i (xf , t) + 2

√

(3)αTw (26)

For an adiabatic wall the anti-bounce-back condition is applied

gi(xf , t + ∆t) = gc
i (xf , t) (27)

3.5. Average rate of heat transfer

In the heat transfer problem, the interest in calculating the rate of heat transfer in terms of
the local and average Nusselt number that are defined below respectively:
For natural convection flow:

Nu(y) = −∂θ

∂x

∣

∣

∣

∣

wall

(28)

and

Nu =
1

H

∫ H

0

Nu(y)dy (29)

For mixed convection flow:

Nu(x) = −∂θ

∂y

∣

∣

∣

∣

wall

(30)

and

Nu =
1

L

∫ L

0

Nu(x)dx (31)

where H is the height and L is the lenght of the cavity.
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4. Implementation of Forcing Term in MRT-LBM

The implementation of the forcing term (11) by adding explicitly with nine forcing moments
as Guo and Shu [34]:

F0 = 0 (32a)

F1 = 6ρ
(

1 − s1

2

)

(uxFx + uyFy)/ǫ (32b)

F2 = −6ρ
(

1 − s2

2

)

(uxFx + uyFy)/ǫ (32c)

F3 = Fx (32d)

F4 = −ρ
(

1 − s4

2

)

Fx (32e)

F5 = Fy (32f)

F6 = −ρ
(

1 − s6

2

)

Fy (32g)

F7 = ρ
(

1 − s7

2

)

(uxFx − uyFy)/ǫ (32h)

F8 = ρ
(

1 − s8

2

)

(uxFy + uyFx)/ǫ (32i)

where Fx = − ǫν
K

ux − 1.75√
150ǫK

|u|ux and Fy = − ǫν
K

uy − 1.75√
150ǫK

|u|uy + ǫgβ(T − Tm).

With the above forcing moments, the collision process of MRT-LBM is implemented in moment
space as

m′
i(x, t) = mi(x, t) − si [mi(x, t) − meq

i(x, t)] + ∆tFi (33)

4.1. CUDA C Programming in GPU

The GPU computing is a heterogeneous simulation system, a small part is done sequentially
by the CPU and the major part is simulated by GPU parallel computing. CUDA program-
ming model mainly depends on the concept of the kernel. A kernel is a function that is
executed in concurrent threads on the GPU. In NVIDIA Tesla k40 architecture, maximum
1024 threads formed a block and blocks are grouped into execution grid (Figure 3). In CUDA,
there is two programming language, one is CUDA FORTRAN and the other one is CUDA C
(or C++). In this study, we used CUDA C that is a slight modification of C programming lan-
guage (NVIDIA [35]). For example, in a CUDA C programming, a new keyword is introduced
as: global for the device (GPU) code and this function is calling from the main code using
a triple angle <<< ... >>>. The heterogeneous simulation system in a CUDA code can be
classified into four categories (Obrecht et. al. [36]): (i) Sequential functions run by the CPU
(ii) Launching functions allowing the CPU to start a kernel (ii) Kernel run by GPU and (iv)
Auxiliary functions that are inlined into the kernel at compile time.
At the run-time, the execution grid’s layout is specified and a grid may have up to three dimen-
sions. The blocks of threads with in a grid must be identical and the threads are identified with
respect to the grid using the two structures theardIdx and blockIdx, containing the three fields
x, y and z. A block may only be executed on a single streaming multiprocessor, that yields
an upper bound of the number of threads with in a block and in a Tesla k40 this is maximum
1024. In the present CUDA code, grid layout is using as follows:
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Table 1: Features of the Tesla k40 GPU device and host CPU

