

Software-Defined Networks:

Architecture for Extended SDN Applications and

Resource Optimization in Cloud Data Centers

Minh Pham

Supervisor

Professor Doan B. Hoang

A thesis submitted to Faculty of Engineering and Information Technology

University of Technology Sydney

in fulfillment of the requirements for the degree of Doctor of Philosophy

04/2020

DEDICATION
I dedicated this thesis to my parents, Bay Tan Pham and Dao Thi Nguyen, who always encourage

me to study to have a better life, to my brothers Thanh Minh Pham, Xuan Tu Pham and Minh Nhut

Pham for their support and encouragement me to complete my study.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

ii

ACKNOWLEDGEMENT
I sincerely express my deepest gratitude to my principal supervisor, Professor Doan B. Hoang, for

his supervision and continuous encouragement, enthusiasm, technical comments, and constructive

criticism throughout my whole PhD study. His full support, guidance, wisdom, and enthusiasm

have made me both more mature as a person and more confident to be a good researcher. He has

been outstanding in providing insightful feedback and guidance in each step of the creating of the

research engagement. I admire his encouragement and determination to help me conquer all

difficulties to achieve all results and to complete the thesis. Without his guidance, I would be in

struggle in the research career. I feel so fortunate to have him as my supervisor for the past four

and half years.

I thank Dr. Zenon Chaczko to co-supervise me. I am very thankful to him for his valuable feedback

in research papers and the thesis. He is always there to help me when I need it, it does not matter

it is a technical issue or other research-related issues. I believe that he is the most helpful person I

ever known.

I thank the Australian Government to offer me the position of an HDR student and for all supports

to help me in the study process.

I thank UTS Librarians to be so helpful in providing the books that I need during my time of

studying. They are always there to help with the best books and journals when required. I always

feel confident every time I go to UTS Library as I always can get the materials that I need.

I thank the SEDE School, SEDE Research and the Faculty Engineering and IT in supporting me in

the research journey in the past four years. I realize that I can study in every corner of UTS as long

as I feel comfortable. And UTS is a huge place where students can study to gain knowledge.

I thank Ms. Sarah Lok and the Counsellors at Student Services for their support. They are always

so helpful with precious advices to support my study all the way.

I thank Dr. Marie Manidis, my GRS tutor since 2016 until now even when she did not work at UTS

anymore. She is always there, very helpful in helping me out any questions that I have in my

research journey.

I thank Prof. Robert Steele in giving the seeds to become a researcher to contribute to the Research

Communities.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

iii

CERTIFICATE OF ORIGINAL AUTHORSHIP
I, Minh Nguyet Thi Pham, declare that this thesis, is submitted in fulfilment of the requirements

for the award of Doctor of Philosophy, in the School of Electrical and Data Engineering Faculty of

Engineering and IT at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I

certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature of student: __

Date: __

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

iv

THE AUTHOR’S PUBLICATIONS

International Conferences Publications and Proceedings

Hoang, Doan & Pham, Minh, 2015, “On software-defined networking and the design of SDN

controllers”, presented at International conference of Network of the Future 2015, Montreal, Sep

30 – Oct 2, 2015, as a Poster

Pham, Minh & Doan, Hoang, 2016, “SDN applications - the intent- based Northbound interface

realisation for extended applications”, presented at IEEE conference on Network Softwarization

2016, Seoul, June 6 - June10, 2016

Pham, Minh, Hoang, Doan & Chaczko, Zenon, 2019, “Realization of Congestion-aware Energy-

aware virtual link embedding”, presented at International Telecommunications Networks and

Applications Conference (ITNAC), Nov 27th, 2019, Auckland, New Zealand

International Peer Review Journals

Pham, Minh, Hoang, Doan & Chaczko, Zenon, 2019, “Congestion- aware energy-aware virtual

network embedding”, IEEE/ACM Transactions on Networking, Vol. 28, Issue 1, Feb. 2020, pp

210-223

Pham, Minh, Hoang, Doan & Chaczko, Zenon, 2019, “Resource allocation optimization of latency

aware network slicing in 5G core network”, IEEE Transactions on Service and Network

Management, submitted after peer reviewed

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

v

ABSTRACT
Virtualization is the main mechanism to share resources to many customers by creating virtual

resources on the common physical resources. The challenge is to search for an optimal resource

allocation mechanism that maximizes the capacity of the virtual resources. Network virtualization

needs a new virtual network embedding (VNE) mechanism that focuses concurrently on control

congestion, cost saving, energy saving; a link embedding mechanism needs to select actively based

on multiple objectives the physical link resources, network slicing requires a new resource

allocation mechanism that satisfies latency constraints of 5G mobile system. This research

investigated and developed solutions for resource request delivery, and optimal resource allocation

in network virtualization and 5G core network slicing applying SDN technology.

In the research, firstly, the three-tier architecture applying micro-service architecture for extended

SDN application is presented to facilitate the flexibility, in which new services are created or

composed, existing services are reused. The evaluation is the prototype of the Dynamic resource

allocation using the proposed architecture.

Secondly, the multiple-objective VNE that focuses on congestion avoidance, energy saving and

cost saving (CEVNE) is presented. The novelty lies in the CEVNE mathematical model for

multiple-objective optimization problems, and its nodes and link embedding algorithms. The

evaluation showed that CEVNE outperformed The-State-Of-The-Art in acceptance ratio in the

challenged, near-congestion scenarios.

Thirdly, the architecture to realize virtual link mapping in CEVNE is presented. The novelty is in

the SDN-based heuristic algorithm, and the applying of the architecture for extended SDN

applications. The research results in the realization of the active virtual link embedding process

that focuses on multi-objective concurrently. The evaluation showed that the solution outperformed

the traditional link mapping in all three objectives.

Fourthly, the mathematical model of the resource allocation optimization in latency-aware 5G core

network slicing is presented. The novelties lie in the satisfaction of different latency requirements

of 5G applications: eMBB, uRLLC, and mMTC, and the solution strategy to linearize, convex-

relax and decompose the program into sub-problems. The evaluation shows that the solution

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

vi

outperformed the The-State-Of-The-Art in resource allocation, execution time, latency satisfaction

and the arrival rates.

In this thesis, the resource optimization problem and the architecture for extended SDN

applications have been studied comprehensively. The results of this thesis can readily be applied

to 5G vertical applications where resource optimization and network routing problems exist

naturally in multiple domains and require software defined networking logically centralized control

architecture for efficient and dynamic solutions.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENT .. ii

ABSTRACT .. v

LIST OF FIGURES .. xv

CHAPTER 1 INTRODUCTION ... 1

1.1 Motivation and Research Issues ... 1

1.2 Research aims and Research questions .. 3

1.2.1 Research aims ... 3
1.2.2 Research questions ... 4

1.3 Research objectives and scope ... 4

1.3.1 Research objective 1 ... 4
1.3.2 Research objective 2 ... 5
1.3.3 Research objective 3 ... 6
1.3.4 Research objective 4 ... 6

1.4 Contributions of Thesis .. 7

1.5 The significance of research ... 9

1.6 Methodology overview ... 10

1.7 Thesis outlines .. 12

1.8 Summary .. 15

CHAPTER 2 LITERATURE REVIEW AND RELATED WORK .. 16

2.1 Software-defined networking ... 17

2.1.1 What is SDN paradigm? .. 17
2.1.2 SDN architecture ... 19

2.1.2.1 Layer model ... 19
2.1.2.2 Service model ... 20

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

viii

2.1.2.3 Resource model ... 20
2.1.3 SDN controller .. 21

2.1.3.1 Main characteristics ... 21
2.1.3.2 Core services .. 23

2.1.4 SDN applications ... 24
2.1.5 SDN switches .. 24
2.1.6 Mininet ... 25
2.1.7 Segment routing ... 25
2.1.8 Segment routing architecture ... 26
2.1.9 Segment routing with IPv6 ... 26

2.2 Network virtualization .. 27

2.2.1 What is network virtualization ... 27
2.2.2 Resource optimization .. 28
2.2.3 Current issues in network virtualization ... 29
2.2.4 Related works of chapter 4 Congestion aware, Energy-aware VNE 29

2.3 Network function virtualization .. 32

2.3.1 NFV definition ... 32
2.3.2 Service function chaining .. 33
2.3.3 Current issues with NFV and SFC .. 33
2.3.4 Related work of chapter 5 Realization of CEVNE virtual link embedding 34

2.4 Network slicing in 5G networks ... 36
2.4.1 5G core networks .. 36

2.4.1.1 The control plane (CP) user plane (UP) separation (CUPS) .. 36
2.4.1.2 The service-based architecture of 5G core network .. 37
2.4.1.3 Three main types of 5G applications ... 37

2.4.2 Network slicing in 5G .. 38
2.4.2.1 5G service ... 38
2.4.2.2 5G network slicing .. 39

2.4.3 Related work of chapter 6 named Latency-aware resource optimization for 5G core network

slicing 41

2.5 Micro-service architecture and patterns ... 46

2.5.1 Micro-service architecture ... 46

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

ix

2.5.2 Micro-service Patterns .. 47
2.5.2.1 Decomposition pattern .. 47
2.5.2.2 Discovery pattern ... 48
2.5.2.3 Database patterns .. 48
2.5.2.4 Integration into an application .. 48

2.6 Software architecture patterns: module pattern ... 49

2.6.1 Reusable function blocks and Next generation PaaS .. 50
2.6.1.1 Reusable function block ... 50
2.6.1.2 Next generation platform as a service ... 51

2.7 Optimization and Mathematical modelling ... 51

2.7.1 Mathematical models ... 52
2.7.2 Solving mathematical programs ... 52
2.7.3 Multi-objective programming ... 53
2.7.4 Large systems, structure systems ... 54

2.8 Queueing theory and performance modelling ... 56

2.8.1 Probability models and overview ... 56
2.8.1.1 Performance metrics .. 57
2.8.1.2 Job response time .. 57
2.8.1.3 Job waiting time ... 57
2.8.1.4 Other metrics ... 57
2.8.1.5 Random variables ... 57
2.8.1.6 Kendall notation ... 59

2.8.2 Markov chains ... 59
2.8.2.1 Discrete-Time Markov Chain (DTMC) .. 59
2.8.2.2 Continuous-Time Markov Chain (CTMC) .. 61

2.8.3 M/M/1 queue ... 61
2.8.4 𝑴𝒕/G/1 queue .. 62

2.8.4.1 Definition ... 62
2.8.4.2 Two-rate MMPP ... 63
2.8.4.3 State transition diagram of MMPP process ... 63
2.8.4.4 Phase-type distribution and the matrix analytic method .. 64
2.8.4.5 Functional behaviors .. 65

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

x

2.9 P4 language and SDN 2.0 .. 65

2.9.1 What is P4 language ... 65
2.9.2 The in-band network telemetry .. 66

2.10 Summary .. 67

CHAPTER 3 AN INTENT SERVICE-BASED (ISB) ARCHITECTURE FOR SDN

APPLICATIONS 68

3.1 Introduction .. 68

3.2 NBI and application layer in SDN architecture ... 69

3.2.1 NBI: Intent, Flow rules, Flow objectives ... 69
3.2.2 The application layer .. 72

3.3 The proposed solution architecture .. 73

3.3.1 The requirements of the architecture .. 73
3.3.2 The proposed solution architecture ... 74

3.3.2.1 Micro service architecture (MSA) design ... 74
3.3.2.2 The three-tier application architecture .. 75
3.3.2.3 Domain driven design .. 77
3.3.2.4 The controller platform .. 77

3.4 Proposed architecture for applications in service-based architecture 79

3.4.1 Requirements for the 5G custom core services .. 79
3.4.2 Proposed architecture for 5G custom core services ... 79

3.4.2.1 MSA, MS design pattern, and three-tier architecture ... 80

3.5 The realization of the architecture for extended SDN application 81

3.5.1 MSA and MS design patterns .. 82
3.5.2 Three-tier architecture ... 82

3.6 Prototypes .. 83

3.6.1 DRM application prototype .. 83
3.6.1.1 Test bed setup .. 83
3.6.1.2 DRM application setup ... 85
3.6.1.3 Results .. 87
3.6.1.4 Applying the proposed architecture .. 87

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

xi

3.6.1.5 Running DRM on ONOS controller ... 88
3.6.2 Prototype of CEVNE LiM application .. 89

3.7 Summary .. 89

CHAPTER 4 CONGESTION-AWARE ENERGY-AWARE VIRTUAL NETWORK

EMBEDDING 90

4.1 CEVNE Overview ... 91

4.1.1 The Virtual network embedding problem .. 93
4.1.1.1 Substrate networks and virtual networks .. 93
4.1.1.2 The virtual network embedding ... 93

4.1.2 Overview of CEVNE multi-objectives .. 94
4.1.2.1 Cost saving objective .. 94
4.1.2.2 Energy saving objective .. 95
4.1.2.3 Congestion avoidance objective .. 95
4.1.2.4 The maximum congestion ratio ... 96
4.1.2.5 Modelling techniques and solution approaches .. 97

4.1.3 The augmented substrate networks ... 97

4.2 CEVNE Problem formulation ... 98

4.2.1 The problem statements .. 98
4.2.2 The problem formulation ... 98
4.2.3 CEVNE’s enabling technologies ... 101

4.2.3.1 Software-defined networks ... 101
4.2.3.2 Segment routing .. 101

4.3 CEVNE Algorithms ... 102

4.3.1 CEVNE node embedding algorithm .. 102
4.3.2 CEVNE Link embedding algorithm .. 105
4.3.3 CEVNE embedding algorithm .. 105

4.4 Performance evaluation of CEVNE node embedding ... 106

4.4.1 CEVNE evaluation setup ... 106
4.4.1.1 Topology generation .. 106
4.4.1.2 Resource and demand generation ... 107
4.4.1.3 The congestion ratio parameter .. 108

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

xii

4.4.1.4 The simulation environment and scenario generators .. 109
4.4.2 Challenging and near congestion experiments ... 109

4.4.2.1 The design of near-congestion or challenging scenarios ... 109
4.4.2.2 Introduction of Approximate resource scarcity concept ... 109
4.4.2.3 Network parameters in challenging scenarios ... 110
4.4.2.4 Evaluation results of challenging scenarios ... 111

4.4.3 The node embedding evaluation results .. 112
4.4.3.1 Runtime .. 113
4.4.3.2 Average active node stress .. 114

4.4.4 Energy consumption ... 115
4.4.4.1 Energy consumption .. 115
4.4.4.2 Acceptance ratio .. 116
4.4.4.3 Total costs .. 117

4.5 Summary .. 117

CHAPTER 5 REALIZATION OF CEVNE VIRTUAL LINK EMBEDDING 118

5.1 Motivation for a heuristic algorithm ... 119

5.1.1 The review of CEVNE problem and solution approach ... 119
5.1.2 Motivation for a heuristic virtual link embedding .. 120

5.2 Proposed architecture to realize CEVNE LiM ... 120

5.2.1 Services to handle multi-objective link embedding process ... 122
5.2.1.1 Cost saving ... 122
5.2.1.2 Energy saving ... 122
5.2.1.3 Congestion avoidance .. 124

5.2.2 Monitoring application ... 125
5.2.3 The initialization processes ... 127
5.2.4 Path selection algorithm ... 128

5.3 CEVNE LiM algorithm and realization .. 129

5.3.1 CEVNE LiM algorithm .. 129
5.3.2 Operational diagram of CEVNE LiM .. 131
5.3.3 Realization of CEVNE LiM application ... 132

5.4 Performance evaluation .. 133

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

xiii

5.4.1 Test scenarios ... 133
5.4.2 CEVNE LiM application execution platform .. 134
5.4.3 Evaluation results ... 136

5.4.3.1 Runtime .. 136
5.4.3.2 Average path length ... 136
5.4.3.3 Average node stress and average link stress ... 137
5.4.3.4 Energy consumption .. 138
5.4.3.5 Acceptance ratio .. 138

5.5 Summary .. 139

CHAPTER 6 LATENCY-AWARE RESOURCE OPTIMIZATION FOR 5G CORE NETWORK

SLICING 141

6.1 Modelling network slicing for mobile services in 5G core networks 142

6.1.1 Application classification in 5G ... 142
6.1.2 Control plane data plane separation (CUPS) .. 143
6.1.3 Network slicing and related concepts .. 143
6.1.4 Resource model of network slicing ... 144
6.1.5 Network slicing performance model using queueing theory ... 145

6.1.5.1 Markov-modulated Poisson Process .. 147
6.1.5.2 VNF performance model .. 148

6.1.6 VNF total delay ... 151
6.1.7 Linear function of delay on allocated resources ... 152
6.1.8 Solution approach ... 154

6.2 Problem statement ... 155

6.2.1 Network slicing problem statement ... 155
6.2.2 Network slicing: objectives ... 155
6.2.3 Problem formulation .. 156

6.3 Solution design ... 158

6.3.1 Solution strategy ... 158
6.3.2 Convex relaxation ... 159
6.3.3 Decomposition .. 159

6.3.3.1 Strategy for resource optimization .. 160

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

xiv

6.3.4 Linearized problem formulation ... 161
6.3.5 Algorithms .. 162

6.3.5.1 The master algorithm ... 162
6.3.5.2 VNF embedding optimization algorithm .. 162
6.3.5.3 Virtual links connecting VNFs Embedding optimization algorithm 165
6.3.5.4 Multiple NSR embedding optimization algorithms in a time window 167

6.4 Performance evaluation .. 167

6.4.1 The evaluation setup .. 168
6.4.1.1 The infrastructure .. 168
6.4.1.2 The network slice requests .. 169
6.4.1.3 The simulation environment .. 171

6.4.2 Evaluation results ... 171
6.4.2.1 The embedding based on NSR topologies ... 171
6.4.2.2 Resource allocation by service types ... 172
6.4.2.3 Resource consumption .. 173
6.4.2.4 Latency satisfaction .. 174
6.4.2.5 Total latency by NSR topologies ... 175
6.4.2.6 Execution time ... 177
6.4.2.7 Expected total delay by arrival rates .. 178

6.5 Summary .. 179

CHAPTER 7 CONCLUSIONS AND FUTURE WORK ... 180

7.1 Summary and contributions of the thesis .. 180

7.2 Future work .. 183

7.3 Conclusion remarks ... 185

BIBLIOGRAPHY .. 186

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

xv

LIST OF FIGURES

Figure 1.1: Steps in the development of Research methodology ... 11

Figure 1.2: Research model adapted (Bernardo 2012) .. 12

Figure 1.3: Thesis outline .. 13

Figure 2.1: Chapter 2 Literature review and roadmap .. 17

Figure 2.2: SDN technology roadmap .. 18

Figure 2.3: SDN architecture in layer view .. 20

Figure 2.4: SDN architecture in layer, service and resource views 21

Figure 2.5: ONOS intent state transition diagram (ONOS 2019a) .. 22

Figure 2.6: ONOS controller (ONF 2019a) ... 23

Figure 2.7: Main components of an OF switch (ONF 2014) .. 24

Figure 2.8: Main components of a table entry (ONF 2014) .. 25

Figure 2.9: Segment routing IPv6 extension header (Lebrun et al. 2018). 27

Figure 2.10: An example of virtual network embedding .. 28

Figure 2.11: CUPS interfaces (Schmitt, Landais & YongYang 2018) 37

Figure 2.12: Application types and their key performance indicators (Foukas et al. 2017)

 .. 38

Figure 2.13: 5G core service: RESTFul API of the service-based interface and the

northbound communication (Mayer 2018) .. 39

Figure 2.14: 5G network slice examples, adapted from (Perez 2017) 40

Figure 2.15: the characteristics of Micro-services (Fowler 2014) .. 47

Figure 2.16: RFB concept (Mimidis-Kentis et al. 2019) ... 51

Figure 2.17: The general structure of the main model and sub-models using matrix

(Williams 2013) .. 55

Figure 2.18: The process of decomposing a system into sub-systems (Lasdon 1970),

(Palomar & Chiang 2006) ... 55

Figure 2.19: the road map to explore queueing theory .. 56

Figure 2.20: CTMC of the customer number in M/M/1 queue, adapted (Harchol-Balter

2013) ... 61

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

xvi

Figure 2.21: The arrival process is a Markov-modulated Poisson process with 2 states,

adapted (Harchol-Balter 2013) .. 63

Figure 2.22: State transition diagram of an MMPP model with two states (Bolch et al.

2006) ... 64

Figure 2.23: INT use case to collect latency in details (Hira & Wobker 2015) 66

Figure 3.1: The roadmap of the Chapter 3 ... 68

Figure 3.2: Intent, flow objective, and flow rule in NBI, adapted from (ONF 2019a) 70

Figure 3.3: ONOS controller and the NBI with the abstractions (ONF 2019a) 71

Figure 3.4: Use cases of the ONOS intent framework .. 72

Figure 3.5: Visualized the requirements of the architecture ... 74

Figure 3.6: The characteristics of Micro-services (Fowler 2014) ... 75

Figure 3.7: Component view of the three-tier architecture for SDN application 76

Figure 3.8: Domain driven design example ... 77

Figure 3.9: OSGi layered architecture (OSGi_Alliance 2016) .. 78

Figure 3.10: The proposed architecture for 5G custom core service 81

Figure 3.11: The visualization of the process to realize the proposed architecture. 83

Figure 3.12: the sample of node and edge in GEANT.gml file ... 84

Figure 3.13: DRM running on GEANT topology (Mininet) .. 85

Figure 3.14: The data in the DB table .. 85

Figure 3.15: DRM REST interface .. 87

Figure 3.16: The intent view ... 87

Figure 4.1: The roadmap of chapter 4 ... 90

Figure 4.2: An example of the VNE process (Fischer et al. 2013) ... 93

Figure 4.3: The summary of CEVNE modelling techniques and solution approaches 97

Figure 4.4: CEVNE node embedding algorithm ... 103

Figure 4.5: CEVNE link embedding algorithm ... 103

Figure 4.6: CEVNE algorithm .. 104

Figure 4.7: Node and link scarcity of near congestion experiments (Fischer 2016) 111

Figure 4.8: Showing experiment results in ARS map (Fischer 2016) 112

Figure 4.9: an example to explain runtime result of CEVNE and VINE algorithms 113

Figure 4.10: Total runtime of 50-node network .. 114

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

xvii

Figure 4.11: Total runtime of 25-node network .. 114

Figure 4.12: Average active node stress of 50-node network .. 115

Figure 4.13: Average active node stress of 25-node network .. 115

Figure 4.14: Running nodes in 50-node network .. 116

Figure 4.15: Running nodes in 25-node network .. 116

Figure 5.1: The roadmap of Chapter 5 .. 118

Figure 5.2: The architecture to realize CEVNE LiM. .. 121

Figure 5.3: the example of the cost saving between A and B .. 122

Figure 5.4: an example of energy saving of leaf-spine fabric .. 123

Figure 5.5: The algorithm to inactivate a spine node ... 123

Figure 5.6: Algorithm to activate an inactive spine node .. 124

Figure 5.7: An example of congestion avoidance in leaf-spine fabric 125

Figure 5.8: Result of INT monitor application at time T .. 126

Figure 5.9: Multi-route inspection application: each packet carries its own logs

(Tahmasbi 2017). .. 126

Figure 5.10: Initialization process of CEVNE LiM .. 127

Figure 5.11: Example of PSA in a leaf-spine fabric ... 129

Figure 5.12: Virtual link embedding process of CEVNE LiM ... 129

Figure 5.13: CEVNE LiM algorithm .. 131

Figure 5.14: CEVNE node and link mapping processes on SDN fabric network 132

Figure 5.15: Substrate network configured as leaf-spine fabric in ONOS UI 133

Figure 5.16: CEVNE LiM application execution in ONOS UI .. 135

Figure 5.17: Results of runtime and average path length .. 137

Figure 5.18: Results of average node stress, average link stress, and energy consumption

 .. 139

Figure 6.1: Chapter 6 roadmap .. 141

Figure 6.2: 5G network slice example - adapted from (Perez 2017) 144

Figure 6.3: The arrival process of MMPP (Harchol-Balter 2013) .. 148

Figure 6.4: State transition diagram of a two-state MMPP model (Bolch et al. 2006) 148

Figure 6.5: Packet processing by X86 Linux Kernel (Zinner et al. 2017) 148

Figure 6.6: Tandem server with the NIC queue and central queue 149

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

xviii

Figure 6.7: Visualization of the k rates between 𝜇𝐻−𝜇𝐿 .. 150

Figure 6.8: three NSR topologies (Agarwal et al. 2018) ... 152

Figure 6.9: Processing delay is a linear function of allocated resources (Alleg et al. 2017)

 .. 153

Figure 6.10: The solution roadmap for our network slicing problem 155

Figure 6.11: Non-convex constraint 𝑦 ≤ 𝑥12 ... 159

Figure 6.12: Convex relaxation a linear constraint ... 159

Figure 6.13: The decomposition of the network slicing optimization problem 160

Figure 6.14: the algorithm of the master model .. 163

Figure 6.15: the algorithm of the VNF embedding ... 164

Figure 6.16: the virtual link embedding algorithm .. 166

Figure 6.17: The leaf-spine fabric test beds .. 168

Figure 6.18: The NSR topologies with 8 VNFs .. 169

Figure 6.19: Results of the simple chain topology .. 171

Figure 6.20: Results of the lightly meshed topology .. 172

Figure 6.21: Latency of an IAC service (uRLLC) .. 172

Figure 6.22: Latency of an EN service (eMBB) .. 173

Figure 6.23: CPU resource consumption .. 174

Figure 6.24: Latency of EN with processing and transmission ... 175

Figure 6.25: Latency of IAC with processing and transmission ... 175

Figure 6.26: EN application, NSR latencies by topologies SC, LM, FM 176

Figure 6.27: ICA application, NSR latencies by topologies SC, LM, FM 177

Figure 6.28: The execution time compared to FRAM, SRAM ... 178

Figure 6.29: Normalized delay by arrival rates with the-state-of-the-arts (Agarwal et al.

2018) ... 179

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

xix

LIST OF TABLES

Table 3.1: Test results of running DRM on ONOS ... 88

Table 4.1: Notations and their explanations .. 91

Table 4.2: Notations and their explanation related to max congestion ratio 96

Table 4.3: Three topologies of the 50-node network .. 107

Table 4.4: Three topologies of the 25-node network .. 107

Table 4.5: Resource and demands ... 108

Table 4.6: The design of near congestion scenarios .. 110

Table 5.1: Substrate network capacities .. 133

Table 5.2: The design of test scenarios .. 134

Table 5.3: Results of CEVNE LiM when running a test case ... 135

Table 6.1: Notations and their explanation .. 145

Table 6.2: Realistic scenarios (Malandrino et al. Dec. 2019) .. 167

Table 6.3: The substrate fabric network ... 169

Table 6.4: NSR demand and thresholds ... 170

Table 6.5: Test scenario design .. 170

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

xx

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence
ARP Address resolution protocol
ARS Approximate resource scarcity
ASR Architecturally significant requirements
BPM Business process management
C2X Car to everything
CAM/ TCAM Content addressable memory / Ternary content

addressable memory
CAPEX Capital expenditure
CEVNE Congestion-aware energy-aware virtual network embedding
CEVNE NoM Congestion-aware energy-aware virtual network

embedding node embedding
CEVNE LiM Congestion-aware energy-aware virtual network

embedding link embedding
CL Cloud computing
CLI Command line interface
COS Commercial off the shelf
CP Control plane
CTMC Continuous time Markov Chain
CUPS Control plane user plane separation
DC Data center
DDD Domain driven design
DHCP Dynamic host control protocol
E2E End-to-end
ECMP Equal cost multi-path
eMBB Enhanced mobile broadband
eNB The base station of the mobile system.
EPC Evolved packet core
ICMP Internet control message protocol
INT In-band network telemetry
IoT Internet of thing
IP Internet protocol

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

xxi

ITU International Telecommunication Unit
KPI Key performance Indicators
LAN Local area network
LiM Link mapping
LP Linear program
MILP Mixed-integer linear program
MINLP Mixed-integer non-linear program
MIQCP mixed-integer quadratic constraint program
ML Machine learning
MMPP Markov-modulated Poisson process
mMTC Massive machine type communication
MP Mathematical program
MPLS Multiprotocol label switching
MSA Micro-service architecture
NBI Northbound application interface
NEF Network exposure function
NFV Network function virtualization
NGPaaS Next generation platform as a service
NIC Network interface cards
NLP Non-linear program
NoM Node mapping
NOS Network operating system
NRF Network repository function
NS Network slice
NSR Network slice request
NSSF Network slice selection function
NV Network virtualization
OF Openflow protocol
OPEX Operational expenditure
PaaS Platform as a service
PCE Path computation element
PGW Package data gateway
QoE Quality of experience
QoS Quality of service

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

xxii

RAN Radio access network
RDB Resource database
REST Representational state transfer
RFB Reusable function block
RPC Remote procedure call
SBA Service-based architecture
SBI Southbound application interface
SGW Service gateway
SID Segment identifier
SLA Service level agreement
SN Substrate network
SOA Service-Oriented Architecture
SOAP Service-Oriented Architecture protocol
SPG Shortest path graph
SR Segment routing
SRA Segment routing application
SRH Segment routing header
TCP Transport control protocol
TDF Traffic detection function
TE Traffic engineering
UDM Unified Data Management
UDP User Datagram protocol
UDSF Unstructured data storage function
UP User (data) plane
uRLLC Ultra-reliable low latency communication
V2X Vehicle to everything
VM Virtual machine
VN Virtual network
VNE Virtual network embedding
VNF Virtual network function
VNR Virtual network request

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

1

CHAPTER 1 INTRODUCTION

The Introduction chapter roadmap consists of the thesis motivation, research issues, the aims, the

research questions, research objectives and scope, research contributions, research significance,

the methodology overview, and the outlines of the thesis.

1.1 Motivation and Research Issues

The emerging Cloud computing paradigm facilitates computing resources to be leased to the public

in the economies of scale (Jennings & Stadler 2014). Computing resources become a commodity

such as electricity, gas, water, which is enabled by virtualization technology (Marinescu 2018).

Similarly, network virtualization (NV) leases networking resources, which are switches, routers,

physical links and bandwidth as isolated virtual networks (VN) to network service providers,

academia researchers, and end users (Y.3011 Jan 2012). Users send requests for network resources

to service providers; their requests are provisioned as a network application on top of the Software-

defined networks (SDN). Currently, network requests are provisioned in an ad-hoc, self-explored

way; they do not add value for reuse, which leads to ‘reinventing the wheel’. The key research

issue is the lack of a mechanism that allows network developers to concentrate efforts on

application development in a systematic way, that encourages modular designs, and facilitates

software reuse. As SDN introduced programmability to network applications, the mechanism

needs to be based on sound architecture principles and design patterns so it can support service

composition, service creation, service decomposition in the process of provisioning a user’s

request.

NV has been shown to be significant, while it resolves critical issues of traditional virtual networks

(VPN, virtual LAN), NV also allows the coexistence of multiple VNs that have different topologies

and protocols, and facilitates evolving as researchers can test new protocols on the same physical

networks (Y.3011 Jan 2012). NV consists of two processes: node embedding and link embedding.

The-State-of-the-Art Virtual Network Embedding (VNE) almost focuses on a single objective1,

1 Please see section 2.2.4 for related work that are multi-objective VNE

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

2

which may have negative impacts on other desired optimal network operations such as congestion

control, energy consumption, quality of service (QoS). To maintain optimal performance, operators

regularly carry out network reconfigurations, which are expensive, and interfere with activities of

all VNs. The key issue is the lack of VNE focusing on multiple objectives: congestion aware,

energy aware, and cost saving, which consider for both VNE and optimal operation in the substrate

network to avoid regular reconfiguration.

The VNE problem is modeled as a mathematical program (MP) that is solved by an optimization

solver. The results by solving the MPs are used to embed virtual nodes on to substrate nodes; the

link embedding process is completely passive, in traditional networks, virtual links are embedded

on the shortest paths connecting embedded substrate nodes (Fischer et al. 2013). This leads to the

over-utilization of substrate links and paths in the shortest paths, but under-utilization elsewhere,

which results in both network congestion, and waste of link resources. Current VNE could not

detect network congestion in real-time caused by elephant flows that require large bandwidth for a

long duration (Vahdat 2015), (Moorthy 2016), or hash collision which leads to network congestion

(Katta et al. 2017). The challenge in the virtual link embedding is the lack of an active link

embedding process that can focus on multiple objectives: congestion aware, energy aware, and cost

saving as the node embedding process does, can detect elephant flows, can steer network traffic at

the flow level so that it ensures both efficient virtual link embedding and optimal network

operation.

Network slicing is the new 5G mechanism that provisions multiple logical E2E, self-contained

virtual networks to deliver mobile services to customers concurrently. 5G promises a revolution in

customer services with emerging vertical, distributed applications in eHealth, vehicle-to-anything,

natural disaster, robotics and factories (Dohler 2019). 5G technology needs to combine the

challenge of accurate response time (1ms), accurate location in mobile technology with the specific

requirements of vertical-industry related functions, the control of the remote robotic surgery

application in eHealth application, the speedy interaction between vehicles and objects in real-time

(with vehicle speed up to 500km/h) in vehicle-to-everything (V2X) application (Dohler 2019), to

maintain the communication of mobile services in natural disasters (earthquakes, fire storms,

tsunamis, floods, hurricanes) to facilitate basic voice, text messages so users are able to signal their

presence and their location in lifeline communication, the large number of mobile connections,

large data volume, high data speed in crowded events (TR_22.891 Sep 2016). The comparison of

5G key performance indicators (KPIs) to 4G shows that connection density is 1000 times more,

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

3

mobile data volume is 1000 times more, data rates are 10 to 20 times more, latency is one tenth,

energy consumption is one tenth. 5G KPIs facilitate the above emerging services.

Network slicing (NS) is designed specifically in 5G to implement each service. NS enabling

technologies are SDN, NFV and cloud computing. NS is an emerging research area that attracts

attention of academia and industry, and profound solutions have been found in project NECOS

(2019), 5GEx (2020). Nevertheless, the challenge of NS is the lack of a new resource allocation

mechanism that satisfies constraints of the 5G stringent latency requirement based on three types

of applications: eMBB, uRLLC and mMTC, constraints of the resource optimization in NV,

constraints of the resource optimization and placement in NFV. Therefore, the issues of existing

approaches are summarised as follows.

ü Not sufficient to provision network resource requests in an SDN network as it lacks a

mechanism for network applications to be developed in a systematic way; a new approach

allowing developers to focus on the network application development is needed,

ü Not sufficient to embed virtual networks for optimal production operation as it lacks a VNE

that satisfies several production constraints in network operation; a new VNE is needed that

concentrates on multiple objectives in both node embedding and link embedding processes,

ü Not sufficient in network slicing as it lacks a mechanism that focuses on both resource

optimization and latency satisfaction caused by VNFs processing delay; a new network slicing

mechanism is needed that focuses on optimizing the resource allocation and satisfies different

latency requirements of 5G applications.

Hence, this research is aiming to investigate and propose an architecture for extended SDN

applications, a VNE solution based on SDN for optimal network operation, and a 5G network

slicing research for optimal resource and latency satisfaction.

1.2 Research aims and Research questions

1.2.1 Research aims

The primary focus of this research is to investigate and to develop solutions for resource request

provisioning, resource optimization in network virtualization and 5G core network slicing applying

SDN technology.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

4

1.2.2 Research questions

The research questions of this thesis are as follows:

Question 1: Given users requesting network resources, what is needed in an SDN-based network

for the service providers to provision users’ networking requests in a systematic way?

Question 2: Given the network virtualization problem, what would it take to provide an SDN-

based solution in optimized resource allocation?

Question 3:

Given the network virtualization problem in cloud data centers with the two separate processes:

node embedding and link embedding, can SDN technology itself be used to provide heuristic

solutions for the virtual link embedding and implement the solutions dynamically and efficiently?

Question 4:

Given 5G core services come in various shapes and sizes with different stringent requirements,

how can one model the network slicing concept and what would be the solution for resource

optimization and latency constraint satisfaction?

Question 5:

Given the network virtualization problem in SDN networks, and the network services in 5G core

systems, do the multiple-objective optimization technique and the decomposition technique of

large, structure systems contribute to efficient solution approaches?

1.3 Research objectives and scope

The research objectives (RO) are identified to address the above research questions and are

presented as follows.

1.3.1 Research objective 1

RO1 is to investigate and to propose an architecture for extended SDN applications that forms the

basis to build composite services on top of the SDN controller. The architecture is based on three-

tier architecture, micro-service architecture, micro-service design patterns: service registration,

service discovery, and service composition; it takes advantage of the service model for service

provider in SDN architecture (TR-521 2016) to ensure the orchestration and integration in SDN

vertical applications, SDN business processes, and workflows.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

5

In this research objective, there are subtasks as follows.

Ø To investigate the requirements of the architecture for extended SDN applications.

Ø To investigate and propose the technologies that the architecture will apply to meet the above

requirements.

Ø To present the technologies and their main characteristics of the proposed architecture.

Ø To investigate the effect of the resource and service views of SDN architecture (TR-521 2016)

on the architecture of extended SDN applications.

Ø To investigate how the controller NBI facilitates the design of the proposed architecture.

Ø To investigate the effect of the SDN controller platform on the proposed architecture.

Ø To prototype the proposed architecture in an SDN extended application.

1.3.2 Research objective 2

RO2 is to investigate and to propose a mathematical model for the virtual network embedding

(VNE) in network virtualization that focuses on multiple objectives: saving cost, saving energy

and avoiding congestion concurrently. As solving the VNE is NP-Hard, the heuristic algorithms

will be designed for the node embedding and link embedding processes to find close-to-optimal

results.

In this research objective, there are subtasks as follows.

Ø To investigate the main characteristics of the VNE focusing concurrently on multiple

objectives: cost saving, energy saving and congestion avoidance (CEVNE).

Ø To investigate the mechanism to implement each objective, and to formulate each objective.

Ø To investigate the theory of multi-objective programming in Operation Research.

Ø To build a CEVNE mathematical model using the weighting and constraint methods of the

multi-objective optimization technique, and to obey the rules to generate pareto-optimal

solutions for all objectives.

Ø To investigate and identify the main characteristics of the mathematical program (MP), to

investigate the solution strategy to resolve MP.

Ø To propose an optimization solver to resolve the above MP in small scale and large scale.

Ø To investigate and propose a mechanism for large scale networks.

Ø To evaluate the performance of the mechanism in the scarce resource, challenged scenarios,

and normal scenarios with The-State-of-the-Art.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

6

1.3.3 Research objective 3

RO3 is to investigate and to propose a virtual link embedding process, which will be active, be able

to focus on multiple objectives: cost saving, energy saving and congestion avoidance as the node

embedding process does. The mechanism is based on SDN and SR technologies. The realization

of the mechanism is based on the architecture of the RO1 as an extended SDN application that

integrates services implementing each objective, uses a monitoring function in real-time, is

deployed on the SDN substrate network that runs SR as the source routing mechanism to forward

packets.

In this research objective, there are subtasks as follows.

Ø To investigate the mechanism that will be used to search for an optimal solution in the virtual

link embedding optimization problem focusing on multi-objectives.

Ø To identify the motivation for a heuristic virtual link embedding algorithm.

Ø To investigate the mechanism to realize the solution of the multi-objective virtual link

embedding.

Ø To investigate the mechanism to implement each objective: cost saving, energy saving and

congestion avoidance, and to integrate these objectives to get the result.

Ø To investigate the mechanism that monitors the states of the networks in real-time to ensure

the proposed solution provides optimal network operation.

Ø To realize the CEVNE link embedding process as an SDN application on the SDN leaf-spine

fabric on ONOS controller running the SR application.

Ø To evaluate the CEVNE link embedding realization with The-State-of-the-Art.

1.3.4 Research objective 4

RO4 is to investigate and to propose a mathematical model for resource optimization in network

slicing satisfying latency requirement of different 5G application types: eMBB, uRLLC and

mMTC, applying SDN, NFV technologies, and cloud computing. We only investigate the 5G core

network slicing. The mechanism focuses on optimizing the resource allocation and satisfying the

critical latency requirement of different types of 5G service. The research builds the resource model

and performance model of network slicing in order to build its mathematical model. The network

slicing problem focuses on two objectives: resource optimization and latency satisfaction; its

program is considered as a structure system. The program is non-convex, non-linear, mixed-

integer, and NP-Hard. The solution strategy focuses on the convex relaxation, linearization, and

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

7

the decomposition technique for structure systems in optimization problem. The MP is

decomposed into the master model and two sub-models: VNF embedding and virtual link

embedding, which are solved using the IBM OPL flow control mechanism and scripts.

In this research objective, there are subtasks as follows.

Ø To investigate and identify different models to progress from network slicing theory concepts

to a comprehensive solution based on scientific evidence.

Ø To investigate and propose a performance model for network slicing with its main

characteristics that will lead to a concrete formulation.

Ø To investigate and define the network slicing problem and to formulate the problem.

Ø To investigate and identify the main characteristics of the mathematical model.

Ø To investigate solution strategies that can be applied to the mathematical model that leads to a

solvable program.

Ø To investigate the decomposition techniques in the optimization of structure systems using the

master model and sub-models.

Ø To investigate the optimization solver that will be applied to solvable program; specifically,

the flow control mechanism in IBM OLP as the decomposition mechanism.

Ø To apply the optimization solver to the network slicing problem to get the optimal solution.

Ø To evaluate the mechanism with The-State-of-the-Art.

1.4 Contributions of Thesis

The research contributions are mainly in innovative solutions as follows:

A novel architecture to realize extended SDN applications on top of the SDN controllers. It is based

on Micro-service architecture (MSA), and MS design patterns: service registration, service

discovery, service composition, service creation and service reuse. It is a three-tier architecture

with the database tier, business tier and web tier. The database tier ensures that the extended

application can have its own database. The business tier consists of micro-services (MS) applying

MS design patterns. The web tier ensures the application can be accessed via the browser. The

architecture focuses on the composability attribute of extended applications. It allows the creation

of new services, the reuse of existing services, and the composition of a service based on new and

existing services. It is based on the domain driven design (DDD) principle, in which the main

problem is divided into sub-problem domains, and the solution is resolved in each sub-domain.

The architecture ensures SDN applications are integrated into vertical applications, workflows or

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

8

business processes based on the programmability of the SDN paradigm. The prototype showed that

the proposed architecture is appropriate, effective, realizable, and practical for emerging

applications.

A novel mathematical model and its algorithms for the VNE that focuses on multiple objectives:

saving cost, saving energy and avoiding congestion in network virtualization in cloud data centers

(CEVNE). The cost saving objective tries to ensure minimal substrate resource allocation to virtual

networks; the energy saving objective ensures a minimal number of active nodes, which are

substrate nodes that the virtual nodes are embedded on; the congestion avoidance objective spreads

traffic into different paths to minimize the maximum link utilization. The mathematical program

(MP) applies the weighting methods for the cost saving and energy saving with positive weighs,

and the normalization to build the CEVNE objective; the constraint method is applied to the

congestion avoidance using binding constraints; these will generate the pareto-optimal solutions

and the best compromised solutions for all three objectives. CEVNE mathematical model is a

mixed-integer linear program (MILP), which is relaxed into a linear program, and solved by GLPK.

As solving VNE is NP-Hard, heuristic algorithms are designed for CEVNE with node embedding,

link embedding and integration algorithms. The node embedding algorithm is designed to convert

the linear results back to the approximation of integer variables of the sub-optimal solution. The

evaluation showed that the CEVNE outperformed The-State-of-the-Art in the challenging

scenarios where virtual networks have very high CPU and bandwidth demands that may cause

congestion to the substrate networks. In overall evaluation, the results show that CEVNE succeeds

in delivering concurrently multiple objectives: cost saving, energy saving and congestion

avoidance.

An SDN-based heuristic algorithm for the CEVNE link embedding process is proposed on an SDN

substrate network that focuses on three objectives of saving cost, saving energy and avoiding

congestion concurrently. The heuristic solution is realized as a composite SDN application using

the architecture for extended SDN application that integrates ONOS core services, SR application,

monitoring application, and new MS that are designed for each objective. The application is based

on the three-tier architecture, MSA, MS design patterns and DDD principles. It allows the

bandwidth resources to be allocated dynamically to virtual links, which can be further exploited to

the area of bandwidth allocation on demand. The CEVNE LiM application invokes the path

selection service to choose the substrate path that satisfies multiple objectives. The substrate

network is an SDN leaf-spine fabric running SR on an SDN controller. The evaluation showed that

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

9

the CEVNE LiM application outperformed the k-shortest path in cost saving, energy saving and

congestion avoidance; it is an active process and is flexible in delivering results.

As network slicing is a new and difficult concept, a novel solution approach is presented for the

network slicing in 5G core networks. Different models are built to understand how network slicing

operates. Resource model is used to allocate resources to VNFs and to virtual links connecting

VNFs. Performance model using queueing theory is used to predict network slicing end-to-end

latency. The VNF is modeled as 𝑀!/G/1 using queueing theory with the Markov-modulated

Poisson process (MMPP) is applied to the input queue of VNF. The linear function of the

processing latency on CPU resource allocation is applied to ensure that the allocated resources

satisfy the latency threshold. The network slicing problem is modelled using mathematical

modelling into an MP. An MP focuses on two objectives: to minimize resource allocation and to

satisfy critical latency thresholds of 5G applications in different types: eMBB, uRLLC and mMTC.

The MP is non-convex, non-linear, mixed-integer and NP-Hard. The novelty of the solution is also

in the solution strategy, which focuses on convex relaxation using linearization and decomposition.

The MP is decomposed into the master model and two sub-models: VNF embedding and virtual

link embedding algorithms; the separation will generate the solution for the original network

slicing problem. The master model and its sub-models are solved using IBM OPL scripts and the

flow control mechanism. The evaluation showed that the algorithms outperformed The-State-of-

the-Art in cost saving, acceptance ratio, execution time, latency satisfaction.

1.5 The significance of research

The significance of the research is presented as follows.

The new architecture based on MSA, MS design patterns can be applied to custom 5G core services

or vertical applications as 5G core architecture duplicates SDN architecture as follows: 5G network

exposure function (NEF) plays the role of SDN NBI, 5G network repository function (NRF)

provides service registration and discovery; and 5G core services are required by its vertical

applications in the same way that SDN core services are required by SDN applications.

The new mathematical model of multi-objective CEVNE and the SDN-based heuristic link

embedding solutions can be applied to any networking technologies that require resource

optimization and network routing via dynamically allocated bandwidth resources such as NFV,

SFC, and network slicing. In these applications, the main problems are the VNF resource

optimization and placement and the routing between VNFs; they may operate in the distributed

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

1.

SDN architecture, hence, the satisfaction of the requirement of the multi-domain environment can

be considered as an additional objective.

For structure systems, the novel mathematical model and the innovative solution approaches using

decomposition can be applied to the multi-objective optimization problem as it has common

attributes with the structure systems. As the structure and multi-objective optimization models

result in better decision-making than the single objective model, but they become more complex

to solve, the decomposition solution will decrease the complexity, simplify the system structures

and reduce the time to solve for the solutions. All the structure and multi-objective systems and

decomposition technique can be applied to any networking optimization problems.

The realization of CEVNE virtual link embedding using the architecture for SDN applications can

be applied in the network applications that are completely different from NV such as in the

bandwidth on demand, the aggregation of bandwidth, or the bandwidth on demand and schedule.

All the solutions in the thesis can be applied to 5G custom services and 5G vertical applications as

they are based on 5G core services; therefore, they can reuse the models of multi-objective and

structure systems, the decomposition technique and the architecture for extended SDN applications

as long as 5G core architecture duplicates the SDN architecture.

1.6 Methodology overview

The main steps in the methodology development consists of initialization, methodology

development, performance evaluation and conclusion, which are presented in Figure 1.2. In the

initialization step, the research topic is decided via the research motivation and key issues. The

hypothesis, research questions and the research objectives are developed. Methodology

development consists of the methodology investigation, problem definition, problem statement,

problem formulation, solution approach design and solution realization. Performance evaluation

consists of the evaluation setup, test scenario design and result analysis discussion. Conclusion

includes the discussion and future work. The methodology development and performance

evaluation are working in a loop, the evaluation result is used to refine the methodology

development until the research objectives are satisfied.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

11

Figure 1.1: Steps in the development of Research methodology

The methodology in Figure 1.1 fits into the two blocks “Basic Research” and “Concept

formulation” of the research model presented in Figure 1.2 (Bernardo 2012), in which the research

gap is identified, the methodology is proposed, the evaluation shows the contribution is significant,

and the resulting paper is presented to a conference, or sent to an international journal. In later

steps, it is checked for the usable capacity. It is sent for outsider usage before it is prepared to be

commercialized as presented in Figure 1.2.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

12

Figure 1.2: Research model adapted (Bernardo 2012)

1.7 Thesis outlines

The thesis consists of seven chapters, which is presented in Figure 1.3. Each chapter is summarized

as follows.

Chapter 1 - Introduction.

Chapter 1 outlines the context of the research area with the emerging SDN technology, the issues

in the network virtualization and network slicing in 5G core networks. The motivation and key

research issues are identified. The research aims, research questions, research objectives and

scopes are presented. The significance of the research and the research contributions are presented.

The methodology overview is explained in detail. The research outline of the thesis is depicted

with seven chapters.

Chapter 2 – Background theory and related work

This chapter presents the background theory of the SDN networking paradigm, micro-services,

micro-service architecture and design patterns, segment routing applied in SDN networking, the

theory about network virtualization, service function chains, network slicing, mathematical

modeling, queueing theory, P4 and in-band network telemetry. Related work to the research works

in the thesis is also presented.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

13

Figure 1.3: Thesis outline

Chapter 3 – An architecture for extended SDN applications

The chapter proposes an architecture for extended SDN applications and services. The

investigation identifies the requirements of the architecture that include the composability, the

creation of new services, the reuse of existing services and the integration of new and existing

services in the composite service. The proposed architecture applies micro-service architecture

(MSA) and MS design patterns, three-tier application architecture, and domain driven design

principles. The novelty of the solution lies in the three-tier architecture applying MSA and MS

design patterns.

Chapter 4 – Congestion-aware Energy-aware Virtual Network Embedding

The chapter proposes a multiple-objective virtual network embedding (VNE) problem called

congestion-aware energy-aware VNE (CEVNE) that focuses on saving cost, saving energy and

avoiding congestion. The investigation defines the CEVNE problem in the substrate networks,

virtual networks, virtual network requests, the VNE problem with two processes: node embedding

and link embedding, and the augmented substrate network. CEVNE is modelled using the

weighting and constraint methods to combine three objectives into the CEVNE program obeying

the rules to generate pareto-optimal solutions for involved objectives. CEVNE is a MILP; solving

MILP is computationally intractable, hence, CEVNE is relaxed to LP. As solving the VNE is NP-

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

14

Hard, the heuristic node embedding and link embedding algorithms are designed to solve CEVNE

in polynomial time. The node embedding algorithm applies the rounding function to find the

approximation of the integer variables in the sub-optimal solutions. The novelty of the solution lies

in the mathematical model, the application of the rules to generate pareto-optimal solutions for

involved objectives, and the heuristic algorithms for the node and link embedding processes.

Chapter 5 – Virtual link embedding process in CEVNE

The chapter proposes an SDN-based heuristic algorithm for the virtual link embedding process that

is active, and focuses on multi-objectives: cost saving, energy saving and congestion avoidance as

the node embedding process does. The realization of the heuristic algorithm applies the architecture

for extended SDN applications, which supports MSA and MS design patterns, and the three-tier

architecture for SDN composite applications. Each objective of cost saving, energy saving, and

congestion avoidance is realized as micro-services. The path selection algorithm is proposed as a

new service, which selects the substrate path based on the results of services implementing each

objective. The novelty of the solution lies in the SDN based heuristic algorithm, and its realization

as an SDN application based on a three-tier architecture on the SDN leaf-spine fabric substrate

network running segment routing.

Chapter 6 – Latency-aware resource optimization for 5G core network slicing

The chapter proposes the solution for the resource optimization in the latency-aware network

slicing problem in a 5G core network. The network slicing problem focuses on two objectives:

resource optimization and latency satisfaction for different types of 5G applications: eMBB,

uRLLC and mMTC. The novelty of the solution lies in the building of the operational model,

resource model and performance model in order to formulate the problem using mathematical

programming. The network slicing program is considered a structure system. The program is NP-

Hard, non-convex, mixed-integer and nonlinear (MINLP). The novelty of the solution lies in the

convex relaxation, linearization and decomposition of the MP into the master model and two sub-

models: VNF embedding and virtual link embedding, which are solved using IBM OPL flow

control mechanism and scripts. The decomposition will generate the sub-optimal solutions for the

original network slicing problem.

Chapter 7 – Conclusions and Future work

The chapter summarizes the research aims, research outcomes, research contributions and research

significance through the results of the solutions in Chapter 3, Chapter 4, Chapter 5 and Chapter 6.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

15

Future works are identified based on the research so far in different research areas: architecture for

extended SDN applications, network virtualization, network function virtualization and network

slicing. The chapter concludes that the thesis has achieved the aims and objectives that are

presented in chapter 1 Introduction.

1.8 Summary

This chapter identifies the research motivation and key issues, research aims, research questions,

research objectives and scope. The chapter describes the research significance with its

contributions to the field of SDN applications, network virtualization, network slicing in 5G core

networks. The thesis outline is presented. Chapter 2 - Literature review and related work is

presented next.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

16

CHAPTER 2 LITERATURE REVIEW AND

RELATED WORK

In the previous chapter, we introduced the thesis, and presented the research motivation, key

research issues, research objectives, research aims, research significance and research

contributions.

This chapter presents the background theory and related work that are related to our solutions in

the research areas of interest. The related work sections are titled starting with “Related work” and

are included in the related background theory section. Firstly, the theory background is presented

with details of SDN, SDN architecture, SDN controller, SDN switches, SDN applications, segment

routing V6, network virtualization (NV), network function virtualization (NFV), 5G and network

slicing (NS), mathematical model to solve optimization problems in operations research, queueing

theory for performance prediction, and P4 language, and the In-band network monitoring

application (INT). Secondly, we review current solutions in the research areas of interests as

follows.

Ø The multiple-objective VNE that has been investigated in the research community,

Ø The active virtual link embedding in NV,

Ø 5G network slicing in mobile core systems that have been investigated in the research

community utilizing utilities theory, game theory and modelling techniques.

The roadmap of chapter 2 is presented in Figure 2.1 that consists of the background theory and

related work.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

17

Figure 2.1: Chapter 2 Literature review and roadmap

2.1 Software-defined networking

SDN paradigm defines a new way of networking in computer systems. SDN technology consists

of many related concepts, only concepts that are related to the thesis are presented as shown in

Figure 2.2. They consist of SDN network paradigm definition, SDN main components comprising

SDN architecture, SDN controller, SDN switches, and SDN applications. These form the basis

theory to comprehend SDN technology, chapter 3 named Architecture for extended SDN

applications, chapter 4 named Congestion-aware Energy-aware VNE, chapter 5 named Realization

of CEVNE virtual link mapping, and chapter 6 named Latency-aware resource optimization for 5G

core network slicing.

Chapter 3 extends the SDN application layer into a three-tier architecture applying MS architecture

and design patterns for extended SDN applications. The theory of SDN architecture is important

to understand how SDN applications can manipulate the traffic flow in network devices via

Northbound API and Southbound API. The SDN programmability, and SDN ability to steer

network flows at the coarse-grained and fine-grained levels are important for the contribution of

the listed chapter 4, chapter 5, and chapter 6. Mininet is an SDN simulation tool to evaluation

solutions in the thesis.

2.1.1 What is SDN paradigm?

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

18

Figure 2.2: SDN technology roadmap

Software-Defined Network (SDN) is a network technology that separates the control plane from

the data plane in network devices, centralizes control in the controller, adds programmability to

network operations, and opens interfaces so everyone can contribute. This leads to major benefits

to network providers, network consumers, cloud data centers, network operations, and the design

of new network protocols, new network hardware as follows.

Ø Simplified network devices as they only forward traffic according to their look-up flow

table,

Ø Programmability as developers can program the behaviour of the network by loading

policies on network devices,

Ø Autonomous device configuration using commands on the controller,

Ø Network virtualisation and the offer of networks on demand based on central control and

programmability,

Ø Network services and applications that can be supported through their interfaces,

southbound interface (SBI) for devices and northbound interface (NBI) for applications

(Hoang & Pham 2015).

SDN network paradigm is a new technology (Hoang 2015) as SDN is beneficial for researchers,

network operators, service providers, and has triggered a wave of changes in most areas of

computer networking (Duan & Toy 2017), (Kreutz et al. 2015). The changes are significant in the

direction of saving capital expenditure (CAPEX) via encouraging commercial-off the shelf (COS)

devices; saving operation expenditure (OPEX) via the flexibility, automation to daily network

operations (Goransson, Black & Culver 2016), simplifying network operation by reducing time

and effort via programmability, central control, and central view.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

19

He et al. (2019) conducted a survey about flexibility in dynamic network using SDN technology.

The flows and resources are elements that SDN offers flexibility in communication networks. A

flow is defined with a source node, a destination node and data rates; resources, which consist of

computation power, memory and bandwidth, are mandatory in network operations. SDN can steer

network flows, offer bandwidth on demand, and monitor the network in real-time. Chapter 4, and

chapter 5 of the thesis show the flexibility that SDN brings to dynamic networks. SDN also

contributes to the automation of network configuration using YANG, NetConf and RestConf

(Claise, Clarke & Lindblad 2019). The proposed architecture in chapter 3 touches on the

automation process to provision SDN network request.

2.1.2 SDN architecture

2.1.2.1 Layer model

SDN architecture is depicted with three layers: the infrastructure layer, the control layer, and the

application layer.

The infrastructure layer consists of SDN devices, which are physical / virtual switches, or routers.

They operate based on Openflow (OF) protocol. Their main tasks are packet forwarding. Each

SDN device has an interface to connect to the controller southbound interface (SBI), several OF

flow tables that contain flow entries, and the hardware component to process packets.

The controller layer consists of one or more controllers operating in the cluster mode. The

controllers are the SDN network brain. Each controller provides core services to manage devices,

flows, topology… of the SDN network underneath. Controllers connect to devices via SBI, connect

to applications via NBI, connect to other controllers in the same cluster using the master and slave

mechanism (ONOS 2019b). Controllers provide a central view of all SDN devices to the

applications via core network services.

The application layer consists of network applications that are built on top of SDN controllers.

They connect to the controllers via the NBI. They operate on the underlying network of SDN

devices using the core services provided by the control layer. The list of applications is

unprecedented as it expands to different areas of networking technologies. Figure 2.3 presents the

SDN high level architecture in the layer views: the infrastructure layer, the control layer, and the

application layer.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

2.

Figure 2.3: SDN architecture in layer view

2.1.2.2 Service model

TR-521 (2016) presented the service model of SDN architecture. The service model is the top-

down view of an SDN customer that sends requests to SDN controller. In the architecture service

model, customers in the application layer are the service consumer (client), SDN controllers are

service providers. Customers send requests to the controller for some applications of network

operations on the SDN networks. At receiving the clients’ requests, SDN controller checks them

against its policies and its resources. If requests are feasible, the controller provision them based

on an optimization model. A request is rejected if it is infeasible; otherwise the controller will send

the response to the client. The service view is presented in Figure 2.4.

2.1.2.3 Resource model

The architecture resource-oriented view is all about the devices in the infrastructure layer, it is the

bottom-up view of SDN devices according to an SDN network operator. The resource view is used

to explain the provisioning of requests in the service view. A network resource may be physical or

virtual, active or passive, may be created, scaled or removed by operators or by customer requests.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

21

Figure 2.4: SDN architecture in layer, service and resource views

A network resource may be occupied since it is used in a customer request, or it may be available

for incoming requests. Similar network devices are grouped together into a resource group. The

resource database (RDB) is a local repository that stores all information about resources to be

survived in SDN controller replacement. SDN controller core services or SDN applications should

have adequate rights to update resource information in the RDB. Operations on network devices

are managed via the event management in SDN controller, so devices states are up to date for

incoming requests. The SDN architecture is presented in the layer, service and resource views as

in Figure 2.4.

2.1.3 SDN controller

2.1.3.1 Main characteristics

SDN controller is the brain in the SDN architecture, it plays the role of a network operation system

(NOS) to provide core services to manage the SDN network underneath. SDN controller is an

intelligent entity that provides service to applications in the application layer. The controller has

the central view of the network; it keeps the view up to date in real-time by catching up any event

occurring to devices, flows, topology, hence, the controller is called the feedback node. The SDN

controller connects to the devices via SBI, connects to the applications via the NBI. Figure 2.4

presents SDN controller in the control layer, in a service to client’s requests.

In the SBI, each device provides its driver to the controller if it is a proprietary SDN switch. For

example, the CISCO driver specifies how NETCONF protocol is implemented, how device

discovery, link discovery, port discovery and statistics work with CISCO devices; HP drivers

describe how HP devices implement the handshake process, how the pipeline works in different

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

22

HP groups of devices (V1, V2, V3, V3500) (ONOS 2019b). The drivers work with the OF core

service to manage the SDN devices.

In the NBI, ONOS controller provides the Intent framework (ONOS 2019a) as an abstraction for

an application to add/update/delete flow rules onto the network devices. Other SDN controllers

have similar mechanism in the NBI. ONOS applications consider the intent framework as a critical

component as it can update the flow rules on devices without going to low level details.

Internally, each intent has life cycles with different states as follows: starting, complied, deployed,

and deleted that are related to the moment when an intent is created, compiled to flow rules,

deployed on to the devices, and deleted. Each intent is classified according to the network

connection type, such as the point-to-point intent is used for wired networks, the optical connection

intent is for optical networks, the multi-point to multi-point intent is for wireless networks. Figure

2.5 presents ONOS intent life cycle.

Figure 2.5: ONOS intent state transition diagram (ONOS 2019a)

ONOS provides flow rule API and flow objective API, which are the abstractions as the intent

framework, in the NBI to facilitate the application development. Figure 2.6 presents ONOS

controller in the SDN architecture.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

23

Figure 2.6: ONOS controller (ONF 2019a)

2.1.3.2 Core services

SDN controller provides core services to manage states of SDN network via Rest API. Device

management, topology management, path management, application management, configuration

management, flow rule (entry) management, OF group management, host management, packet

management, port management are fundamental services in an SDN controller. These services are

available to be accessed publicly via the NBI. Each SDN controller (open source or proprietary)

may have additional core services based on their design. Internally, the services access the SDN

devices via the device driver in SBI to create/update/read/delete flows, ports, paths, or packets.

Openflow protocol is presented as a core service inside the controller to manage the operation of

the controllers and devices according to OF protocol. The OF service handles the handshake

process, creates the communication channel, and handles messages between the controller and the

device. Although the OF core service is critical for the SDN controller operation, OF service is

hidden from external SDN applications. Via programmability, the core services are accessed via

the service API, the REST API, and the CLI.

Listed above are common characteristics of an SDN controller (Goransson, Black & Culver 2016),

(Kreutz et al. 2015), (Hoang & Pham 2015), (Jarraya, Madi & Debbabi 2014). According to

Tootoonchian et al. (2012), the performance of NOX controller was measured, then the design was

updated to handle multi-threaded, I/O batching, asynchronous I/O that resulted in the performance

was improved by 33 times. The experience from NOX controller is applied to the design of Beacon

controller (Erickson 2013) and all controllers (ONOS, OpenDayLight, Ryu, etc.) developed lately.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

24

2.1.4 SDN applications

SDN applications are in the application layer in SDN architecture, they access the resources in

network devices via the NBI. To keep the controller small, all network protocols are implemented

as SDN applications, which may be included in the controller on the necessity basis. Segment

routing (SR) protocol is implemented in the SR application (SRA). SRA is a network application

that can be applied to an SDN network without further enhancement. SRA consists of the

configuration services for devices and applications, implements fundamental protocols ARP,

DHCP, ICMP, implements pseudo wire as a service for layer 2 tunnel using virtual LAN or MPLS

label, layer 3 in Internet protocol (IP), Equal Cost multiple path (ECMP) of existing paths in the

fabric (Das 2015). The vertical network applications are integrated into the reusable function block

(RFB) (Mimidis-Kentis et al. 2019).

2.1.5 SDN switches

SDN devices operate currently under the OF protocol in an SDN networks, hence they are called

OF devices (switches / routers). An OF switch consists of an interface to connect to the SDN

controller, flow tables, the hardware component, which is CAM or TCAM to forward packets. An

OF switch connects to the SDN controller via an OF communication channel, which is a remote

procedure call (RPC) session. An OF switch can connect to multiple controllers using multiple

channels. An OF switch has OF ports that are used to receive input packets (ingress port) and

forward output packets (egress port). An SDN switch has physical ports, OF ports and virtual ports,

which can be OF port, as presented in Figure 2.7.

Figure 2.7: Main components of an OF switch (ONF 2014)

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

25

Each flow table contains a set of flow entries. Each table entry consists of main components as

follows: match fields, priority, counters, timeouts, cookie and flags as presented in Figure 2.8. The

entries in the flow tables are added in the proactive mode, which is added in advance based on the

topology and protocol of the SDN networks, or in reactive mode, which is added in an ad-hoc

manner by the controller.

Figure 2.8: Main components of a table entry (ONF 2014)

When an SDN switch receives a packet at an ingress port, it extracts the packet header to lookup

in the flow tables to find the matched flow entry, and implements the instructions, which may be

forwarding to an egress port, or go to the next table. An entry called table-miss entry with default

actions for packets that are not matched any entries (ONF 2014). The implementation of SDN in

the cloud data centers with thousands of servers is expensive as it requires many TCAM for

possible paths. One approach to reduce the TCAM usage is to apply source routing (SR protocol

or MPLS) in SDN network.

2.1.6 Mininet

Mininet is developed as a simulation tool for SDN technology (Lantz 2014). It provides a testbed

to test SDN applications in different network topologies. Mininet used open vswitch as SDN

network switches. SDN controller is specified whether as a default local controller or a remote

controller with the IP address. Mininet is built in Linux environment, it does not have a web

interface, the commands are entered in the CLI. Mininet offered default network topologies for test

networks; it accepts custom topologies that are developed in Python; it accepts any Linux network

commands to retrieve the OF tables, to dump flow entries… There are other simulation

environments to test SDN, such as GNS3 (GNS3 2020), but Mininet seems the best fit to evaluation

SDN applications on SDN networks.

2.1.7 Segment routing

In SDN networks, Segment routing (SR) is a source routing protocol to steer traffic instead of using

TCAM table entries in network devices to optimize cost. Abdullah, Ahmad & Hussain (2018)

conducted a survey about the leveraging of SR in SDN networks, and they found that SR source

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

26

routing is beneficial for the traffic engineering purpose to minimize congestion, minimize end-to-

end delay, minimize energy consumption, optimize resource utilization, recovery from failures and

traffic duplication for protection. In chapter 4 named Congestion-aware Energy-aware VNE and

chapter 5 named Realization of virtual link embedding, the research focuses on the SDN substrate

network running SR protocol to provide alternative paths, which are different from shortest paths.

2.1.8 Segment routing architecture

SR allows a router to steer packets through the network using a list of segments (labels). Each

segment has an identifier called segment ID (SID). There are three types of segments as follows:

Ø Node SID is a global SID that is associated with a node in the network,

Ø Adjacent SID is a local SID that is related to nearby nodes,

Ø Service SID is a global SID that is associated with a service deployed on a node (Filsfils

et al. 2015).

The SR architecture includes the control plane and the data plane. The data plane defines how to

encode the list of segments to be applied to the packets. The control plane defines how network

devices are instructed to apply a list of segments. SR supports two data plane technologies: MPLS

and IPv6. SR applies IPv6 is called SRv6, which is the popular data plane currently.

2.1.9 Segment routing with IPv6

In segment routing with IPv6, every segment is an IPv6 address. SRv6 segment routing header

(SRH) is considered as the extension of the IPv6 address header. SRH contains a list of segments;

the field “segment left” is decreased 1 every time a segment address is reached in the path. Figure

2.9 presents an extension header in SRv6.

When SR is deployed in an SDN network, SR replaces flow rules in TCAM memory with the list

of segment IDs in the packet’s header; hence, costs are minimized. SR also simplifies the

maintaining of routing data, hence, it speeds up the process of changing routes or adding new routes

to the network (Lee & Sheu 2016). Trellis (Das & Peterson 2019) is an SDN fabric implemented

with SRv6.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

27

Figure 2.9: Segment routing IPv6 extension header (Lebrun et al. 2018).

2.2 Network virtualization

2.2.1 What is network virtualization

Network virtualization (NV) is the process of creating virtual networks on top of substrate

networks. The main problem of NV is the allocation resources for multiple virtual networks on the

same substrate network, which is called virtual network embedding (VNE). VNE is an optimization

problem focusing on objectives such as to minimize the resource usage, to maximize revenues. An

example of VNE is presented in Figure 2.10, the virtual network (left) is embedded on to the

physical network (right).

He et al. (2019) conducted a survey about the flexibility that NV brings to the dynamic networks,

and they identified that NV ensures virtual network topology adaptation, multi-tenancy and

isolation. Other main targets of NV are the parameter configuration, the placement of virtual nodes

and virtual links, and resource scaling. Multiple-objective VNE is explored in chapter 4 named

CEVNE, chapter 5 named Realization CEVNE virtual link embedding, and chapter 6 named

Latency-aware resource optimization for 5G core network slicing.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

28

Figure 2.10: An example of virtual network embedding

2.2.2 Resource optimization

The substrate networks include switches / routers and substrate links. The virtual network requests

include the CPU, bandwidth demands and the topology of the virtual networks. There are two

processes in VNE: the node embedding and the link embedding. The metrics such as acceptance

ratio, resource consumption, execution time, energy saving, revenue maximal are used to evaluate

the CEVNE research work in chapter 4.

Based on how the node mapping and link mapping cooperation, VNE solutions are classified as

follows:

ü Uncoordinated VNE is the process in which the node embedding, and link embedding are

solved in their own way without awareness of the other process,

ü Coordinated VNE is the process in which node embedding, and link embedding are working

in such a way for the optimal results; this group is divided into one stage and two stages; one-

stage coordinated VNE is the process where both processes are embedded at the same time in

a coordinated way; two-stage coordinated VNE is the process where the nodes are embedded

first so that it makes the link embedding process better off (Fischer et al. 2013).

As VNE is an optimization problem, the VNE is modeled using mathematical programming into a

mathematical program (MP). The MP has an objective function to specify the resource

minimization, revenue maximization or energy consumption minimization, and the constraints to

describe the limits of the substrate capacities, and the conditions of the embedding such as

satisfying the resource demands of virtual nodes and virtual links. Solving VNE problem is NP-

Hard (Amaldi et al. 2016) as it relates to the multi-way separator problem. Three different solution

approaches are investigated so far:

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

29

ü Exact solutions are used in small size problems and provide the base line for heuristic

algorithms,

ü Heuristic-based solutions try to find good solution, but not optimal, in a low execution time,

ü Meta-heuristic solutions such as simulated annealing, genetic algorithm, ant colony

optimization, particle swarm optimization, or tabu search if the VNE problem is such a

combinatorial problem that it is hard to use other optimization strategies (Fischer et al. 2013).

Although heuristic algorithms result in non-optimal solutions, but they provide the solution in the

affordable time.

2.2.3 Current issues in network virtualization

The main issues of network virtualization in traditional networks are summarized as follows. The

node embedding is the main process that determines the success of an VNE algorithm, then based

on the node embedding results, the link embedding process is implemented to embed the virtual

links on to the substrate network using the current network protocol. The link embedding process

is passive, and always return the shortest path (Fischer et al. 2013). This leads to congestion on the

shortest path and under-utilized of other paths.

There were other critical issues in NV in cloud data centers (DC). NV plays the main role in DC

in provisioning users’ requests, which comprised of the VM, and the virtual networks connecting

VMs. The cloud service providers must ensure the isolation between tenants, it means isolation of

VM resources, and isolation of their virtual networks. Traditional networks in DC implemented

tunnels as virtual networks for tenants, which added a burden in the network management,

especially in the endpoints of the tunnels. The solution was not flexible in reconfiguration that

occurs most often.

2.2.4 Related works of chapter 4 Congestion aware, Energy-aware VNE

On the VNE problem, Zhu & Ammar (2006), Chowdhury, Rahman & Boutaba (2012), Yu et al.

(2008), and Cheng et al. (2011) have made profound contributions to VNE solutions.

Zhu & Ammar (2006) investigated the challenge in network virtualization, which is assigning the

substrate resources to the virtual networks (VNs) efficiently and on-demand. The authors proposed

algorithms to embed VNs without reconfiguration (VNA-I) and with reconfiguration (VNA-II).

Chowdhury, Rahman & Boutaba (2012) proposed ViNEYARD, which consists of a set of online

virtual network embedding algorithms for embedding nodes and links. ViNEYARD algorithms

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

3.

consist of the deterministic virtual network algorithm (D-ViNE), randomized VN algorithm (R-

ViNE), D-ViNE load balancing (LB) algorithm, R-ViNE-LB algorithm and window-based (Win)

VN embedding algorithm. The authors introduced the concept of the augmented substrate graph in

their problem formulation. Yu et al. (2008) investigated the design of a substrate network to

simplify the VN embedding process. The proposed approaches allow the substrate network to split

a virtual link into multiple substrate paths and exploit the path migration to re-optimize the resource

allocation.

Cheng et al. (2011) proposed a model using the Markov random walk (MRW) to rank a node based

on its resource and topological attributes. The node embedding algorithm is designed to map the

virtual nodes on substrate nodes based on the ranking. The link embedding is implemented on

shortest paths, using the breadth-first search method with backtracking.

Fischer et al. (2013) surveyed VNE algorithms and classified them using different criteria. They

were classified as centralized or distributed using the embedding algorithm. They were classified

based on objectives such as the optimal QoS in terms of bandwidth, delay, optimal infrastructure

costs, survivable VNEs. Some VNEs have their performance improved via the coordination of

node and link mapping processes; these are called coordinated VNEs. In contrast, uncoordinated

VNEs have the node embedding and link embedding implemented in the uncoordinated way.

Fischer, Beck & De Meer (2013) proposed an energy-efficient virtual network embedding based

on minimizing the number of active substrate nodes. They consider a node is active if one or more

virtual nodes are embedded to it. The authors set up the link weight for each link based on whether

it is connected to an inactive node and choose paths with minimum weight. They showed that their

algorithm was comparable with other algorithms but used significantly fewer active nodes. Özbek

et al. (2016) proposed an energy-aware routing algorithm based on the same concept of active

nodes in the SDN networks.

Elias et al. (2014) proposed an optimization model to mitigate the congestion in the virtual network

functions (VNF) in the cloud environment. The congestion control functions include minimizing

the total congestion cost in the link usage and minimizing the congestion ratio. The performance

evaluation shows that the investigation is efficient in controlling congestion in the virtual networks.

Recently, the authors have extended their work to the distributed cloud environments (Elias et al.

2017). However, it is a single-objective optimization problem.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

31

Zhang et al. (2015) put forward a solution to the VNE problem that aims to satisfy two objectives

concurrently: minimization of the energy consumption and maximization of the revenue in a cloud

data center. However, they did not consider the congestion avoidance objective at all.

Houidi, Louati & Zeghlache (2015) investigated a three-objective VNE problem that minimizes

the energy consumption, maximizes the availability, and the load balance of virtual machines. The

proposal applied different algorithms to optimize these objectives, even promoted reconfiguration

of embedded nodes and embedded links. Thus, the solution did not consider the disruption in the

substrate network and the additional cost that were resulted in continuous reconfiguration.

With the advance of software-defined technology, researchers have renewed their interest in the

VNE problem for the software-defined networks. Haghani, Bakhshi & Capone (2018) proposed

the VNE algorithms for the SDN substrate networks, aiming to maximize business profiles and

minimize delays in the embedded virtual networks (VN). The authors decomposed the problem

into two stages. The first stage focuses on maximizing the profit. The result of the first stage is

used in the second stage that focuses on minimizing the delay in the embedded VNs. However,

they did not consider the ternary content addressable memory (TCAM) problem of OpenFlow (OF)

switches.

Li et al. (2018) proposed a self-adaptive VNE (SA-VNE) in the SDN substrate networks, focusing

on three types of virtual network requests (VNR): high bandwidth, low latency, and both high

bandwidth and low latency. An SDN-based VNE mapping framework is proposed to centralize the

allocation of the network resources. The evaluation showed that the SA-VNE could make full use

of the resources, improve the revenue, and handle multi-demands effectively. However, the

investigation did not take advantage of SDN centralized network view to avoid congestion.

Bays et al. (2016) investigated VNE in the SDN networks. To manage the TCAM memory usage

efficiently, each VNR is required to specify a usage profile for its requested VN (the network

policies, traffic patterns). Based on this profile, resources (CPU, TCAM memory, bandwidth) are

allocated accordingly. The evaluation showed that the scheme is satisfactory in embedding VNs

into SDN networks.

Blenk & Kellerer (2019) investigated the SDN virtualization processes that allow multiple virtual

SDN networks (vSDNs) to be constructed and share the same underlying infrastructure. A

virtualization layer was designed to manage the vSDNs using the network hypervisors. The

proposed design, however, did not consider the traffic engineering aspects in these vSDNs. Dahir,

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

32

Alizadeh & Gözüpek (2019) proposed an energy efficient VNE solution in multi-domain SDNs.

The optimization problem was formulated as a mixed-integer linear program (MILP). A heuristic

algorithm was designed to solve the problem in polynomial time. The heuristic exploited the

hierarchy of the SDN controllers to allocate the cross-domain resources to the VNRs. The solution,

however, did not consider the network congestion issue.

Rout, Patra & Sahoo (2018) proposed an energy-aware routing algorithm in an SDN network using

the SDN controller. Depending on the incoming traffic, the controller determined a proper link rate

for each link. As considerable amount of energy can be saved when the links operate at low rates,

the overall network energy consumption was significantly reduced. However, the problem was not

formulated as an optimization problem.

To the best of our knowledge, there are no multi-objective VNE solutions that focus on congestion

avoidance, energy saving and cost saving which are implemented in an SDN substrate network

running SR.

2.3 Network function virtualization

Network function virtualization (NFV) allows network functions to be virtualized and placed

optimally on physical networks. He et al. (2019) conducted a survey about the flexibility that NFV

brings to dynamic networks, and they identified that the NFV main contributions are the function

configuration, parameter configuration, function placement and chaining, and resource and

function scaling. NFV is one of the enabling technologies of the NS in 5G core system, which is

investigated in chapter 6 named Latency-aware resource optimization for 5G core network slicing.

2.3.1 NFV definition

Network function virtualization (NFV) is a technology that replaces physical network devices

implementing network functions with one or more software programs executing the same network

function while running on commercial off the shelf (COS) hardware; the software programs are

called virtual network functions (VNFs). ETSI proposed NFV for the telecommunication industry

in 2014 to apply software into network function in a similar approach to programmability in SDN

technology (Pei et al. 2017).

To realize VNF, ETSI proposed a reference architecture called MANO (NFV-MAN 2014), in

which there are three main components: the NFV infrastructure (NFVI) layer includes the network

substrate resources, software of network functions, and virtualized resources; the virtualized

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

33

network functions (VNF) layer holds the VNF instances; NFV management block that manages

the VNFs life cycles; the operational and orchestration layer allows existing operational systems

to support the VNFs that replaced physical devices to continue to work with the whole system

(Chayapathi, Hassan & Shah 2016).

2.3.2 Service function chaining

Traffic in a network may need to go through a sequence of network functions that are linked

together in a chain, so they constitute a network service through their combined effects. The design

of arranging the sequence of network functions is called the service function chaining (SFC) or

service chaining (Chayapathi, Hassan & Shah 2016). The main issue of SFC is the filtering and

routing of packets to each of the VNFs in the chain. Hantouti et al. (2018) conducted a survey about

traffic steering in SFC, and showed that SDN, NFV technologies are used to steer the traffic in

three main methods: header-based method, tag-based method and programmable switch-based

method. The authors also concentrate on SDN-based methods to steer network traffic as the role

of SDN in network configuration and its ability in updating the network flows.

2.3.3 Current issues with NFV and SFC

The main issues of VNFs and SFCs are the efficient allocation of substrate resources (CPU,

memory, storage) in the NFVI to activate the VNFs in SFCs so they can process data packets. The

SFC main tasks are the placement of the VNFs on to substrate nodes or virtual machines (VMs)

that satisfy their computing demands, the placement of link resources onto the virtual links

connecting VNFs, and the steering of network flows from VNFs until the flows get to the end of

the chain. This is called the placement and chaining of VNF (PC_VNF).

NVF and SFC are designed with SDN technology in mind and the integration between SDN and

NFV, SFC has been explored in the traffic filtering and steering. The PC_VNF is the extension of

VNE, which is a resource optimization problem, but it is more difficult than the VNE problem as

the order of VNFs is considered, which introduces more constraints in their mathematical

programs. The role of SDN in PC_VNF is to select actively the substrate paths that meet the

bandwidth requirements to embed the virtual links; this is additional to the task of traffic filtering

and steering.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

34

2.3.4 Related work of chapter 5 Realization of CEVNE virtual link

embedding

Yu et al. (2008) proposed the design of substrate networks that simplifies the virtual network

embedding and utilizes efficiently the network resources. The design allows path splitting of a

virtual link onto multiple substrate paths if no single substrate path has the required bandwidth to

accommodate the virtual link. Each substrate node is kept track with both its CPU resource and the

total bandwidth resources of its links:

𝐻(𝑛") = 𝐶𝑃𝑈(𝑛") +	 4 𝑏𝑤(𝑙")
#!∈%('!)

The formula is used to find the substrate node, where the virtual link can be split, based on the total

bandwidth of its links. The path splitting algorithm increases the number of VNRs that can be

embedded as well as the acceptance ratio. However, the research did not consider multiple

objectives: energy saving, and congestion avoidance.

Zahavi et al. (2016) proposed Links as a Service (LaaS) in data centers as a mechanism for isolating

tenants’ virtual networks in a cost effective and implementable way. The LaaS architecture is built

on top of the cloud architecture, which includes a client front-end, a scheduler and a network

controller: i) the scheduler includes functions for allocating virtual links, ii) the network controller

employs routing rules to enforce link allocation. However, the research did not consider the energy

saving, and congestion avoidance objectives.

Khan et al. (2016) proposed a survivability VNE based on the multi-path link embedding called

Survivability in Multi-Path Link Embedding (SiMPLE). SiMPLE focuses on the survivability of

link embedding since the link failures occur more often than the node failures, which can be

modelled as multiple link failures. SiMPLE operates in both proactive and reactive modes.

However, the research did not consider cost saving, energy saving and congestion avoidance

objectives.

Marotta et al. (2017) proposed an energy efficient and robust Virtual Network Function (VNF)

placement. The energy consumption of servers and switches is considered separately. Each server

consumes an amount of energy in the idle period, which is limited by a maximum power

consumption. In between is the power consumption that is based on the server’s workload. Each

switch has two energy consumption values: a static value based on its electronic circuits and

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

35

chassis, and a dynamic value based on the interface operation. However, the solution did not

consider the cost saving and congestion avoidance objectives.

The Green Robust VNF Placements (GRVP) is a heuristic solution with three separate steps as

follows: the VNF Chain (VNFC) placements, the robust heuristics, and the latency constraint flow

routing. The first step is to allocate VMs resources onto different servers considering the average

resource demand is satisfied. This step is implemented based on a mixed integer linear (MIP)

problem in a first fit strategy. The second step is called the greedy heuristic for robust VNFC

placement. The last step is called the latency constraint flow routing: the traffic latency is calculated

based on an optimal model of the least power consumption, and the constraints of the flow latency.