No. of Streaming Multiprocessor (MPs): 15

No. of CUDA cores/MP: 192

Total CUDA cores: 2880

Total Global Memory: 12 GB GDDR5

GPU Max Clock rate: 745 MHz

GPU Memory Clock rate: 3004 Mhz

Memory Bus Width: 384-bit

L2 Cache Size: 1572864 bytes

Maximum No. of threads per MP: 2048

Maximum No. of threads per block: 1024

Memory bandwidth up to: 288 GB/s

Processor Intel Skylake Core i7: model 6700

CPU Processor speed: 3.40 GHz

CPU memory: 16 GB DDR3

CPU memory BUS: 3200 BUS

L3 Cache Size:: 8MB
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Figure 3: CUDA programming: grid of thread blocks ( Source NVIDIA).

int main(int argc, char *argv[])
{
cudaMalloc((void **)df , M ∗ N ∗ 9 ∗ sizeof(double));
cudaMalloc((void ∗ ∗)fpost, M ∗ N ∗ 9 ∗ sizeof(double));
.........................................
.......................................
intthreadsAlongX = 32, threadsAlongY = 32;
dim3dimBlock(threadsAlongX, threadsAlongY, 1);
dim3dimGrid(ceil(float(m)/float(dimBlock.x)), ceil(float(m)/float(dimBlock.y)), 1);
...........................................................
..........................................................
kernel <<< dimGrid, dimBlock >>> (d f, fpost...);
......................................................
}

here we have given the streaming part of the CUDA C program:
global kernel(double *d f, double *fpost...)

{ int i = blockIdx.x * blockDim.x + threadIdx.x ;
int j = blockIdx.y * blockDim.y + threadIdx.y ;
if((i >= 0)&&(i <= m − 1)&&(j >= 0)&&(j <= n − 1)){
double ixy = i + j ∗ m;
x plus 1
int ip = (i == m − 1)?(0) : (i + 1);
x minus 1
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int im = (i == 0)?(m − 1) : (i − 1);
y plus 1
int jp = (j == n − 1)?(0) : (j + 1);
y minus 1
int jm = (j == 0)?(n − 1) : (j − 1);
d f [ixy + 0 ∗ m ∗ n] = fpost[ixy + 0 ∗ m ∗ n];
d f [ixy + 1 ∗ m ∗ n] = fpost[im + j ∗ m + 1 ∗ m ∗ n];
........................................
........................................
d f [ixy + 8 ∗ m ∗ n] = fpost[im + jp ∗ m + 8 ∗ m ∗ n]; }

syncthreads(); }
Double precession enable (Computing capability 3.5) a Tesla k40 NVIDIA graphics card (
Table 1) is sued for GPU computation and the PGI FORTRAN compiler for the CPU compu-
tation.

Figure 4: Data structure of AoS and SoA.

4.2. Data structure modification: AoS to SoA

One of the most important changes of the data structure modification in the GPU code from
the array of structure (AoS) to the structure of array (SoA). In CPU based LBM code, the data
layout of the distribution function is usually arranged as AoS because CPU can use of cache
memory. For example, the distribution function fi(x, t) is stored with index (i + 9 × x + 9 ×
Nx × y) for the D2Q9 model, as depicted in Figure. 4. But GPU is functioning based on single
instruction multiple threads (SIMT) execution model. In CUDA C, to meet the requirement of
coalescing memory access, the data layout should be changed to SoA in LBM implementation.
Then the distribution function fi(x, t) is stored with index (x+Nx×y +Nx×Ny × i), so that
the parallel threads running the same instruction can access consecutive locations in memory
[37, 28].

5. Results Discussion

In this paper, a new approach is proposed for the convective heat transfer from the fluid
saturated porous media using the GPU parallel computing via CUDA C platform. Before
conducting the main simulation the present CUDA C code has been validated for the lid-
driven cavity flow, natural convection flow for side heated square cavity and mixed convection
lid-driven cavity flow. The different cases are given below:
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Figure 5: Comparison of the Lid-driven cavity flow with the results of Ghia et al. [38] (finite difference solutions)
(a) u/U - velocity at mid x/H (b) v/U - velocity at mid y/H (c) Streamlines while Re = 10000 after 2000000
iterations.
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Figure 6: Comparison of the Lid-driven cavity flow with the results of Erturk et al. [39] (finite difference
solutions) (a) u/U - velocity at mid x/H (b) v/U - velocity at mid y/H (c) Streamlines while Re = 20000 after
5000000 iterations.

Table 2: Comparison of the present results in terms of the average Nusselt number, Nu, with pure fluid results
for Pr = 0.71, Da = 108 and ǫ = 0.9999

Ra lattice size de Vahl Davis [40] FEM [32] SRT-LB [5] Present

103 256 ×256 1.116 1.127 1.1166 1.1299

104 256 ×256 2.238 2.245 2.2423 2.2655

105 256 ×256 4.509 4.521 4.5082 4.5106

106 256 ×256 8.817 8.800 8.3263 8.8135

lattice size [7](Pr =1.0) [42] [43] Present

107 512 ×512 16.81 16.79 16.523 16.609

108 640 ×640 30.81 30.51 30.225 30.221

109 1024 ×1024 55.80 57.35 − 54.561
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Table 3: Comparison of the present average Nusselt number, Nu for ǫ = 0.5, with the previous experimental
results of Sathe et. al [41] in a tilled cavity with porous media while the aspect ration A = 10.

Da × 10−4 Ra × 106 Pr Experimental [41] Present Error (%)

1.048 1.72 6.30 2.75 2.78 2.2

2.47 6.11 3.30 3.24 1.8

3.04 6.07 3.70 3.64 1.6

3.672 1.02 6.18 3.35 3.35 0.0

1.67 6.16 4.07 4.16 2.2

2.38 6.22 4.69 4.63 1.3

Table 4: The average Nusselt number, Nu, with the Brinkman-Forchheimer model for Pr =1.0.(Here FEM [32],
SRT-LBM [3] and SRT-LBM [7])

ǫ = 0.4 ǫ = 0.6

Da Ra lattice size [32] [3] [7] Present [32] [3] [7] Present

10−2 103 256 × 256 1.010 1.008 − 1.0197 1.015 1.012 − 1.0240

104 256 ×256 1.408 1.367 − 1.3546 1.530 1.499 − 1.5079

105 256 × 256 2.983 2.998 − 3.0293 3.555 3.422 − 3.4855

106 256 × 256 − − − 6.1853 − − − 7.1410

10−4 105 256 × 256 1.067 1.066 1.060 1.0681 1.071 1.068 1.063 1.0914

106 256 × 256 2.550 2.603 2.614 2.6263 2.725 2.703 2.725 2.7418

107 512 × 512 7.810 7.788 7.783 7.7831 8.183 8.457 8.576 8.1243

108 640 × 640 − − 16.960 16.841 − − 19.210 18.895

10−6 107 640 × 640 1.079 1.077 1.068 1.1095 1.079 1.077 1.068 1.1100

108 640 × 640 2.970 2.969 3.152 2.9603 2.997 2.962 3.170 2.9801

109 1024 × 1024 11.460 11.395 12.590 11.673 11.790 11.594 13.05 11.761

10−7 108 640 × 640 − − − 1.1590 − − − 1.1727

109 1024 × 1024 − − − 5.0369 − − − 5.0402

1010 2048 × 2048 − − − 12.623 − − − 13.111
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5.1. Lid-driven cavity flow for Re = 10000 and 20000

Firstly, the MRT-LBM code has been validated only for fluid flow simulation considering the
well benchmark lid driven cavity flow and then validated the double MRT-LBM code for the
natural and mixed convection flow in a square cavity flow. The results of the lid-driven cavity
flow are depicted in the Figures. 5 and 6 for the Re = 10000 and 20000, respectively. A
1024 × 1024 lattice size is considered for both the Reynolds number. For Re = 10000 the
results are compared with the results of Ghia et al. [38] and the results for Re = 20000
are compared with the results of Erturk et al. [39]. The center of the primary vortex is
located at (x, y) = (0.5119, 0.5271) and (0.5081, 0.5291) for Re = 10000 and 20000 respec-
tively and the corresponding locations were found by Erturk et al. [39] are (0.5117, 0.5300) and
(0.5100, 0.5267). From these figures, it is clearly seen that the agreement between the present
and previous simulations is quite excellent.
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Figure 7: Streamlines (top) and isotherms (bottom) for pure fluid Pr = 0.71 (a) Ra = 107 (b) Ra = 108(c)
Ra = 109 while ǫ = 0.9999 and Da = 108.