It showed that the solution took less than 1 second to place a flow in a large mobile network.

However, the solution did not consider cost saving and congestion avoidance objectives.

Chowdhury et al. (2017) proposed the Reallocation of Virtual Network Embedding (ReVINE)

algorithm to eliminate the bottlenecks in the VNE. The contribution is presented as follows: (i) the

MIP formulation for the optimal ReVINE to balance between the bottleneck of substrate links and

the total bandwidth consumption of the virtual networks, (ii) a heuristic algorithm based on

simulated annealing, (iii) the comparison of the heuristic algorithm with other annealing based

heuristic algorithms. The performance evaluation showed that ReVINE mitigates the substrate link

bottlenecks. However, the solution did not consider the cost saving and energy saving objectives.

Many cloud data centers (such as Facebook, Google) deploy the leaf-spine fabric as their

networking infrastructure (Moorthy 2016), (Vahdat 2015). Leaf-spine fabric brings major benefits:

redundant bandwidth, and easy to scale to allocate to VMs. The main issue with the leaf-spine

fabric is the imbalance of the traffic caused by hashing collision in ECMP. Researchers have

proposed different methods to load balance internal network traffic in the leaf-spine fabric. These

investigations have a common solution, that is to divide elephant flows into smaller flows called

flowlets or flowcells. Each investigation applied different methods to steer these flowlets to

different paths in the fabric. Alizadeh et al. (2014) proposed Congestion aware (CONGA) using

custom ASIC for both leaf and spine switches to identify different paths for flowlets. He et al.

(2015) proposed Presto at the edge of cloud data centers using open vswitch (openvswitch.org

2016). Presto also used an SDN controller to have a central view, central control of the substrate

network. Katta, Hira, Kim, et al. (2016) proposed an architecture called Hop-by-hop Utilization-

aware Load-balancing Architecture (HULA) using P4 language. At the heart of HULA are the

processing probes to identify best paths, and the algorithm to forward flowlets to best paths. Katta,

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

36

Hira, Ghag, et al. (2016) proposed a load balancer called Congestion-aware LOad balancing from

the Virtual Edge (CLOVE) using entirely virtual switches of hypervisors. CLOVE identifies

congested paths using either P4 programs explicit congestion notification or In-band Network

Telemetry (INT). It then updates the weighted round robin on every path for the load balancing.

CLOVE is refined (Katta et al. 2017) to work on any off-the-shelf switches. CLOVE combined the

stateless transport tunnel (STT) encapsulation, Paris trace routes and open vswitch to identify

network states. However, these solutions did not consider cost saving and energy saving objectives.

Li, Lung & Majumdar (2015) and (Li, Lung & Majumdar 2016) proposed an energy aware

management technique for the leaf-spine fabric in cloud data centers. The solution keeps track of

dynamic workload, especially on spine switches to enable switches that are necessary for the

current workload. However, the research did not consider cost saving and congestion avoidance

objectives.

All the above link mapping algorithms are designed to work on a single objective; however, a

multi-objective virtual link mapping is required.

2.4 Network slicing in 5G networks

The theory of network slicing covers latency requirement of 5G eMBB, uRLLC and mMTC

applications, network services, NFV, and SFC; they are explored in this research in chapter 6

named Latency-aware resource optimization for 5G core network slicing. Chandramouli, Liebhart

& Pirskanen (2019) investigated the application of 5G mobile networks, and they emphasized that

5G is different from its previous generations, which are 4G, 3G, 2G, which focus on voice and text

messages, the new characteristics of 5G are to offer connection to everyone, everything,

everywhere at any time with different requirements in latency, bandwidth, and device density.

2.4.1 5G core networks

5G theory provides the basis for network slicing as follows.

2.4.1.1 The control plane (CP) user plane (UP) separation (CUPS)

3GPP proposed the logical separation between the signaling network and data transport network.

5G access-network and core-network functions are separated from the transport network functions

(Penttinen 2019). The separation reduces the latency on application service, supports increased

data traffic, allows the updating, locating and scaling independently of CP and UP resource, and

enables SDN to deliver user plane data more efficiently (Schmitt, Landais & YongYang 2018).

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

37

Figure 2.11 presents the CUPS interfaces of UP and CP of Service gateway (SGW), packet data

gateway (PGW), and traffic detection function (TDF).

Figure 2.11: CUPS interfaces (Schmitt, Landais & YongYang 2018)

2.4.1.2 The service-based architecture of 5G core network

The network functions in 5G core system are REST service based. 5G core system forms a service-

based architecture, they use APIs to communicate with each other. 5G has a new group of

customers called verticals, which consist of 5G applications in various areas in research and

industries; verticals access 5G network functions via 5G core service APIs. 5G core services are

accessed via the internet with HTTP/2 (Mayer 2018).

2.4.1.3 Three main types of 5G applications

5G applications are classified into three main types: enhanced mobile broadband (eMBB), ultra-

reliable low latency communication (uRLLC), and massive machine type communication

(mMTC). 5G application types are classified according to their focus either on human centric,

device centric, or every device; their vertical sector, and their key performance indicators (KPI).

They are presented briefly as follows (Marsch et al. 2018), (ITU-R_M.2083 2015), (Foukas et al.

2017).

v eMBB focuses on the human-centric access to multi-media content, services, and internet,

which have been provided by 4G. 5G facilitates creating new applications, improving

performance and user experience in existing services. The new applications are either

wide-area coverage or hotspot. eMBB focuses on the KPIs: spectrum efficiency, traffic

density, power efficiency, mobility, and data rate.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

38

v uRLLC is related to services with stringent requirements in latency and availability. It also

focuses on the reliability, mobility, and data rate KPIs. This is the new 5G application type,

which is utilized in new 5G vertical applications such as autonomous driving, next

generation factories, virtual reality applications.

v mMTC is related to applications having very large number of devices transmitting non-

delay sensitive data in low volume. mMTC focuses on the connection density KPI.

In Figure 2.12, the mobile broadband (green color) represents the eMBB, the critical

communication (yellow color) represents the uRLLC, and the machine-to-machine (dark blue

color) represents the mMTC.

Figure 2.12: Application types and their key performance indicators (Foukas et al. 2017)

In 5G architecture, network slicing (NS) is proposed as a virtual mobile system to implement

services belonging to any group; hence, it plays an important role in delivering 5G services; NS is

explored in detail in the next subsection.

2.4.2 Network slicing in 5G

2.4.2.1 5G service

5G system architecture is defined as service-based architecture (SBA) (TS_23.501 Jun. 2019) that

applies the RESTful design paradigm to expose its core services to vertical industry such as IoT,

Mobile Vehicle, or Factories according to Mayer (2018). This is a 5G distinctive feature compared

to previous generation such that 5G mobile services can be embedded into different vertical

applications. 5G core network functions are accessed via the service-based interfaces (SBI). The

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

39

5G core network functions are divided into main groups: network access control, registration and

connection management, session management, QoS, security, charging, policy control, network

slicing selection (TS_23.501 Jun. 2019). Each main group, as its name suggests, provides network

functions in that area. In each group, there are main component services that are constructed by

atomic services. Services in different groups can call each other using its REST APIs; this means

each network service can play the role of a service consumer or service provider. A network service

may be made up of several component services, which are composed of several atomic services.

5G SBA promotes software reuse via service composition to deliver the services to different

customers. 5G promotes network slicing as its new design paradigm that leverages the

virtualization techniques at both the hardware and software levels to deliver services simultaneous

to customers having quite different latency requirements. Figure 2.13 presents 5G core services

and their interfaces.

Figure 2.13: 5G core service: RESTFul API of the service-based interface and the northbound

communication (Mayer 2018)

2.4.2.2 5G network slicing

Network slicing is a mechanism to enable the deployment of multiple end-to-end logical, self-

contained networks on a common infrastructure platform so different mobile applications for

different users can run concurrently (TR-526 2016). The end-to-end logical networks are used to

deliver mobile services that users request, the network slice (NS) is created to deliver the required

service. As a mobile service is constituted by components, and atomic services, a NS must include

the runtime of these services to process data packet. A NS needs to deploy the service instance; a

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

4.

NS needs CPU resources, memory resources, storage resources on servers, virtual machines (VM)

or containers to run the services; it needs bandwidth resources to carry packets from one service to

another at the required speed so the whole mobile service is delivered during the timeframe. The

example in Figure 2.14 consists of four network slices, which are running different mobile service

concurrently on the same infrastructure. NS 1 belongs to service 1 (eMBB type) from the Telstra

telecom company, NS 2 belongs to service 2 in ambulance eHealth (uRLLC type), NS 3 belongs to

service 3 in the vehicle-to-vehicle application (uRLLC type), and NS 4 belongs to service 4 for

users at a stadium in a sport event (eMBB type). The infrastructure layer provides the substrate

resources for all four network slices.

Figure 2.14: 5G network slice examples, adapted from (Perez 2017)

Technologies that enable network slicing, are cloud computing (CL) or container technology,

which provide virtual machines or containers on the shared substrate servers; network

virtualization technology, which creates virtual networks on the shared substrate network

infrastructure; network function virtualization (NFV), which creates virtual network functions to

place them in the virtual networks. On top of these technologies is software-defined networking

(SDN), which plays the controller role in the whole infrastructure to route the traffic from end-to-

end of the NS. In 5G mobile network, a NS comprises Radio access network (RAN) slice, Core

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

41

network slice and Transport network slice (Sunay 2017). In this thesis, we concentrate only on core

NS.

Network slicing is a 5G distinct feature: 4G core network functions are implemented on the

physical core networks, while in 5G, core services are implemented in network slices that are

provisioned for the service and the customer only, and the slice is deleted when the service is

completed.

A network slice includes VNFs in SFCs to implement a mobile service requested by external

customers. The network slicing problem involves the placement and chaining of VNFs in SFCs; to

implement the mobile service, the network slice needs to process all packets to meet the latency

threshold, so it satisfies the SLA of the customers. As there are different mobile services in three

different types of applications: eMBB, uRLLC, and mMTC, each has the latency thresholds 10 to

100 times different from other types, so the differences in latency thresholds play an important role

in the provisioning of network slices. The network slicing problem is an optimization problem in

resource allocation with the strict latency constraints based on the application type of the service.

As 5G mobile networks are in the process of standardization, different standards have been

designed by different technical groups that will not be finalized until 2020 by the International

Telecommunication Union (ITU). The 3GPP is the group that proposes significant changes to the

5G network in architecture, use cases, access networks, core networks, and transport networks;

their research has been supported by other technical groups.

2.4.3 Related work of chapter 6 named Latency-aware resource

optimization for 5G core network slicing

Afolabi et al. (2018) is a comprehensive survey focuses on the principal concept and the enabling

technologies that allow the end-to-end network slicing. Network slicing is based on seven concepts

as follows: automation, isolation, customization, elasticity, programmability, end-to-end and

hierarchy abstraction. The business roles involved with 5G network slicing are infrastructure

providers, cloud providers, virtual network operators, service brokers, application providers and

verticals. Network sharing supports network slicing in the business cases: multiple core networks

share a common RAN; multiple RANs share a common CORE network. Technologies enabling

network slicing are hypervisors, virtual machines and containers, SDN, NFV, cloud and edge

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

42

computing. It concentrates on all aspects of network slicing: access, core and transport slicing. It

identifies future research challenges: network slicing architecture and APIs, UE slicing, slice

optimality / pareto optimality, and slice security.

Foukas et al. (2017) focuses on the architecture for network slicing. The infrastructure layer spans

both the RAN and Core networks. It includes the allocation of resources to slices and the

management of resources. The infrastructure will be virtualized to serve customers’ requests. The

network function layer focuses on the configuration and management of network functions. The

granularity of network functions considers course-grained and fine-grained functions. The coarse-

grained functions are simple to be deployed but the slice is less flexible and less adaptive to change.

But the fine granularity may cause issues in interfacing and chaining as more network functions

exist. The service layer is linked to the service model of the network slice. The service description

should include the network functions involved so the placement process is simplified.

Agarwal et al. (2018) proposed a solution for VNF placement and CPU allocation using queueing

theory. The solution modeled VNFs as M/M/1 queues, all VNFs are connected in arbitrary graphs,

multiple CPU allocation decisions are available for a VNF, and the effect is measured about the

allocation decisions on system performance. A heuristic algorithm is designed on joint VNF

placement and CPU allocation. The evaluation showed that the performance is consistent and close

to optimum for any of the types of VNF graphs. However, the solution did not consider how the

allocated resources contribute to satisfy the latency threshold of all VNFs.

Vassilaras et al. (2017) investigated the factors that support network slicing in 5G in different

online problems: the online minimum cost multi-commodity, the online network embedding, the

online VNF placement, the online packing, and the online facility location. Although a thorough

investigation about network slicing is conducted, no actual problem formulation and no algorithms

are investigated to satisfy the strict requirements on latency of 5G.

Paschos, Abdullah & Vassilaras (2018) proposed a solution to network slicing with splittable flows

in 5G networks. The virtual network embedding (VNE) splittable flow is based on the formation

of a multipartite graph and is modelled to capture the combinatorial structure of different

embedding options. Solving the VNE problem is NP-Hard, therefore, a poly-time heuristic is

proposed. The evaluation showed that the heuristic provides good performance. However, the

solution did not consider the latency satisfaction in 5G networks.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

43

Leconte et al. (2018) proposed an optimization resource allocation framework for robust-and-

efficient resource provisioning for network slicing. The framework is modelled based on the utility

function of network bandwidth and cloud capacities. The network designer can drive the system to

different operational trade-offs between traffic-fairness and computing fairness. An algorithm is

designed to resolve their MP using the Alternating direction method of multipliers (ADMM).

However, it did not consider the satisfaction of latency requirement in 5G.

Ye et al. (2018) modeled an end-to-end packet delay for multiple traffic flows passing through an

embedded virtual network function chain in 5G. The model is built on the queueing theory, in

which a tandem queue is established for packets going through CPU processing and link

transmission. The dominant resource generalized processing sharing (DR-GPS) is deployed so that

either computing or bandwidth is dominant, the other resource is allocated to ensure high

utilization. However, the contribution is mainly to propose a VNF queue model for the processing

delay.

Dietrich et al. (2017) proposed a solution to the VNF placement problem in the virtualized cellular

cores (4G). The solution consists of the mixed-integer linear program (MILP) to retrieve optimal

embedding solutions, a scalable LP with a rounding algorithm for near-optimal solutions in poly-

time, and a greedy heuristic as a base line. The evaluation showed that the LP outperformed the

MILP in load balancing, acceptance ratio, resource allocation, and runtime. However, the LP

imposed a small penalty in inter-data center link load balancing.

Sciancalepore et al. (2017) proposed a solution for traffic analysis and prediction per network slice,

admission control decisions for network slice requests, and adaptive corrections of forecast load

based on deviations. The evaluation showed the solution achieved substantial results in resource

utilization. However, the solution did not use the traffic forecasting to improve the latency of

network slicing.

Fendt et al. (2018) proposed a resource allocation process in network slicing for 5G networks that

gives feedback to clients and operators about the feasibility to provision the network slice based

on the current resources in the system. They analyzed the strength, weakness of their solution

focusing on the radio access network. However, the investigation presented the analysis model

without proceeding to the mathematical model.

Caballero et al. (2018) proposed a network slicing framework using Games theory called NES that

combined the admission control, resource allocation and user dropping. They proved that if an

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

44

admission control ensured slices satisfying the rate requirement, the game is a Nash equilibrium.

The evaluation showed that the research achieved the same or better utility than static resource

allocation. However, the solution considered user dropping out as one of the conditions to balance

the framework.

Gouareb, Friderikos & Aghvami (2018) proposed a solution to the problem of VNF routing and

placement to minimize the edge-cloud latency. The problem is modelled as an integer non-linear

program (MINLP) that subsequently applied linearization techniques. The evaluation showed that

the solution reduced network delay by 18% in the single feature request scenario. However, the

first drawback is the assumption that all VNFs of the network slice have already been admitted,

and the second drawback is the assumption of unchanged arrival rate.

Prados-Garzon et al. (2019) proposed a holistic Long-Term Evolution (LTE) mathematical

framework for Evolved Packet Core (4G) network slice planning for eMBB applications. The

research comprises LTE workload generation for both control plane (CP), data plane (DP), the

analysis model to predict CP, DP performance (response time and packet loss) using queueing

theory. It is modelled as a multi-objective optimization problem that consists of minimal workload

imbalance between edge clouds, maximal resource utilization, and quality of experience (QoE) to

users. However, the solution did not consider 5G core networks.

Addad et al. (2019) proposed a holistic optimization model for cross-domain network slicing for

5G core networks devoted to the ultra-fast uRLLC (cars and drones) applications. The proposed

architecture comprises the infrastructure layer, the VNF layer and the network-slice layer over

multiple domains. The MP consists of the objective function and constraints in the VNF placement,

resource, link arrangement, latency aware, and bandwidth aware. The MP is transformed into an

MIP that is solved using Gurobi. The heuristic is presented to reduce computational costs. The

evaluation showed that the heuristic has polynomial runtime. However, the solution did not

consider the relation between allocated resources and processing latency in VNFs.

Alleg et al. (2017) proposed an adaptable VNF placement and chaining that satisfies the network

latency, throughput, and error rate. The research assumed the virtue of linear proportion between

the computing resource and the VNF processing speed that is presented as the Flexible resource

allocation model (FRAM). The FRAM mathematical model is a mixed-integer quadratic constraint

program (MIQCP) that is resolved using AIMMS (AIMMS 2020) version 4.3. To demonstrate the

robustness of FRAM, the Strict resource allocation model (SRAM) is introduced. SRAM is

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

45

modeled as a mixed-integer linear program (MILP) that allocated resources at the maximal

demand. The evaluation showed that FRAM outperforms SRAM in resource saving, admission

rate, and execution time. However, the solution has not considered the satisfaction of a wide range

of latency requirements in 5G.

Wang et al. (June 2019) proposed the SliceNet framework based on the network slicing technology

in 5G. The research focuses on the migration of eHealth Telemedicine to 5G network. SliceNet

consists of several layers as follows: (i) the SFC enables best effort slicing and the network function

forwarding graph enables network services for a slice, (ii) QoS-aware slicing attempts to realize

the network slice with guaranteed network layer QoS, (iii) the control plane can customize the slice

based on vertical application requirements, (iv) The layer enables E2E network slicing and multi-

domains in the future, and (v) the cognitive management is used to achieve the QoE experience.

However, the solution is a not a network slicing optimization problem.

Kammoun et al. (May 2018) proposed the heuristic algorithms for network slicing focusing on

three objectives: reliability, availability, and latency. The problem is formulated as a mathematical

model. Solving the model is NP-Hard, hence, the authors propose two algorithms: (i) the first

algorithm selects the paths having sufficient resources using a SDN controller, (ii) the second

algorithm selects the best path from the results of algorithm 1. The evaluation is conducted on each

objective separately. However, the solution did not apply the composition theory to get the results

that consider all objectives at once.

The NECOS project (NECOS 2019) extends network slicing further to Cloud network slicing that

supports a vertical industry or service. A cloud network slice is a set of infrastructures (network,

cloud, data center), components / network functions, infrastructure resources (managed

connectivity, compute, storage resource) and service functions that have attributes designed

specifically to meet the needs of a vertical industry or service. Therefore, a cloud network slice is

a managed group of resources, network functions, network virtualized functions at different planes

in the architecture as follows: data plane, control plane, management/orchestrator plane, and

service plane. The behaviors of a cloud network slice are realized via network slice instance. The

NECOS architecture is designed to provide slices as a service.

To the best of our knowledge, there are no network slicing investigations for 5G core network that

focus on minimizing resource allocation to satisfy a wide range of network latency for different

service types: eMBB, uRLLC and mMTC.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

46

2.5 Micro-service architecture and patterns

Micro-service architecture and patterns are explored in Chapter 3 named Architecture for extended

SDN applications. The three-tier architecture is proposed with UI tier, business tier and database

tier. The proposed architecture is based on micro-service design principles; it promotes the service

composition, service reuse in exploiting service discovery pattern, service compose and decompose

pattern, service registry pattern.

2.5.1 Micro-service architecture

What is a micro-service? A micro-service (MS) is an independent, standalone process that can

perform a function on all its clients. It may have its persistent data store. What makes it unique is

each MS is developed, deployed independently from others (Kocher 2018).

What is micro-service architecture? Micro-service architecture (MSA) is an application

architecture pattern (Richardson 2018), in which an application is constructed as a set of loosely

coupled micro-services, so that they enable a small team to rapidly develop, test, deploy, and

maintain their applications independently from other applications. In an MSA, services

communicate with each other using HTTP/REST or asynchronous protocols. MSA is popular in

SDN technology as open source SDN controllers such as ONOS, OpenDayLight are MSA

applications. The SDN controllers are developed in Java using OSGi technology, which promotes

service reuse, so it goes well with MSA.

Micro-service architecture (MSA) is part of the service-oriented architecture that promotes the

service-oriented patterns: service provider, service consumer, service discovery (Fowler 2014),

(Lewis 2012), (Richardson 2019), and allows the flexibility in managing applications. The strength

of MSA is its service composability, allowing the construction of fully functioning applications by

integrating atomic services; each provides a function, based on some business patterns. The service

composition can be accomplished through an automation process with a service integration engine,

or it can be done on an individual service. In an SDN controller, new services are composed of the

core network services and existing services for SDN applications. The MSA main characteristics

facilitate the development of robust, modular, and reusable applications. The characteristics are

presented as follows:

ü Data decentralised principle: in our design, each application has its own database

management system to ensure application independence from the data perspective.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

47

ü Componentised application: the application comprises web service components to promote

reuse of existing services.

ü Application design robustness: to ensure the application is robust, our design considers both

successful and failed scenarios.

ü Distributed principle: each application can run in their own process so they will not interfere

with each other within the controller.

In Figure 2.15, the data decentralized attribute, the composition attribute of MSA are visualized.

Figure 2.15: the characteristics of Micro-services (Fowler 2014)

2.5.2 Micro-service Patterns

Micro-service patterns become more and more important as they promote reusing existing services,

and cost and time saving from ‘reinventing the wheel’. One of our solutions is about the

architecture of extended SDN applications that are applying MSA, MS design patterns. More and

more micro-services patterns have been discovered (Richardson 2018); they are classified into

different groups based on the problem that is solved by the pattern, such as application architecture

group, service discovery group, data management group. The focus will be on the application

architecture patterns, service discovery pattern, and data management pattern.

2.5.2.1 Decomposition pattern

MS presents an approach to escape a monolithic application (mono app) using decomposition

pattern (Decom), which breaks the mono application into a set of micro-services such that they

retain their functionalities. According to Richardson (2018), there are two methods: decompose by

business capacity, and decompose by subdomain. While “decompose by business capacity”

focuses on different steps of the business values in enterprises, “decompose by subdomain” may

be suitable for the engineering discipline. “Domain driven design” (DDD) is a design methodology

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

48

that supports the decomposition into services (Millett 2015); DDD principles may be applied to

Decom.

2.5.2.2 Discovery pattern

In MSA, the discovery of existing micro-services is important. There are several service discovery

patterns such as client-side discovery, server-side discovery, service registry, soft registration, and

3rd party registration, which are presented as follows (Richardson 2019)

v Client-side discovery discovers MS on the client side,

v Server-side discovery discovers MS on the server side,

v Service registry registers each MS to the service repository when it is in operation,

removing it from the repository when it is deleted,

v Self- registration is the process that allows an MS registers itself when it is in operation,

and it is removed from the registry when it is deleted,

v 3rd party registration is like other service registration processes, except it is implemented

by a third-party organization, which is not the service provider or service consumer.

2.5.2.3 Database patterns

MS is very beneficial in flexible development, deployment, especially with data management as

each MS may have its own database. Richardson (2019) identified MS patterns that consist of

database per service in data management as described as follows.

Database per service ensures the persistent data for each service is available internally to it, users

may call the service through its API. There are several options to ensure private database per

service as follows: separate table per service: each service owns a set of tables that can access /

update only by the service, schema per service: each service has its own schema, and database

server per service: each service has its own server (Richardson 2019).

2.5.2.4 Integration into an application

The most important pattern of MS is the integration of MS into an application. According to Wolff

(2017) MS can be integrated at different levels:

v MS can be integrated at UI level,

v MS can be integrated at the logic level,

v MS can be integrated at the database level.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

49

MS integration at the logic level is most common using different technologies: REST, Coding and

Messaging. Each MS has the REST API, using different data formats such as XML, JSON, or

Protocol Buffer. Coding for integration calls the MS via their APIs in the registry in the

implementation code using Python, Java, .Net. MS can be integrated using Messaging; each MS

sends messages to another MS as a request and receives responses.

2.6 Software architecture patterns: module pattern

Bass (2013) identified different software architecture patterns; in each pattern he identified the

context, the problem and the solution that the pattern resolves. In chapter 3, the solution leverages

the modular design pattern, which is based on the module pattern as follows.

1. Context

In software architecture, the module pattern is designed for the context of large and complex

systems, there are always needs to develop or evolve some portions independently. Hence,

developers need a clear separation of concerns so that independent modules are developed and

maintained separately.

2. Problem

The problem is that the software needs to be segmented into different modules so that they can be

developed and evolved independently with little interaction between the modules, supporting

modifiability and reuse.

3. Solution

To achieve the separation of concerns, the layered pattern divides the software into units called

layers. Each layer consists of a set of modules that deliver cohesive services. Between adjacent

layers, there is a constraint called “allowed-to-use”, which is a kind of dependent relationship and

unidirectional, in which only the above layer is “allowed-to-use” the lower layer.

4. Constraints

Each module must be allocated to exactly one layer. There are at least two layers (but usually there

are three layers or more). The allow-to-use relation should not be bidirectional: the lower layer

cannot use the above layer.

5. Weakness

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

5.

The layers add up-front costs and complexity to the system. Layers might contribute to the

performance penalty.

In this chapter, Figure 2.3, and Figure 2.4 present the SDN architecture, which is an example that

applies the module architecture pattern.

2.6.1 Reusable function blocks and Next generation PaaS

The reusable function block and next generation platform as a service are applied in chapter 5

named Realization of congestion-aware energy-aware virtual link embedding.

2.6.1.1 Reusable function block

Reusable function block (RFB) consists of both SDN applications and network functions in NFV.

The main different between RFB and NVFs is as follows: RFB can be decomposed recursively

into other RFBs. RFB can be mapped to both software components (virtual networks) and

hardware components (network infrastructure). RFB can include their metadata in the composition

resulting in its simple configuration process. Figure 2.16 presents the RFB concept, in which an

RFB is constituted as micro-services and consists of the IaaS that it is deployed in it; RFBs are

composed into a parent RFB.

Each industry has its main business that differentiates it from other vertical industries. The business

in each industry also has its own advantages compared to other companies in the same industry.

The RFB represents a specific service in an industry; it needs to be customized to work for a

company in the industry. This shows the two main characteristics of RFB:

Ø It represents common functions in the industry,

Ø It needs to be customized to provide the advantages for companies to attract customers.

RFB is the main component of the next generation platform as a service (NGPaaS).

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

51

Figure 2.16: RFB concept (Mimidis-Kentis et al. 2019)

2.6.1.2 Next generation platform as a service

Next generation platform as a service (NGPaaS) arises in the context of 5G core systems, in which

services are very diverse, hence, there are no one-size-fits-all infrastructure that can support all 5G

core services (Van Rossem et al. 2018). NGPaaS is the concept of a platform of platforms, which

is based on micro-services, modularity and build-to-order. NGPaaS is based on the workflows that

allow the building of an integration platform, which is constituted of component platforms, each

of which is a deployed RFB (Mimidis-Kentis et al. 2019). CORD is an example of reusable

function block (RFB) (Peterson 2019).

2.7 Optimization and Mathematical modelling

Optimization and mathematical modelling are applied in the problem formulation of chapter 4

named Congestion-aware Energy-aware Virtual Network Embedding, and chapter 6 named

Latency-aware resource optimization for 5G core network slicing. While chapter 4 focuses on a

mixed-integer linear program, chapter 6 explores non-convex, mixed-integer, non-linear program,

they are both NP-Hard. Both chapters proposed heuristic algorithms to find close-to-optimal

solutions using different solution approaches and optimization solvers.

Optimization problems in network virtualization, network function virtualization and network

slicing in 5G are part of the Operational Research (OR) that classifies and investigates solutions to

optimization problems (Rardin 2017). OR is an important research area because of its contribution

to the economics by reducing cost, increasing products and profits. In this section, the mathematical

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

52

programming (MP) models are applied to solve the resource optimization problems. This section

presents the methods using mathematical programming (MP) to solve the multi-objective

problems, the large system and structure system based on the theory investigated by Cohon (1978),

Lasdon (1970); Williams (2013). We acknowledge the Genetic and Evolution Algorithms methods

(Coello, Lamont & Van Veldhuizen 2007) to solve the multi-objective problem, but our solutions

are investigated based on the MP, which is more suitable for our problem domains.

2.7.1 Mathematical models

Optimization problems are modelled using mathematical models. A mathematical model is an

abstract model that shows the interconnection between objects using algebraic symbolism. The

interconnection between objects is described using a set of mathematical relationships such as

equations, logical dependencies, equalities and inequalities (Williams 2013). The motives to build

a mathematical model are as follows: (i) it reveals connections that are not obvious to see, (ii) the

model is used to analyze for the course of actions, and (iii) one can conduct experiments with

models by varying the parameters in the mathematical equations, inequalities.

2.7.2 Solving mathematical programs

A mathematical model of an optimization problem is called its mathematical program (MP). MP

includes decision variables, the objective function, which is to minimize resources, maximize

benefits, and the constraints, which are based on the limit of resources, are the operation conditions.

MP needs to be solved by specialized software called optimization solvers, to find the optimal

values for the objective function and decision variables.

Depending on the algebraic expression and equations in the MP, MPs are classified as linear

programs (LP) if their objective functions, constraints are linear functions; MPs are integer

programs (IP) if the decision variables only have integer values; MPs are mixed integer linear

programs (MILP) if some decision variables accept integer values only while others accept real

values. LP are most popular MPs, their solvers can be in gnu license such as GLPK, or proprietary

such as AIMMS, IBM CPLEX. Alevin framework is built with GLPK solver to automate the

solving LP, also provide the metrics to evaluate the MPs.

Solving MILP models is computational intractable (Fischer et al. 2013), so one solution approach

is to transform them into LPs by relaxing the integer constraints; then, in the sub-optimal solutions,

these linear constraints are converted back to the approximation of the integer variables using the

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

53

rounding techniques. In non-linear programs (NLP), the objective function and constraints consist

of quadratic terms. There is also a mixed integer non-linear program (MINLP), in which some

decision variables accept integer values only, and the MP is non-linear. NLPs are also classified as

convex or non-convex (Rardin 2017). For MINLP, as they are non-convex, the solving process

includes convex relaxation by replacing non-convex terms with a different variable (Bliek1ú,

Bonami & Lodi Oct. 2014), and adding lower, upper binding conditions to it. After this process, it

becomes nonlinear, convex to be solved by nonlinear solvers.

2.7.3 Multi-objective programming

This subsection presents the solution to the multi-objective problems using mathematical

programming as specified in section 2.7. The multi-objective problems focus on the optimization

of two or more objectives. Multi-objective problems are more challenging than single-objective

problems as the optimal solutions of one objective may not be the optimal solutions of the other

objectives. Hence, the optimal solutions need to be considered for all involved objectives. Cohon

(1978) introduced the concept of noninferiority solutions that is related to the optimal solutions of

the multi-objective problems.

The noninferior solutions mark the set of values of each objective, and the values of decision

variables; any change for the better in one objective must come with a cost of being worse off in

another objective. They are also called the pareto-optimal solutions. In contrast, there exist inferior

solution sets, in which the solutions could be improved for all involved objectives. The noninferior

solution that is selected among all the alternatives is called the best compromise solution (Cohon

1978). Preferences among objectives or graphical representation of alternative noninferior sets are

often used to select the best-compromise solution. Solving of the multi-objective problems is the

searching for the noninferior solutions, then among the noninferior solutions, searching for the best

compromise solution. The rules to generate noninferior solutions are very important for the multi-

objective problems.

Several well-established modelling techniques and solution strategies have been presented for the

multi-objective problems in Williams (2013), Cohon (1978). Solving each objective independently

is one of the approaches. We summarize three relevant approaches by Williams (2013) for solving

the multi-objective problem and the rules to generate pareto-optimal solutions in each approach by

Cohon (1978).

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

54

1. The first approach is to solve the model with each objective, compare the results of each

objective to search for a satisfactory result or further investigation. Obviously, trying each

solution is the only way to search for the pareto-optimal solutions in this approach.

2. The second approach is to interchange between objectives and constraints after the model has

been built. This is called the constraint method (Cohon 1978). Preferences among objectives

or graphical representation of alternative noninferior sets are often used. Experiments will be

then conducted by considering all but one objective as constraints, varying the objective to be

optimized and the right-hand value of constraints. In this approach, (Cohon 1978) showed that

the rule to generate the noninferior solutions is all constraints on the objectives are binding.

3. The third approach is to take a suitable linear combination of all the objective functions, each

objective with its weight and optimize the whole problem. Experiment is required to find

possible solutions. This is called the weighting method by Cohon (1978). Each of the objective

terms is normalised to have the same unit. In general, the normalizing factor for each term is

considered a base weight; variable weights can be incorporated into the base weights to express

the priority or preference on each of the objectives. In this approach, Cohon (1978) showed

that the rule to generate the noninferior solutions is all the weights are strictly positive.

2.7.4 Large systems, structure systems

Lasdon (1970) observed that the real systems usually are large as they comprise many factors in a

real production environment. Large systems always have special structure; hence, they are also

called structure systems. Large programming models arise through the combining of smaller

models as observed by Williams (2013). Structure models are more powerful decision-making

tools than small models as a structure model considers every requirement of small constituent

model. The structure model matrix representation is depicted in Figure 2.17.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

55

Figure 2.17: The general structure of the main model and sub-models using matrix (Williams

2013)

In Figure 2.17, line 𝐴), 𝐴*, 𝐴+, . . , 𝐴' = 𝑏) is the common block of the large and small models. The

objective of the large model is in the common block. The number of common constraints in the

common block is a measure of how the optimal solution of the large models is close to the sum of

optimal solutions of sub-models; it is the case of no or fewer common constraints. Solution

approaches for structure systems are direct methods or decomposition / partitioning methods. If a

large system is solved using the direct method, it will be very costly as there are a huge number of

decision variables, rows and columns. We concentrate on the decomposition approach. As the sub-

problems interact via the common constraints, solving only the subsystems will not yield correct

solutions. A control level called the master problem of the sub-problems is required so the solutions

of the original problem are maintained. The decomposition approach is depicted in Figure 2.18.

The master model connects to the sub-models using messages, etc.

Figure 2.18: The process of decomposing a system into sub-systems (Lasdon 1970), (Palomar &

Chiang 2006)

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

56

The IBM OPL flow control mechanism is designed to implement the decomposition in large

optimization programs. It allows to decompose a model into smaller, more manageable models and

solve them with the control of the master model (Arkalgud & Rux 2018); therefore, it will generate

the solution of the original model. The flow control uses OPL script to define the master problem

and sub-problems. The master problem transfers results between sub-problems using the OPL

script pre-processing and post-processing capacities. Our network slicing problem in chapter 6

named Latency-aware resource optimization for 5G core network slicing will use the IBM OPL

flow control as a decomposition mechanism.

2.8 Queueing theory and performance modelling

Queueing theory and its application in performance modelling are leveraged to build the

performance model of network slicing in chapter 6 named Latency-aware resource optimization

for 5G core network slicing. The road map to explore queueing theory is presented in Figure 2.19

with the probability model and overview, Markov chains, 𝑀!/M/1queue and 𝑀!/G/1 queue.

Figure 2.19: the road map to explore queueing theory

2.8.1 Probability models and overview

Queueing theory investigates the queueing problem when there are many jobs, scarce resources,

hence, delays and long waiting for services. It is the theory answering questions about what makes

queues appear, and how to make queues disappear. “Queueing theory is the study of queueing

behaviors in networks and systems. A queueing network is made up of servers” (Harchol-Balter

2013).

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

57

2.8.1.1 Performance metrics

A simplest queueing network consists of one server; arriving jobs are waiting to be served by the

server, then exit. The performance metrics in single server systems are the job response time, job

waiting time, number of jobs in the system and number of jobs in the queue as follows.

2.8.1.2 Job response time

Job response time T is the defined as

𝑇 = 𝑡,-./0! − 𝑡/0012- 	

𝑡/0012- is when the job arrives at the system, 𝑡,-./0! is when the job leaves the system after being

served. E(T) is the mean response time.

2.8.1.3 Job waiting time

Job waiting time 𝑻𝑸 is the time the job is waiting in the queue, not being served. 𝐸(𝑇4) is the

mean waiting time. The mean response time is the total of the mean waiting time 𝐸?𝑇4@ and

mean service time 𝐸(𝑆) that the server serves the job:

𝐸(𝑇) = 𝐸?𝑇4@ + 𝐸(𝑆)

2.8.1.4 Other metrics

v Number of jobs in the system (N) includes the jobs waiting in the queue and the jobs are being

served

v Number of jobs in queue 𝑵𝑸 is jobs waiting in the queue

v In the simple queue network, the job arrival rate 𝝀 jobs / second, and the job service rate 𝝁

jobs / second, the assumption that 𝝁 > 𝝀 is important to avoid congestion and job loss.

The arrival queue and service queue are modelled based on probability models of discrete and

continuous random variables. The probability theory is referenced from (Harchol-Balter 2013).

2.8.1.5 Random variables

A random variable (r.v) is a function of the outcome of an experiment in real value. An r.v can be

discrete or continuous. A discrete r.v can take countable number of values, each with a probability.

The probability mass function (p.m.f) 𝑝5 of r.v X is defined as follows.

𝑝5(𝑎) = 𝑃{𝑋 = 𝑎}, 𝑤ℎ𝑒𝑟𝑒	4𝑝5(𝑥) = 1
6

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

58

The cumulative distribution function (c.d.f) of r.v X is defined as follows.

𝐹5(𝑎) = 𝑃{𝑋 ≤ 𝑎} = 4𝑝5(𝑥)
67/

It is also written using the opposite condition (𝑋 > 𝑎):

𝐹5*(𝑎) = 𝑃{𝑋 > 𝑎} = 4 𝑝5(𝑥)
68/

= 1 − 𝐹5(𝑎)

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) is a very common discrete distribution in a computer system. If X is a 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆),

its p.m.f 𝑝5 is defined as follows.

𝑝5(𝑖) =
𝑒9:𝜆1

𝑖!
	𝑤𝑖𝑡ℎ	𝑖 = 0,1,2…

Continuous r.v can take on an uncountable number of values. The range of a continuous r.v is a

collection of intervals on the real line. The probability of a continuous r.v is defined via a

probability density function (p.d.f), which is a non-negative function 𝑓5, as follows.

𝑃{𝑎 ≤ 𝑋 ≤ 𝑏} = W 𝑓5(𝑥)𝑑𝑥
;

/
			𝑎𝑛𝑑	W 𝑓5(𝑥)𝑑𝑥

<

9<
= 1

The cumulative distribution function (c.d.f) 𝐹5 of a continuous r.v X is defined based on the p.d.f,

as follows.

𝐹5(𝑎) = 	𝑃{−∞ ≤ 𝑋 ≤ 𝑎} = W 𝑓5(𝑥)𝑑𝑥
/

9<

𝐹5*(𝑎) = 	𝑃{𝑋 > 𝑎} = 1 − 𝐹5(𝑎)

𝐸𝑥𝑝(𝜆) is an exponential distribution with rate 𝜆, if X is 𝐸𝑥𝑝(𝜆); its c.d.f is calculated as follows.

𝑓5(𝑥) = Z𝜆𝑒
9:6 , 𝑥 ≥ 0

0, 𝑥 < 0

𝐹5(𝑥) = W 𝑓5(𝑥)𝑑𝑥 =
6

9<
Z1 − 𝑒

9:6 , 𝑥 ≥ 0
0, 𝑥 < 0

The discrete 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) and the continuous 𝐸𝑥𝑝(𝜆) are applied to the Poisson process that is

described in the M/M/1 queue.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

59

2.8.1.6 Kendall notation

Kendall notation (Bolch et al. 2006) is used in the queueing modeling to identify the behaviors of

the arrival queue, service queue and number of servers, as follows.

A/B/m – queueing discipline

A is the distribution of inter-arrival time, B is the distribution of service time, 𝑚 ≥ 1 is the number

of servers in the computer system, queueing discipline is how jobs are served at the server. The

symbols which are used for A and B are as follows:

Ø M for exponential distribution (memoryless).

Ø G for General distribution

Ø GI for General distribution with independent inter-arrival times

For example, M/M/1 is a simple single server system, in which the arrival and the service pattern

are Markovian. 	𝑀!/G/1, in which 𝑀! denotes the Markov modulated Poisson process (MMPP),

models the time varying arrival rates based on the m states of an independent Markov chain

(Fischer & Meier-Hellstern 1993).

2.8.2 Markov chains

Markov chains are classified into Discrete-time Markov Chain (DTMC) and Continuous-time

Markov Chain (CTMC). The Markov chain theory that consists of definition and theorem are

referenced in (Harchol-Balter 2013).