5.2. Natural convection flow in square cavity for Ra = 103 to 109

The dimensionless quantity governing this problem is the Prandtle number Pr
def
= ν/α and the

Rayleigh number Ra
def
= gβ(Th −Tc)H/να. In the simulation, the fluid velocity is normalized by

the characteristic velocity
√

βg∆TH and the dimensionless temperature is θ = (T − Tc)/(Th −
Tc).
In order to validate the fluid flow and heat transfer case, the MRT-LBM results in terms
of the average Nusselt number, Nu, obtained from the simulations are compared with the
available data of SRT-LBM [5], finite difference data of de Vahl Davis [40], finite Element data
of Nithiarasu et al. [32] for the clear fluid (Pr =0.71) in a side-heated square cavity under the
same boundary conditions for the laminar flow where 103 ≤ Ra ≤ 106. For the transition-to-
turbulent flows, the present results are also compared with the available results of SRT-LBM
of Vishnampet et al. [7], Dixit and Babu [42] and the spectral method of Le Quéré [43] where
the Ra ranges from 107 to 109. In these cases, the Darcy number Da = 108 and the porosity
ǫ = 0.9999 have been considered. The results are given in Table 2 and the agreement shows
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Figure 8: Streamlines (top) and isotherms (bottom) (a) Ra = 103 (b) Ra = 104(c) Ra = 105 (d) Ra = 106

while, Pr = 1.0, Da = 10−2 and ǫ = 0.6.

quite well up to Ra = 108. For Ra = 109, the average Nusselt number of Dixit and Babu [42]
is 57.35 but in the present case it is 54.56.

Figure 7(a)-(c) depicts the streamlines and isotherms for the transition-to-turbulent flows
while Pr = 0.71 and Ra = 107 to Ra = 109 while Da = 108 and ǫ = 0.9999. From these
figures, it has been seen clearly the pattern of the streamlines and isotherms for Ra = 107 and
108 coincides with the available results in the literature, but for Ra = 109 varies slightly. Since
the results of Ra = 107 and 108 are for transitional flows, but the flow is turbulent for Ra = 109

(Dixit and Babu [42]).
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Figure 9: Streamlines (top) and isotherms (bottom) for (a) Da = 10−2, Ra = 105 (b) Da = 10−4, Ra = 107(c)
Da = 10−6, Ra = 109 and (d) Da = 10−7, Ra = 1010 while Pr = 1.0 and ǫ = 0.4.

5.3. Natural convection flow with porous media for Ra = 103 to 1010

In Table 3, the present numerical results are compared with the previous experimental results
of Sathe et al. [41] for the different Ra, Pr and Da while the aspect ratio A = 10. The
comparison shows that the agreement is excellent and the maximum error is 2.2%. So, the
present MRT-LBM method is suitable for simulating the flow phenomena and heat transfer for
the porous media.
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The streamlines and isotherms for the low Rayleigh number, Ra ranges from 103 to 106

while Da = 10−2 and ǫ = 0.6 are depicted in the Figure 8(a)-(d). For Da = 10−2 the fluid
flow behaving as like clear fluid where conduction is dominated for Ra = 103 and convection
is dominated for the higher Ra. Figure 9(a)-(d) show the streamlines and isotherms for the
relative high Rayleigh number with Darcy (Da ≤ 10−6) and non-Darcy (Da ≥ 10−4) regime
while ǫ = 0.4. The pattern of the streamlines and isotherms are clearly different for the
Darcy and non-Darcy region and they are qualitatively similar with the results of (Dixit and
Babu [42]).