2.8.2.1 Discrete-Time Markov Chain (DTMC)

A stochastic process is a sequence of r.v. DTMC is a stochastic process {𝑋', 𝑛 = 0,1,2… } where

𝑋' is the state at time step 𝑛, ∀𝑛 > 0, ∀𝑖, 𝑗, ∀𝑖'9*, . . 𝑖),

𝑃{𝑋'=* = 𝑗	|	𝑋' = 𝑖, 𝑋'9* = 𝑖'9*… ,𝑋) = 𝑖)} = 𝑃{𝑋'=* = 𝑗|	𝑋> = 𝑖} = 𝑃1?

where 𝑃1? is independent of time steps 𝑋), 𝑋*, . . , 𝑋'9*.

Markovian property states that the conditional distribution of future state X@=*, is independent of

past states (X), X*, . . , X@9*), and is only dependent on the present state X@.

The transition probability matrix associated with a DTMC is a matrix P, whose (i,j)th entry PA,C is

the probability of moving to state j in the next transition from the current state i.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

6.

Limiting probability: let 𝜋? = lim
'→<

𝑃1?' 		

𝝅𝒋 is the limiting probability that the chain is in state j (independent of starting state i). For an M-

state DTMC, with states 0,1, ..,M-1,

𝝅 = (𝝅𝟎, 𝝅𝟏, . . , 𝝅𝑴9𝟏)			𝑤ℎ𝑒𝑟𝑒	 4 𝜋1 = 1
I9*

1J)

represents the limiting distribution of being in each state.

A probability distribution π = (π), π*, . . , πK9*) is said to be stationary for a DTMC if

𝜋𝑃 = 𝜋		𝑎𝑛𝑑	 4 𝜋1 = 1
I9*

1J)

Theorem: stationary distribution =limiting distribution

Given a finite state DTMC with M states, let 𝜋? = lim
'→<

𝑃1?' > 0	

be a limiting probability of being in state j and let

𝝅 = (𝝅𝟎, 𝝅𝟏, . . , 𝝅𝑴9𝟏)			𝑤ℎ𝑒𝑟𝑒	 4 𝜋1 = 1
I9*

1J)

be the limiting distribution. Assuming the limiting distribution exists, then 𝜋 is also the stationary

distribution and no other stationary distribution exists.

A Markov chain, in which the limiting probabilities exist, is said to be stationary if the initial state

is chosen according to the limiting probabilities.

A periodic of state j is the greatest common divisor (GCD) of the set of integers n, such that

𝑃??' > 0

A state is aperiodic if it has period 1. A chain is aperiodic if all its states are aperiodic.

State j is accessible from state i if 𝑃1?' > 0 with some 𝑛 > 0. States i and j are communicate if i is

accessible from j and vice versa.

A Markov chain is irreducible if all its states communicate to each other.

Theorem: Given an aperiodic, irreducible, finite state DTMC, with transition matrix P, as 𝑛 → ∞,

𝑃' → 𝐿, L is the limiting matrix 𝜋, the vector 𝜋 has all positive components, summing to 1.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

61

2.8.2.2 Continuous-Time Markov Chain (CTMC)

CTMC has all the properties of DTMC except that the transition between states can happen at any

times, only the present state matters, and transition probabilities are stationary and independent of

time step.

A CTMC is a stochastic process that every time it enters state i, the amount of time that the process

spends in state i is exponentially distributed with some rate called νA. When the process leaves state

i to enter state j with probability pAC, which is independent of the time spent in state i.

Theorem of CTMC:

Given an irreducible CTMC, suppose ∃𝜋1 , ∀𝑗:

𝜋?𝜈? =4𝜋1𝑞1?
1

				𝑎𝑛𝑑	4𝜋1 = 1
1

 𝜋1 are the limiting probabilities for the CTMC, and the CTMV is ergodic.

2.8.3 M/M/1 queue

M/M/1 is the simplest queueing model with a single server when the service distribution is an

exponential distribution with rate 𝜇, the arrival rate is an exponential distribution with rate 𝜆, to

have a stable system: 𝜆 < 𝜇. The number of customers in the system form a CTMC.

Figure 2.20: CTMC of the customer number in M/M/1 queue, adapted (Harchol-Balter 2013)

The structure in Figure 2.20 is called the birth-death process. The performance metrics of M/M/1

queue are presented as follows.

o The server utilization is calculated based on arrival rate 𝜆 and service rate 𝜇:

𝜌 =
𝜆
𝜇
	

o The mean number of customers in the system:

𝐸(𝑁) =
𝜌

1 − 𝜌
	

o The mean response time:

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

62

𝐸(𝑇) =
𝐸(𝑁)
𝜆

=
1

𝜇 − 𝜆
	

o The mean waiting time:

𝐸?𝑇4@ = 𝐸(𝑇) −
1
𝜇
=

𝜌
𝜇 − 𝜆

	

2.8.4 𝑴𝒕/G/1 queue

2.8.4.1 Definition

𝑀!/G/1 queue denotes a queueing system with an arrival queue that is a non-Markov arrival process

that arrival rate varies randomly over time, a single server that the service distribution is general

distribution. Markov-modulated Poisson process (MMPP) has been used to model the 𝑀! arrival

queue. MMPP is the doubly stochastic Poisson process, in which the arrival rates of 𝜆), 𝜆*, , , 𝜆L9*

vary based on the states of the underlying continuous time Markov Chain (CTMC). MMPP is

bivariate with [𝐽(𝑡), 𝑁(𝑡): 𝑡 ∈ 𝑇], 𝑁(𝑡) is the number of arrivals within a time interval (0, 𝑡] 𝑡 ∈ 𝑇,

and 𝐽(𝑡) with 0 < 𝐽(𝑡) < 𝑚 is the state of CTMC. The MMPP can be reconstructed by changing

the arrival rate of a Poisson process according to the m-state of a CTMC, which is independent of

the arrival process (Fischer & Meier-Hellstern 1993).

MMPP is parameterized by the m-state CTMC with its generator matrix Q, and the m arrival rates

𝜆), 𝜆*, , , 𝜆L9*. In matrix Q, 𝛼1? , 𝑖 ≠ 𝑗 denotes the rate that the Markov process changes from state

𝑖 to state 𝑗,

𝛼1,? = lim
M→)

(
𝑃[𝑋(𝑡 + 𝜏) = 𝑗]|𝑃[𝑋(𝑡) = 𝑖)]

𝜏
), 𝑖 ≠ 𝑗

Matrix Q has the format:

𝑄 = z
−𝛼) 𝛼)* 𝛼)L
𝛼*) −𝛼* 𝛼*L
𝛼L) 𝛼L* −𝛼L

{

𝛼1 = 4 𝛼1?

L

?J),?N1

; 	𝛼11 = −𝛼1

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

63

And 𝛼1, the element in diagonal, is equal to the total rates. The holding time of state 𝑖 is exponential

distributed with rate 𝛼1 (Nelson 2013). Q is calculated using the steady-state vector 𝜋 of the Markov

chain: 𝜋. 𝑄 = 0			𝑎𝑛𝑑	𝜋. 𝑒 = 1	,	 𝑤𝑖𝑡ℎ	𝑒 = (1,1, . . ,1)O is an m-element vector.

∧ is a diagonal matrix of (𝜆), 𝜆*, . . , 𝜆L), and 𝜆 is the transpose vector of (𝜆), 𝜆*, . . , 𝜆L)

∧= 𝑑𝑖𝑎𝑔(𝜆), 𝜆*, . . , 𝜆L)

𝜆 = (𝜆), 𝜆*, . . , 𝜆L)O

2.8.4.2 Two-rate MMPP

We apply a two-rate MMPP as the arrival model of the arrival queue: 𝜆) has the holding time value

𝐸𝑥𝑝(𝛼)), and 	𝜆* has the holding time value 𝐸𝑥𝑝(𝛼*), the arrival rates vary between 𝜆) and 𝜆*,

but we can add more rates if we need more accuracy. Figure 2.21 presented the arrival queue arrival

process as an MMPP process with arrival rates 𝜆), 𝜆*; MMPP stays at rate 𝜆) for a period of

𝑒𝑥𝑝(𝛼)) and changes to 𝜆* and stays there for 𝑒𝑥𝑝(𝛼*) before it changes back to 𝜆).

Figure 2.21: The arrival process is a Markov-modulated Poisson process with 2 states, adapted
(Harchol-Balter 2013)

2.8.4.3 State transition diagram of MMPP process

The MMPP process with two arrival rates 𝜆), 𝜆* starts at state 00, when packet arrives with rate

𝜆) it transfers to state 01, and then 02, …; when the server processes the packet with service rate

𝜇, it moves back one state to the previous state. The state transition of the process is in the similar

manner with arrival rate 𝜆* with state 10, 11, 12, ... In the meantime, 𝛼)* triggers the transition

from arrival rate 𝜆) to arrival 𝜆*; 𝛼*) triggers the transition from arrival rate 𝜆* to arrival 𝜆); the

service rate 𝜇 triggers the state transition of the process within the same arrival rate. Figure 2.22

shows a state transition diagram of a 𝑀!/𝐺/1 queue system with arrival rates 𝜆), 𝜆*.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

64

Figure 2.22: State transition diagram of an MMPP model with two states (Bolch et al. 2006)

2.8.4.4 Phase-type distribution and the matrix analytic method

Harchol-Balter (2013) proposed a technique called the method of phases, in which all distributions

can be represented accurately by a mixture of exponential distributions called phase-type

distribution (PH). Firstly, the varying arrival rates are modeled as a set of exponential distributions

with different rates 𝜆), 𝜆*. Then, the matrix analytic method is applied to find the transition matrix

of the underlying CTMC, which is repeated and grows unboundedly in one direction. As in Figure

2.23, in the arrival process there are two rates 𝜆), and 𝜆*; at each level 𝑖, there will be two states 𝑖)

and 𝑖*, the limiting distribution 𝜋PÅ will be based on 𝜋1) for rate 𝜆), and 𝜋1* for rate 𝜆*:

𝜋PÅ = (𝜋1), 𝜋1*)

𝜋PÅ is recursively expressed in term of 𝜋19* using the ℛ, such that

𝜋PÅ = 𝜋P9*ÉÉÉÉÉÉ. ℛ

𝜋PÅ = 𝜋)ÉÉÉ. ℛ1

the limit distribution can be expressed in term of its level components:

𝜋É = (𝜋)), 𝜋)*, 𝜋*), 𝜋**, 𝜋+), 𝜋+*, …)

The generator matrix 𝑄 is defined in the matrix:

𝜋Ñ⃗ . 𝑄 = 0Ñ⃗ 					𝑖𝑛	𝑤ℎ𝑖𝑐ℎ					𝜋Ñ⃗ . 1Ñ⃗ = 𝜋Ñ⃗

𝑄 is expressed in the matrix in the M/M/1 queue with arrival rate 𝜆 and service rate 𝜇 as follows.

𝑄 = [
−𝜆 𝜆
𝜇 −(𝜇 + 𝜆) 𝜆

𝜇 −(𝜇 + 𝜆)
]

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

65

𝑄 expressed for 𝑀!/M/1 queue is a matrix with multiple blocks, each block is like the Q matrix in

M/M/1, for an arrival rate 𝜆), 𝜆*, 𝛼)*, 𝛼*), and 𝜇. By recursively calculating

𝜋)), 𝜋)*, 𝜋*), 𝜋**, 𝜋+), 𝜋+*, … with Q to receive the limit distribution 𝜋É. The MMPP performance metrics

are calculated based on Q as well. The matrix analytic method is used for calculation and not for

problem formulation.

2.8.4.5 Functional behaviors

Gupta et al. (June 2006) proposed an emerging approach to analyze and explore the functional

behaviors of the fluctuating system in terms of the input parameter: the rate of varying between

high load and low load, how other parameters: arrival rate, service rate affect the performance

metrics and which parameters are important. This approach is very suitable for the network slicing

problem formulation in chapter 6.

2.9 P4 language and SDN 2.0

P4 language and its application In-band network telemetry are explored as a monitoring tool in the

SDN substrate network running segment routing in chapter 5 named Realization of CEVNE virtual

link embedding.

2.9.1 What is P4 language

P4 is the short form of Programming Protocol-Independent Packet Processors. P4 was designed

with three main goals (Bosshart et al. 2014):

ü the ability for software or hardware switches to change how they process packets,

ü switches are not tied to any specific protocol,

ü the ability to describe independently the functions of packet processing, free from

hardware.

P4 language includes these main components as follows: headers, parsers, tables, actions, and

control programs. P4 headers specify a series of field values in the packet headers. P4 parsers

decide how valid header fields are identified. P4 tables describe how header fields are matched and

the consequent actions; there is only one action for each match, there are multiple tables that are

processed in a pipeline. The table pipeline specifies the orders to process packet headers as each

table is designed for a specific header of the packet. P4 de-parser function is in reverse of the parser

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

66

function, in which packet headers are merged together to send to egress nodes. According to ONF,

P4 language is one of the main components in SDN 2.0

2.9.2 The in-band network telemetry

One of the most popular application of P4 language is the in-band network telemetry (INT). INT

is a framework to capture network states in the data plane. There are three types of components in

the INT framework: the INT source, INT sink and the transit nodes. The INT source can be any

node, device, application or event in the network; it gives instructions to collect metadata for the

transit nodes along the forwarding path. INT sink collects the metadata to process and remove them

from the packet headers. INT is designed to handle network trouble shooting, congestion control,

routing and data plane verification. INT is designed for the data plane state encapsulation for

different network protocols such as VXLAN, GENEVE, NSH, TCP, UDP. Figure 2.23 presents

an INT application example. INT application works on the network path from host A to host Z via

virtual switch 1, hardware switch L, spine switch 0, hardware switch R, and virtual switch 2. The

virtual switch 1 is setup as an INT source to give instructions to collect metadata (Kim et al. 2016),

which is the latency field. The virtual switch 2 is setup as the INT sink that sends metadata to the

analytics engine. The switches along the paths are INT transition hops, which add their latency into

the packet headers. At the virtual switch 2 (INT sink), all latency fields in the header are sent to

the analytics engine, also removed from the packet (Kim et al. 2016).

Figure 2.23: INT use case to collect latency in details (Hira & Wobker 2015)

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

67

2.10 Summary

In this chapter, the literature review is conducted. SDN principles, SDN architecture, SDN

controllers, SDN switches, SDN applications, and Mininet as an SDN network simulation have

been described. The review in NV, NFV, network slicing in 5G has been conducted. The

background of optimization, mathematical modelling, MSA, queueing theory, and P4 language are

presented. In the next chapter, the architecture of extended SDN applications will be investigated.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

68

CHAPTER 3 AN INTENT SERVICE-BASED (ISB)

ARCHITECTURE FOR SDN APPLICATIONS

3.1 Introduction

In the previous chapter, a literature review has been conducted focusing on the background theory

of SDN, network virtualization, NFV, SFC, network slicing, queueing theory, and 5G core mobile

networks. This chapter research objective is to investigate and develop a new architecture to realize

extended network applications via the connections to NBI in SDN controllers; to investigate and

develop a new architecture to realize 5G custom core network services.

In the chapter, section 2 explores the connection between SDN NBI, and the applications in the

SDN architecture; section 3 presents the novel architecture in detail; section 4 focuses on the novel

architecture for custom 5G core services; section 5 is the prototype of the Dynamic resource

allocation (DRM) application that is realized using the proposed architecture, and section 6 is the

summary. The roadmap of the chapter is described in Figure 3.1.

Figure 3.1: The roadmap of the Chapter 3

SDN adoption has become a norm in the computer networking. Central Office re-architected to

Data center (CORD) is a large-scale project at Open Networking Foundation (ONF) to transform

telecom central office into cloud service centers. In CORD, the optical layer and the packet-

switched layer are converged in the topology using ONOS controller, such innovation makes it

easy to calculate the network path, and create new services for customers (Peterson 2019). PEN is

a proposed application at Telstra that combines SDN applications with service provisioning so

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

69

users can request network connections between two locations, and obtain billing information at the

same time (ODL 2019).

These business applications represent a class of emerging applications that require network support

to some degree, the real task is to provision required services through the management of its

underlying network resources. Currently, ad-hoc and self-explored approaches are not able to

support the emerging group of applications because of the lack of functionality (Paul et al. 2014)

including service partitioning, network and service-context checking, service-composition

functionalities, etc. Therefore, this chapter proposes an architecture that not only supports

traditional and emerging applications, but also facilitate service creation, and service composition

to provision the user requests in a systematic way, which encourages modular designs, and

facilitates software reuse. The proposed architecture for extended SDN applications has been

presented at the 2016 International Network Softwarization (2016 Netsoft) conference in Seoul,

South Korea.

What is new in the research?

The architecture for extended SDN applications promotes a systematic way to provision user

request. The architecture promotes service reuse, service composition, service creation and

modular design in the three-tier architecture: the database tier, business tier and user interface tier.

To discover existing services, the architecture applies the MS design patterns: service discovery

and service self-registration. The domain driven design (DDD) is preferred to other design

methodologies as it applies the ‘divide and conquer’ strategy that is suitable to MS design. The

main business domain is divided into sub-domains to search for the solutions. These solutions are

developed as micro-services, which are then composed into the main service to provide the required

function. The prototype showed that the solution is effective, realizable and practical for emerging

applications and it allows developers to concentrate on developing applications.

3.2 NBI and application layer in SDN architecture

3.2.1 NBI: Intent, Flow rules, Flow objectives

SDN controller offers the NBI to applications to utilize network resources in the SDN networks.

In ONOS controller, three abstractions: Intent API, flow rules API and flow objective API (in the

NBI) are used to facilitate the development of SDN applications (ONF 2019a). Each of them is

used in its specific scenarios as presented as follow.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

7.

ü The flow rule API connects to devices via Openflow, Netconf, and server in the SBI,

ü The flow objective API is working with the device pipelines (single table pipeline, OF-

DPA pipeline),

ü the Intent framework provides models for different types of network connections including

wired, wireless and optical.

Each of the abstractions is a sub-system that translates into the Openflow (OF) flow rules (OF

switches) or P4 executable program (P4 programmable switches) and installed on the SDN

hardware switches (ONF 2019a). The translation of abstractions is encapsulated inside the SDN

controller as it involves the critical handshake between the controller and the SDN devices that is

specified by the OF protocol. These abstractions are in their hierarchy of abstracts, in which the

intent framework is in the highest level of abstract, next is the flow objective framework, and last

comes the flow rule framework. Figure 3.2 presents the three abstractions according to their level

of abstraction.

Figure 3.2: Intent, flow objective, and flow rule in NBI, adapted from (ONF 2019a)

Figure 3.3 presents the three abstraction in the ONOS controller NBI. The ONOS controller is also

structured into layers including the NBI (with the above abstractions), distributed core services,

device drivers, shared protocol libraries (OF, gNMI, P4Runtime), and network devices.

In each SDN application, the invoke of either the intent, the flow objective or the flow rule is the

required step so that the application can utilize network resources of the SDN devices.

The intent framework is designed with the purpose to allow applications specifying networks as

polices instead of low-level rules. Each intent has its own life cycle that is presented in chapter 2.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

71

Figure 3.3: ONOS controller and the NBI with the abstractions (ONF 2019a)

The intent framework is used to demonstrate the internal translation mechanism. It is important to

select the right intent for the network connections in the application. The compilation process could

be failed if new policies conflict with existing ones on the devices, resulting in developers need to

update the intent to resolve the conflict (ONOS 2019b) . Figure 3.4 summarizes the three main use

cases “create intent”, “update intent” and “withdraw intent” of the intent framework in ONOS.

ü In the “create intent” use case, an intent is created and submitted via the NBI, the intent

framework then compiles, stores and installs flow rules on devices via the SBI.

ü The “update intent” use case is raised by changes in the network environment themselves, the

monitoring system identified the change and triggered an event to recompile the intent.

ü In the “withdraw intent” use case, an intent is withdrawn. The user needs to provide the intent

id and the application id to identify the intent; the intent framework will remove the intent

together with its flow rules from the devices, and from the store.

The internal process presented (below the NBI) in Figure 3.4 is invisible to users as ONOS provides

these functions via the intent framework. The flow rule API and flow objective API operate in the

similar way of creating, updating and withdrawing flow rules (flow objectives) using its

compilation as the intent API.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

72

Figure 3.4: Use cases of the ONOS intent framework

3.2.2 The application layer

SDN applications in the application layer leverage the NBI services and the core services to utilize

network resources as they need (Figure 3.3). NBI hides the complexity in the process that translates

the application into OF rules. The SBI hides the process of choosing the proper device driver for

the SDN switch, and the handshake process between the controller and the device to write / update

the OF rules into OF tables in the switches. The SDN applications algorithm is in the developers’

thoughts, hence, it is ad-hoc, and every application is not fully aware of reuse existing services in

their domain.

The application intent framework, ODL NBI or Floodlight NBI, and others facilitate application

development somewhat, but they are inadequate for constructing extended, emerging applications

and services because they lack functionality for service partitioning, service composition, service

context checking. Therefore, the support to handle complex business logic is required on top of the

SDN controller. In the next section, the proposed solution architecture is presented.

CREATE INTENT

Compiling
intents

Saving
flow rules

successful

Installable
intents

Install on
devices

Failed
intents

Errors

SOUTHBOUND INTERFACE

DEVICE

Recompiling
intents

NETWORK
EVENTS

DEVICE DEVICE

Searching
for intent

WITHDRAW
INTENT

found?

removing
from
stores

Uninstall
on devicesINTENT FRAMEWORK

NORTHBOUND INTERFACE

Y
YN N

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

73

3.3 The proposed solution architecture

The proposed solution must satisfy all requirements of the architecture for extended SDN

applications that are presented as follows.

3.3.1 The requirements of the architecture

Our proposed solution for an architecture is to satisfy all requirements as follows.

ü The extended applications and services need to respond to dynamic changes in the

application context.

ü The architecture should ensure the separation of the application environment from the

controller environment so that applications will not interfere with the controller.

ü It must be able to handle the composability attribute via the service composition.

ü In all scenarios, the architecture should allow the creation of new services, reuse of

existing services, and composition of (new and existing) services into new

applications.

ü The extended applications and services can implement complex service composition

based on policy, configuration or performance requirements.

ü An application built with the proposed architecture should be user-friendly with

different user interfaces: Command Client Interface (CLI), Rest API or service

interface.

ü As a production system, it needs to ensure availability, scalability and modifiability.

ü It can integrate with a workflow application to become part of a business process

management (BPM) system, or a vertical-stack integration with other applications.

For the architecture, the main architecturally significant requirements (ASR) (Bass 2013), is the

composability as it emphasizes the divide-and-conquer solution approach, enables modular design,

and reuse of components to compose applications. Figure 3.5 visualizes the architecture from the

user requirement view. Some requirements are linked together to handle complex business rules,

they allow new-service creation, service reuse, and service composition or service composition

engine.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

74

Figure 3.5: Visualized the requirements of the architecture

3.3.2 The proposed solution architecture

In this section, the mechanism that satisfies all the above requirements is investigated and the

results are presented as follows.

3.3.2.1 Micro service architecture (MSA) design

MSA is part of the service-oriented architecture (SOA) that promotes the service-oriented patterns:

service provider, service consumer, service discovery (Fowler 2014), (Richardson 2018); and

allows the flexibility in managing applications. In chapter 2 named Related works, section 2.5, the

MSA, and MS patterns are presented.

The main strength of MSA is its service composability, allowing the construction of fully

functioning applications by integrating atomic services; each service provides a function, based on

some business patterns. Besides it, other important MS design principles, which are leveraged to

facilitate the development of robust, modular, and reusable applications in the proposed

architecture, are presented as follows.

ü Data decentralised principle: in the architecture, each application has its own database

management system, to ensure application independence from data perspective.

ü Componentized application: the application comprises micro-service components to

promote reuse of existing services and applications.

ü Application design robustness: to ensure the application is robustness, the research

considers both successful and failed scenarios.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

75

ü Distributed principle: each application can run in their own process so they will not

interfere with each other and with the controller.

Emerging SDN controllers are built in MSA so their environment offers services that cover the MS

design pattern. In Figure 3.6, the MSA composition attribute and decentralized data management

attribute are visualized.

Figure 3.6: The characteristics of Micro-services (Fowler 2014)

3.3.2.2 The three-tier application architecture

The three-tier architecture is proposed for extended SDN network applications to promote modular

design, and flexibility as services in each tier are independent to update their components without

affecting other tiers; concurrently they work cohesively to deliver results. The three-tier

architecture, which is applied the module architecture pattern as presented in subsection 2.6,

consists of the database tier, the business logic tier and the presentation tier. The services

accommodated in the three-tier architecture address the requirements and serve the development

of rich commercial applications. Each tier is presented in detail as follows.

ü The database tier persists application data. It can be a relational database, or a NoSQL database

such as a Mongo DB. If the database tier requires significant computing resources, one option

is to deploy it in a separate process so it will not affect the SDN application performance. The

database MS design pattern, which is presented in subsection 2.5.2.3, can be leveraged in this

tier.

ü The business tier handles complex-business-logic requirements via service creation, service

splitting and service composition. The atomic services are the NBI services (intent API, flow

objectives API, flow rules API) and SDN core services; they are also utility services as they

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

76

offer basic functions for the application to control SDN devices, and they form the basic layer

for service orchestration. Depending on the problem domains, new services will be created as

base services or composite services for commercial or networking purposes. The composite

service element (presented in Figure 3.7) integrates new, existing services, and existing

applications based on users’ requirements. For commercial services, the integration of services

emphasizes on transaction integrity. For networking services, the emphasis is on the

correctness of protocols and the satisfaction of QoS requirements.

ü The presentation tier accepts input from users and provides different interfaces of the

application: Command Line Interface (CLI), the REST API, and the service API. REST API

is related to the web interfaces of the application. CLI is familiar with network operators and

related to the features of the controller platform.

Figure 3.7 depicts the three-tier architecture and its components for extended SDN applications on

top of the SDN architecture. The topmost is the user interface tier with a Rest API, a service

programming API, and a Command Line Interface (CLI). The business tier is in the middle with

new services, existing network services, existing applications, and a service registry. Below the

business tier is the database tier. Each service component may compose of several micro services

as required by its functionality. The business tier is the most important tier as it is where new

services and composite services are created. With the proposed three-tier architecture, developers

can plug in their service components to the appropriate tier to construct their applications.

Figure 3.7: Component view of the three-tier architecture for SDN application

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

77

3.3.2.3 Domain driven design

In the analysis process, the proposed architecture selects domain driven design (DDD) principle

over other software designs as DDD is suitable to the composition attribute in MSA principles

(Richardson 2019). Applying DDD, the requirements are decomposed into smallest problem sub-

domains (SD), and then the solutions of each sub-domain are built. The solutions may be core

services in the controller or existing services; they may also be NBI-enabled new services for the

application (Millett 2015).

DDD is about systematic modularization and business-context aware. Figure 3.8 exemplifies the

DDD process of the DRM application, the problem domain is divided into three sub-domains: SD1

is about the resource database, SD2 is about the GEANT network, SD3 is about network

virtualization. Using the skill and experience of the domain expert, each solution domain is

designed in different business contexts that are represented by the database context, GEANT

topology, VNE in network virtualization, ONOS controller, and residual resources. The expert and

development team provide solutions in each business context.

Figure 3.8: Domain driven design example

3.3.2.4 The controller platform

SDN controller offers many services to manage network devices, and process network flows

(Hoang & Pham 2015). To support different classes of applications, it is expected that a controller

platform to be extensible to support emerging applications and possesses properties as follows.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

78

ü It should manage the life cycle of a service autonomously by introducing, registering,

restarting, and terminating the service without restarting the server.

ü It should have its own service registry, service discovery, and built-in functions to

create service-based applications.

ü It allows applications to be deployed flexibly in containers or in embedded devices.

ü It should promote performance, modularity, service reuse, and maintainability.

ü It should handle dependencies at compilation time, so developers never have missing

classes or objects at runtime.

Popular controllers written in Java like Beacon, ODL Floodlight, and ONOS are built on the OSGi

platform. The core architecture of OSGi technology is a dynamic system written in Java

(OSGi_Alliance 2016) with different layers as presented in Figure 3.9.

Developers apply the DDD principles to divide the application into logical components called

bundles, and develop the bundles using core java language. Each bundle has a manifest file to

describe it. In each bundle, the bundle context is the only interface to connect to the OSGi

framework. To resolve the dependencies between bundles, OSGi framework allows bundles to

export and import for reference. A bundle can be registered as a service via the service registry. A

bundle retrieves its service from the registry, and then invokes its services. Life cycle is used to

install, start, stop, update and uninstall of bundles and services. Module defines how bundles can

import and export code for code dependencies.

Figure 3.9: OSGi layered architecture (OSGi_Alliance 2016)

Both ONOS and ODL controllers are deployed in Apache Karaf, an OSGi runtime container that

provides a rich set of CLI commands to interact with applications and services. This set of

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

79

commands are extended to create CLI commands for SDN applications. The web GUI is also the

extension of the Apache Karaf features.

Choosing the controller that are architected based on the MSA and MS design patterns means that

the extended SDN application can leverage these features without building them by itself.

3.4 Proposed architecture for applications in service-based architecture

In this section, the architecture for extended SDN applications is considered for the service-based

architecture environment, in which services and applications are composed of micro-services and

are exposed via their service APIs. In this environment, the service registry is used to register newly

created services, and to lookup existing services for reuse. A mechanism that plays the similar role

to the SDN NBI is useful if the environment provides it. Additionally, one important condition

dictates that the service composition or decomposition should be based on the programmability of

the network infrastructure underneath. This condition is satisfied thoroughly as SDN paradigm has

been adopted in almost areas of computer networking; SDN brings programmability, open API,

commercial-off-the-shelf (COS) hardware, and reduces vendor lock-in.

Our proposed architecture is applicable to 5G core services as 3GPP facilitates their 5G application

architecture to be similar to SDN architecture; 5G core services rely on its enabling technologies:

SDN, NFV and cloud computing. We will discuss the application of our proposed architecture in

the next section.

3.4.1 Requirements for the 5G custom core services

The architecture of 5G core mobile system is designed as a service-based architecture (TS_23.501

Jun. 2019) with the requirements as follows: service flexibility, easy to add new services, service

access control list for each group of users, easy to remove a service, unified policy control,

automated network deployment, and modular extendable architecture (Chandramouli, Liebhart &

Pirskanen 2019).

3.4.2 Proposed architecture for 5G custom core services

As the main requirements of 5G core architecture emphasizes on service composition and new

service creation, our proposed architecture can satisfy these requirements as it is designed based

on MSA. The proposed architecture for 5G custom core services are presented as follows.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

8.

3.4.2.1 MSA, MS design pattern, and three-tier architecture

MSA and MS design patterns of service composition, service decomposition, service discovery,

and service registration are presented in chapter 2 section 2.5.

The three-tier architecture with UI tier, business tier, and database tier are leveraged for the

development of custom 5G core services based on the module architecture design pattern (Bass

2013) offering modularity and flexibility; services in each tier are updated independently without

affecting to services in other tiers. Each tier is presented as follows.

Ø UI tier is used to present the REST interface, service API as it is specified in the

architecture of 5G core services (TS_23.501 Jun. 2019).

Ø Business tier is where composite services are integrated, and new services are created. The

atomic services for 5G custom core services are the 5G core services: authentication and

mobility, session management, policy and charging, user plane function, network exposure

function, network function repository, unified data management, authentication server

function, application function, network slice selection, location management (TS_23.501

Jun. 2019).

Ø The database tier is for the two functional groups UDM and UDSF (TS_23.501 Jun. 2019).

5G custom core services will be built on top of 5G core architecture (Chandramouli, Liebhart &

Pirskanen 2019). The infrastructure layer consists of 5G core central cloud, and all edge clouds

where 5G core services are deployed. 5G core service layer consists of all 5G core services and

their functions; the network exposure function (NEF) is the NBI, and the network repository (NRF)

is the registry that keeps a record of all services (Penttinen 2019).

At the high level, 5G mobile system consists of the infrastructure layer, which comprises base

stations (gNBs), 5G radio access network (RAN), 5G core network (CN) and the transport network

(TN) that connects 5G RAN to 5G CN. 5G applications are built on top of 5G core architecture.

5G separates the data plane from the control plane. The custom core services are developed for

control plane functions only. The NEF, as the northbound API, provides details of 5G core services

to external services and applications. Via NEF, 5G system restricts specific fields of each service

to be exposed, so the services encapsulation attribute is guaranteed (TS_23.502 2019). The NRF

is used to register services and to retrieve them. The custom 5G core services are the main

functional components of the RFB, in the emerging NGPaaS, which are presented in chapter 2,

section 2.6. Figure 3.10 presents the architecture for custom 5G core services.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

81

When the proposed architecture is applied for custom 5G core services, there are differences that

are presented as follows.

Ø The atomic service and utility services are 5G core services.

Ø The NEF plays the role of the NBI, the NRF plays the role of the service registry. The NEF

needs to consider two scenarios in the home domain and the visiting domain (Penttinen

2019). How NEF and NRF work is completely different from the SDN architecture.

Ø The infrastructure of the 5G core system is the core cloud and all edge clouds, which are

heterogeneous.

Ø There are no concepts of southbound API as the smallest component in the architecture is

an RFB that is deployed in its own infrastructure.

Ø The custom composite service is a part of the RFB.

Figure 3.10: The proposed architecture for 5G custom core service

In the prototype, to realize the custom 5G core service, a custom mobility service for 5G core

system was intended to be implemented as a demo paper.

3.5 The realization of the architecture for extended SDN application

 The realization of the proposed architecture consists of the realization of each components, which

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

82

consist of MSA, MS design patterns, the three-tier architecture, DDD principles, and SDN

controller platform, in such a way that all positive attributes of the research are exploited to bring

best benefits of the application development.

3.5.1 MSA and MS design patterns

The main purpose of the proposed architecture is to create composite services. An MSA composite

service invokes functions of its component services with input parameters. The business

requirements determine the context of invoking the component services. The composite service

also implements its own algorithms. Although different technologies such as Remote Procedure

Call (RPC), SOAP and REST support service composition, REST is selected for the proposed

architecture. Services can be synchronous, asynchronous or events based (Newman 2015). When

service composition becomes a major activity in the SDN application, a service composition engine

is utilized. The service composition engine operates in a lightweight manner (ONOS 2019b) to

minimize the associated overheads.

The proposed architecture encourages extendable and modular design. Each MS is designed in its

own business domain, to implement its functions, and connect with other services in the same or

related domains. Based on REST API, each service needs to provide its interface so other services

can invoke its functions. In an MSA design, each service provides a unique functionality so

developers can update or replace it independently without affecting other services.

Another important feature of MSA is software reuse. Composite services are designed in such a

way that they maximize the reuse of component services. This leads to the creation of different

service layers based on their functionalities. The composite service search for the required

component service using the service registry, and service lookup activity. If the required service is

found, the composite service accesses its functions via the API.

3.5.2 Three-tier architecture

Based on the classification, whether to persist states in the database systems, the service is in the

database tier, to implement a business logic, the service is in the business tier, or to gather inputs

and present outputs, the service is in UI tier. The front end can be CLI, GUI, and REST services.

While a REST API is user-friendly, a CLI is simple to develop based on the interface provided by

the OSGi runtime containers. Services in each tier (UI tier, business tier or database tier) need to

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

83

follow the design framework in their tier. Usually the controller platform provides the design

framework for each tier as SDN applications are considered as a part of the SDN architecture.

Figure 3.11 visualizes the process to realize the dynamic resource management application (DRM)

using the proposed architecture with REST API and CLI. New services to calculate the residual

resources are built. They use the database to store resource capacity of network devices

(switches/routers and links), hence the database services are designed. DRM service is the

composite service of residual resource services, path intent, and device service.

Figure 3.11: The visualization of the process to realize the proposed architecture.

3.6 Prototypes

3.6.1 DRM application prototype

This section describes the implementation of the DRM application on the ONOS controller. It

includes the setup of the test bed, which is a GEANT network in Mininet, the setup of the DRM,

and the results of DRM application.

3.6.1.1 Test bed setup

The test bed is the GEANT network, which is provided in .gml format (Knight et al. 2011),

(University_of_Adelaide 2012) . Each node is denoted with an id, and a label. Each link is denoted

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

84

with an id, and the source and destination nodes. The node and edge are coded as presented in

Figure 3.12 in the GEANT.gml file.

Figure 3.12: the sample of node and edge in GEANT.gml file

Based on the data in GEANT.gml format, the switches and links are extracted and recreated in

python file as a custom topology, which is then uploaded into Mininet code libraries. Figure 3.13

presents the GEANT network in Mininet that has been run in ONOS controller.

In the resource database of GEANT network, switches and links are created in HBase database

system. Each switch is denoted by the id, which is used in the GEANT.gml file. So is each link

between the source and destination nodes. Some nodes have the capacity of 50 MHz, others have

20 MHz, some links have the bandwidth capacity of 100 Mb/s, others have 250 Mb/s. Figure 3.14

presents the image captured from the resource database.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

85

Figure 3.13: DRM running on GEANT topology (Mininet)

Figure 3.14: The data in the DB table

3.6.1.2 DRM application setup

Mijumbi et al. (2014) proposed a solution to network virtualization that emphasized the efficient

management of network resources. In a data center scenario, users’ requests for virtual networks

(VN) came randomly, and the mapping to the substrate network created the required virtual

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

86

networks. This gradually depleted switches and links resources. If resources were not well

managed, they would be too fragmented that further users’ request would be rejected; this led to

revenue loss. (Mijumbi et al. 2014) used Floodlight SDN controller to provision virtual networks.

It used a resource database that records the available resources of the substrate networks, and the

VN resource usage. Each VN was provisioned based on the least cost path calculation as follows:

of all available paths, the one with least usage ratio, which is the ratio of the usage resource over

the available resource, was chosen. The authors showed that the DRM solution improved the

request acceptance ratio by 40%.

The proposed architecture and DDD design principles are applied to implement the DRM

application. As presented in Figure 3.8 about the domain driven design, the DRM requirements

were decomposed into the networking sub-domain and resource management sub-domain. The

networking requirement is realized using the Path Intent and the topology service. The resource

management requirements are realized using a resource database, which is used to store the

available resources of the substrate network as presented in the test bed setup, and to store usage

resources of virtual networks. The residual resources are stored in the cache during the virtual

mapping process and they are updated to the database when the VNR is completed. OSGi µservices

and built-in features, and OSGi containers are used for the service registry and service discovery.

ONOS core services are built using OSGi µservices so they are always registered and are

discovered in the registry. DRM has REST API and CLI as interfaces in the UI tier. Using DRM

Rest API, input parameters were entered in Json format as in Figure 3.15.

The two endpoints were of: 1009 and of: 1004, the required bandwidth was 50 units. The DRM

application returned the least cost path between the above two endpoints via the third switch of:

1008 as specified in Figure 3.16, in which the intent was created.

The resource of the substrate network was used as variables for the testing: the virtual network

created between two switches was varied when resources of network elements along its path were

changed.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

87

Figure 3.15: DRM REST interface

Figure 3.16: The intent view

3.6.1.3 Results

The results are presented in two categories as follows: the applying of the proposed architecture

and the result of the running DRM on the Geant network.

3.6.1.4 Applying the proposed architecture

Both prototypes and their results showed that it is feasible to implement the proposed architecture

to realize extended SDN applications. The architecture promotes modularity via the three-tier

architecture pattern, decentralized data management and componentized application thus enhances

the modifiability of the architecture. It made the realization of extended application as

straightforward as other business applications. It promotes the economic values of service-based

architecture via the maximum reuse of existing services that are available in the controller and

existing applications. The three-tier architecture promotes a neat architecture as it ensures that

applications have their components in their own modules and will not interfere with controller

modules. With any type of requirements, the steps in DDD in the architecture can be applied to

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

88

separate requirements in each sub-domain module, to search for each solution, and to integrate

them into the final solution. The application is also robust because the design always concerns with

both success and failed scenarios. Finally, using the controller core service as the base layer, it

ensures the realization process always can access fully the topology abstraction provided in the

controller.

3.6.1.5 Running DRM on ONOS controller

When the DRM application was running on the ONOS controller, the available resources were

uploaded into the database. Available resources include the available and usage resources for

network elements based on Geant network. They are organized into two separate tables: the

available resource table and the usage resource table. REST client was used to run the test cases

on the browser, and in ONOS UI to check whether the intent was created. The log data was useful

to follow the trace of the program. The actual results were matched with the manual calculations

in the expected results and were recorded in the Table 3.1 as follows.

Table 3.1: Test results of running DRM on ONOS

Test case 1 details Source: switch 09, Destination: switch 04, Bandwidth: 50

Resource setup ONOS returns two paths between 09–04

Path 1: 09-08-04: average usage / availability ratio: 102/600,

Path 2: 09-29-04: average usage / availability ratio: 102/270

Expected result Path 1 with the least average ratio

Actual result An intent was created for Path 1

Test case 2 details Source: switch 00, Destination: switch 31, Bandwidth: 50

Resource setup ONOS returns two paths between 00–31

Path 1: 00-04-31: average usage / availability ratio: 102/200

Path 2: 00-02-31: average usage / availability ratio: 102/600

Expected result Path 2 with the least average ratio

Actual result An intent was created for Path 2

Test case 3 details Source: switch 04, Destination: switch 12, Bandwidth: 50

Resource setup ONOS returns one path between04-12

Path 1: 04-29-15-12, all links are >=100

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

89

Expected result Path 1 should be returned

Actual result An intent was created for Path 1

It should be emphasized that the approach that implemented DRM in the Floodlight controller was

ad-hoc, self-explored, and did not add value for reuse. Our proposed solution is systematic, it

allows developers to concentrate efforts on the application development, it encourages modular

designs, and facilitates software reuse. The selection of the DRM application is specifically to

demonstrate the generality of the proposed platform.

3.6.2 Prototype of CEVNE LiM application

The realization of CEVNE LiM is presented in detail in chapter 5 named Realization of CEVNE

virtual link embedding, which consists of the heuristic algorithm for the virtual link embedding

process, and the realization of the heuristic algorithm using the proposed architecture presented in

section 3.3 of this chapter. Please refer to chapter 5 for further detail.

3.7 Summary

In this chapter, the research objective is to investigate and to propose a mechanism to provision

users’ network requests in a systematic and modular way. The proposed architecture for extended

SDN applications and custom 5G core services are presented, which is based on MSA, MS design

patterns, and the three-tier architecture. For extended SDN applications, the proposed architecture

is based on SDN architecture, SDN controller core services, and the SDN controller platform. The

prototype, which is the realization of the DRM application, showed that the proposed architecture

is appropriate, effective, realizable and practical for extended, business-like network applications

for SDN networks. For custom 5G core services, the research is based on 5G core networks and

infrastructure, and 5G core services.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

9.

CHAPTER 4 CONGESTION-AWARE ENERGY-

AWARE VIRTUAL NETWORK EMBEDDING

The previous chapter objective was to investigate and develop a novel architecture to realize

extended SDN applications, which is based on MSA and the three-tier architecture. The proposed

three-tier architecture for extended SDN applications is built on top of SDN controllers using

emerging MSA and MS design patterns, domain driven design, and service composition on the

OSGi platform, which is used to deploy SDN controller.

This chapter objective is to investigate and to develop novel mechanisms for resource optimization

in NV in cloud data centers. The research aim is to investigate and to build a novel mathematical

program for the VNE that focuses concurrently on multiple objectives of saving cost, saving energy

and congestion avoidance, which is called CEVNE. The concurrent objectives are selected as they

are among the main factors of an optimally operational environment in substrate networks; the

testbed is based on the leaf-spine fabric for cloud data centers. The chapter roadmap is presented

in Figure 4.1.

Figure 4.1: The roadmap of chapter 4

In this chapter, section 1 presents the overview of the novel CEVNE; section 2 presents the CEVNE

problem statement that consists of problem definition, problem formulation with multiple

objectives, constraints, and enabling technologies of SDN and SR; section 3 presents novel

CEVNE heuristic solutions with node embedding, link embedding, and the integrated algorithms;

section 4 presents the performance evaluation: CEVNE congestion control objective is beneficial

in scarce-resource, near-congestion networks; and CEVNE node embedding performance results;

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

91

and section 5 summarizes the chapter. The CEVNE research work has been published in the

IEEE/ACM Transaction on Networking, Vol. 28, Issue 1, Feb. 2020, pp 210-223.

What is new in the solution?

SDN brings the changes to network virtualization in almost three areas as follows: the substrate

network is an SDN network, the SDN network paradigm will enhance to the node and link

embedding processes, and the network operation facilitates the node and link embedding processes

with the flexibility that SDN offers.

In this chapter, we concentrate on all three aspects although the focus is on the resource allocation

optimization. The solution focuses concurrently on three objectives: cost saving, energy saving and

congestion avoidance. The research investigates the multi-objective optimization problem and

applies the rules to generate the pareto-optimal solutions for multi-objectives (Cohon (1978) and

Williams (2013)). The problem formulation of the CEVNE problem is as follows: formulating each

objective, formulating the combined objective of the problem, in which the weighting method with

positive weights is applied to the cost saving and energy saving objectives, and the constraint

method with binding constraint is applied to the congestion control objective. The novelties also

lie in the nodes and link embedding algorithms, and the applying the congestion ratio using the

hose traffic demand model (Oki 2012). In the evaluation, the results show that the congestion

avoidance objective is beneficial in the embeddings of near-congestion scenarios. In normal

scenarios, the CEVNE NoM outperforms in runtime by 50% and in energy saving by 20%

compared to the State-Of-The-Art.

4.1 CEVNE Overview

Table 4.1 presents all the notations used in section 4.1 except the sub-section about the max of

congestion ratio.

Table 4.1: Notations and their explanations

𝑮𝑺 = (𝑵𝑺, 𝑬𝑺)	 the substrate network modelled as an undirected graph G" with
substrate nodes N" and substrate links E"

𝑮𝑽 = (𝑵𝑽, 𝑬𝑽)	 the virtual network request modelled as an undirected graph G$ with
virtual nodes N$ and virtual links E$

𝒏𝒔	 a substrate node, n& ∈ N"
𝒆𝒔	 a substrate link, e& ∈ E"
𝒄(𝒏𝒔)	 the CPU capacity of n& ∈ N"

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

92

𝒃𝒘(𝒆𝒔)	 the bandwidth capacity of e& ∈ E"
𝒏𝒗	 a virtual node, n(∈ N$
𝒆𝒗	 a virtual link, e(∈ E$
𝒃(𝒆𝒗) the bandwidth demand of e(∈ E$
𝒄(𝒏𝒗)	 the CPU demand of virtual node n(∈ N$
𝒃𝒘(𝒆𝒗)	 the bandwidth demand of e(∈ E$
𝑹𝑵(𝒏𝒔)	 the CPU residual capacity of n& ∈ N" after n& embeds virtual nodes of

several VNRs
𝑷𝑺	 all substrate paths in G"
𝒑𝒔(𝒔, 𝒕)	 all substrate paths between nodes s and t; s, t ∈ N", p&(s, t) ∈ P"
𝒑𝒔(𝒆𝒔)	 all substrate paths passing substrate link e& ∈ E"; p&(e&) ∈ P"
𝑴:𝑮𝑽 → 𝑮𝑺	 the embedding of the VNR onto the substrate network
𝑴 = (𝑴𝑵,𝑴𝑳)	 the embedding process consists of node embedding M+ and link

embedding M,
𝑹𝒓𝒆𝒗(𝑮𝑽) The revenue received when the VNR G$ is embedded.
𝑹𝑬(𝒆𝒔)	 the residual bandwidth of substrate link e& after e& embeds virtual

links of several VNRs.
𝑹𝑬(𝒑𝒔(𝒆𝒔))	 the bandwidth residual of substrate path p& is equal the minimal residual

bandwidth of substrate links connecting into the path p&(e&):
R0(p&(e&)) = min

1!∈3!
R0(e&)

𝒃𝒘(𝒆𝒗, 𝒆𝒔)	 the bandwidth of e& ∈ E" allocated to e4 ∈ E5
𝒊	 the index of virtual links, 1 ≤ i ≤ |E$|
𝒃𝒘(𝒆𝒗𝒊) The bandwidth demand of virtual link ith e(7
𝒇𝒖𝒗𝒊 	 the flow of virtual link i on the substrate link (uv) ∈ E"
𝒔𝒊, 𝒔𝒊 The ith virtual flow’s source node

𝒕𝒊, 𝒕𝒊 The ith virtual flow’s destination node
𝒄𝒘(𝒎)	 the CPU resource of substrate node m ∈ N" allocated to virtual node

w ∈ E$
𝒓	 the network congestion ratio
𝑹	 the maximal congestion ratio, which is the upper bound of r
𝒙𝒖𝒗	 a binary variable equal to 1 if ∑ Pf:(7 + f(:7 S > 07 , otherwise 0
𝒚𝒏𝒖𝒗	 a binary variable equal to 1 if ∑ Pf:<7 + f<:7 S > 0	or∑ Pf(<7 + f<(7 S > 077 ,

otherwise 0
𝜹	 a very small positive number to prevent dividing by 0
𝝁(𝒏𝒗)	 meta node of virtual node n(∈ N$ has unlimited CPU resources
𝜴(𝒏𝒗)	 the cluster of virtual node n(∈ N$
𝑵𝑺𝟏	 the set of substrate nodes and meta nodes

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

93

𝑬𝑺𝟏	 the set of substrate links and meta links

4.1.1 The Virtual network embedding problem

4.1.1.1 Substrate networks and virtual networks

A	substrate	network	(SN)	is	modelled	as an undirected graph 𝐺R = (𝑁R, 𝐸R). Each substrate node

𝑛" ∈ 𝑁R has a CPU capacity 𝑐(𝑛"); each substrate link 𝑒" ∈ 𝐸R has a bandwidth capacity 𝑏𝑤(𝑒").

Users send a virtual network request (VNR) to a service provider to acquire a virtual network (VN).

A VN is modelled as 𝐺S = (𝑁S , 𝐸S). Each virtual node 𝑛2 ∈ 𝑁S has a CPU demand 𝑐(𝑛2); each

virtual link 𝑒2 ∈ 𝐸S has a bandwidth demand 𝑏𝑤(𝑒2). Figure 4.2 presents an example of the VNE

process (Fischer et al. 2013). Two VNs: VN1 and VN2 are embedded on the same SN.

4.1.1.2 The virtual network embedding

Figure 4.2: An example of the VNE process (Fischer et al. 2013)

The	VNE	is	the	embedding	of	a	VNR	onto	the	SN:	

𝑀:𝐺S → 𝐺R (1)	

There are two embedding processes, the node embedding 𝑀> and the link embedding	𝑀%:

𝑀 = (𝑀> , 𝑀%).	Within a VNR, each virtual node 𝑛2 can be embedded to only one substrate node 	

𝑛" as the virtual link 𝑒2 connecting the virtual nodes has the bandwidth demand 𝑏𝑤(𝑒2). A

substrate node can embed multiple virtual nodes belonging to multiple VNRs if it satisfies the CPU

demands. The condition to embed successfully a virtual node 𝑛2 on a substrate node 𝑛" is as

follows.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

94

𝑅>(𝑛") ≥ 𝑐(𝑛2) (2)

Similarly, a virtual link 𝑒2 is embedded successfully onto the substrate path 𝑝"(𝑒") based on the

condition as follows.

𝑅T?𝑝"(𝑒")@ ≥ 𝑏𝑤(𝑒2) (3)	

According	to	(Yu	et	al.	2008),	the	revenue	of	a	VNR	after	it	has	been	embedded	is	defined	as	

follows.	

𝑅0-2(𝐺2) = 	 4 𝑐(𝑛2) +	 4 𝑏(𝑒2)
-"∈T"

	
'"∈>"

			 (4)

The revenue of a VNR is the total of substrate resources that have been used to embed its virtual

nodes and virtual links. If the VNE supports path splittable mappings, a virtual link can be

embedded to multiple substrate paths that have their total demand bandwidth (Yu et al. 2008).

4.1.2 Overview of CEVNE multi-objectives

CEVNE is an online, two-stage coordinated VNE that focuses on the objectives: saving cost, saving

energy and avoiding congestion. As an online VNE, CEVNE embeds VNRs in real-time when they

arrive using its node and link embedding processes. Each objective is presented as follows.

4.1.2.1 Cost saving objective

CEVNE aims for a least cost solution in terms of SN resources that are used in the embedding

VNRs. CEVNE applies the load-balancing resource consumption that is proposed by Chowdhury,

Rahman & Boutaba (2012), and is expressed as follows.

min	(4
∑ fUVAA

RW(u, v) + 𝛿(X,2)∈T#

+ 4 4
cY(m)

RZ(𝑤) + 𝛿L∈>$[∈>#

)	 (5)

In the objective function (5), the first term denotes the virtual link demand load balancing over the

substrate links residual resources, the second term denotes the virtual node demand load balancing

over substrate nodes residual resources. The cost saving objective focuses on minimizing the

resource cost (5). Mijumbi et al. (2014) showed that the load balancing approach can reduce the

fragmentation in the substrate networks. Minimizing the resource cost is equivalent to maximizing

the number of VNRs embedded onto the same SN, hence, the revenue is increased. Although

ViNE-LB algorithms support splittable path mappings, CEVNE supports un-splittable path

mappings in our SDN-based link mapping algorithm, and the splittable ones are for future work.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

95

4.1.2.2 Energy saving objective

CEVNE focuses on saving energy consumption in the VNE process. This objective is implemented

by minimizing the number of active substrate nodes that embed virtual nodes in VNRs. (Fischer,

Beck & De Meer 2013), (Rodriguez et al. 2015) showed that the routers consume the major part of

the energy in the data center. Inactive nodes will operate in the sleep mode or in the low power idle

(LPI) mode (Reviriego et al. 2012) based on IEEE 802.3az. A router power consumption is

modeled as a base with no traffic load, and a dynamic component that is dependent on its active

interfaces (ports) and traffic loads. CEVNE energy saving objective is expressed using 𝑦'X2 as

follows.

min 4 4 𝑦'!
X2

'!∈>#X2∈T#

				 (6)

4.1.2.3 Congestion avoidance objective

Network congestions imply the conditions that the amount of traffic injected into the network

approaches the capacity limits of the network handling resources. They affect severely the

performance of the substrate networks and the embedded virtual networks in terms of throughput,

response time, and services completion. Different methods are investigated to control the network

congestion. The congestion-ratio minimization approach is preferred over the congestion handling

based on the link cost (Fortz & Thorup 2000) as CEVNE handles traffic on a flow basis. CEVNE

aims to avoid the network congestion by minimizing r, the congestion ratio (Medhi 2017), (Ng &

Hoang 1987).

𝑟 = max
X2\T#

(
∑ 𝑓X21 + 𝑓2X11

𝑅T(𝑢𝑣)
) (7)

The congestion avoidance objective is to minimize the congestion ratio as follows: 	

min			 𝑟 				 (8)

subject to:

4𝑓X21 + 𝑓2X1 		
1

≤ 𝑟 ∗ 𝑅T(𝑢𝑣)			∀(𝑢𝑣 ∈ 𝐸R) (9)

𝑓𝑢𝑣
𝑖 − 𝑓𝑣𝑢

𝑖 = $
𝑏𝑤%𝑒𝑣𝑖 &				𝑖𝑓	𝑢 = 𝑠𝑖

0		𝑖𝑓			𝑢 ≠ 𝑠𝑖, 𝑢 ≠ 𝑡𝑖		
−𝑏𝑤%𝑒𝑣𝑖 &				𝑖𝑓	𝑢 = 𝑡𝑖

(10)

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

96

The constraint (9) is derived from the congestion ratio (7). In constraint (9), the bound of link

resources is updated to apply the congestion ratio 𝑟 times the link capacity. Constraint (10) is the

flow conservation as follows: for an intermediate node that is not a source node or a destination

node, the total flow into the node is equal to the total flow out of that node.

4.1.2.4 The maximum congestion ratio

The	notations	presented	in	Table	4.2	are	used	only	in	this	sub-section.	

Table 4.2: Notations and their explanation related to max congestion ratio

𝑮(𝑽, 𝑬) directed network with V nodes and E links
𝑸 ⊆ 𝑽 the set of edge nodes in G
𝒄𝒊𝒋 the link capacity of substrate link (i, j) ∈ E

𝒚𝒊𝒋 the total load on substrate link (i, j) ∈ E

𝒕𝒑𝒒 the traffic demand from edge node p to edge node q; p, q ∈ Q

𝒓 the congestion ratio is calculated as the max link utilization of all

links r = max
(7B∈0)

eD"#
E"#
f

𝑻 the traffic demand matrix, ht3Fi, ∀p, q ∈ Q T = ht3Fi

𝜶𝒑 the total of out-going traffic at edge node p for all t3F

𝜷𝒒 the total of in-coming traffic at edge node q for all t3F

In	the	direct	network	𝐺(𝑉, 𝐸),		the	optimal	routing	problem	seeks	to	optimize	the	routing	of	

the	 traffic	 between	 edge	 nodes	 (𝑝, 𝑞) ∈ 𝑄	 that	 maximizes	 the	 link	 utilization	 but	 avoids	

network	congestion.	The	network	demand	is	given	by	the	traffic	demand	matrix	𝑇.	The total

traffic of incoming and outgoing at the edge node 𝑝, 𝑞 ∈ 𝑄 is constrained by 𝛼. and 𝛽`

respectively.

4𝑡.` ≤ 𝛼.,
`

	𝑝 ∈ 𝑄;	4𝑡.` ≤ 𝛽`
.

, 𝑞 ∈ 𝑄

The optimal congestion ratio, if it exists, will be used as the benchmark to set the value for R,

which denotes the maximum congestion ratio in our VNE problem. We use the hose demand model

as the traffic demand in CEVNE is almost unknown except that the total of all virtual network

traffic is limited by the substrate link capacities.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

97

4.1.2.5 Modelling techniques and solution approaches

The CEVNE programming model applies the weighting methods on the cost saving and energy

saving objectives, and the constraint method on the congestion avoidance objective as presented in

subsection 2.7.3. The CEVNE program is a MILP. Solving MILP is computationally intractable

(Amaldi et al. 2016); hence, the MILP program is relaxed to a LP, and solved using the GLPK

solver to find sub-optimal solutions for the involved objectives. The rounding algorithm in

(Chowdhury, Rahman & Boutaba 2012) is used to find the approximation values of the integer

values x and y. Our modelling techniques and solution approaches are summarized in Figure 4.3

as follows.

Figure 4.3: The summary of CEVNE modelling techniques and solution approaches

CEVNE is a multi-objective VNE problem with cost saving, energy saving and congestion

avoidance objectives. In CEVNE modelling techniques, the weighting method with strictly positive

weights, and the constraint method with the binding constraint are applied, so the CEVNE

combined programming model will generate the pareto-optimal solutions for all involved

objectives (Cohon (1978) and Williams (2013)).

4.1.3 The augmented substrate networks

CEVNE uses the augmented substrate network for the coordination of node and link mapping that

is proposed by Chowdhury, Rahman & Boutaba (2012). Each virtual node 𝑛2 is used to create a

cluster Ω(nV) of the substrate nodes that satisfy its CPU demand. A meta node 𝑚 is created for

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

98

each virtual node 𝑛2. Meta links are created between the meta node 𝑚 and all substrate nodes 𝑛"

in the cluster.

In the augmented substrate network, the total number of nodes 𝑁R* include the meta nodes 𝑚 and

the substrate nodes 𝑁R	.

𝑁R* = 𝑁R	 ∪ {𝑚 = 𝜇(𝑛2)|𝑛2 ∈ 𝑁S}	

The total number of links 𝐸R* include the meta links and substrate links 𝐸R.

𝐸R* = 𝐸R ∪ {(𝜇(𝑛2), 𝑛"), 𝑛" ∈ Ω(nV)}

4.2 CEVNE Problem formulation

4.2.1 The problem statements

It is given the substrate network (SN) with a set of 𝑁R substrate nodes, 𝐸R of substrate links, and

the set of substrate paths 𝑃R:

𝐺R = {𝑁R, 𝐸R, 	𝑃R}

Each substrate node 𝑛" ∈ 𝑁R has a CPU resource. Each substrate link (𝑢, 𝑣) ∈ 𝐸R has a bandwidth

resource.

It is given a virtual network request (VNR) demands 𝑁S virtual nodes and 𝐸S virtual links

𝐺S = {𝑁S , 𝐸S}	

Each virtual node 𝑛2 ∈ 𝑁S has a CPU demand. Each virtual link (𝑢, 𝑣) ∈ 𝐸S has a bandwidth

demand.

It is given that the VNE process consists of two processes of the node embedding and link

embedding processes. An augmented substrate network is built from the SN with 𝑁R* nodes, and

𝐸R* links.

4.2.2 The problem formulation

The CEVNE programming model applies the weighting methods on the cost saving and energy

saving objectives, and the constraint method on the congestion avoidance objective (Cohon (1978)

and Williams (2013)). The cost saving and the energy saving objectives are both related to the

embedded substrate nodes; the weighting method is applied to create a combined program for

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

99

CEVNE. Each of the objective terms is normalized to have the same ratio unit and has the base

weight applied. These two objectives form the CEVNE objective as follows.

Objective function:

minimize	(4 £
1

RW(u, v) + δ
•4fUVA 		+ 	 4 (

1
RZ(w) + δ

)	 4 xbYc(m)
b∈Z%&\Z%Y∈Z%AUV∈W%

												

+ 4 £
1

card(Nd)
• 4 	y@'

UV)
@'∈Z%UV∈W%

										 (11)

In the objective function (11), the first two terms include the costs of the virtual links and virtual

nodes that are specified as the ratios to load balance. The model selects the links and nodes with

the maximum residuals of bandwidth, and CPU resources. The last term tries to limit the ratio of

active nodes to the total number of substrate nodes to save energy, 𝑐𝑎𝑟𝑑(𝑁R) is the total number

of substrate nodes in the SN. The first two terms have been specified in formulas (5) in simple

format without considering the augmented substrate network.

For the congestion avoidance objective, to integrate with the combined model and to form the

overall multi-objective formulation, the constraint method is applied. As a constraint, the objective

does not appear in the expression of the objective function (11). The congestion avoidance

objective is transformed into a constraint by setting an upper limit 𝑅 on the congestion ratio 𝑟. This

is a binding constraint if the solution exists. Therefore, the CEVNE programming model will

generate the noninferior solutions (Cohon	1978) if they exist.

Subject to:

∑ (𝑓X21 +	𝑓2X1) 		≤ 		𝑟 ∗ 𝑅T(𝑢𝑣)1 				∀(𝑢𝑣) ∈ 𝐸R					 (12)

0 ≤ 𝑟 ≤ 	𝑅	 (13)

0 ≤ 𝑅 ≤ 1 (14)

In constraint (12), the bound of the link resources is updated to apply the congestion ratio 𝑟 times

the link capacity (Medhi 2017). Constraint (13) denotes the limit of variable r that is R as presented

in sub-section 4.1.2.4. Constraint (14) is the limit of R.

Other constraints:

𝑅>(𝑤) 	≥ 𝑥L[𝑐(𝑚)					∀𝑚 ∈ 𝑁R*\𝑁R, ∀𝑤 ∈ 𝑁R					 (15)

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

1..

4 𝑓X[1 − 4 𝑓[X1 = 			0		∀(𝑖, 𝑢) ∈ 𝑁R&\{𝑠1 , 𝑡1}
[∈>#&[∈>#&

	 (16)

4 𝑓"([
1 	–	 4 𝑓["(

1 = 		𝑏𝑤?𝑒21@
[∈>#&[∈>#&

			∀𝑖						 (17)

4 𝑓!([
1 	–	 4 𝑓[!(

1

[∈>#&[∈>#&

=	−𝑏𝑤?𝑒21@				∀𝑖					 (18)

4 𝑥L[=
[∈e(L)

1			∀𝑚 ∈ 𝑁R*	\𝑁R				 (19)		

4 𝑥L[
L∈>#&\>#

≤ 1			∀𝑤 ∈ 𝑁R									 (20)

𝑓X21 	≥ 0			∀𝑢, 𝑣	 ∈ 𝑁R*			 (21)

𝑥X2 ∈ {0,1}		∀𝑢, 𝑣 ∈ 𝑁R*			 (22)

𝑦'!
X2 	 ∈ {0,1}			∀𝑢, 𝑣 ∈ 𝑁R				 (23)

Constraint (15) ensures the substrate node CPU residual resource must satisfy the virtual node CPU

demand for the virtual node embedding (Chowdhury, Rahman & Boutaba 2012).

Constraints (16), (17) and (18) are about the flow conservation. Constraint (16) ensures that for

any internal nodes 𝑢,𝑤, which are not the source node 𝑠1 or the destination node	𝑡1, the net flow at

these nodes is 0. Constraint (17) ensures that the total flow at the source node 𝑠1 is equal to the

required bandwidth of the virtual link. Constraint (18) ensures that the total flow at the destination

node 𝑡1 is equal to the required bandwidth of the virtual link in the negative sign.

Constraint (19) and (20) ensure that in the augmented substrate network, only one substrate node

w is selected for the meta node m (Chowdhury, Rahman & Boutaba 2012).

Constraint (21) is the limit of the flow 𝑓X21 . Constraints (22) and (23) are the integer constraints of

the variable 𝑥X2 and variable 𝑦'!
X2 accordingly.

Solving the MIP is computationally intractable. Hence, the MIP is relaxed to a LP so it can be

solved in polynomial time. The MIP relaxation is carried out by changing the integer constraints

into the linear constraints. Clearly the solutions to the relaxed problem, if they exist, are only sub-

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

1.1

optimal solutions. The integer constraints (22) and (23) have been relaxed into the linear constraints

as in formulas (24) and (25).

0 ≤ 𝑥X2 	≤ 1					∀𝑢, 𝑣 ∈ 𝑁R*						 (24)

0 ≤ 	𝑦'!
X2 	≤ 		1		∀𝑢, 𝑣 ∈ 𝑁R								 (25)

Solving the relaxed LP will give sub-optimal solutions if they exist. A heuristic algorithm is

required to find the approximation for the integer variables of the original MIP.

4.2.3 CEVNE’s enabling technologies

CEVNE’s enabling technologies are Software-defined networks (SDN) and Segment Routing (SR)

that are presented in chapter 2, section 2.1. Both SDN and SR technologies facilitate the routing

on the substrate network at both coarse-grained and fine-grained levels, thus, empower the

embedding process.

4.2.3.1 Software-defined networks

The CEVNE investigates the VNE problem in SDN networks. The SDN architecture includes three

layers as follows: the data layer consists of Openflow (OF) network devices, the control layer

includes SDN controllers, and the application layer consists of applications built on top of the

controller. Recently SDN has been applied to traffic engineering (TE) because of its ability to steer

the network traffic at both coarse-grained and fine-grained levels (Lee & Sheu 2016).

CEVNE exploits SDN TE solutions in addressing the congestion control objective. Based on the

SDN programmability, the virtual link embedding process is realized as a composite service on top

of the SDN controller. For routing, OF switches store flow rules in their TCAM. As TE routing

algorithms would result in a large number of flow rules in SDN switches, a huge amount of

expensive TCAM memory is required. Segment routing protocol is deployed to reduce the memory

requirement.

4.2.3.2 Segment routing

Segment routing (SR) is a source routing protocol that allows the packets to be forwarded with

minimal retaining of the network states. In SR, a source node specifies the traversal path for a

packet in its header using a list of labels or segment identifiers (SID). In SR, routers along the path

do not need to store routing rules in the routing tables, they only need to process the labels using

simple pop, push or continue operations. SR allows alternative paths between the two nodes. In an

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

1.2

SDN network, SR replaces the flow rules in the TCAM memory with the list of SIDs in the packet

header, leading to a reduction in TCAM storage costs. SR also speeds up the process of changing

routes or adding new routes to the network (Lee & Sheu 2016). CEVNE exploits the flexibility,

agility, programmability of SDN and SR in addressing the congestion control issue in our virtual

link embedding solution.

4.3 CEVNE Algorithms

4.3.1 CEVNE node embedding algorithm

The CEVNE node embedding algorithm (CEVNE NoM) solves the relaxed LP to find the sub-

optimal solutions (SOPS) in polynomial time if they exist. The relaxed LP is solved with the GLPK

in the Alevin framework. In the SOPS, the variables may take on linear values as their integer

constraints have been relaxed. The D-ViNE rounding algorithm (Chowdhury, Rahman & Boutaba

2012) is used to convert back these linear values to integer values, approximating the integer

variables of the original MIP problem. As the CEVNE has been formulated based on the rules to

generate noninferior solutions, the SOPS and their approximations reflect the trade-offs between

three objectives.

The input to the CEVNE NoM, which is presented in Figure 4.4, is the CEVNE mathematical

model that combines the three objectives, then is relaxed to a LP; the augmented substrate network

as presented in section 4.1.3, and the value of R (line 2 - 4). Each virtual node is used to create a

cluster of substrate nodes based on CPU demands (line 9 - 11) (Chowdhury, Rahman & Boutaba

2012). GLPK is invoked to solve the CEVNE relaxed formulation (line 12). GLPK returns the sub-

optimal solutions, if they exist, with values of (linear and relaxed) variables, and the sub-optimal

values of each objective. The approximation for the integer variable x is calculated using the

rounding function (line 14), which is in D-ViNE algorithm (Chowdhury, Rahman & Boutaba

2012). In the rounding function, the virtual node’s cluster is used to find the substrate node with

the highest weight. The weight is calculated as a product of the value of x and the total flow passing

the meta link in both directions. The CEVNE NoM returns the embedded substrate nodes of virtual

nodes in the VNR.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

1.3

Figure 4.4: CEVNE node embedding algorithm

1 Input
2 CEVNE objective, is relaxed
3 The augmented substrate network
4 The value of R
5 Output
6 The embedded substrate nodes
7
8 Begin
9 For virtual node n(in N$
10 Create a cluster for virtual node n(
11 End for
12 Solve the CEVNE formulation using GLPK
13 // the rounding function
14 Applying only the rounding function in D-VINE
15 Return the embedded substrate nodes
16 End

Figure 4.5: CEVNE link embedding algorithm

1 Input
2 Virtual link (i, j) ∈ E$, its bandwidth demands
3 Embedded nodes (u, v) ∈ E", the bandwidth capacities
4 Output
5 Embedded substrate paths p:,(∈ P" for virtual link (i, j)
6
7 Begin
8 Retrieve shortest path between (u, v) assign to P:,(;
9 path = select_path(P:,();
10 If path is not empty
11 Return path;
12 End if
13 Retrieve other paths between (u, v),
14 sort them by length, assign to P:,(;
15 path = select_path (P:,();
16 If path is not empty

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

1.4

17 Return path;
18 Else alert “all paths are congested”
19 Exit with failure
20 End if
21 End
22 Function select_path (P:,()
23 For each p:,(∈ P:,(
24 If p:,(is not congested
25 Return p:,(
26 End if
27 End for
28 End function

Figure 4.6: CEVNE algorithm

	
1 Input:
2 substrate network topology
3 virtual network topology
4 virtual node CPU demands
5 substrate node CPU capacities
6 virtual link bandwidth demands
7 substrate link bandwidth capacities
8 Output:
9 A virtual network for a VNR
10 Begin
11 invoke CEVNE node embedding algorithm
12 if VNR is rejected, exit
13 invoke CEVNE link embedding algorithm
14 if VNR is rejected, exit
15 register active nodes into the active-node registry
16 for substrate node n ∈ N"
17 residualE3:(n) = resourceE3:(n) − 	demandE3:(n)
18 end for
19 for substrate link l ∈ E"

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

1.5

20 				residualHI(l) = resourceHI(l) − 	demandHI(l)
21 end for
22 set inactive substrate nodes to sleep mode
23 End

4.3.2 CEVNE Link embedding algorithm

The CEVNE link-mapping algorithm (CEVNE LiM) embeds the virtual links on top of the

substrate paths that satisfy the demands and the three objectives. CEVNE LiM utilizes the path

services in the SDN controller, and the monitor application to actively select the best path for each

virtual link in the VNR. CEVNE LiM is presented in Figure 4.5.

The inputs of CEVNE link embedding algorithm are the virtual links in the VNR, and the

embedded substrate nodes (line 2 –3). At first, the path service is invoked to retrieve the shortest

paths between nodes (𝑢, 𝑣) (line 8). The select path function is called to return the first non-

congested path among the shortest paths (line 11), the CEVNE LiM returns with a success status.

Otherwise, the path service is invoked with a different weight to retrieve another set of paths

between nodes (𝑢, 𝑣) (line 13-14). They are sorted by the path length. The select path function is

called to return the first non-congested path (line 15) among the second set of paths, the CEVNE

LiM returns with a success status (line 17). Otherwise, an alert is sent to the operator, and the

function exits with a failure status (line 18 - 19).

This process is repeated for every virtual link in the VNR. If the embedding has failed on a virtual

link, the VNR is rejected. The select path function reflects the monitor application checking for

congestion on a substrate path (line 22 – 28).

4.3.3 CEVNE embedding algorithm

The CEVNE algorithm includes the CEVNE NoM algorithm and CEVNE LiM algorithm as

presented in Figure 4.6. A registry is used to keep track of the active nodes of each VNR. Inactive

nodes are filtered using the SDN topology service and are put in sleep mode. First, CEVNE NoM

is invoked (line 11). If it is failed, the VNR is rejected (line 12). Otherwise, CEVNE LiM is invoked

(line 13); if it is failed, the VNR is rejected (line 14). Otherwise, after each VNR is embedded

successfully, the registry keeps track of the active nodes of both the NoM and LiM processes (line

15). The CEVNE algorithm operates in a virtualization platform that will keep track of VNRs that

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

1.6

have been processed. The residual resources of substrate nodes are calculated (line 16 - 18), so are

the residual resources of substrate links (line 19 - 21). Finally, inactive nodes are set to the sleep

mode (line 22).

4.4 Performance evaluation of CEVNE node embedding

In this section, we focus on the evaluation of the CEVNE NoM process. Firstly, the evaluation

setup is presented; secondly, the near-congestion scenarios are presented, in which resources are

scarce and CEVNE congestion control is beneficial	 to	 the	 VNR	 embedding; and lastly, the

simulation and test scenarios used to evaluate the CEVNE NoM process is presented.

4.4.1 CEVNE evaluation setup

To set up the evaluation for CEVNE, the Alevin framework (Beck et al. 2014) is used as a

simulation tool to generate network topologies for both SNs and VNs; and generate network

resources and demands for these network elements.

4.4.1.1 Topology generation

Waxman method is used to create SN and VN topology. First, it creates nodes and their

coordination in the topology graph. Whether a network link exists between any two nodes is

determined by their distance, the values of 𝛼 and 𝛽 in the probability 𝑃 that is calculated as follows

(Hesselbach et al. 2016).

𝑃(𝑢, 𝑣) = 𝛼 ∗ exp ≠−
,

f∗,)*+
Æ						 (26)

𝑃(𝑢, 𝑣) is the probability that a connection of two nodes 𝑢, 𝑣	is established, d is the Euclidian

distance between 𝑢, 𝑣; the 𝑑bhi is the max Euclidian distance between any two nodes. All SN

and VN are directional.

For the evaluation, two SNs are set up, a large 50 nodes, and a small 25 nodes. Three types of

topologies are designed for each SN based on values of 𝛼 and 𝛽: simple (S), moderate (M) and

complex (L); they are applied for large and small SNs. Both SNs and VNs use the same values of

𝛼 and 𝛽. Table 4.3 and Table 4.4 present the parameters of the 50-node network and the 25-node

network and their VNs.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

1.7

Table 4.3: Three topologies of the 50-node network

 Substrate networks Virtual networks
50-node 𝛂, 𝛃 Links 𝛂, 𝛃 Nodes Layers Links

Simple (S) 0.5
0.5

1000-1100
0.5
0.5

9 4-6 30-40

Moderate (M)
0.75
0.75

1300-1400
0.75
0.75

9 4-6 50-60

Complex (L)
1.0
0.5

1500-1600
1.0
0.5

9 4-6 65-75

Table 4.4: Three topologies of the 25-node network

 Substrate networks Virtual networks

25-node 𝛂, 𝛃 Links 𝛂, 𝛃 Nodes Layers Links

Simple (S) 0.5
0.5

245-275
0.5
0.5

5 4-6 5-9

Moderate
(M)

0.75
0.75 320-340

0.75
0.75 5 4-6 10-14

Complex
(L)

1.0
0.5 420-450

1.0
0.5 5 4-6 16-20

The size of the substrate networks is selected 25 nodes and 50 nodes; the size of the virtual

networks is selected as 5 virtual nodes and 9 virtual nodes. These figures are selected after several

pre-tests to ensure that virtual networks can be created in the not nearly congested cases to facilitate

the measurements of metrics that are related to three objectives: cost saving, energy saving and

congestion avoidance.

4.4.1.2 Resource and demand generation

Alevin framework generates resources and demands randomly within a specified range of the

minimum and maximum values. The load r is calculated based on the max resource and max

demand (Hesselbach et al. 2016) as follows.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

1.8

𝐷bhi = 	𝜌 ∗ 𝑅bhi ∗ 	≠ S
j∗S,

Æ			 (27)

𝐷bhi is the max demand value, 𝑅bhi is the max resource value, 𝑉 is the number of substrate

nodes in the SN, 𝑘 is the number of VNs in a VNR, which is specified as the layers in the range

[4-6], and 𝑉j is the number of virtual nodes in each VN; it is assumed that 𝑉j is the same in all

VNs in a VNR. To examine the effects of the load on the CEVNE NoM performance, different

values of ρ (from light to heavy load) are used in different test cases.

Three types of load are designed based on virtual links bandwidth demands: light load (S), medium

load (M) and overloaded (L). The rest of the parameters, CPU resources and CPU demands are the

same for all load types. Table 4.5 presents each type of load based on resources and demands; the

unit of CPU resource is GHz; the unit of bandwidth resource is Gbps.

Table 4.5: Resource and demands

 Substrate network Resources Virtual networks Demands

 CPU BW CPU BW
 min/max min/max min/max min/max

Simple (S) 10 / 20 60 / 70 1 / 5 5 / 10
Moderate (M) 10 / 20 60 / 70 1 / 5 10 / 15
Overloaded (L) 10 / 20 60 / 70 1 / 5 15 / 20

4.4.1.3 The congestion ratio parameter

The evaluation networks are varied randomly to ensure the fairness and completeness of the

evaluation, so 𝑅 is calculated using a test network provided in (Oki 2012). It is a dense network (6

nodes and 12 links) with 𝛼. and 𝛽. are set to the value: ∑ 𝑡.` = 𝛼.; ∑ 𝑡.` = 𝛽`.` ; the traffic

demand matrix (on the left) and the traffic capacity matrix (on the right) are as follows.

0 35 35
35 0 35
35 35 0

			
35 35 35
35 35 35
35 35 35

0 100 100
100 0 100
100 100 0

			
100 0 100
100 100 100
0 100 0

35 35 35
35 35 35
35 35 35

			
0 35 35
35 0 35
35 35 0

100 100 0
0 100 100
0 100 0

			
0 100 100
100 0 100
100 100 0

	

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

1.9

The	result	of	the	optimal	routing	ratio	in	the	above	traffic	and	capacity	matrices	is	0.875;	it	

is	used	as	a	benchmark	to	estimate	the	value	of	𝑅	such	that	0 ≤ 𝑅 ≤ 1.	The	selected	value	R	

is	close	to	its	upper	bound,	so	it	does	not	affect	the	acceptance	ratio. We select R=0.945, so it

does not violate the bandwidth capacity of the edge; as such, our test results are non-biased. As 𝑅

is the optimal value of the congestion ratio, we ensure it is never the case that 𝑅 > 1.

4.4.1.4 The simulation environment and scenario generators

Alevin framework is used to generate test scenarios. Each test scenario includes the SN parameters,

VN parameters, resource and demand parameters, and the node and link mapping algorithms. Each

test scenario is designed as one experiment in Alevin framework with 9 different test cases (three

seed values and three-layer values).

4.4.2 Challenging and near congestion experiments

4.4.2.1 The design of near-congestion or challenging scenarios

The network congestion is caused by node congestion, link congestion and both node congestion

and link congestion. Node congestion occurs where the node demand is close to the node capacity.

Similarly, link congestion occurs when the link demand is close to the link capacity. In VNE,

network congestion is caused by incoming VNRs with virtual node demands, virtual link demands

and virtual network topologies. Therefore, the challenging and near congestion experiments are

designed so that a node congestion can occur when the condition is met as follows.

total CPU demand=total CPU resource;

a link congestion can occur when the condition is met as follows.

total bandwidth demand = total bandwidth resource;

and in both node and link congestion with the VN topology having many links, the SN topology

having fewer links. Hence, challenging and near-congestion experiments are designed with VNRs,

which are very difficult to be embedded successfully onto the SN.

4.4.2.2 Introduction of Approximate resource scarcity concept

ARS is introduced as a quantitative measurement to show how close is a VN demand compared to

a SN resource (Fischer 2016). ARS consists of node scarcity and link scarcity as follows.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

11.

For a mapping (𝑀, (𝑁1)1J*,..,') with each VN: 𝑁1 = (𝑉1 , 𝐸1 , 𝑤): 𝑉1 are virtual nodes, 𝐸1 are virtual

links, w is the demand; and SN: 𝑀 = (𝑈, 𝐹, 𝑤), 𝑈 are substrate nodes, 𝐹 are substrate links, and

w is the resource. ARS of an experiment is defined by a vector (x, y) that are the ratios of total

demands over total resources: x is node scarcity, y is link scarcity; (x, y) is presented as the

coordination in the scarcity map (Fischer 2016):

𝑥 =4
𝑤(𝑉1)
𝑤(𝑈)

							𝑦 =4
𝑤(𝐸1)
𝑤(𝐹)

				
'

1J*

'

1J*

4.4.2.3 Network parameters in challenging scenarios

We transfer the ARS into parameters in the Alevin framework to set up near-congestion

experiments for both algorithms CEVNE and D-ViNE-LB (Chowdhury, Rahman & Boutaba

2012). In Table 4.6, challenging and near-congestion experiments are set up on 25-node networks,

the VN topologies are set up with 𝛼 = 0.75, 𝛽 in [0.70 - 0.85]. The algorithms are CEVNE NoM

and k-shortest path, and D-ViNE-LB and k-shortest path. Two sub-categories are identified in near-

congestion scenarios as follows.:

(i) Most-scarce resource (MSR) category with a simple-topology SN 𝛼 = 0.5 and 𝛽 = 0.3; a

greedy topology VN 𝛼 = 0.75;	𝛽 =	0.70, 0.75;

(ii) Less-scarce resource (LSR) with average-complexity SN 𝛼 = 0.5 and 𝛽 = 0.6, greedy and

complex topology VN 𝛼 = 0.75 and 𝛽 =	0.80; 0.85. Although VNs are more complex than the

MSR, the SN topology is also more complex: we must increase 𝛽 from 0.3 to 0.6 in the SN,

otherwise, it is too hard to complete successfully any VNRs.

Table 4.6: The design of near congestion scenarios

Substrate network: 25 nodes, α = 0.5, β = 0.3 →160-170 links; β =0.6 →	270-280 links,
bidirectional.
Virtual networks:
7 nodes, 5 layers, α = .75, β in [0.70-0.85] → [28-34] links/VN, bidirectional.
Substrate node: CPU resource in [10-20]
Virtual node: CPU demand in [5-20]
Substrate link: bandwidth resource in [60-70]
Virtual link: bandwidth demand in [20-35]
Embedding algorithms:
Node embedding: CEVNE NoM algorithm; link embedding: k-shortest path

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

111

Node embedding: ViNEYARD algorithm; link embedding: k-shortest path

Experiments in the MSR and LSR categories are tested repeatedly in the pre-defined time window,

and only successful ones, which have acceptance ratio > 0, are recorded; their ARSs are shown in

the ARS map (Fischer 2016) for both algorithms, CEVNE and D-ViNE-LB.