The effects of the Rayleigh number on the velocity distribution are depicted in Figure 11(a)-
(b) while Da = 10−2 and ǫ = 0.4. It is seen that the velocity increase while increasing the
Rayleigh numbers. For both velocity distribution, larger velocity occurs near the walls and the
minimum velocity occurs at the center of the cavity where minimum values of stream function
occur. The local rate of heat transfer in terms of the local Nusselt number Nu is illustrated in
the Figure 11(a)-(b) for the different Ra while Da = 10−2 and ǫ = 0.4 and for the different Da
while Ra = 109 and ǫ = 0.6, respectively. The local Nusselt number increases for increasing
the Rayleigh numbers but the local Nu decreases while decreasing the Darcy numbers.

In the Table 4, the average Nusselt number, Nu, has been inserted for the different Ra = 103

to 1010, Darcy number Da = 10−2 to 10−7 and the porosity ǫ = 0.4 and 0.6. The results obtained
by present MRT-LBM are compared with the results obtained by the finite element method
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Figure 12: Comparison of the present mixed convection results with the available results of Iwatsu et al. [44],
Khanafer and Chamkha [45] (a) u/U velocity (b) v/U velocity (c) temperature θ while Re = 400 , Gr = 100,
Pr = 0.71 and no porous media.

Table 5: Mixed convection: comparison of the average Nusselt number, Nu with the available numerical results
of Iwatsu et al. [44], Khanafer et al. [45, 46], Khalek [47], Tiwari and Das [48] and Kefayati et al. [49] for
Gr = 100, and Pr = 0.71.

Re Ri lattice size [44] [45] [46] [47] [48] [49] Present

100 0.01 256 ×256 1.94 2.01 2.02 1.985 2.10 2.09 2.077

400 0.00062 256 ×256 3.84 3.91 4.01 3.88 3.85 4.08 4.032

1000 0.0001 512 ×512 6.33 6.33 6.42 6.35 6.33 6.55 6.422

of Nithiarasu et al. [32], SRT-LBM of Guo and Zhao [3] and the SRT-LBM of Vishnampet et
al. [7]. The comparison shows the agreement is quite excellent. A set of new results are
presented for very high and very small Darcy numbers that are presented in the bottom the
Table 4. For ǫ = 0.4 and 0.6 the Average Nusselt number increases while the Rayleigh increases
from Ra = 108 to 1010 keeping the Darcy number fixed at Da = 10−7.

5.4. Mixed convection flow in a lid-driven square cavity

In the mixed convection case, the fluid velocity are non-dimensionalised by the lid velocity
U = 0.1 and the temperature as like natural convection flow. Firstly, the code is validated
while the heated lid is moving along x-direction in pure fluid case considering the Gr = 100 and
the Re = 100, 400 and 1000. Figure 12(a)-(c) shows the velocity and temperature distribution
respectively while Re = 400, Gr = 100, Da = 108 and ǫ = 1. These velocity and temperature
distribution are compared with the results of Iwatsu et al. [44] and Khanafer et al. [45]
that shows an excellent agreement. Another comparison has been made regarding the average
Nusselt number, Nu, that is shown in Table 5 for the three different Reynolds number, Re =
100, 400 and 1000, and Gr = 100. The agreement of the average Nusselt number with the
availbale results of Iwatsu et al. [44], Khanafer et al. [45, 46], Khalek [47], Tiwari and Das [48]
and Kefayati et al. [49] is quite acceptable.