In the test results, CEVNE successful embeddings in each category are always double to three

times D-ViNE-LB successful embeddings. The number of CEVNE successful embeddings in the

MSR category is about 60% of the total number of CEVNE successful embeddings in LSR

category. This holds true for D-ViNE-LB as well although its number of successful embeddings is

far less than CEVNE. The results also show the effects on VNE of the network topology, and the

random allocation of resource and demands that can only be measured on a case-by-case basis.

The results of experiments for two categories and their algorithms are shown in Figure 4.7 with

each experiment ARS vector (x, y) calculated as in (27). Figure 4.8 displays the results in the whole

ARS map for a global view.

4.4.2.4 Evaluation results of challenging scenarios

Figure 4.7: Node and link scarcity of near congestion experiments (Fischer 2016)

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

112

Figure 4.8: Showing experiment results in ARS map (Fischer 2016)

(i)The MSR embeddings (including blue and magenta symbols) have their node scarcity in the

range 0.8 to 1, and the link scarcity in the range 0.3 to 0.45. SN is directional so the actual link

scarcity is from 0.6 to 0.9. This is very close with the “hard” area in (Fischer 2016).

(ii) The LSR embeddings (including red and black symbols) have their node scarcity in the range

0.8 to 1.05 and link scarcity in the range 0.2 to 0.28; as the SN is directional, it is actually from 0.4

to 0.56, which is matched with the survey that D-ViNE-LB link scarcity is 0.4-0.5 in (Fischer

2016). The result showed CEVNE NoM algorithm outperforms D-ViNE-LB algorithm in nearly-

congestion, scarce-resource networks.

4.4.3 The node embedding evaluation results

CEVNE NoM algorithm is evaluated against D-ViNE-LB algorithm by running experiments,

recording and analysing results in metrics. As both are node-mapping algorithms, a common link-

mapping algorithm is used for the evaluation purposes. The Eppstein algorithm (Eppstein 1998)

for k-shortest path is selected as it matches with the testing scenario of 50-node or less SNs. Results

of the evaluation are collected in metrics that are related to the CEVNE objectives as follows:

(i) the runtime and cost / revenue metrics are used to justify the cost saving objective,

(ii) the average active-node stress metric is used to justify the congestion avoidance objective,

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

113

(iii) the running nodes metric is used to justify the energy saving objective; and acceptance ratio is

used for overall performance.

Each metric is collected for both 50-node and 25-node SNs, three types of loads S, M and L. The

result of a test scenario is presented in a boxplot. In the boxplot, the central mark is the median,

two top edges are the 25th and 75th percentiles, outliers are displayed separately. Each boxplot is

named by its topology (the first letter) and load (the second letter). For example, LL specifies the

large topology (50 node) and overloaded.

Figure 4.9 presents an example of the two boxplots (one for CEVNE, another for D-ViNE-LB) for

runtime of 50-node, overloaded network.

Figure 4.9: an example to explain runtime result of CEVNE and VINE algorithms

4.4.3.1 Runtime

The runtime results in Figure 4.10 and 4.11 show that CEVNE NoM converged faster than D-

ViNE-LB algorithm: CEVNE’s total runtime is improved by 50% compared to D-ViNE-LB’s. This

is explained using the Simplex method as follows: CEVNE introduces more explicit constraints,

so the search space is more confined, and hence it found solutions quicker. Figure 4.10 shows the

runtime of 50-node network in all topologies and all workloads.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

114

Figure 4.10: Total runtime of 50-node network

Figure 4.11 shows the results of the runtime metric of 25-node network in all topologies and all

workloads.

Figure 4.11: Total runtime of 25-node network

4.4.3.2 Average active node stress

The average active node stress is calculated by dividing the total number of embedded virtual nodes

by the number of active substrate nodes. CEVNE objective function puts a limit on the bandwidth

usage to avoid congestion: virtual flows will only use R value multiplied by the max bandwidth;

this implies that virtual node mappings are arranged tightly for virtual flows to meet the constraints

on the limit bandwidth resources. Therefore, CEVNE average active node stress will be higher as

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

115

in Figure 4.12 that shows the results of 50-node network in all topologies and all workloads. Figure

4.13 shows the average active node stress of 25-node network in all topologies and all workloads.

4.4.4 Energy consumption

Figure 4.12: Average active node stress of 50-node network

Figure 4.13: Average active node stress of 25-node network

4.4.4.1 Energy consumption

The running nodes metric is used to evaluate the energy consumption of CEVNE against D-ViNE-

LB: the algorithm with less running nodes will consume less energy. The test results in Figure 4.14

show that the number of running nodes in CEVNE is always less than in D-ViNE-LB. In 50-node

network, CEVNE always has 10 running nodes less than D-ViNE-LB; this means CEVNE

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

116

consumes 20% less energy. Figure 4.14 shows the results in 50-node networks with all topologies

and all workloads.

Figure 4.14: Running nodes in 50-node network

Figure 4.15 shows the results of the running nodes in 25-node networks with all topologies and all

workloads.

Figure 4.15: Running nodes in 25-node network

4.4.4.2 Acceptance ratio

The acceptance ratio is the ratio of virtual networks that have been embedded successfully on the

substrate network. The acceptance ratios of both algorithms are very similar in both 50-node and

25-node networks.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

117

4.4.4.3 Total costs

The total cost is calculated based on the substrate resources that are used for the VNE; it does not

include the energy cost. The total costs of both algorithms are very similar in both 50-node and 25-

node networks. Through the analysis of the above metrics: runtime, average active node stress,

running nodes, total cost and acceptance ratio, CEVNE NoM prevails over D-ViNE-LB in all three

objectives: congestion-aware, energy-aware and cost saving.

4.5 Summary

In this chapter, the research objective is to investigate and to propose a novel mathematical model

for a multi-objective VNE. A congestion-aware energy-aware VNE (CEVNE) is proposed with the

purpose to minimize network resource costs, avoid network congestion, and minimize energy

usage. Its substrate network is an SDN network running SR. The congestion avoidance is

implemented by setting the upper limit R for the congestion ratio, in which R is calculated using

the hose model of the routing and traffic demand models (Oki 2012). As a coordinated node and

link embedding VNE, CEVNE, is formulated as an MIP program, then it is relaxed to an LP, and

solved by the GLPK solver. The CEVNE node-embedding algorithm applies the rounding function

to find the approximation of the integer variables for the sub-optimal solutions. The evaluation on

near-congestion, scarce-resource networks shows that the CEVNE congestion control objective is

useful: the number of its successful cases is double the number of D-ViNE-LB. The overall

evaluation of the node embedding process shows that CEVNE delivers concurrently the saving-

cost, the congestion-aware and the energy-aware objectives. The result of this chapter will be

extended to the CEVNE link embedding process in the next chapter.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

118

CHAPTER 5 REALIZATION OF CEVNE VIRTUAL

LINK EMBEDDING

The objective of previous chapter was to investigate and propose a novel mathematical model for

the virtual network embedding that focuses concurrently on multiple objectives: saving cost, saving

energy and avoiding congestion, called CEVNE. As solving the VNE is NP-Hard (Rost & Schmid

2018), the embedding algorithms are designed as a heuristic approach for the node embedding and

link embedding processes to find the sub-optimal solutions in polynomial time.

This chapter objective is to investigate and propose the novel mechanism to realize CEVNE link

embedding process, which will be an active process that focuses on multiple objectives: cost

saving, energy saving and congestion avoidance, as the node embedding process does. The

realization of the novel link embedding algorithm is an extended SDN application that integrates

each objective as an application / service and uses a monitoring function in real-time. The

realization application is deployed on the SDN substrate network running SR. The roadmap of the

chapter is presented in Figure 5.1

Figure 5.1: The roadmap of Chapter 5

In the chapter, section 5.1 presents the motivation for a novel heuristic solution with a short revision

of CEVNE problem formulation in chapter 4 named Congestion-aware energy-aware virtual

network embedding, section 5.2 presents the novel architecture to realize the CEVNE LiM process,

section 5.3 presents the novel CEVNE LiM algorithm and its realization on the SDN controller,

section 5.4 presents the performance evaluation, and section 5.5 summarizes the chapter.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

119

The proof of concept of the research with title “Realization of congestion-aware energy-aware

virtual network embedding” has been presented at the International Telecommunication Networks

and Applications Conference (ITNAC) 2019 in Auckland NZ on November 27th, 2019

What is new in this solution?

The novelties of the solution are summarised as follows.

ü the SDN-based heuristic algorithm.

ü the active virtual link embedding heuristic algorithm that can focus on multiple objectives: cost

saving, energy saving and congestion avoidance as the node embedding algorithm does.

ü The realization of the virtual link embedding using the three-tier architecture, micro-service

architecture and micro-service design patterns: service creation, service registration and

service discovery

ü The realization on an SDN substrate networks, which is a leaf-spine fabric running segment

routing with an in-memory routing protocol called equal cost multi path (ECMP) shortest path

graph (SPG).

5.1 Motivation for a heuristic algorithm

5.1.1 The review of CEVNE problem and solution approach

The CEVNE is a VNE problem that focuses concurrently on multiple objectives: cost saving,

energy saving and congestion avoidance. The CEVNE applies the rules of multi-objective

optimization to generate the pareto-optimal solutions using the positive weights and the binding

constraints to combine its objectives. Solving the VNE problem is NP-hard as it relates to the multi-

way separator problem (Amaldi et al. 2016), a heuristic solution is proposed involving a two-stage

coordinated CEVNE, a node embedding process and a link embedding process. The CEVNE is

modelled as a MILP. Solving MILP is computationally intractable; hence, the MILP is relaxed to

a LP to be solved in polynomial time using the GLPK in the Alevin framework. The results are

sub-optimal solutions as the program has been relaxed to linear program. The node embedding

algorithm applies the D-VINE rounding function (Chowdhury, Rahman & Boutaba 2012) to find

the approximation of integer variables. The link embedding algorithm has been provided in section

4.3.2. In this chapter, the CEVNE LiM will be presented in more details.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

12.

5.1.2 Motivation for a heuristic virtual link embedding

The purpose of the virtual link embedding process in CEVNE is to embed virtual links in the VNR

onto the substrate links of the SN. Solving the virtual link embedding is NP-Hard as it is reduced

to the un-split-table flow problem (Fischer et al. 2013); therefore, a heuristic algorithm is required

to find the close-to-optimal solutions in reasonable time. The shortest path algorithm is utilized in

the virtual link embedding process (Fischer et al. 2013). This leads to network congestion on the

shortest paths and under-utilization elsewhere. Even the greedy approach could not provide the

solution that can integrate with network monitoring in real-time for the optimal operation

requirement. Nevertheless, applying SDN paradigm may allow the integration with any monitoring

applications, and the focus on multiple objectives based on SDN attributes: programmability,

central control, and central view.

In this chapter, the virtual link embedding heuristic algorithm is further enhanced from the virtual

link embedding algorithm in chapter 4, by applying SDN attributes and SR source routing on a

leaf-spine fabric substrate network. The technologies will empower it as an active process that

focuses on multiple objectives; each individual objective is designed as a service that can apply the

control and calculation functions of the SDN programming attribute. Additionally, SDN-based

approach will allow the link embedding algorithm to select the appropriate substrate paths based

on SDN ability to steer the network flows at fine-grained and coarse-grained levels. Therefore, the

link embedding algorithm will be realized as an SDN application on top of SDN controller.

5.2 Proposed architecture to realize CEVNE LiM

The proposed architecture to realize CEVNE LiM is based on the architecture for extended SDN

application (Pham & Hoang 2016) with the rational as follows:

ü As the substrate network is an SDN network, the CEVNE LiM process will be realized as an

application built on top of SDN controller such that CEVNE LiM can access the controller

core services to select the substrate paths for the LiM process.

ü As presenting in Chapter 3, the architecture for extended SDN application facilitates new

service creation and service composition. Each objective of CEVNE LiM is designed as one

or multiple MS as presented in chapter 2. The CEVNE LiM service is the composition of new

services, existing SDN core services, and the applications: the path calculation element (PCE)

and monitoring applications, as presented in the CEVNE link embedding algorithm in Figure

4.5.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

121

ü The realization of the CEVNE LiM will be based on a three-tier architecture with UI tier,

business tier, and database tier. The UI tier allows one to input CEVNE LiM parameters, which

are virtual link demands, and the results of CEVNE NoM process; and view CEVNE LiM

results on the web browser. The business tier encapsulates the creation and composition of

services as presented in chapter 3. The databased tier allows one to store the link residual

capacities.

The architecture to realize CEVNE LiM process is depicted in Figure 5.2. The three-tier

architecture of CEVNE LiM stays in the application layer of the SDN controller, in which the UI

tier consists of REST API and CLI, the business tier consists of new services for cost saving, energy

saving and congestion avoidance, existing SDN core services to be composed are intent API,

topology API, path management API, existing applications to be composed are SR, PCE,

monitoring application; the database tier consists of a database used to store link residual capacities.

CEVNE LiM application consists of the CEVNE LiM service, which is the integration of all

services in the business tier, multiple interfaces: CEVNE LiM Rest API and CEVNE LiM CLI,

and the database to persist data.

Figure 5.2: The architecture to realize CEVNE LiM.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

122

5.2.1 Services to handle multi-objective link embedding process

In this section, micro-services are proposed for each CEVNE LiM objective: cost saving, energy

saving and congestion avoidance. The monitoring application provides real-time status to exclude

substrate paths, which are alerted as congested. The path selection algorithm selects the substrate

path satisfying the bandwidth demand of the virtual link, and the three objectives to embed the

virtual link.

5.2.1.1 Cost saving

The path satisfying the cost saving objective is the shortest path between two endpoints satisfying

the bandwidth demand. The shortest paths can be retrieved using the path management API in SDN

core service, or the function equal cost multi path (ECMP) shortest path graph (SPG) in SR

application, the paths satisfy the bandwidth demand are selected. Figure 5.3 presents an example

of the path satisfying the cost saving objective, in which the shortest paths between two endpoints

A and B are A-S1-B or A-S2-B that satisfy the virtual link bandwidth demand. The other paths

between A and B are A-S1-C-S2-B, A-S2-D-S1-A, which satisfy the virtual link bandwidth

demand and are not shortest paths.

Figure 5.3: the example of the cost saving between A and B

5.2.1.2 Energy saving

In the simplest way, the energy saving objective is implemented based on the resilience design of

the leaf-spine fabric to steer traffic flows to the fall-back spine in case of network failure. There

are links from reserved spines to leaf nodes. To save energy, the reserved spines and their links are

put into sleep mode, they will be turned to active mode in case of emergency. The results of energy

saving objectives are substrate paths that satisfy the bandwidth demand and not in sleep mode.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

123

Figure 5.4 presents an example of a leaf-spine fabric with a resilience design, spine S3 is the

reserved one, S3 and all its links S3-A, S3-B, S3-C, S3-D, S3-E are put in sleep mode to save

energy.

Figure 5.4: an example of energy saving of leaf-spine fabric

In normal scenarios, the energy-saving algorithm looks for the least utilization spine switches and

turns them into sleep mode (Li, Lung & Majumdar 2015) that is presented in Figure 5.5 as follows.

Figure 5.5: The algorithm to inactivate a spine node

1 Begin
2 If number of inactive spine switches >= limit of inactive spine
3 keep current number of inactive spine switches and return, otherwise
4 For each spine switch, check all its link usage
5 If all link usage < the low thresh-hold,
6 Turn the spine into inactive mode, and migrate its traffic to other active spines
7 End

In the algorithm in Figure 5.5, the leaf-spine fabric has a limit on the number of inactive spine

switches to ensure the overall performance of the datacenter. If the current number of inactive spine

switches is at the limit, the algorithm just returns (line 2 – 3). Otherwise, each spine switch is

checked for all its link usage against the low threshold (line 5). If all the link usage is lower than

the threshold, the spine is set to inactive mode, and all its traffic is migrated to other active neighbor

spine switches (line 6). In reverse, when the fabric has high traffic demand, the inactive spines will

be activated to prevent congestion as presented in the algorithm in Figure 5.6.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

124

Figure 5.6: Algorithm to activate an inactive spine node

1 Begin
2 If number of inactive spine switch <=0
3 then return, otherwise
4 For each spine switch, check all its link usage
5 If all spines have link usage > the high thresh-hold
6 Change an inactive spine to the active mode, and migrate its spine neighbours

traffic to it
7 End

In the algorithm in Figure 5.6, when the number of inactive spine switches is 0, the algorithm

returns (line 2 - 3). The administrator can record how often this situation occurs as it indicates high

utilization, thus more spine switches should be added to the fabric. Otherwise, for each spine

switch, all its link usages are checked against a high threshold (line 5). If all spine switches are

utilized higher than the high threshold, then an inactive spine switch is turned to active mode. The

traffic of its active neighbor spines is migrated to it (line 6). Both algorithms in Figure 5.5 and

Figure 5.6 are working continuously to ensure the fabric performance, saving energy, and

preventing congestion.

5.2.1.3 Congestion avoidance

The congestion-aware algorithm spreads selected substrate paths that satisfy the bandwidth

demands of the virtual links on all active spine switches. It uses an internal structure to keep track

of which active spines it has allocated for virtual links to avoid using these spines again. If it has

used all active spines, then it resets the list of active spines to start the next round of embedding.

The congestion-aware algorithm might include the dynamic resource allocation algorithm to

balance the link usage and prevent fragmentation (Mijumbi et al. 2014). Initially, all substrate

resources are equal, and the fabric is symmetric. After provisioning some VNRs, the resources are

allocated to virtual nodes and links, their residual resources are different for each device. The

hypervisors and substrate links residual resources can be stored in the database. The congestion-

aware algorithm retrieves the fabric residual resources to select switches that satisfy the bandwidth

demand and have the largest resource in the active spine list. Figure 5.7 presents an example of the

congestion avoidance objective.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

125

Figure 5.7: An example of congestion avoidance in leaf-spine fabric

In Figure 5.7, the leaf-spine fabric has 3 spine nodes and 5 leaf nodes, the spine S3 and its links

(from S3 to the leaf nodes) are in sleep mode. The paths between C and D are C-S2-D and C-S1-

D, both satisfy the bandwidth demand, to avoid congestion, path C-S2-D is selected because of the

highest residual capacity.

5.2.2 Monitoring application

Integration with monitoring application is one of the strengths of CEVNE heuristic algorithms.

Several options are available as presented as follows.

ü Monitoring applications are built with P4 language. The In-band network telemetry (Kim

et al. 2016) captures states in the data plane and collects them at the sink nodes; INT

monitors real-time network operation. The Multi-route inspection application uses a field

called Explicit congestion notification (ECN) in the IP options header to record the switch

congestion state.

ü OpenNetMon network monitoring method (Tsai et al. 2018) provides an end-to-end

measurement of throughput, packet loss, latency and link utilization in the SDN network,

ü The CPMan monitoring application (Li, Koshibe & Prete 2019) exploits the Openflow

built-in statistics to monitor the link usage.

The monitor application is used to watch for highly utilized substrate paths (nearly congestion),

which will be excluded from future virtual link embedding. The results of congestion avoidance

and the monitoring application will complement each other.

Figure 5.8 captured the UI of the INT application with the traffic delays of the leaf and spine

switches at time T running on a leaf-spine fabric with two leaf nodes and two spine nodes. The

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

126

higher the bar, the longer is the delay of the data packet at the switch. The longest traffic delay

occurred at leaf 1 (the violet stacks). The second longest is recorded at leaf 2 (the orange stack).

The traffic at two spine switches is not significant. If we need to select the leaf switch with less

traffic, then leaf 2 is selected. The INT application is presented in section 2.9.2 in chapter 2.

Figure 5.8: Result of INT monitor application at time T

Multi-route inspection, which is a P4 monitoring application, utilizes the field called Explicit

congestion notification (ECN) in the IP options header to record the switch congestion state. The

application used the queue depth of the switch to estimate the congestion by comparing it with a

threshold. If the queue depth is larger than the threshold, then ECN is set to value 11 to mark

congestion. Every switch will record its switch id and its queue depth into a stack in the IP options.

The host at the destination will extract the data and finds out the switch with the large queue depth,

which is potential in congestion (Tahmasbi 2017).

Figure 5.9: Multi-route inspection application: each packet carries its own logs (Tahmasbi 2017).

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

127

5.2.3 The initialization processes

CEVNE LiM configures the SDN substrate network to apply SR technology. It is assumed that

ONOS controller has been started and SR application has been activated in advance before the

CEVNE LiM initialisation. The initialization process is described in Figure 5.10.

Figure 5.10: Initialization process of CEVNE LiM

1 Begin
2 Configuring the SDN substrate network to use Segment Routing
3 SR application builds ECMP shortest path graphs (SPG) for the SN based on

Breadth First Search (BFS)
4 Running the monitor application to find out the long delay paths in the SN
5 Running the inactive algorithms for spine nodes for energy saving objective
6 Activate the DRM application to record residual resources.
7 End

The initialization process is described (line 1 – 7) in the algorithm. First, the substrate network is

configured using the SR application to implement the SR source routing. The SN configuration is

translated into flow entries for specific flow tables and group tables, based on the SDN and SR

technologies (Broadcom 2019). Each switch is a white box switch that requires ‘ofdpa-ovs’ driver,

its IP address, its ports, its segment id, and whether it is a leaf or a spine. Each host has its mac

address and its network location (Das 2019).

CEVNE LiM uses the SR application routing service for the link embedding process. Internally,

SR application uses ONOS link service to generate ECMP shortest path graph (SPG) for each

switch or router in the SN (ONOS 2019c) (line 3). Each ECMP SPG has a root node, and the paths

connecting it to other switches in the fabric are set up based on the minimum number of hops. From

the root node, SR application searches in its egress links for the shortest path for each of the

destination nodes and implements its own routing services based on the ECMP SPGs. The routing

service will recalculate the ECMP SPGs where there are link failures or node failures based on the

device event handler, and the link event handler in the ONOS core services (ONOS 2019c). The

SR application uses the ECMP SPGs and the routing services in the role of the path calculation

element. CEVNE LiM uses the INT or the OF statistic-based monitor application to report the real-

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

128

time delays at switches to exclude the heavy traffic path in the delay constraint (line 4). The

algorithms to activate / inactivate spine nodes are started to setup inactive spines and turn them

into sleep mode (line 5). The DRM function is setup to record the residual resources (line 6).

5.2.4 Path selection algorithm

The path selection algorithm (PSA) specifies how to select a substrate path to embed to a virtual

link, which satisfies the bandwidth demand and the three objectives: cost saving, energy saving

and congestion avoidance, hence, it is a critical component in CEVNE LiM. PSA consists of two

steps: the preparation step and the normal running status. The preparation step consists of the initial

inactivating of spine nodes for the energy saving objective, and the setup of DRM function for load

balancing. For each objective, there may be more than one algorithm, the preparation step will

specify the algorithm to be used. The preparation step is included in the initialization process. After

the preparation step, the PSA is in the normal running status, and it will select the substrate paths

using the algorithms of three objectives.

The details of the PSA are presented as follows. It receives the two endpoints and the virtual link

bandwidth demand as input; it provokes the services to implement cost saving, energy saving and

congestion avoidance algorithms to filter the substrate paths that satisfy three objectives. The PSA

selects the substrate path using the steps as follows. First, the substrate paths that are the results of

the energy saving objective will satisfy the bandwidth demand and the cost saving objective based

on the energy saving algorithm. These substrate paths will be checked for their residual bandwidth

resources in the congestion avoidance objective, and the one with highest residual bandwidth is

selected. The results of the congestion control objective and the monitoring application should

match as the link having lowest residual link will be alerted as a potential congestion in the

monitoring application. If the PSA gives no result, the congestion control service will be invoked

on different paths for alternative results, which will be selected, as the congestion avoidance

objective is ranked high priority. If the PSA gives multiple results, one is selected randomly. The

PSA ensures that the selected substrate path satisfies the bandwidth demand and three objectives,

and it needs to respond quickly in a high-speed fabric.

To illustrate how the PSA works, Figure 5.11 presents an example of the leaf-spine fabric of four

spine nodes and seven leaf nodes. The two endpoints are C and E, the cost saving objective results

in substrate paths C-S1-E, C-S2-E, C-S3-E, and C-S4-E; the energy saving objective results in

substrate paths C-S1-E, C-S2-E, C-S3-E that satisfy the bandwidth demand; the congestion

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

129

avoidance objective results in the descending order based on the residual link capacity C-S2-E, C-

S3-E, and C-S1-E; as the substrate path C-S1-E is alerted as a congested path by the monitoring

application, the substrate path for the virtual link embedding between node C and E is C-S2-E.

Figure 5.11: Example of PSA in a leaf-spine fabric

5.3 CEVNE LiM algorithm and realization

5.3.1 CEVNE LiM algorithm

The inputs for CEVNE LiM algorithm are the VNR, the substrate node endpoints that virtual nodes

are embedded on, and the bandwidth demands of virtual links. LiM algorithm will call the PSA to

select the substrate paths for each virtual link, which satisfy the three objectives, and not being

alerted as in congestion state according to the monitoring application. LiM repeats the process until

all virtual links are embedded, or an error occurs, and the whole VNR is terminated. It is depicted

in Figure 5.12 as follows.

Figure 5.12: Virtual link embedding process of CEVNE LiM

1 Input
2 CEVNE Node embedding results
3 Virtual links and their bandwidth demand in the VNR
4 Output
5 Embedded substrate paths of virtual links
6 Begin
7 For each virtual link l = (i, j) ∈ E$

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

13.

8 Invoke the PSA(i,j) to search the substrate paths satisfying three objectives
9 If the PSA(i,j) returns the substrate path
10 Creating a flow rule for the substrate path endpoints
11 Creating a VLAN tunnel for the substrate path
12 Return the substrate path
13 Else
14 Remove all interim flow rules and VLAN tunnels
15 Exit with failure
16 End For
17 End

CEVNE embeds each virtual link in the VNR using the virtual link embedding process (line 1 to

line 17) in the algorithm in Figure 5.12. The PSA has inputs that are the embedded substrate nodes

as the results of the CEVNE NoM. The virtual links with their bandwidth demands are also the

PSA input. The embedding steps (line 7 – 16) are repeated for each virtual link. CEVNE LiM

application accepts the two endpoints i and j resulted from the CEVNE NoM. The PSA is invoked

to select the substrate path between node i and j (line 8) to embed the virtual link using its algorithm.

If the substrate path that satisfies the bandwidth demand and three objectives, are returned, a flow

rule is created for the selected path (line 10). A VLAN tunnel is created for the selected substrate

path (line 11). Otherwise, all interim flow rules and VLAN tunnels are removed (line 14) and the

algorithm exit with failure (line 15). The steps in the virtual link embedding process are repeated

in the order as specified in the algorithm. The loop is ended when all the virtual links are embedded

successfully (line 16).

Figure 5.13 summarized the flow diagram of the CEVNE LiM algorithm with the main steps: the

initialization process, and the CEVNE virtual link embedding process. The initialization process

consists of the configuration of the SR and SN, the activation of the SR application, monitoring

application, the inactivate algorithm of spine nodes for energy saving objective, and the DRM

application for the link load balancing purpose. The CEVNE virtual link embedding is repeated for

each virtual link to search for the substrate path that satisfies the bandwidth demand and the three

objectives. If no substrate path is found for the virtual link, or if the intent that is created for the

substrate path is not installed, the algorithm exits with failure. Otherwise, it exits with success if

all virtual links are embedded successfully.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

131

Figure 5.13: CEVNE LiM algorithm

5.3.2 Operational diagram of CEVNE LiM

The purpose of the operational diagram is to examine closely the parameters exchanged between

the CEVNE LiM and the CEVNE NoM internally. The diagram presents both processes when a

VNR arrives. The VNR has its virtual nodes, virtual links and the topology. The CEVNE NoM

embeds the virtual nodes onto the substrate hosts and sends the results to the CEVNE LiM. The

CEVNE LiM embeds the virtual links onto the substrate paths using the CEVNE LiM algorithm.

When all the virtual links of the VNR are embedded, the VNR is completely provisioned.

In Figure 5.14, the substrate network is an SDN network that is configured into a leaf-spine fabric

using the Segment Routing (SR) application. A VNR is input into the CEVNE NoM process to

embed its virtual nodes onto the substrate nodes. Virtual nodes A, B, C, D and E are mapped to

host 1, 2, 3, 4 and 5 accordingly as these hosts meet their CPU demands. The results of the CEVNE

NoM, the VNR topology, are input to the CEVNE LiM process to map the virtual links onto the

substrate paths. The INT or Openflow statistic-based monitoring application is used to provide the

real-time delay when the packets travel through the fabric. The Path computation element (PCE)

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

132

could be the ONOS path service that computes different types of paths between two endpoints.

Virtual links AB, BC, AE and ED are embedded onto the substrate paths of the fabric.

Figure 5.14: CEVNE node and link mapping processes on SDN fabric network

5.3.3 Realization of CEVNE LiM application

CEVNE LiM algorithm is developed into an SDN composite application (Pham & Hoang 2016)

called CEVNE LiM application that is deployed on top of the ONOS controller in a leaf-spine

fabric SDN substrate network running the SR application. The leaf-spine fabric is configured in

ONOS controller and is presented in the ONOS UI as in Figure 5.15.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

133

Figure 5.15: Substrate network configured as leaf-spine fabric in ONOS UI

5.4 Performance evaluation

The CEVNE LiM performance evaluation consists of the steps: the test scenario design, performing

CEVNE test scenarios, and analyzing results. The next subsection describes the test scenario setup.

5.4.1 Test scenarios

The test scenario includes a substrate network and multiple virtual networks that will be virtualized

and provisioned over the substrate network. The substrate network is a leaf-spine fabric with four

leaf switches, four spine switches, eight hosts, and links connecting switches and hosts as in Figure

5.15. The leaf and spine switches, which are white boxes running open-source software, are

configured to run SR protocol on ONOS controller as specified in Atrium (ONF 2019b). The

substrate network and their capacities are specified in Table 5.1.

Table 5.1: Substrate network capacities

 Total number CPU capacity
(GHz) BW capacity (Mbps)

Leaf switches 4 1

Spine switches 4 1

Hosts 8 100

Link leaf-spine 16 10

Link leaf-host 8 1

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

134

In Table 5.1, hosts have large CPU capacities, they are ready to have virtual nodes embedded on

them. Links between leaf and spine switches have high bandwidth capacity, they are ready for

virtual links to be embedded.

Different test cases are designed with various VNRs requirements to test the performance of

CEVNE LiM in terms of runtime, average path length, average node stress, average link stress,

energy consumption, acceptance ratio and total costs / revenue. VNRs in test cases are different in

topologies and resource demands as specified in Table 5.2.

Table 5.2: The design of test scenarios

Test cases No of virtual nodes CPU demands
(GHz) No of virtual links

BW demands
(Mbps)

1 3 10 2 3

2 5 10 4 3

3 4 10 3 3

4 5 10 4 3

5 4 10 3 3

In Table 5.2, there are 5 different VNRs, with the number of requested virtual nodes ranges from

3 to 5, and the number of requested virtual links ranges from 2 to 4.

5.4.2 CEVNE LiM application execution platform

The CEVNE LiM application is compiled, deployed and activated on the ONOS controller as

CEVNE virtual link service. CEVNE LiM application implements PSA energy-saving algorithm,

cost-saving algorithm, and congestion-aware algorithm. The CEVNE LiM is invoked via the CLI

or the REST API. The input for each virtual link consists of a tuple of the source and destination

host locations, and the bandwidth demand. The result of the CEVNE LiM application runs on the

ONOS controller is shown in the Figure 5.16.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

135

Figure 5.16: CEVNE LiM application execution in ONOS UI

In Figure 5.16, the red-dashed lines are the selected substrate paths, where the virtual links are

embedded on. On the substrate paths, the flow rules are installed on leaf and spine switches to

establish the route. They are highlighted as the result of the flow rule creation for each substrate

path. The CEVNE LiM execution in the ONOS CLI for the VNR in Figure 5.16 is summarized in

TABLE 5.3.

Table 5.3: Results of CEVNE LiM when running a test case

 Virtual
links

Node mapping
results

CEVNE LiM results

1 AB host 1, host 2 The hosts are connected to leaf 01.
2 BC host 2, host 3 onos:cevne-get-mapped-paths of:0000000000000001 of:0000000000000002

5000000
DefaultPath{src=of:0000000000000192/2, dst=of:0000000000000192/1,
type=INDIRECT, state=ACTIVE, expected=false,
links=[DefaultLink{src=of:0000000000000192/2,
dst=of:0000000000000002/3, type=DIRECT, state=ACTIVE,
expected=false}, DefaultLink{src=of:0000000000000001/3,
dst=of:0000000000000192/1, type=DIRECT, state=ACTIVE,
expected=false}], cost=ScalarWeight{value=0.0}}

3 AE host 1, host 5 onos:cevne-get-mapped-paths of:0000000000000001 of:0000000000000003
5000000
DefaultPath{src=of:0000000000000191/3, dst=of:0000000000000191/1,
type=INDIRECT, state=ACTIVE, expected=false,
links=[DefaultLink{src=of:0000000000000191/3,
dst=of:0000000000000003/4, type=DIRECT, state=ACTIVE,
expected=false}, DefaultLink{src=of:0000000000000001/4,
dst=of:0000000000000191/1, type=DIRECT, state=ACTIVE,
expected=false}], cost=ScalarWeight{value=0.0}}

4 ED host 5, host 4 onos:cevne-get-mapped-paths of:0000000000000003 of:0000000000000002
5000000
DefaultPath{src=of:0000000000000193/2, dst=of:0000000000000193/3,
type=INDIRECT, state=ACTIVE, expected=false,
links=[DefaultLink{src=of:0000000000000193/2,
dst=of:0000000000000002/2, type=DIRECT, state=ACTIVE,
expected=false}, DefaultLink{src=of:0000000000000003/2,
dst=of:0000000000000193/3, type=DIRECT, state=ACTIVE,
expected=false}], cost=ScalarWeight{value=0.0}}

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

136

In Table 5.7, the CLI command cevne-get-mapped-paths invokes the virtual link mapping for

virtual links AB, BC, AE, and ED.

Row 1: The virtual link AB is the link between host 1 and host 2, which is within the leaf 01, they

are connected in the VXLAN connecting the ToR switch (leaf 1) and the hosts.

Row 2: The virtual link BC is between host 2 and host 3, which is the path between leaf 01 (host 2

location) and leaf 02 (host 3 location). The path between leaf 01, and spine 02 (port 1), spine 03

(port 2) and leaf 02 is selected. Data in row 3 and row 4 are explained similarly as in row 2.

5.4.3 Evaluation results

The CEVNE LiM performance is evaluated by analyzing its implementation results and comparing

them with those of the k-shortest path link embedding algorithm (Beck et al. 2014). The metrics

used to compare the behavior of the two algorithms are the total runtime, acceptance ratio, average

path length, average node stress, average link stress, and energy consumption. These metrics are

selected because they reflect the three CEVNE objectives: cost saving, energy saving and

congestion avoidance. The following subsections will examine each of the results.

5.4.3.1 Runtime

The runtime results show that CEVNE LiM converged faster than the k-shortest path algorithm.

This explains the simple path selection algorithm of CEVNE LiM. In the Alevin framework, the

runtime includes the configuration time for each test run. In ONOS controller, the configuration is

run once, and its runtime is calculated separately. It takes the CEVNE LiM application about 3ms

to embed each virtual link; and the total runtime is the multiplication of the number of virtual links

in the VNR. Figure 5.17 shows that k-shortest path runtime is in the range of 60–70ms for the five

test cases, while CEVNE LiM runtime is in the range of 10–30ms; 30ms is when the CEVNE LiM

application is first loaded. This shows that the CEVNE LiM achieves it cost saving objective with

the quick response time.

5.4.3.2 Average path length

The average path length results show that the CEVNE LiM approach always have the shorter

substrate path length compared to the k-shortest path algorithm. This is the result of the CEVNE

LiM application searching for the shortest paths between two endpoints. The k-shortest path

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

137

approach configures the fabric as a normal bi-directed graph, and searches in the whole graph for

each virtual link. This affects both the path length and the runtime.

In Figure 5.17, the CEVNE LiM algorithm has 2.0 as the average path length for any substrate

paths that the virtual link is embedded on. The k-shortest path algorithm has the average path length

in the range of 3.0–4.0. This shows that the CEVNE LiM achieves its cost saving objective, and

its energy saving objective because the longer the path, the more active substrate nodes and more

energy consumption.

Figure 5.17 presents the runtime and the average path length results of the two approaches: k-

shortest path algorithm and CEVNE LiM application.

Figure 5.17: Results of runtime and average path length

5.4.3.3 Average node stress and average link stress

In the Alevin framework, the average node stress is the ratio of the total number of all node stress

over the total number of substrate nodes. Similarly, the average link stress is the ratio of the total

number of all link stress over the total number of substrate links. These are similar to the average

node utilization and average link utilization introduced in (Chowdhury, Rahman & Boutaba 2012).

In CEVNE, the average node stress and average link stress are calculated for leaf and spine

switches on the fabric. If each virtual node of a virtual link is connected to a different leaf switch,

the average node stress involves three nodes: two leaf switches and one spine switch. The average

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

138

link stress involves two substrate links: links between each leaf and spine switches. For congestion

control purposes (Medhi 2017), the link mapping is spread out to different leaf and spine switches

as implemented in the path selection algorithm. The average node stress and the average link stress

results show that the CEVNE LiM algorithm distributes the link mapping onto more substrate

nodes and links than the k-shortest path algorithm.

In Figure 5.18, the k-shortest path algorithm has the average node stress in the range of 0.2–0.3

while the CEVNE LiM average node stress is in the range 0.38–0.55. The k-shortest path algorithm

has the average link stress in the range of 0.18–0.3 while the CEVNE LiM average link stress is in

the range 0.25–0.38. The CEVNE LiM has on average 0.2 (20%) more node stress than the k-

shortest path approach. The CEVNE LiM has on average 0.1 (10%) more link stress than the k-

shortest path approach.

5.4.3.4 Energy consumption

The energy consumption results show that CEVNE LiM algorithm achieves its energy saving

objective as specified in the average path length metric. As CEVNE LiM has shorter average path

length than the k-shortest path algorithm, CEVNE LiM has a smaller number of active nodes along

the paths, resulting in less power consumption. In Figure 5.18, the energy consumption of CEVNE

LiM is 10 units lower on average compared to the k-shortest path algorithm.

5.4.3.5 Acceptance ratio

The acceptance ratios of both algorithms are the same, and at the 100% in all test cases. The results

of runtime, average path length, average node stress, average link stress, and energy consumption

show that CEVNE LiM algorithm achieves the three objectives and prevails over the k-shortest

path algorithm in these objectives.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

139

Figure 5.18: Results of average node stress, average link stress, and energy consumption

5.5 Summary

In this chapter, the research objective is to investigate and propose a mechanism to realize CEVNE

link embedding process. CEVNE heuristic algorithm is a novel SDN-based algorithm, which is

active, and can focus on multi-objectives: cost saving, energy saving and congestion avoidance as

the node embedding process does. The novel realization applied the architecture for extended SDN

application. CEVNE SDN-based link heuristic algorithm is realized as an SDN application on top

of a leaf-spine fabric substrate network running SR. Each objective of the virtual link embedding

is proposed as a micro-service; a path selection algorithm is proposed as a composite service that

integrates all three objective services to choose the optimal path. The evaluation results show that

CEVNE LiM application outperforms the k-shortest path algorithm in runtime, energy

consumption, path length, average node stress and average link stress.

Our solution is not only restricted to use the leaf spine fabric, but it can be applied to other network

topologies in the cloud data centres. The condition to apply our solution in different network

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

14.

topologies is presented as follows. We need to specialize the topology service into a sub-class of

topology service that serves only the specific topology of the cloud data center. Further, we provide

the in-memory routing of the topology so it can be accessed quickly by other services when we run

our multi-objective link embedding algorithm.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

141

CHAPTER 6 LATENCY-AWARE RESOURCE

OPTIMIZATION FOR 5G CORE NETWORK

SLICING

The previous chapter objective was to investigate and to propose the link mapping process, which

is an active process as the node mapping process, and can focus on multi-objectives: cost saving,

energy saving and congestion avoidance. The mechanism is based on SDN and SR technologies.

The realization of the mechanism is an extended SDN application that integrates each objective as

an application / service and uses a monitoring function; the application is deployed on the SDN

substrate network running SR as a source routing mechanism to forward packets.

This chapter objective is to investigate and to propose a novel mathematical model for resource

allocation optimization in network slicing satisfying latency requirement, applying SDN, NFV

technologies, and cloud computing. We only investigate the 5G core network slicing. The

mechanism is modelled as a mathematical program that optimizes resource allocation and satisfies

the critical latency requirement of different 5G service types: eMBB, uRLLC and mMTC. The

research outcome is the network slicing resource model, performance model, and mathematical

model in 5G core networks, and the solution approach using the decomposition technique in large

or structure mathematical programs.

Figure 6.1: Chapter 6 roadmap

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

142

In this chapter, section 1 presents the novel models of the 5G core network slicing problem, section

2 formulates the network slicing problem, section 3 presents the novel solution approach and the

solution, section 4 presents the performance evaluation of the solution, and section 5 summarizes

the chapter. This chapter has been submitted to the IEEE Transaction on Networks and Service

Management with title “Latency-aware Resource Optimization in 5G core network slicing”, after

the peer reviewed process.

What is new in the solution?

The novelties of the network slicing solution lie in the areas as follows.

ü The analysis, resource models of network slicing are as follows: using 5G theory, the

analysis identifies how network slicing works to deliver the 5G core service. The resource

model presents the allocation of CPU resource to VNFs to process packets, and bandwidth

resource to virtual links connecting VNFs to deliver packets E2E of the network slice

instance.