Figure 13(a)-(d) depict the streamlines (top) and isotherms (bottom) for the two different
Re while Pr = 0.71, Gr = 100. For Re = 400 and 1000 there three vortex, primary,secondary
and tertiary. The primary vortex spans in the whole cavity except the right and left the bottom
corner. In the isotherms, it is seen the maximum temperature occurs near the top wall and
the minimum at the bottom wall and qualitatively these results agree with results of Iwatsu et
al. [44] and Khanafer et al. [45].
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Table 6: Mixed convection case: the average Nusselt number, Nu, with the Brinkman-Forchheimer model for
Pr =1.0.

Gr Da Re lattice size ǫ = 0.4 ǫ = 0.6

10−1 400 256 × 256 4.511 4.043

100 1000 512 ×512 7.255 6.569

10−2 400 256 × 256 3.265 2.898

1000 512 × 512 5.253 4.334
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Figure 13: Streamlines (top):(a) Re = 400 and (b) Re = 1000 and isotherms (bottom): (c) Re = 400 and (d)
Re = 1000 while Pr = 0.71 and no porous media.
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5.5. Mixed convection flow in lid-driven square cavity with porous media

The effects of the Darcy number, Da on the flow field and temperature distribution is illustrated
in the Figure 14(a)-(c) while Re = 400 and ǫ = 0.4. From the frame (a) and (b), it is observed
that the u at x = 0.5 and v velocity at y = 0.5 decreasing for decreasing the Darcy number.
It is obvious, since for the smaller values of Da, increase the porous matrix inside the cavity
that retards the fluid motion. But the temperature, theta, at x = 0.5 enhanced for smaller
values of Da. Figure 15(a)-(d) depict the streamlines (top) and isotherms (bottom) for the two
different porosities ǫ = 0.4and 0.6 while Gr = 100 and Re = 1000. From the frames of the
streamlines and isotherms, it is clearly seen that the effect of porosity in the porous media is
significant. For changing the porosity ǫ = 0.4 to ǫ = 0.6 the distribution of the stream function
and isotherms changes that would change the rate of heat transfer. For larger value of ǫ = 0.6,
the center of the primary vortex shifted to right top corner and increase the temperature of the
fluid in side the cavity.

The average Nusselt number, Nu, is inserted in the Table 5 for the different Reynolds
number,Re, the Darcy number, Da and for ǫ = 0.4 and 0.6 while Gr = 100. For the higher Re,
the Nu increases but for decreasing Da, reducing the average rate of heat transfer. The effects
of the porosity are also significant in the rate of heat transfer. The average rate of heat transfer
decreases for increasing the values of porosity ǫ that is opposite to the natural convection case.
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Figure 15: Streamlines (top):(a) ǫ = 0.4 and (b) ǫ = 0.6 and isotherms (bottom): (c) ǫ = 0.4 and (d) ǫ = 0.6
while Re = 1000, Gr = 100 Pr = 1 and Da = 10−2.

5.6. GPU performance over CPU

Table 7 shows a comparison of the GPU parallel performance over a sequential CPU perfor-
mance in terms of the simulation time per iteration step. The GPU performance is higher
than CPU and the speed up is calculated as a ratio of CPU simulation time over GPU time.
From this table, it is interesting to see that for 128 × 128 lattice size the simulation in GPU
speeds up approximately 19 times than the CPU but for 2048×2048 it is 144 times faster. The
performance of the GPU implementation strongly depends on the grid size. So, for larger grid
problems the GPU performance is better than the lower grid size.

Achieving better numerical results using LBM requires larger computational grid size. This
requirement is the crucial factor for the overall performance optimization. Since CPU has more
latency in processor clock speed than GPU hardware, in the case of the smaller computational
grid the performance of the numeric model using sequential programming in CPU surpasses
the model implemented in GPU parallel computing environment. However, GPU has more
throughput than CPU due to it’s many processor architectures which are very suitable for
parallel task execution of numerical calculations. GPU hardware consists an array of scalar
processors which are executed in a group predefined in terms of GPU hardware. During the
invocation of the parallel code in CUDA computing environment, GPU hardware requires a
minimum amount of grid size allocation in global memory bus to occupy all it’s processors for a
synchronized task execution. Lower latency in device to host memory transfer is seen in smaller
grid allocation which can potentially degrade the overall performance of the numerical analysis.