ü The performance model predicts the VNF total delay using queueing theory as follows:

The VNF is modelled as an Ml/G/1 queueing system with the arrival queue using Markov

modulated Poisson Process (MMPP).

ü The mathematical model of the network slicing problem optimizes the resource allocation

and satisfies different latency requirement of eMBB, uRLLC and mMTC applications.

ü The mathematical program (MP) is non-linear, non-convex, mixed-integer, and NP-Hard.

The novelty lies in the solution approach that applies linearization, convex-relaxation and

decomposition of the MP into the master process and two sub-processes and solve them

using the IBM Optimization Programming Language (OPL) flow control mechanism.

6.1 Modelling network slicing for mobile services in 5G core networks

6.1.1 Application classification in 5G

5G classifies applications into three main types: enhanced mobile broadband (eMBB), ultra-

reliable low latency communication (uRLLC), and massive machine type communication

(mMTC). 5G application types are classified according to their focus either on human centric,

device centric, or every device, their vertical sector, and their key performance indicators (KPI).

They are presented briefly as follows (Marsch et al. 2018), (ITU-R_M.2083 2015), (Foukas et al.

2017).

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

143

Ø eMBB focuses on the human-centric access to multi-media content, services, and internet,

which have been provided by 4G. 5G facilitates creating new applications, improving

performance and user experience in existing services. The new applications are either

wide-area coverage or hotspot. eMBB focuses on the KPIs: spectrum efficiency, traffic

density, power efficiency, mobility, and data rate.

Ø uRLLC is related to services with stringent requirements in latency and availability. It also

focuses on the reliability, mobility, and data rate KPIs. This is the new type of 5G

application, and it is utilized in new 5G vertical applications such as autonomous driving,

next generation factories, virtual reality applications.

Ø mMTC is related to applications having a very large number of devices transmitting non-

delay sensitive data in low volume. mMTC focuses on the connection density KPI.

6.1.2 Control plane data plane separation (CUPS)

Another characteristic of the 5G mobile network is the control plane (CP) user plane (UP)

separation (CUPS). 3GPP proposed the logical separation between the signaling network and data

network. 5G access-network and core-network functions are separated from the transport network

functions (Penttinen 2019). The separation reduces the latency on the applications or services,

supports increased data traffic, allows the updating, locating and scaling of CP and UP resource

independently, and enables SDN to deliver user plane data more efficiently (Schmitt, Landais &

YongYang 2018).

An E2E NS consists of access network slice, core network slice, and transport network slice. In

this chapter, we focus on 5G core network slicing. We assume the network slicing infrastructure is

at the edge cloud, which is situated very close to the base station (eNodeB); therefore, the latency

is improved because of shorter transmission distance.

6.1.3 Network slicing and related concepts

In chapter 2, section 2.4, the overview about 5G mobile system, network services, network slicing

and related concepts have been presented. From these 5G concepts, the analysis model of network

slicing is built with VNF and SFC components constituting a 5G core network slicing; each VNF

has a resource demand, and a processing latency threshold; each virtual link connecting VNFs has

a transmission latency threshold; the whole NSR has a latency threshold that it must satisfy.

Network slicing is designed to implement services of different types: eMBB, uRLLC or mMTC,

which have very different latency thresholds. The example in Figure 6.2 consists of multiple

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

144

network slices; each is embedded in their vertical application. The infrastructure layer provides the

substrate resources for network slicing as presented in the example. The access networks and core

networks are on top of the (hidden) transport networks. NS 1 belongs to service 1 (eMBB type)

from Telstra, an Australian Telecommunication company, NS 2 belongs to service 2 in the

ambulance eHealth (uRLLC type), NS 3 belongs to service 3 in the vehicle-to-vehicle service

(uRLLC type), and NS 4 belongs to service 4 for users at a stadium in a sporting event (eMBB

type).

A network slice instance has a recursive structure, it is constituted of several network slice subnets

(subnet), each subnet is constituted of other subnets, a subnet is constituted of network functions

(core and access network function) (TR_28.801 Jan. 2018).

Figure 6.2: 5G network slice example - adapted from (Perez 2017)

6.1.4 Resource model of network slicing

A NS needs CPU, memory and storage resources to process packets, and bandwidth resource to

propagate packets. A NS is constituted of an ordered set of VNFs; SFC place holders are ignored

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

145

without effecting the NS functionalities. As it is designed in the forwarding graph (FG), a VNF

can be invoked many times in an NSR, but the VNF needs to be allocated CPU resource at

initialization. Similarly, the bandwidth resources are allocated to virtual links. The resources are

released when the service is completed. The resource model is utilized to allocate resource

efficiently and to satisfy the VNF delay with the contribution of the NS performance model that is

described below.

6.1.5 Network slicing performance model using queueing theory

Table 6.1 defines the notations and their explanation that are used from here on.

Table 6.1: Notations and their explanation

𝐆𝐒 = (𝐕𝐒, 𝐄𝐒) The directed graph represents the physical network with V"
substrate nodes, which include servers and switches / routers,
and E" substrate links

𝐕𝐬𝐞𝐫𝐯 ⊂ 𝐕𝐒 The set of servers in the physical network
𝐆𝐅 = (𝐕𝐅, 𝐄𝐅) The directed graph represents the network slice request with VP

of VNFs and EP of virtual links connecting between VNFs.
𝐍𝐒R NSR includes all VNFs {fQ, fR, . . , fSTUR} the total number of

VNFs is denoted as MH
𝐌𝐭/𝐆/𝟏 The Kendall notation of a queuing system that the arrival model

is MMPP, the service model is general distribution, and 1 server
only

𝛌 The arrival rate in the M/M/1 queue

𝛌𝐇 The high arrival rate in an MMPP process
𝛌𝐋 The low arrival rate in an MMPP process

𝛌𝐀 The arrival rate is calculated based on λT and λ, in the queueing
system MZ/G/1

𝛍𝐋 − 𝛍𝐇 The processing rate of the VNF is in the range [µ, − µT]
E(S) The expected value of the service time
E(T) The expected total delay in the system
E(W) The expected waiting time in the system
𝛒 The utilization of the server
𝝁 The expected service rate
k The number of equal parts of the processing rate between [µ, −

µT]
x The variable denotes the rate between [µ, − µT], which is

divided into k rates, 0 ≤ x ≤ k − 1

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

146

𝐩𝐱 The probability that the service rate is x
𝐢𝐧𝐜𝛍 The portion of service rate when [µ, − µT] is divided into k

rates, 0 ≤ x ≤ k − 1
𝐄(𝐒𝟐) The expected value of the square of service time
𝐓ê The expected processing time
𝐜(𝐦) The max computing capacity of server m ∈ V&1^(
𝐢 The index of the VNF in the NSR: 0 ≤ i ≤ (MH − 1)
𝐓𝐢 The total delay of VNF ith
𝐓ê𝐢 The expected processing delay of VNF ith
𝐓𝐭𝐫𝐚𝐧(𝐟𝐢) The transmission delay of VNF ith
𝐑𝐍(𝐦) The residual computing capacity of server m ∈ V&1^(
𝐓𝐍𝐒𝐑 The total delay of the NSR
𝐛𝐰(𝐦, 𝐧) The max bandwidth capacity of substrate link (m, n) ∈ E"
𝐑𝐄(𝐦, 𝐧) The residual bandwidth capacity of substrate link (m, n) ∈ E"
𝓟𝐒 The set of all substrate paths in substrate network G"
𝐩𝐦,𝐧 The substrate path pf,< ∈ 𝒫" between two substrate nodes (m, n) ∈

E"
𝐜P𝐟(𝐢)S Computing demand of VNF f(7) ∈ NSR

𝐛𝐰(𝐟𝐢, 𝐟(𝐢g𝟏)) Bandwidth demand of virtual link (f(7), f(7gR))

𝐚𝐟(𝐢) The parameter of the function f7 that denotes the linear function of
processing delay on the allocated CPU resources

𝐛𝐟(𝐢) The parameter of the function f7 that denotes the linear function of
processing delay on the allocated CPU resources

𝐃𝐧
𝐟(𝐢) The processing latency for VNF f(7) when it is deployed on node

n ∈ E"

𝐃𝐧,𝐌𝐚𝐱
𝐟(𝐢) The threshold processing latency for VNF f(7) when it is deployed

on node n ∈ E" D<
j(7) ≤ D<,Skl

j(7)

𝐃𝐧,𝐌𝐢𝐧
𝐟(𝐢) The minimal processing latency of VNF f(7) when it is deployed on

node n ∈ E" D<
j(7) ≥ D<,S7<

j(7)

𝐃𝐦,𝐧
m𝐟(𝐢),𝐟(𝐢'𝟏)n The transmission delay of virtual link (f(7), f(7gR)) on substrate link

(m, n)

𝐃𝐭𝐫𝐚𝐧
m𝐟(𝐢),𝐟(𝐢'𝟏)n The threshold of transmission delay of virtual link (f(7), f(7gR))

𝐃𝐌𝐚𝐱𝐍𝐒𝐑 Threshold of max delay of NSR

𝐏𝐌𝐚𝐱𝐍𝐒𝐑 Threshold of processing delay of NSR

𝐃𝐭𝐫𝐚𝐧𝐍𝐒𝐑 Threshold of transmission delay of NSR

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

147

𝐤𝐧
𝐟(𝐢) k<

j(7) ∈ ℝ: a portion of CPU resource of node n ∈ E" is allocated to
VNF f7. It is a variable

𝐤𝐧,𝐌𝐚𝐱
𝐟(𝐢) The max CPU resource to be allocated to VNF f7

𝐤𝐧,𝐌𝐢𝐧
𝐟(𝐢) The min CPU resource to be allocated to VNF f7

𝐱𝐧
𝐟(𝐢) x<

j(7) ∈ {0,1} is a binary variable, x<
j(7) = 1 if VNF f7 is mapped on to

substrate node n ∈ V&1^(; otherwise x<
j(7) = 0.

𝐡𝐦,𝐧
𝐟(𝐢),𝐟(𝐢g𝟏) hf,<

j(7),j(7gR) ∈ ℝ A portion of bandwidth of link (m, n) ∈ E" allocated
to virtual link (f(7), f(7gR))

𝐑𝐫𝐞𝐬(𝐟𝐢) The total allocated resources for VNF ith includes CPU and
bandwidth resources

𝐑𝐫𝐞𝐬(𝐍𝐒𝐑) The total allocated resources for the NSR includes CPU and
bandwidth resources

𝒁𝒏
𝒇(𝒊) the new variable is created to linearize the formulation Z<

j(7) =
x<
j(7) ∗ k<

j(7)

6.1.5.1 Markov-modulated Poisson Process

In queueing theory, Markov-modulated Poisson process (MMPP) is the doubly stochastic Poisson

process, in which the arrival rates 𝜆 = (𝜆), 𝜆*, , , 𝜆L9*) vary based on the states of the underlying

Continuous Time Markov Chain (CTMC). MMPP is bivariate with [𝐽(𝑡), 𝑁(𝑡): 𝑡 ∈ 𝑇], 𝑁(𝑡) is the

number of arrivals within a time interval (0, 𝑡] 𝑡 ∈ 𝑇, and 𝐽(𝑡) with 0 < 𝐽(𝑡) < 𝑚 is the state of

CTMC. The MMPP can be reconstructed by changing the arrival rate of a Poisson process

according to the m-state of a CTMC, which is independent of the arrival process. MMPP has been

used to model processes whose arrival rates vary randomly over time (Fischer & Meier-Hellstern

1993), so it is applied to the network slicing performance model.

The VNF model is assumed two arrival rates: 𝜆) for a duration 𝐸𝑥𝑝(𝛼)), and 	𝜆* for a duration

𝐸𝑥𝑝(𝛼*). Figure 6.3 presents the arrival process of MMPP, in which arrival rate varies starting at

𝜆) then it is changed to 𝜆* and back to 𝜆). The MMPP process’s state transition diagram with two

arrival rates 𝜆), 𝜆* are depicted in Figure 6.4

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

148

Figure 6.3: The arrival process of MMPP (Harchol-Balter 2013)

Figure 6.4: State transition diagram of a two-state MMPP model (Bolch et al. 2006)

6.1.5.2 VNF performance model

A VNF is modelled as a tandem server with two queues: (i) the NIC queue, and (ii) the central

queue. The NIC queue is modelled as 𝑀!/𝑀/1 having the arrival queue as a Markov-modulated

Poisson process (MMPP). Zinner et al. (2017) observed that the interrupt mechanism has been

simplified to handle IO in less CPU time, therefore, the VNF central queue is simplified. Figure

6.5 presents the packet processing by X86 Linux kernel using the simplified interrupt mechanism.

Figure 6.5: Packet processing by X86 Linux Kernel (Zinner et al. 2017)

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

149

The central queue is the VNF itself, which is modelled as a 𝑀!/𝐺/1 queue with the service queue

is general distribution and 1 server, the order to the service is FCFS. The arrival queue accepts two

rates 𝜆m and 𝜆%. Figure 6.6 presents the tandem server of the VNF queueing model.

Figure 6.6: Tandem server with the NIC queue and central queue

Gupta et al. (June 2006) explored the performance model of the 𝑀!/𝑀/1 queueing system with

varying-arrival rate as follows: 𝜆m in duration exp(𝛼m), 𝜆% in duration exp(𝛼%), and then back

to 𝜆m in duration exp(𝛼m) again. When both 𝛼% , 𝛼m are very high, the fluctuations are very rapid,

the	system	converges	to	a	single	M/M/1	queueing	system	with	the	approximation	of	arrival	

rate	𝜆n	is	calculated based on 𝜆m , 𝜆% , 𝛼m 	𝑎𝑛𝑑	𝛼%	 as follows:

𝜆n =
𝜆m
𝛼m +

𝜆%
𝛼%

1
𝛼m +

1
𝛼%

 (1)

This rapid fluctuation scenario is applied to the arrival pattern of the VNF in our 5G core network

slicing as it reflects the quick changing of the arrival rates in 5G systems. The	VNF	Mt/G/1	

queueing	system	is	emerging	to	the	𝑀/𝐺/1 system with	the arrival rate of	𝜆n	in	equation	(1)	

when	the	fluctuation	is	rapid.

The Pollaczek-Khinchine formulas for 𝑀/𝐺/1 is used with the arrival rate 𝜆, mean service rate 𝜇,

the mean service time 𝐸(𝑆), the expected delay in the system 𝐸(𝑇) is calculated as follows

(Hariganesh 2018).

𝐸(𝑇) = 𝐸(𝑆) + µ𝜆.
𝐸(𝑆+)
2(1 − 𝜌)∂

(2)

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

15.

The right-hand side of equation (2) consists of two terms, the first term is the expected service

time, the second term is the expected queueing delay 𝐸(𝑊). Applying equation (2) to the

converged M/G/1queue in rapid fluctuations, the expected system delay is calculated based on 𝜆n

in equation (3) as follows.

𝐸(𝑇) = 𝐸(𝑆) + µ𝜆n.
𝐸(𝑆+)
2(1 − 𝜌)∂

(3)

Figure 6.7: Visualization of the k rates between 𝜇-−𝜇.

In the 𝑀!/𝐺/1 queue, the service rate is assumed to be discrete distribution into k rates (𝑘 > 1)

between 𝜇% and 𝜇m with probabilities of 𝑝), 𝑝+, . . , 𝑝j9*; the expected service rate is calculated

based on all component rates as follows.

𝜇 = 4𝑝6

j9*

6J)

∗ µ𝑥 ∗ (
𝜇m − 𝜇%

𝑘 − 1) + 𝜇%∂	 (4)

Using the new constant 𝑖𝑛𝑐o such that:

𝑖𝑛𝑐o =
𝜇m−𝜇%

	𝑘 − 1 	
(5)

𝜇 = 4𝑝6

j9*

6J)

∗ ?𝑥 ∗ 𝑖𝑛𝑐o + 𝜇%@	 (6)

The utilization 𝜌 of the server is calculated using the arrival rate 𝜆n and the mean service time

𝐸(𝑆) as follows.

𝜌 = 𝜆n. 𝐸(𝑆) (7)

Applying	equation	(7)	into	equation	(3),	the	mean	system	time	E(T)	calculated	as	follows.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

151

𝐸(𝑇) = 𝐸(𝑆) + µ𝜆n.
𝐸(𝑆+)

2(1 − 𝜆n. 𝐸(𝑆))∂
(8)

In	equation	(8),	E(S)	is	the	reciprocal	of	𝜇,	which	is	calculated	in	equation	(6);	the	expected	

system	delay	𝐸(𝑇)	 is	 calculated	 based	 on	 the	 expected	 service	 time	𝐸(𝑆), 𝐸(𝑆+),	 and	 the	

approximation	of	arrival	rates	𝜆n. As	one	or	more	NSIs	are	provisioned	for	a	user	service,	the	

network	traffic	for	each	NSI	is	not	many.	When	𝜆n	is	small,	the	VNFs	process	packets	at	their	

arrival,	so	the	waiting	queue	almost	does	not	exist,	the	mean	system	time	𝐸(𝑇)	is	almost	the	

mean	 service	 time	𝐸(𝑆)	 of	 VNF,	which	 is	 a	 software	 application,	 that	 is	 presented	 in	 the	

subsection 6.1.7. The next subsection presents the VNF total delay in the E2E NSR.

6.1.6 VNF total delay

The total delay of a VNF 𝑓1, which is denoted 𝑇1, comprised the expected system time TÅ1 processed

at the VNF, and the transmission delay 𝑇!0/'(𝑓1 , 𝑓1=*) to the next VNF, as being expressed as

follows.

𝑇1 = TÅ1 +	𝑇!0/'(𝑓1 , 𝑓1=*)		 (9)

The right-hand side of equation (9) consists the expected processing delay TÅ1, which is calculated

based on equation (8) and the transmission delay 𝑇!0/'(𝑓1 , 𝑓1=*). Equation (9) is applied to each

VNF in the NSR.

Per the NS topology, simple chain, lightly-meshed and fully-meshed topologies are considered

(Agarwal et al. 2018), which are depicted in Figure 6.8 as follows.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

152

Figure 6.8: three NSR topologies (Agarwal et al. 2018)

In the simple chain (SC), VNFs are invoked in sequence, the total processing time 𝑇>Rp of the NS

is the sum of processing time of all VNFs. In the lightly-meshed (LM) or fully-meshed (FM)

topologies, the branching occurs at the VNF invocation based on runtime conditions, such as when

VNF2 is completed, one of VNF 3 or VNF 4 can be invoked but not both; the total delay 𝑇>Rp is

equal to the total delay of the longest branch that consists all VNFs. Of the presented topologies,

the NSR total delay is calculated as follows.

𝑇>Rp = 4 𝑇1

Im9*

1J)

≤ 𝐷I/6>Rp 		 (10)

In equation (10), the NSR consists of (MH) VNFs, and the total delay 𝑇>Rp of the NS is limited by

the 𝐷I/6>Rp. However, the dependence between the resource model and the performance model is

important, which is presented as the dependence service speed on the allocated CPU resource, is

presented next.

6.1.7 Linear function of delay on allocated resources

Alleg et al. (2017) assumed that the VNF processing delay is affected by its allocated resource;

when a VNF is allocated sufficient resource 𝑘',L1'
q(, it starts to operate with speed 𝐷',L/6

q((point

A). After that, the more resource is allocated to the VNF, the faster its processing speed is. The

VNF reaches its highest processing speed 𝐷',I1'
q(with the allocated resource 𝑘',I/6

q(, (point B), the

processing speed will not increase although the allocated resource is increased. Figure 6.9 depicts

this dependency.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

153

Figure 6.9: Processing delay is a linear function of allocated resources (Alleg et al. 2017)

𝑘',I/6
q(1) ≥ 𝑘'

q(1) ≥ 𝑘',I1'
q(1) 		 (11)

𝐷',I1'
q(1) ≥ 𝐷'

q(1) ≥ 𝐷',I/6
q(1) 		 (12)

The function of the processing speed to the allocated CPU resource is linear as denoted as follows:

𝐷'
q(1) = 𝑎q(1) ∗ 𝑘'

q(1) + 𝑏q(1)		 (13)

The linearly proportion expressed in the parameters 𝑎q(1) and 𝑏q(1) are calculated as follows (Alleg

et al. 2017):

𝑎q(1) =
𝐷',I/6
q(1) − 𝐷',I1'

q(1)

𝑘',I1'
q(1) − 𝑘',I/6

q(1) 		 (14)

𝑏q(1) =
𝐷',I1'
q(1) ∗ 𝑘',I1'

q(1) − 𝐷',I/6
q(1) ∗ 𝑘',I/6

q(1)

𝑘',I1'
q(1) − 𝑘',I/6

q(1) (15)

One can leverage equations (13), (14), and (15) to allocate resources to a VNF and estimate its

processing delay.

The transmission delay of VNF 𝑓1, which is specified as 𝑇!0/'(𝑓1 , 𝑓1=*) in equation (9), is calculated

using the allocated bandwidth on each substrate link (𝑢𝑣) ∈ 𝑝L', where 𝑚, 𝑛 are the substrate

nodes that two VNFs are embedded on.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

154

𝑇!0/'(𝑓1 , 𝑓1=*) = 4
1

ℎX,2
q(1),q(1=*)

(X,2)∈./,1

(16)

The more bandwidth is assigned to the virtual link, the faster is the transmission delay 𝐷L,'
rq((),q((4&)s

to satisfy the transmission threshold 𝐷!0/'
rq((),q((4&)s in the VNF 𝑓1 profile as follows.

𝐷L,'
rq((),q((4&)s ≤ 𝐷!0/'

rq((),q((4&)s	 (17)

Each processing latency and transmission latency has its own threshold, one can normalize the unit

of the CPU resource and the unit of the bandwidth resource into the common resource unit without

affecting to the optimal result. Hence, the resource allocation of VNF fA to fulfill the delay threshold

is expressed in term of the allocated resources as follows:

𝑅0-"(𝑓1) = 𝑘'
q(1) + 4 ℎX,2

q(1),q(1=*)

(X,2)∈./,1

	 (18)

With 𝑘'
q(1) is bound to equation (11) and equation (12). Applying equation (18), the total allocated

resources for NSR is the sum of the allocated resources of each VNF as follows.

𝑅0-"(𝑁𝑆𝑅) = 4 𝑅0-"(𝑓1)
Im9*

1J)

(19)

𝑅0-"(𝑁𝑆𝑅) = 4 4 𝑘'
q(1) + 4 4 4 ℎX,2

q(1),q(1=*)

(X,2)∈./,1

Im9+

1J)./,1∈𝒫#

Im9*

1J)'∈S#

				 (20)

The number of VNFs in the NSR is assumed to be 𝑀𝐻 as denoted in equations (19-20). Hence, the

results in this subsection can be leveraged to formulate the postulated network slicing problem.

6.1.8 Solution approach

The solution approach of the network slicing problem consists of several steps to reach the solution.

The solution approach is depicted in Figure 6.10. Several models were created to formulate the

network slicing resource allocation problem. First is the establishment of the analysis model (block

1), which is input into the resource model (block 2) and the performance model (block 3). Block 2

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

155

and block 3 have connections between them; they are inputs to the numerical problem formulation

(block 4). The network slicing problem is modelled using mathematical programming with

objective function and constraints that will be transformed and solved using an optimization solver

(block 5). Network slicing algorithms are evaluated in block 6.

Figure 6.10: The solution roadmap for our network slicing problem

6.2 Problem statement

The notations and their explanation are presented in Table 6.1.

6.2.1 Network slicing problem statement

It is given a 5G network service that a user requires. The requested service belongs to one of three

types of 5G applications: eMBB, uRLLC, or mMTC; each type of applications has the latency

requirement about 10 to 100 times difference in magnitude (Dohler 2019). The requested network

service must be implemented in a satisfactory manner. The network slice selection function (NSSF)

(TR_28.801 Jan. 2018) translates the service request into a complete logical network that

comprises an ordered set of VNFs, based on the user subscription.

It is given a physical network 𝐺R with 𝑉" substrate nodes, 𝐸" substrate links, and 𝒫R substrate paths,

each substrate node has a CPU resource. Each substrate link has a bandwidth resource. Each

substrate path has the bandwidth resource that is equals to the minimal of bandwidth resource of

its constituent substrate links. The physical network is at an edge cloud close to the base station.

6.2.2 Network slicing: objectives

The network slicing optimization problem consists of three main objectives:

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

156

o To satisfy the network latency threshold when packets are processed by VNFs in NSR for the

requested service, which can be one of the three types of applications: eMBB, uRLLC or

mMTC in 5G core mobile networks.

o To minimize the CPU resource that is allocated to VNFs so they can process user flows.

o To minimize the bandwidth resource that is allocated along the substrate path connecting

substrate nodes that two consecutives VNFs are embedded on.

With input data sets reflecting:

o The topology of the substrate network with nodes, links, node CPU capacities, link bandwidth

capacities

o The topology of the NSR that constitutes of VNFs, their CPU demands, and bandwidth

demands, the processing delay thresholds, and the transmission delay thresholds when packets

are processed in the VNFs, and in the NSR for three types of 5G applications: eMBB, uRLLC,

and mMTC.

o If a service can be translated into different NSRs, there may be a set of resource demands and

thresholds for each NSR of the service (TR_28.801 Jan. 2018).

6.2.3 Problem formulation

In the problem domain, the processing latency and the transmission latency, each has its own

threshold, therefore, they can be processed separately, and we can normalize the unit of CPU

resource and bandwidth resource as the resource unit without affecting to the optimal result. We

leave the cost of resources in monetary value to the Policy and Charging Unit of the mobile service.

The objective is formulated as follows:

min∫ 4 4 𝑘'
q(1)

'∈S#

Im9*

1J)

∗ 𝑥'
q(1) + 4 4 4 ℎX,2

q(1),q(1=*)

(X,2)∈./,1

Im9+

1J)./,1

	ª (21)

Subject to:

𝑘'
q(1) ≥ 0, ∀𝑖 ≤ (𝑀𝐻 − 1) (22)

4 𝑥'
q(1)

Im9*

1J)

∗ 𝑘'
q(1) 		≤ 𝑐(𝑛), ∀𝑛 ∈ 𝑉R	 (23)

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

157

ℎ𝑢,𝑣
𝑓(𝑖),𝑓(𝑖+1) ≥ 𝑏𝑤𝑢,𝑣

𝑓(𝑖),𝑓(𝑖+1)
	, ∀(𝑢, 𝑣) ∈ 𝐸𝑆, ∀𝑖 ≤ (𝑀𝐻− 2)			 (24)

+
1

ℎ𝑢,𝑣
𝑓(𝑖),𝑓(𝑖+1)

(𝑢,𝑣)∈𝑝𝑚,𝑛

≤ 𝐷𝑡𝑟𝑎𝑛
#𝑓(𝑖),𝑓(𝑖+1)$, ∀𝑖 ≤ (𝑀𝐻− 2), ∀𝑝𝑚,𝑛 ∈ 𝒫𝑆		 (25)

+ 𝑥𝑛
𝑓(𝑖) = 1	, ∀𝑖 ≤ (𝑀𝐻− 1)

𝑛∈𝑉𝑆

	 (26)

𝑥𝑛
𝑓(𝑖) ∈ {0,1}, ∀𝑖 ≤ (𝑀𝐻− 1) (27)

ℎL,'
q(1),q(1=*) > 0	𝒊𝒇 ≠𝑥L

q(1) ∗ 𝑥'
q(1=*)Æ = 1, ∀𝑖 ≤ (𝑀𝐻 − 2)	 (28)

+ + ℎ𝑢,𝑣
𝑓(𝑖),𝑓(𝑖+1) ≤ 𝑏𝑤(𝑢, 𝑣),			∀ 1𝑝𝑚,𝑛2 ∈ 𝒫𝑆

(𝑢,𝑣)∈𝑝𝑚,𝑛

𝑀𝐻−2

𝑖=0
	 (29)

𝑘𝑛
𝑓(𝑖) ≥ 𝑐 1𝑓(𝑖)2 , ∀𝑖 ≤ (𝑀𝐻− 1)	 (30)

∫4 4 (𝑎q(1) ∗ 𝑘'
q(1) + 𝑏q(1)

Im9*

1J)'∈S#

ª ∗ 𝑥'
q(1) + 4 4

1

ℎX,2
q(1),q(1=*)

(X,2)∈./,1

) ≤ 𝐷I/6>Rp 	
Im9+

1J)

(31)

The mathematical model of the network slicing problem is NP-Hard, non-convex, mixed-integer,

nonlinear program (MINLP) as validated by Bliek1ú, Bonami & Lodi (Oct. 2014) because they

have binary variables in the quadratic term. MP solvers such as IBM CPLEX and AIMMS have

investigated methods to solve non-convex MINLP. This is further explored in our solution strategy

in section 6.3.5.

The objective function (21) attempts to minimize the CPU and bandwidth resources that are

allocated to the VNFs and to virtual links (the resources are normalized into resource unit). The

first term denotes the CPU resource allocation to VNFs; each VNF 𝑓1 is allocated 𝑘'
q(1) CPU

resource from the substrate node 𝑛 ∈ 𝑉R; it does not consider the parameters 𝑎q(1) in equation (14)

and 𝑏q(1) in equation (15) because the two parameters will be leveraged in the delay constraints

(31). The second term is the bandwidth resource allocation to virtual links connecting VNFs, each

virtual link (𝑓1 , 𝑓1=*)) is allocated the bandwidth resource ℎX,2
q(1),q(1=*) on all the substrate links

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

158

(𝑢, 𝑣) ∈ 𝐸R of the substrate path 𝑝L,' ∈ 𝒫R having two ends (𝑚, 𝑛) where the VNF 𝑓1 and VNF

𝑓(1=*) are embedded to.

Constraint (22) guarantees that the allocated CPU resources for every VNF 𝑓1 is positive. Constraint

(23) ensures that the allocated CPU resources respect the CPU capacity of the substrate node in

which the VNFs are embedded. Constraints (24) guarantees that the allocated bandwidth resource

for the virtual link (𝑓1 , 𝑓1=*)) must satisfy its demand. Constraint (25) ensures that the allocated

bandwidth for virtual link (𝑓1 , 𝑓1=*)) will result in the satisfaction of the transmission threshold.

Constraint (26) guarantees that VNF 𝑓1 is embedded on one substrate node only. Constraint (27)

ensures that 𝑥'
q(1) is a binary variable. Constraint (28) is a conditional constraint expressing that

ℎL,'
q(1),q(1=*) is positive if both binary variables 𝑥L

q(1) and 𝑥'
q(1=*)have a value of 1. Constraint (29)

guarantees that all the allocated bandwidth for the virtual link connecting VNF 𝑓1 and VNF 𝑓1=*

respects the substrate link’s bandwidth capacity. Constraint (30) ensures that the allocated CPU

resource for each VNF 𝑓1 must satisfy the CPU demand of the VNF. Constraint (31) consists of

two terms, the first term is the total processing time of all VNFs in the NSR expressing as a function

of 𝑎q(1) and 𝑏q(1) as calculated in equations (14-15), the second term is the total transmission delay

on all virtual links as results of the bandwidth allocation on the substrate links; the total of

processing delay and transmission delay of the NSR must satisfy the NSR total delay threshold.

6.3 Solution design

In this research work, an innovative solution design is proposed in order to get optimal results for

the networks slicing problem, which consists of two parts. The first part explains the strategy to

solve our proposal as a non-convex, NP-Hard, MINLP, and the second presents the detailed

solution.

6.3.1 Solution strategy

The non-convex, NP-Hard, MINLP (Bliek1ú, Bonami & Lodi Oct. 2014) can be solved on a case-

by-case basis, which shows that it is a steep learning curve to investigate and build the algorithms

(Rardin 2017); an example of this approach is the comprehensive thesis about latency in

Telecommunication by Hijazi (2010). IBM and AIMMS recommend automation approaches so

they can be leveraged in different optimization problems, hence, to save cost and time.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

159

6.3.2 Convex relaxation

One approach is called convex relaxation, the term that causes the MP non-convex, non-linear is

linearized. To one such case, the term is a multiplication (M) of a binary variable and a continuous

variable (Bliek1ú, Bonami & Lodi Oct. 2014), M is replaced with a new variable that has the same

upper bound and lower bound as the continuous one.

Figure 6.11: Non-convex constraint 𝑦 ≤ 𝑥*+

We will search for the non-convex, non-linear terms in the MP and linearize them. An example of

the linearize approach is presented (Bliek1ú, Bonami & Lodi Oct. 2014), the non-convex constraint

𝑦 ≤ 𝑥*+ between [𝑙*, 𝑢*] is convex relaxed to a new constraint 𝑦	 ≤ 	𝑦** = (𝑙* + 𝑢*)𝑥* − 𝑙*𝑢* as

in Figure 6.12

Figure 6.12: Convex relaxation a linear constraint

6.3.3 Decomposition

The model of network slicing is a structure model with two sub-processes: the VNF resource

allocation is followed by the virtual link embedding. The reverse order is also correct if the virtual

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

16.

link embedding starts first, its results are applied to the VNF resource allocation process. But the

two sub-processes could not occur independently. Therefore, it is suitable for the decomposition

technique proposed by Lasdon (1970). The VNF allocation process and virtual link embedding

process are considered sub-problems. A master problem (Lasdon 1970) (Palomar & Chiang 2006)

is required to transfer data between them.

The IBM OPL flow control mechanism is designed to implement the decomposition in large

programs. It allows to decompose a model into smaller, more manageable models and solve them

with the control of the master model (Arkalgud & Rux 2018); therefore, it will generate an optimal

solution of the original model. The flow control uses OPL script to define the master problem and

sub-problems. The master problem transfers results between sub-problems using the OPL script

“pre-processing” and “post-processing” functions. Our network slicing problem utilizes the IBM

OPL flow control as the decomposition mechanism and is presented in Figure 6.13.

The algorithms VNF resource allocation optimization, and virtual link embedding are utilized to

build the corresponding sub-models in OPL script. The master problem is the main script that

connecting to both sub-models. The three algorithms are presented in following paragraphs. Using

the flow control provided by IBM OPL, the main and sub-models will generate optimal solutions

(Dantzig 1998), (Lasdon 1970). As our network slicing program has been convex-relaxed and

linearized, the solutions are only sub-optimal.

Figure 6.13: The decomposition of the network slicing optimization problem

6.3.3.1 Strategy for resource optimization

The second part focuses on the strategy to achieve optimal resource allocation and latency

threshold satisfaction. To minimize the allocated resource, we set the VNF CPU demand at the

processing delay threshold using equations (13), (14) and (15), and the bandwidth demand at the

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

161

transmission delay threshold using equation (16). The approach is feasible because the VNE

embedding and virtual link embedding sub-problems have been linearized. This strategy might

have advantage over FRAM (Alleg et al. 2017), which is a MIQCP, and hence it allocates resources

fluctuating at or above the thresholds.

6.3.4 Linearized problem formulation

In the constraint (23), the product of a binary variable 𝑥'
q(1) and a continuous variable 𝑘'

q(1) causes

the problem non-convex (Bliek, Bonami and Lodi 2014), these variables are replaced with a new

variable 𝑍'
q(1) (Rubin 2010) as follows.

𝑍'
q(1) = 𝑥'

q(1) ∗ 𝑘'
q(1) (32)

To ensure the optimization problem is linear, additional constraints are added so 𝑍'
q(1) will have

the same upper bound U and lower bound L (Rubin 2010) as variable 𝑘'
q(1).

𝑍'
q(1) ≤ 𝑈 ∗ 𝑥'

q(1)	 (33)

𝑍'
q(1) ≥ 𝐿 ∗ 𝑥'

q(1)	 (34)

𝑍'
q(1) ≥ 𝑘'

q(1) − 𝑈 ∗ ≠1 − 𝑥'
q(1)Æ (35)

𝑍'
q(1) ≤ 𝑘'

q(1) − 𝐿 ∗ ≠1 − 𝑥'
q(1)Æ (36)

When 𝑥'
q(1) = 0, it needs to prove that the product 𝑍'

q(1) = 𝑥'
q(1) ∗ 𝑘'

q(1) should be 0. The first two

formulas (33), (34) give 0 ≤ 	𝑍'
q(1) ≤ 0, or 𝑍'

q(1) = 0;	the second two formulas (35), (36) give

(𝑘'
q(1) − 𝑈) ≤ 	𝑍'

q(1) ≤ (𝑘'
q(1) − 𝐿); 𝑍'

q(1) = 0 is the solution because U, L are bounds of 𝑘'
q(1).

When 𝑥'
q(1) = 1, it needs to prove that 𝑍'

q(1) = 𝑘'
q(1). The first two formulas (33) and (34) give:

𝐿 ≤ 	𝑍'
q(1) ≤ 𝑈, which is satisfied if 𝑍'

q(1) = 𝑘'
q(1); the second two formulas (35) and (36) give

𝑘'
q(1) ≤ 	𝑍'

q(1) ≤ 𝑘'
q(1), which means 𝑍'

q(1) = 𝑘'
q(1).

In constraint (31), in the first term, the non-linear term is replaced with 𝑍'
q(1) as in equation (32),

the second term is replaced with the transmission threshold DlÜh@
á(A),á(A=*) in the constraint (25).

Therefore, constraint (31) is consolidated to constraint (37) as follows:

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

162

(4 4 ≠aá(A) ∗ 𝒁𝒏
𝒇(𝒊) + bá(A)Æ +

Kã9*

AJ)@∈å%

4 DlÜh@
á(A),á(A=*)) ≤ DKhiZdç						

Kã9+

AJ)

 (37)

6.3.5 Algorithms

The MPs are decomposed into the VNF mapping and virtual link mapping algorithms because each

process is in their own domain so the integrity of the MP is ensured (Williams 2013). A master

problem is created to control the two algorithms (Lasdon 1970). Each algorithm is presented in the

next sub-sections.

6.3.5.1 The master algorithm

The master algorithm controls the sub-algorithms, it invokes the VNF embedding and transfers the

results to the virtual link embedding before invoking it. The master algorithm is presented in Figure

6.14.

6.3.5.2 VNF embedding optimization algorithm

The VNF embedding optimization algorithm will optimize the CPU allocation for all VNFs and

meet the processing constraint and other constraints. The objective function and constraints are

extracted from section 4.3 and section 5.2, are presented as follows:

min∫ 4 4 𝑍'
q(1)

'∈S#

Im9*

1J)

ª (38)

𝑍'
q(1) = 𝑥'

q(1) ∗ 𝑘'
q(1) (39)

𝑘'
q(1) ≥ 0, ∀𝑖 ≤ (𝑀𝐻 − 1) (40)

𝑘'
q(1) 		≤ 𝑐𝑝𝑢(𝑛), ∀𝑛 ∈ 𝑉R, ∀𝑓(𝑖) ∈ 𝑁𝑆𝑅 (41)

4 𝑥'
q(1) = 1	, ∀𝑖 ≤ (𝑀𝐻 − 1)

'∈S#

(42)

𝑥'
q(1) ∈ {0,1}, ∀𝑖 ≤ (𝑀𝐻 − 1) (43)

𝑘'
q(1) ≥ 𝑐𝑝𝑢?𝑓(1)@, ∀𝑖 ≤ (𝑀𝐻 − 1)	 (44)

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

163

∫4 4 (aá(A) ∗ Z@
á(A) + bá(A)

Kã9*

AJ)@∈å%

ª ≤ PKhiZdç		 (45)

𝑍'
q(1) ≤ 𝑈 ∗ 𝑥'

q(1) (46)

𝑍'
q(1) ≥ 𝐿 ∗ 𝑥'

q(1)	 (47)

𝑍'
q(1) ≥ 𝑘'

q(1) − 𝑈 ∗ ≠1 − 𝑥'
q(1)Æ (48)

𝑍'
q(1) ≤ 𝑘'

q(1) − 𝐿 ∗ ≠1 − 𝑥'
q(1)Æ (49)

The explanation of formulas (38-49) is alike to formulas (21-31). The objective function (38)

minimizes the allocated CPU resource to VNFs, ensures processing constraint and other

constraints. Constraint (39) is the newly added variable 𝑍'
q(1) as in section 5.2. Constraint (40)

guarantees the allocated CPU resource is positive. Constraint (41) ensures that the allocated CPU

resource respects the CPU capacity of substrate node n. Constraint (42) guarantees that VNF 𝑓1 is

embedded on one substrate node only. Constraint (43) ensures that 𝑥'
q(1) is a binary variable.

Constraint (44) guarantees that the allocated CPU resource satisfies the CPU demand of 𝑓1.

Constraint (45), which is extracted from the delay constraint (31), ensures the allocated CPU

resource to all VNFs satisfying the total processing delay threshold of the NSR. Constraints (46-

49) are extracted from section 5.2 about the variable 𝑍'
q(1).

If there are optimal results in the VNF embedding process, we will proceed to virtual link

embedding. The flow control mechanism in OPL (Arkalgud & Rux 2018) is leveraged to transfer

the VNF embedding results. Figure 6.15 presents the VNF embedding optimization process, which

consists of the input parameters, the execution of the VNFmapping.mod file that consists of

formulas (38-49) coded using OPL script syntax, and the output results.