22



Table 7: MRT-LBM simulation time in CPU and GPU for the different mesh arrangements.

lattice size Time (s)/step: CPU GPU Speed up = tCP U/tGP U

128 ×128 0.00524 0.000275 19.05

256×256 0.04105 0.00073 56.23

512×512 0.18532 0.002566 72.22

1024×1024 0.29535 0.01004 88.25

2048×2048 5.76447 0.040113 143.71

This latency issue can be significantly evaded using larger grid allocation for hiding the memory
issues by instantaneous data sharing among large amount of scalar processors. Moreover, the
memory latency issue can be avoided with the assignment of the larger grid for the numerical
calculation. Thus, the overall performance can be improved with gradually incrementing the
grid size of the numerical model. Even, the performance speed up becomes substantially better
in GPU than CPU programs whenever grid size is incremented. According to Lin et al. [27],
for larger computational grids require more arithmetic operations, that would hide the memory
latency and hence show a greater parallel performance.

6. Conclusions

In this paper, a double multiple-relaxation-time lattice Boltzmann method is proposed for the
porous media with the Brinkman-Forchheimer extended Darcy model to simulate the natural
and mixed convection flows in a square cavity. The numerical simulation has been done using
the state-of-the-art GPU parallel computing via CUDA C platform. For the porous media,
the Brinkman-Forchheimer model is directly used as the source term through the equilibrium
distribution function. This approach is completely new that differs with the approach used
in the single-relaxation-time lattice Boltzmann method. The numerical results for the natural
convection case are computed for the wide range of Rayleigh numbers, 103 ≤ Re ≤ 1010,
Darcy number 10−2 ≤ Da ≤ 10−7 and the porosity parameter ǫ = 0.4 and 0.6. In the mixed
convectional case, the simulations are done for the Reynolds number Re = 400, 100 and Grashof
number Gr = 100 with 10−1 ≤ Da ≤ 10−2.

For increasing the Ra in natural convection and Re in mixed convection the velocity in-
creases but in both cases the velocity decreases while the Darcy number decreases. The average
Nusselt number, Nu, increases for increasing the porosity ǫ in natural convection but in mixed
convection case opposite phenomena has happened.

The present results are compared with the available results computed by the finite difference,
finite element method and single-relaxation time lattice Boltzmann method, and the comparison
shows better agreement indeed. It is also well known that the MRT-LBM is superior to SRT-
LBM in terms of the numerical stability. The forcing term implemented by nine discrete forcing
moments that are added separately with the moment’s space. The present proposed approach
for the porous media with MRT-LBM can be used for other application in fluid flow and heat
transfer simulation.

Using the CUDA C, the existing MRT-LBM FORTRAN 90 code has been re-written for
GPU parallel computing that speeds up the simulation significantly. Precisely, in this Tesla
k40 GPU it is 144 times faster than the core i7 CPU simulation with 2048 × 2048 lattice size.
For the larger grids problem, GPU is more efficient than the smaller grids problems.
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[39] E. Erturk, T. C. Corke, C. Gökçöl, Numerical solutions of 2-D steady incompressible driven
cavity flow at high Reynolds numbers, Int. J. Numer. Meth. Fluids 48 (7) (2005) 747–774.

[40] G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical
solution, Int. J. Numer. Meth. Fluids 3 (3) (1983) 249–264.

[41] S. B. Sathe,T. W. Tong, M. A. Faruque,Experimental study of natural convection in a
partially porous enclosure, J. Thermophysics 1 (1987) 260–267.

[42] H. N. Dixit, V. Babu, Simulation of high Rayleigh number natural convection in a square
cavity using the lattice Boltzmann method, Int. J. Heat Mass Trans. 49 (3) (2006) 727–739.
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