Figure 6.14: the algorithm of the master model

Algorithm 1: The main script
1 Function main
2 declare data files
3 declare structure mappedVL
4 declare set mappedVLlink of type mappedVL

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

164

5 generate the main_OPL_model
6 r1=invoke VNF_embedding;
7 if (r1 is solved)
8 mappedVLlink=r.VNF_results
9 r2=invoke virtual_link_embedding
10 if (r2 is solved)
11 exit with success status
12 Else
13 exit with fail status
14 end if
15 Else
16 exit with fail status
17 end if
18 End Function

Figure 6.15: the algorithm of the VNF embedding

Algorithm 2: VNF embedding algorithm
1 Input:
2 Infratructure_networks;
3 VNFs_demand[numOfVnfs];
4 VNF embedding model file .mod
5 VNF embedding data file
6 Output:
7 VNF Optimal embedding results
8 Function VNF mapping
9 OpenFile VNFmapping.mod file
10 create_vnfmapping.dat;
11 Execute VNFmapping.mod with vnfmapping.dat
12 If status <> 1 // status 1 is internal value of OPL showing there are

optimal results
13 Exit with failure
14 Else
15 Save_Results(optimalVNFs[numOfVnfs]);
16 Exit
17 Endif
18 End function

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

165

19 Function create_vnfmapping.dat;
20 OpenFile vnfmapping.dat;
21 fwrite (Infrastructure_networks, vnfmapping.dat);
22 fwrite (VNFs_demand[numOfVnfs], vnfmapping.dat);
23 SaveFile
24 End function
25 Function Save_Results(optimalVNFs[numOfVnfs])
26 For each optimalVNFs
27 virtualLinkR = new VirtualLinkRequest;
28 virtualLinkR.serverSource = server_id[vnf_source];
29 virtualLinkR.serverDest=server_id[vnf_destination];
30 virtualLinkRequests.add(virtualLinkR);
31 End For
32 Return virtualLinkRequests;
33 End function

6.3.5.3 Virtual links connecting VNFs Embedding optimization algorithm

The objective function and constraints of the virtual link embedding process are extracted from the

original ones in section 4.3, and section 5.2, as are presented in Figure 6.16.

min∫4 4 4 ℎX,2
q(1),q(1=*)

(X,2)∈./,1

Im9+

1J)./,1

ª	 (50)

ℎX,2
q(1),q(1=*) ≥ 𝑏𝑤X,2

q(1),q(1=*)	, ∀(𝑢, 𝑣) ∈ 𝐸R, ∀𝑖 ≤ (𝑀𝐻 − 2)			 (51)

4 4 ℎX,2
q(1),q(1=*) ≤ 𝑏𝑤(𝑢, 𝑣),			∀?𝑝L,'@ ∈ 𝒫R									

(X,2)∈./,1

Im9+

1J)

 (52)

ℎL,'
q(1),q(1=*) > 0		𝑖𝑓		 ≠𝑥L

q(1) ∗ 𝑥'
q(1=*)Æ = 1, ∀𝑖 ≤ (𝑀𝐻 − 2)					 (53)

4 𝐷!0/'
q(1),q(1=*) ≤ 𝐷!0/'>Rp 	

Im9+

1J)

(54)

The explanation of the formulas (50-54) is alike to formulas (21-31). The objective function (50)

guarantees that the allocated bandwidth resource to all virtual links is minimized. Constraint (51)

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

166

ensures that the allocated bandwidth fulfills the bandwidth demand of the virtual link connecting

the VNFs 𝑓1 and 𝑓1=*. Constraint (52) guarantees that the allocated bandwidth respects the

bandwidth capacity of substrate links on the embedded substrate path. Constraint (53) ensures that

the bandwidth is allocated only if the two substrate nodes are the embedded nodes of VNFs 𝑓1 and

𝑓1=*. Constraint (54) is the transmission delay constraint that is related to the linearization of the

NSR delay in section 5.2.

In the realization process, the 5G Core management system will employ the SDN controller to

create a virtual LAN for the NSR with two purposes: (i) to route packets in the NSR, and (ii) to

isolate the NSR from other NSRs on the same infrastructure. Algorithm 3 presents the virtual link

embedding optimization algorithm with input parameters, optimal VNF embedding results, the

execution of the VirtualLinkMapping.mod file that consists of formulas (50-54) coded using OPL

script syntax, and output results.

Figure 6.16: the virtual link embedding algorithm

Algorithm 3: Virtual link embedding optimization algorithm
1 Input:
2 Virtual link mapping demands
3 VNF optimal mapping results
4 Virtual link mapping model file .mod
5 Virtual link mapping data file
6 Output:
7 Optimal virtual link mapping results
10 Function virtual link mapping
11 OpenFile virtuallinkmapping.mod
12 virtualLinkRequests= LOAD_Results;
13 create_VirtualLinkMapping.dat;
14 Execute VirtualLinkMapping.mod with VirtualLinkMapping.dat
15 If status <> 1 // status 1 is internal value of OPL showing there are

optimal results
16 Exit with failure
17 Else Get optimalVirtualLinkMapping[numOfLinks];
18 End if
19 End function

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

167

20 Function create_ VirtualLinkMapping.dat;
21 OpenFile VirtualLinkMapping.dat;
22 Fwrite (Infrastructure_networks, virtualLinkMapping.dat);
23 Fwrite (virtualLinkRequests, virtualLinkMapping.dat);
24 Fwrite (virtualLinkDemands[numOfVirtualLinks],

virtualLinkMapping.dat)
25 SaveFile
26 End function

6.3.5.4 Multiple NSR embedding optimization algorithms in a time window

When multiple NSRs are requested by different mobile services, they are processed in the order of

arrival to the 5G Core system; each NSR is provisioned in two steps: VNFs embedding

optimization, and virtual link embedding optimization. After the NSR is successfully provisioned,

the residual substrate resources of nodes and links are calculated before processing the next NSR.

6.4 Performance evaluation

In this section, we use realistic scenarios to evaluate the performance of our algorithms and

compare with the-state-of-the-arts. The performance parameters in the scenario (Malandrino et al.

Dec. 2019) are extracted and used to design the NSR requests. The traffic models are based on the

scenarios for the entertainment (EN) service for eMBB type and the intersection collision

avoidance (ICA) service for uRLLC type, in which the max delay and CPU demands are extracted

into the NSRs.

Table 6.2: Realistic scenarios (Malandrino et al. Dec. 2019)

VNF Rate 𝛌(𝐬, 𝐯) Resource for 1
flow/ms 𝐥(𝐯)

Service rate
(CP and UP)

CPU demand
(CP)

Intersection collision avoidance (ICA)

eNB 117.69 10Up 152.997 15.3 / 10
EPC PGW 117.69 10Up 152.997 15.3 / 10
EPC SGW 117.69 10Up 152.997 15.3 / 10
EPC HSS 11.77 10Up 15.301 1.5 / 10

EPC MME 11.77 10Uq 15.301 15.3 / 10

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

168

Car info
management

117.69 10Uq 152.997 153**

Collision detector 117.69 10Uq 152.997 153**
Car manufacturer

DB
117.69 10Up 152.997 15.3 / 10

Alarm generator 11.77 10Up 15.301 1.5 / 10
Entertainment (EN)

eNB 179.82 10Up 233.766 23.4 / 20
EPC PGW 179.82 10Up 233.766 23.4 / 20
EPC SGW 179.82 10Up 233.766 23.4 / 20
EPC HSS 17.98 10Up 23.374 2.4 / 20

EPC MME 17.98 10Uq 23.374 23.4 / 20
Video origin server 17.9 10Uq 23.27 23.3 / 20

Video CDN 179.82 10Up 233.766 23.4 / 20

** these are left out as they are image-processing functions

6.4.1 The evaluation setup

6.4.1.1 The infrastructure

The infrastructure is generated as a three-layer leaf-spine fabric in an edge cloud. The fabric has

two spine switches (S1 and S2) in layer 1, leaf switches in layer 2, and servers in layer 3. We

assume VNFs will be embedded onto the servers only. The infrastructure is designed with two

sizes: SN1 and SN2 (SN1 is smaller) as depicted Figure 6.17. The SNs for eMBB service and

uRLLC service are also presented. Figure 6.17 presents the fabric SNs.

Figure 6.17: The leaf-spine fabric test beds

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

169

Table 6.3 presents the infrastructure with the number of servers and substrate links, the substrate

resources of servers, routers and substrate links.

Table 6.3: The substrate fabric network

 CPU resources (GHz) BW Resources (Gbps)
SN1 S
Servers 10 0 12RT
Routers 0 0 5LK
Sub Links 20 36LK
SN2
Servers 10 16SV
Routers 0 0 6RT
Sub Links 20 48LK

6.4.1.2 The network slice requests

NSR are designed based on three topologies of SC, LM and FM presented in Figure 6.8. Services

are designed to have 6 VNFs. The three topologies for services that consist of 8 VNFs are depicted

in Figure 6.18. The NSR demands are extracted from the realistic scenarios.

Figure 6.18: The NSR topologies with 8 VNFs

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

17.

Table 6.4 presents the NSRs in each test scenario, the parameters are calculated from the realistic

scenarios in Table 6.2; ICA services are of type uRLLC, EN services are of type eMBB. The

parameters are inferred from Table 6.2 to be used in the synthetic scenarios as follows.

Table 6.4: NSR demand and thresholds

Number of VNFs

CPU
Demand

(GHz)

BW
Demand
(Gbps)

NSR delay
(ms)

Trans delay
(ms)

Entertainment (EN) (eMBB)
SC 6 8 1.1 1 200 10
LM 6 8 1.1 1 200 10
FM 6 8 1.1 1 200 10

ICA (uRLLC)
SC 6 8 5.5-5.9 4 – 5 50 0.01
LM 6 8 5.5-5.9 4 – 5 50 0.01
FM 6 8 5.5-5.9 4 – 5 50 0.01

Table 6.5: Test scenario design

 Topology VNF Application type
Scenario 1 Simple chain 6 eMBB
Scenario 2 Simple chain 6 uRLLC
Scenario 3 Lightly meshed 6 eMBB
Scenario 4 Lightly meshed 6 uRLLC
Scenario 5 Fully meshed 6 eMBB
Scenario 6 Fully meshed 6 uRLLC
Scenario 7 Simple chain 8 eMBB

Scenario 8 Simple chain 8 uRLLC
Scenario 9 Lightly meshed 8 eMBB
Scenario 10 Lightly meshed 8 uRLLC
Scenario 11 Fully meshed 8 eMBB
Scenario 12 Fully meshed 8 uRLLC

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

171

6.4.1.3 The simulation environment

The simulation environment is the OPL IDE, in a MacBook Pro 2.2 GHz, Intel Core i7, 16G RAM.

We design the model files (.mod) for the main script, VNF mapping and the virtual link mapping

using their objective functions and constraints in subsections 6.3.5.2 and 6.3.5.3. The data files are

created for each embedding process consisting of the substrate resources and NSR demands as

described in Table 6.3 and Table 6.4. The OPL IDE is used to view the results of the script

execution. Table 6.5 presents 12 scenarios that are designed for eMBB and uRLLC services in

three topologies SC, SM and FM.

6.4.2 Evaluation results

The performance of our network slicing algorithms are evaluated against the State-Of-The-Arts

with SRAM and FRAM (Alleg et al. 2017), and the confident placement MaxZ and CPU allocation

algorithms (Agarwal et al. 2018) in resource allocation (CPU or bandwidth), latency satisfaction,

execution time and the effect of arrival rates.

6.4.2.1 The embedding based on NSR topologies

The NSR SC is embedded as in Figure 6.19, VNFs are embedded on servers having the available

resources meet the VNF demand, virtual links are embedded to the substrate links having the

available resource meet the bandwidth demand.

Figure 6.19: Results of the simple chain topology

The NSR LM topology is embedded as in Figure 6.20, the branches are mapped to the substrate

links having the available bandwidth meet the bandwidth demand.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

172

 Figure 6.20: Results of the lightly meshed topology

6.4.2.2 Resource allocation by service types

The allocated CPU and bandwidth resources result in the total latency of each VNF, which are

tested in related scenarios. The results of ICA test case (uRLLC) are recorded in Figure 6.21, the

CPU resources for each VNF are in the range [5.5 – 5.9] GHz, the allocated bandwidth resources

are in the range [4.0 – 4.6] Gbps; the VNF latencies are in the range of [6 – 7.5] ms; the total delay

of the NSR is less than 55ms.

Figure 6.21: Latency of an IAC service (uRLLC)

The results of EN test cases (eMBB) are recorded in Figure 6.22; the CPU resources for each VNF

are in the range [1.02 – 1.14] GHz, the allocated bandwidth resources are in the range [4.0 – 4.6]

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

173

Gbps; the VNF latencies are in the range of [30 – 32] ms; the total delay of the NSR is less than

185ms.

Figure 6.22: Latency of an EN service (eMBB)

6.4.2.3 Resource consumption

We compare the allocated resource with FRAM and SRAM of the State-Of-The-Art (Alleg et al.

2017), which are based on completely different 5G applications; FRAM is based on the linear

proportion of the processing delay over allocated resources, it is modelled as a MIQCP, and it is

solved using AIMMS 4.3; SRAM is the strict resource allocation proposal, it is modelled as a MIP

and it allocates at the max demands.

In this experiment, the resource consumption is recorded as a percentile of the available resources.

The eMBB NSR in SC topology is repeatedly tested into groups of 5, 10, 15 and 20 NSRs, the

results are recorded and adjusted based on the number of VNFs in the NSR as our eMBB NSR has

6 VNFs while FRAM and SRAM have 4 VNFs. The test results, which are presented in Figure

6.23, showed that the our NSL resource allocation outperforms FRAM by 10% - 15% because the

resources are allocated to the exact demand (our program has been linearised into a linear program),

whilst FRAM is a MIQCP, and it allocated resource at or above the threshold; SRAM allocates

resources at the upper bound demands. In the State-Of-The-Art results that are presented as Fig. 4

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

174

in their paper, FRAM outperformed SRAM by ~30%, so our test results outperformed SRAM by

~30%.

Figure 6.23: CPU resource consumption

6.4.2.4 Latency satisfaction

The latency satisfaction metric is evaluated based on the processing and transmission delays of the

total delay of each VNF in the NSRs of ICA and EN applications. The results of VNFs in the EN

application is presented in Figure 6.24. The results show that the total latency (max 32ms) is

occupied by the processing latency (max 30ms).

The results of VNFs in the ICA application is presented in Figure 6.25. The results show that the

total latency (max 7.5 ms) is occupied by the processing latency (max 7.3 ms).

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

175

Figure 6.24: Latency of EN with processing and transmission

Figure 6.25: Latency of IAC with processing and transmission

6.4.2.5 Total latency by NSR topologies

In the EN application, the NSR with SC topology has the longest latency, the SM topology has the

shorter latency as the branch comprises less VNFs, the FM topology may have the shortest latency

as its branches are complex, so they comprise the least number of VNFs. The SC topology

comprises all VNFs in the sequence, hence, its total latency is above 180ms. The LM topology

comprises branches, hence, one or more VNFs are bypassed, its total latency is just below 160ms,

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

176

the FM topologies comprises many different branches, the latency of the shortest branch is just

120ms, other branches latency is above 150ms. Figure 6.26 depicts the total NSR latencies based

on topologies of SC, SM, FM of EN services.

Figure 6.26: EN application, NSR latencies by topologies SC, LM, FM

In ICA application, the number of VNFs is more than the number in EN application, but its latency

is much shorter, the SC and LM topologies are similar to the EN application, the FM topology

comprises more branches than the EN application. The SC NSR latency is just under 55ms, the

LM topology with a smaller number of VNFs compared to the SC has its latency at just above

45ms. The FM topology has different branches, each branch comprises different number of VNFs,

their latencies are spread from under 35ms, to 40ms to under 45ms. Figure 6.27 depicts the total

NSR latency based on topologies of SC, SM, FM of ICA services.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

177

Figure 6.27: ICA application, NSR latencies by topologies SC, LM, FM

6.4.2.6 Execution time

The execution time of the network slicing algorithms is evaluated against FRAM and SRAM in

the State-Of-The-Art (Alleg et al. 2017). The results are presented in Figure 6.28 that show NSL

outperforms the FRAM and SRAM. The test results show that our execution time was only one

tenth of FRAM, and one twentieth of SRAM. The main contributions are in the proposed solution

strategy with linearization and decomposition of the MP into sub-processes that become smaller

and simpler to process; and the leverage of flow control mechanism in IBM OPL script. In the

State-Of-The-Art result, FRAM execution time outperforms SRAM 50% (Fig. 9), therefore, our

result outperforms SRAM.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

178

Figure 6.28: The execution time compared to FRAM, SRAM

6.4.2.7 Expected total delay by arrival rates

The expected total delay by arrival rates is calculated based on the expected time in the VNF as

specified in formula (3). The higher the arrival rates, the longer the waiting time in the queue and

the longer the total delay. The evaluation will be conducted with MaxZ and Optimum of the State-

Of-The-Art (Agarwal et al. 2018); the expected delay is normalized against the delay for QoS. The

results are presented in Figure 6.29. Our NSL (red line) based on formula (3) is different from

MaxZ and Optimum (the blue and green line) as we based on a different queueing model Mt/G/1,

while the State-Of-The-Art is based on M/M/1. The results in Figure 6.29 show that our model

reflects the changes in the real-world in a simple and realistic way.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

179

Figure 6.29: Normalized delay by arrival rates with the-state-of-the-arts (Agarwal et al. 2018)

6.5 Summary

In this chapter, the research objective is to investigate and to propose a novel mathematical model

for the network slicing problem that focuses on multiple objectives of resource optimization and

latency satisfaction of different 5G application types: eMBB, uRLLC and mMTC. The analysis

model and resource model are built for the NS problem. The NS performance model is built using

queueing theory, each VNF is modelled as an 𝑀!/𝐺/1 queue, in which the Markov-modulated

Poisson process (MMPP) is applied to the VNF input queue. We assume there is a linear function

between processing latency and CPU resource allocation (Alleg et al. 2017). The NS mathematical

model is considered as a structure system; it is NP-Hard, non-linear, non-convex, and mixed

integer, our approach is convex relaxation, linearization and decomposing the problem into the

master model and two sub-models: VNF embedding algorithms as well as virtual link embedding,

and solved using IBM OPL flow control and scripts. The evaluation results show that our NS

solution outperforms the State-Of-The-Art in resource allocation, runtime, latency satisfaction and

acceptance ratio.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

18.

CHAPTER 7 CONCLUSIONS AND FUTURE WORK

In this chapter, we conclude the thesis with the summary and contributions of all the research

solutions to the existing body of knowledge. The novelties and significance of the thesis will be

outlined. Lastly, the future works will be presented.

7.1 Summary and contributions of the thesis

The primary focus of the thesis is to investigate and to develop solutions for resource request

provisioning, and resource optimization in network virtualization and 5G core network slicing

applying SDN technology.

We identified the challenge in network resource request provisioning, which is the ad-hoc and self-

explored way, does not add value for reuse, and leads to ‘reinventing the wheel’. This thesis

identifies the challenge in network virtualization that requires a new virtual network embedding

mechanism that focuses concurrently on control congestion, saving cost, saving energy objectives

in the production operation environments. The thesis also identifies the challenge in virtual link

embedding that requires a new resource allocation mechanism that selects actively the physical

link resources based on multiple objectives that the virtual links will be embedded on; and the

challenge in network slicing that requires a new resource allocation optimization mechanism that

satisfies the latency constraints of different 5G application types: eMBB, uRLLC, mMTC in 5G

mobile system, and constraints related to NV and NFV.

Software-defined networking is the network paradigm that (i) separates the control plane from the

data plane in network devices, (ii) centralizes control in the SDN controller, (iii) introduces

programmability to networking, and (iv) open source the SBI and NBI interfaces to provide the

opportunities for the public to contribute. Our research investigates and develops solutions for the

identified challenges applying SDN technology.

The novelties of our research are summarized as follows.

The research introduces a new architecture for an extended SDN application that is based on MSA,

MS design patterns of service registration, service discovery, service composition; three-tier

architecture, and domain driven design. The architecture promotes modular designs and software

reuse, allows new service creation and service composition, and allows developers to concentrate

on development. CEVNE is a new VNE mathematical model that focuses concurrently on multi-

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

181

objectives: cost saving, energy saving and congestion control for the production network

operations. The CEVNE is modelled using the weighting method with positive weights and the

constraint method with binding constraint to generate the pareto-optimal solutions for all

objectives. SDN-based heuristic algorithm promotes a new design of the VNE virtual link

embedding algorithm, it opens the new way to realize the virtual link embedding on the three-tier

architecture for SDN applications that applies MSA and MS design patterns. A new mathematical

model for the network slicing in 5G core networks that optimizes resource allocation and satisfies

latency of different 5G application types: eMBB, uRLLC and mMTC. The new solution

approaches to the network slicing program apply convex relaxation, linearization, and the

decomposition techniques of the structure systems.

The contributions of the thesis are summarized as follows.

A novel architecture to realize the extended SDN applications on top of the SDN controllers:

It is based on Micro-service architecture (MSA). It is a three-tier architecture with the database

tier, business tier and web tier. The database tier ensures that the extended application can have its

own database. The business tier consists of micro-services (MS) applying MS design patterns. It

should allow the creation of new services, the reuse of existing services, and the composition of a

service based on new and existing services. It is based on the domain driven design (DDD)

principle. The web tier ensures the application can be accessed via the browser. The architecture

ensures SDN applications to be integrated into vertical applications, workflows or business

processes based on the programmability of the SDN paradigm.

A novel mathematical model and its algorithms for the VNE that focuses on multiple objectives:

saving cost, saving energy and avoiding congestion (CEVNE) in network virtualization in cloud

data centres. The cost saving objective allocates minimal substrate resources to virtual networks;

the energy saving minimizes the number of active nodes; the congestion avoidance minimizes the

maximum link utilization. These objectives are combined into the CEVNE mathematical model

using the weighting methods with positive weights and the constraint method with binding

constraints. The cost saving and energy saving objectives are normalised as a ratio. The

mathematical program (MP) is a mixed-integer linear program (MILP), which is relaxed into a

linear program, and solved by GLPK. As solving VNE is NP-Hard, heuristic algorithms are

designed for CEVNE with node embedding, link embedding and integration algorithms. CEVNE

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

182

node embedding algorithm applies the rounding function of D-ViNE-LB to find the approximation

of integer variables in the sub-optimal solutions.

A novel SDN-based heuristic algorithm for the CEVNE link embedding process is proposed on an

SDN substrate network that focuses concurrently on three objectives: saving cost, saving energy

and avoiding congestion. The heuristic solution is realized as a composite SDN application using

the architecture for extended SDN application that integrates ONOS core services, SR application,

the monitoring application and new MS that are designed for each objective. The application is

based on the three-tier architecture, MSA, MS design patterns and DDD principles. The CEVNE

LiM application invokes the path selection service to choose the substrate path that satisfies

multiple objectives. The substrate network is an SDN leaf-spine fabric running SR on an SDN

controller.

A novel solution approach is presented for the network slicing in 5G core networks as network

slicing is a complicated concept in 5G. The analysis model is built to understand how network

slicing operates. The resource model is used to allocate resources to VNFs and to virtual links

connecting VNFs. The performance model based on queueing theory is used to predict network

slicing end-to-end latency. The VNF is modelled as a 𝑀*/G/1 queueing system. The Markov-

modulated Poisson process (MMPP) pattern is applied to the VNF input queue, and the linear

function of the VNF processing latency on allocated CPU resource is applied to control both

resource and performance models so that it satisfies the latency threshold. The network slicing

problem is modelled as a structure system with two objectives, resource allocation minimization

and latency satisfaction of 5G applications in different types: eMBB, uRLLC and mMTC. The MP

is non-convex, non-linear, mixed-integer and NP-Hard. The novelty of the solution also lies in the

solution strategy, which focuses on convex relaxation using linearization, and decomposition

techniques for structure systems. The MP is decomposed into a master model and two sub-models:

VNF embedding and virtual link embedding, and they are solved using IBM OPL scripts and the

flow control mechanism.

We prototyped the proposed architecture using the dynamic resource management (DRM)

application on the ONOS controller using the GEANT network on Mininet. The prototype showed

that the proposed architecture is appropriate, effective, realizable, and practical for emerging

applications.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

183

We evaluated CEVNE in both challenging, near-congestion scenarios and normal scenarios. The

results show that in challenging scenarios, CEVNE has double to three times the number of

successful cases than D-ViNE-LB. In normal scenarios, CEVNE improved runtime by 50%,

energy consumption by 20%, its average active node stress is higher than D-ViNE-LB because of

the congestion avoidance objective. The performance evaluation showed that CEVNE

outperformed D-ViNE-LB in the three objectives that it focuses concurrently.

We evaluated SDN-based heuristic CEVNE LiM algorithm and realized the CEVNE LiM

application. The performance of CEVNE LiM is compared with the k-shortest path algorithm and

shows its superior performance in terms of the overall runtime, the average path length, the average

node stress, the average link stress, and the overall energy consumption.

We evaluated our network slicing solutions and compared them with the State-Of-The-Art. The

results show that our network slicing solution outperformed the State-Of-The-Art in resource

allocation by 25% in efficiency, 100% acceptance ratio and 50% or more in runtime, and satisfied

latencies of different 5G application types.

7.2 Future work

o Architecture of extended SDN applications

The architecture for extended SDN applications will be considered to apply to open-source SDN

controllers such as OpenDayLight, Ryu. As open-source SDN controllers provide the NBI to build

SDN applications, we will examine the controller core services, the controller platform, and the

application of MS design patterns: service registration, service discovery and service composition

in the controller.

The current proposed architecture of extended SDN applications needs to integrate with Artificial

Intelligence (AI): Machine learning and Deep learning algorithms. These algorithms may not be

based on MSA, so the integration may be via their interfaces.

P4 programmable and Stratum in SDN 2.0 are new trends that allow the integration of data plane

program with Openflow using the Flow Objective in the NBI; currently it is integrated to ONOS

controller using P4Runtime. The extended architecture allows the SDN applications and services

to integrate with P4 and Stratum in the data plane via the core services and NBI.

The architecture can be used to build custom 5G core services and the vertical 5G applications. As

5G exploits the SDN data plane, the architecture for extended SDN application and services allow

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

184

the building of 5G custom services using P4 and Stratum in the data plane together with other 5G

core services.

o Congestion-aware, energy-aware virtual network embedding

The CEVNE will be tested in the production environment and implemented in a field trial. We also

consider testing CEVNE in different fabric topologies for the clouds such as the clos topology, fat

tree topology, DCell topology and the hierarchy of leaf-spine fabric.

CEVNE node mapping process is modelled using MP. Currently, the performance evaluation is

tested using the Alevin framework. It needs to be tested in the production environment in cloud

data centers to gain the real-time response. With AI and ML, the application of AI to optimization,

and the application of AI into the structure of solvers, the modeling techniques and solution

approaches in CEVNE can be applied to build a good ML model. The multi-objective VNE can be

extended to apply to other combinations of multi-objectives VNE such as QoS, multi-path

embedding, and security, to name a few.

o Realization of virtual link mapping in CEVNE

We will add different objectives such as security, reliability to the virtual link embedding

algorithm, each objective has its own algorithms that will be implemented as MS. We will apply

CEVNE LiM in a hierarchical leaf-spine fabric with many layers. We will try different formulation

and algorithms for each objective: cost saving, energy saving and congestion avoidance.

The realization of CEVNE link mapping process is tested in the Mininet environment. It needs to

be tested in the production environment in cloud data centers to gain real-time feedback, especially

the monitoring component in the proposed architecture. The SDN-based heuristic approach can be

extended to focus on different objectives for the virtual link mapping process such as QoS, with

different monitoring applications.

o Latency-aware resource allocation optimization in network slicing in 5G core network

In this research, the parameters 𝑎q(1) and 𝑏q(1) are set at the same values for all VNFs; this is

intuitive as VNFs are considered having similar upper bounds and lower bounds of the processing

latencies. If a VNF requires different values of the two parameters 𝑎q(1) and 𝑏q(1) from other VNFs,

constraints (31), (37) and (45) will provide each parameter of each VNF in the NSR.

The network slice proposal can be realized using the architecture solution in the 5G core system

such as the Open Baton project (Fraunhofer 2019), or COMAC (Sunay 2019). Open Baton is an

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

185

extensible and customizable NFV MANO-compliant framework (Fraunhofer 2019), which

provides the module “network slice engine” to create network slices and to integrate with Open

Stack. COMAC is an exemplar platform that delivers next-generation services over both mobile

and broadband networks. COMAC will create diverse mobile network slices, combining access

and core technologies to support use cases and services (Sunay 2019).

The structure system and the decomposition solution approach can be extended to network slicing

for vertical 5G applications such as in the V2X application, fast train, factories 4.0. As the vertical

applications are using 5G services so they will be utilizing network slicing in 5G. That area will

show that our network slicing research is beneficial for future 5G vertical applications.

7.3 Conclusion remarks

We conclude that our aims “to investigate and to develop solutions for resource request

provisioning, resource optimization in network virtualization and 5G core network slicing applying

SDN technology” have been achieved. In our thesis, we address each research question carefully,

we investigate and carry out the objectives and their tasks thoroughly in the researching for

solutions. To summarize, we highlight the significance of our research as follows.

We have performed a comprehensive study of the resource optimization problem and investigate

the architecture for extended SDN applications. The outcomes demonstrate the novelties, the

efficiency, and the applicability of our solutions. They demonstrate the innovation and

effectiveness of our solution approaches in solving optimization problems. The results of this thesis

can readily be applied to 5G vertical applications where resource optimization and network routing

problems exist naturally in multiple domains and require software-defined networking logically

centralized control architecture for efficient and dynamic solutions.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

186

BIBLIOGRAPHY

5GEx 2020, 5G Exchange, H2020, viewed 24 April 2020,
<https://cordis.europa.eu/project/id/671636>.

ABDULLAH, Z.N., AHMAD, I. & HUSSAIN, I. 2018, 'Segment Routing in Software Defined
Networks: A Survey', IEEE Communications Surveys & Tutorials., vol. 21, no. 1, p. 23.

ADDAD, R., BAGAA, M., TALEB, T., DUTRA, D. & FLINCK, H. 2019, 'Optimization model
for Cross-Domain Network Slices in 5G Networks', IEEE Transactions on Mobile
Computing.

AFOLABI, I., TALEB, T., SAMDANIS, K., KSENTINI, A. & FLINCK, H. 2018, 'Network
Slicing and Softwarization: A Survey on Principles, Enabling Technologies, and
Solutions', IEEE Communications Surveys & Tutorials, vol. 20, no. 3, p. 25.

AGARWAL, S., MALANDRINO, F., CHIASSERINI, C. & DE, S. 2018, 'Joint VNF placement
and CPU allocation in 5G', paper presented to the IEEE INFOCOM 2018-IEEE
Conference on Computer Communications.

AIMMS 2020, Developers Home, viewed 16 April 2020,
<https://www.aimms.com/english/developers/>.

ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S., VAIDYANATHAN, R., CHU, K.,
FINGERHUT, A., LAM, V., MATUS, F., PAN, R., YADAV, N. & VARGHESE, G.
2014, 'CONGA: Distributed Congestion-Aware Load Balancing for Datacenters', ACM
SIGCOMM Computer Communication Review, vol. 44, no. 4, p. 12.

ALLEG, A., AHMED, T., MOSBAH, M., RIGGIO, R. & BOUTABA, R. 2017, 'Delay-aware
VNF placement and chaining based on a flexible resource allocation approach', paper
presented to the 2017 13th International Conference on Network and Service
Management (CNSM).

AMALDI, E., CONIGLIO, S., KOSTER, A.M. & TIEVES, M. 2016, 'On the computational
complexity of the virtual network embedding problem', Electronic Notes in Discrete
Mathematics, vol. 52, p. 8.

ARKALGUD, N. & RUX, S. 2018, OPL with Flow Control Examples, IBM,
<https://developer.ibm.com/docloud/blog/videos/opl-flow-control-examples/>.

BASS, L. 2013, Software architecture in practice, third edition edn, Addison-Wesley.

BAYS, L.R., GASPARY, L.P., AHMED, R. & BOUTABA, R. 2016, 'Virtual Network
Embedding in Software-Defined Networks', paper presented to the NOMS 2016-2016
IEEE/IFIP Network Operations and Management Symposium.

BECK, M.T., LINNHOFF-POPIEN, C., FISCHER, A., KOKOT, F. & DE MEER, H. 2014, 'A
simulation framework for virtual network embedding algorithms', paper presented to the
2014 16th international telecommunications network strategy and planning symposium
(Networks)

BERNARDO, D. 2012, 'Network security mechanisms and implementations for the next
generation reliable fast transfer protocol', UTS, UTS Sydney, Australia.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

187

BLENK, A. & KELLERER, W. 2019, 'Towards Virtualization of Software-Defined Networks: A
Journey in Three Acts', paper presented to the 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM).

BLIEK1Ú, C., BONAMI, P. & LODI, A. Oct. 2014, 'Solving Mixed-Integer quadratic
programming problems with IBM-CPLEX: a progress report', paper presented to the
Proceedings of the twenty-sixth RAMP symposium, Hosei University, Tokyo.

BOLCH, G., GREINER, S., DE MEER, H. & TRIVEDI, K.S. 2006, Queueing networks and
Markov chains: modeling and performance evaluation with computer science
applications, John Wiley & Sons.

BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN, N., REXFORD, J.,
SCHLESINGER, C., TALAYCO, D., VAHDAT, A., VARGHESE, G. & WALKER, D.
2014, 'P4: Programming protocol-independent packet processors', ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, p. 9.

Broadcom 2019, Openflow Data Plane Abstraction: Abstract switch specification, viewed 26
September 2017, <http://www.broadcom.com>.

CABALLERO, P., BANCHS, A., DE VECIANA, G., COSTA-PÉREZ, X. & AZCORRA, A.
2018, 'Network slicing for guaranteed rate services: Admission control and resource
allocation games', IEEE Transactions on Wireless Communications, vol. 17, no. 10, p.
14.

CHANDRAMOULI, D., LIEBHART, R. & PIRSKANEN, J. 2019, 5G for the connected world,
Wiley.

CHAYAPATHI, R., HASSAN, S.F. & SHAH, P. 2016, Network Functions Virtualization (NFV)
with a Touch of SDN, 1st edn, Addison-Wesley Professional.

CHENG, X., SU, S., ZHANG, Z., WANG, H., YANG, F., LUO, Y. & WANG, J. 2011, 'Virtual
network embedding through topology-aware node ranking', ACM SIGCOMM Computer
Communication Review, vol. 41, no. 2, p. 10.

CHOWDHURY, M., RAHMAN, M.R. & BOUTABA, R. 2012, 'Vineyard: Virtual network
embedding algorithms with coordinated node and link mapping', IEEE/ACM
Transactions on Networking (TON), vol. 20, no. 1, p. 14.

CHOWDHURY, S.R., AHMED, R., SHAHRIAR, N., KHAN, A., BOUTABA, R., MITRA, J. &
LIU, L. 2017, 'Revine: Reallocation of virtual network embedding to eliminate substrate
bottlenecks', paper presented to the IEEE/IFIP Integrated Network Management
Symposium (IM).

CLAISE, B., CLARKE, J. & LINDBLAD, J. 2019, Network programmability with YANG : the
structure of network automation with YANG, NETCONF, RESTCONF, and gNMI,
Addison-Wesley, Boston.

COELLO, C.A.C., LAMONT, G.B. & VAN VELDHUIZEN, D.A. 2007, Evolutionary
algorithms for solving multi-objective problems, vol. 5, Springer, New York.

COHON, J.L. 1978, MultiObjective Programming and planning, vol. 140, Courier Corporation.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

188

DAHIR, M., ALIZADEH, H. & GÖZÜPEK, D. 2019, 'Energy efficient virtual network
embedding for federated software-defined networks', International Journal of
Communication Systems, vol. 32, no. 6, p. 17.

DANTZIG, G.B. 1998, Linear programming and extensions, vol. 48, Princeton University Press.

DAS, S. 2015, Segment routing architecture in ONOS SDN controller ONOS Wiki, viewed
15/09 2017, <https://wiki.onosproject.org/display/ONOS/Software+Architecture>.

DAS, S. 2019, Leaf-spine fabric configuration, ONOS,
<https://github.com/opennetworkinglab/routing>.

DAS, S. & PETERSON, L. 2019, Trellis: CORD network infrastructure, ONF, viewed July 5th
2017,
<https://wiki.opencord.org/display/CORD/Trellis%3A+CORD+Network+Infrastructure>

DIETRICH, D., PAPAGIANNI, C., PAPADIMITRIOU, P. & BARAS, J.S. 2017, 'Network
function placement on virtualized cellular cores', paper presented to the IEEE
COMSNETS 2017, Bangalore, India.

DOHLER, M. 2019, Introduction to 5G, 5g-courses.com, King College, London.

DUAN, Q. & TOY, M. 2017, Virtualized Software-defined networks and services, Artech House.

ELIAS, J., MARTIGNON, F., PARIS, S. & WANG, J. 2014, 'Optimization models for
congestion mitigation in virtual networks', paper presented to the IEEE 22nd
International Conference on Network Protocols.

ELIAS, J., MARTIGNON, F., PARIS, S. & WANG, J. 2017, 'Efficient orchestration
mechanisms for congestion mitigation in NFV: Models and algorithms', IEEE
Transactions on Services Computing, vol. 10, no. 4, p. 13.

EPPSTEIN, D. 1998, 'Finding the k shortest paths', SIAM Journal on computing, vol. 28, no. 2, p.
22.

ERICKSON, D. 2013, 'The beacon openflow controller', The second ACM SIGCOMM workshop
on Hot topics in software defined networking, ACM, p. 6.

FENDT, A., SCHMELZ, L.C., WAJDA, W., LOHMÜLLER, S. & BAUER, B. 2018, 'A
Network Slice Resource Allocation Process in 5G Mobile Networks', paper presented to
the International Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing.

FILSFILS, C., NAINAR, N.K., PIGNATARO, C., CARDONA, J.C. & FRANCOIS, P. 2015,
'The segment routing architecture', paper presented to the 2015 IEEE Global
Communications Conference (GLOBECOM).

FISCHER, A. 2016, 'An evaluation methodology for virtual network embedding', PhD Thesis
thesis, University Passau, Germany.

FISCHER, A., BECK, M.T. & DE MEER, H. 2013, 'An approach to energy-efficient virtual
network embeddings', 2013 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013), ed. IEEE, p. 6.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

189

FISCHER, A., BOTERO, J.F., BECK, M.T., DE MEER, H. & HESSELBACH, X. 2013, 'Virtual
Network Embedding: A Survey', IEEE Communications Surveys & Tutorials, vol. 15,
no. 4, p. 19.

FISCHER, W. & MEIER-HELLSTERN, K. 1993, 'The Markov-modulated Poisson process
(MMPP) cookbook', Performance evaluation, vol. 18, no. 2, p. 53.

FORTZ, B. & THORUP, M. 2000, 'Internet Traffic Engineering by optimizing OSPF weights',
Proceedings IEEE INFOCOM 2000. Conference on Computer Communications.
Nineteenth Annual Joint Conference of the IEEE Computer and Communications
Societies, vol. 2, IEEE, p. 10.

FOUKAS, X., PATOUNAS, G., ELMOKASHFI, A. & MARINA, M.K. 2017, 'Network slicing
in 5G: Survey and challenges', IEEE Communications Magazine, vol. 55, no. 5, p. 7.

FOWLER, M. 2014, Microservices, 2019,
<http://martinfowler.com/articles/microservices.html>.

Fraunhofer 2019, Open Baton, viewed 16 April 2020, <http://openbaton.github.io>.

GNS3 2020, The software that empowers network professionals, viewed 17 April 2020,
<https://www.gns3.com>.

GORANSSON, P., BLACK, C. & CULVER, T. 2016, Software-defined networks: A
comprehensive approach, Morgan Kaufmann.

GOUAREB, R., FRIDERIKOS, V. & AGHVAMI, A.H. 2018, 'Virtual network functions routing
and placement for edge cloud latency minimization', IEEE Journal on Selected Areas in
Communications, vol. 36, no. 10, p. 12.

GUPTA, V., HARCHOL-BALTER, M., WOLF, A.S. & YECHIALI, U. June 2006,
'Fundamental characteristics of queues with fluctuating load', ACM Sigmetrics
Performance Evaluation Review, vol. 34, no. 1, p. 13.

HAGHANI, M., BAKHSHI, B. & CAPONE, A. 2018, 'Multi-objective embedding of software-
defined virtual networks', Computer communications, vol. 129, no. 2018, p. 11.

HANTOUTI, H., BENAMAR, N., TALEB, T. & LAGHRISSI, A. 2018, 'Traffic Steering for
Service Function Chaining', IEEE Communications Surveys & Tutorials.

HARCHOL-BALTER, M. 2013, Performance modeling and design of computer systems:
queueing theory in action, Cambridge University Press.

HARIGANESH, S. 2018, Problems on Pollaczek-Khinchine formula, viewed 16 April 2020,
<https://www.youtube.com/watch?v=HkappM7G0kw>.

HE, K., ROZNER, E., FELTER, W., CARTER, J., AGARWAL, K. & AKELLA, A. 2015,
'Presto: Edge-based Load Balancing for Fast Datacenter Networks', ACM Sigcomm
Computer Communication Review, vol. 45, no. 4, p. 14.

HE, M., ALBA, A.M., BASTA, A., BLENK, A. & KELLERER, W. 2019, 'Flexibility in
softwarized networks: Classifications and research challenges', IEEE Communications
Surveys & Tutorials.

HESSELBACH, X., AMAZONAS, J.R., VILLANUEVA, S. & BOTERO, J.F. 2016,
'Coordinated node and link mapping VNE using a new paths algebra strategy', Journal of
Network and Computer Applications, vol. 69, p. 13.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

19.

HIJAZI, H. 2010, 'Mixed-integer nonlinear optimization approaches for network design in
telecommunications', PhD thesis, Université d’Aix Marseille, France.

HIRA, M. & WOBKER, L. 2015, Improving Network Monitoring and Management with
Programmable Data Planes, P4 Organization, viewed July 5th 2017,
<http://p4.org/p4/inband-network-telemetry/>.

HOANG, D.B. 2015, 'Software Defined Networking – Shaping up for the next disruptive step?',
Australian Journal of Telecommunications and the Digital Economy, vol. 3, no. 4, p. 15.

HOANG, D.B. & PHAM, M. 2015, 'On software-defined networking and the design of SDN
controllers', paper presented to the 2015 6th International conference on the Network of
the Future (NOF) Montreal, Canada.

HOUIDI, I., LOUATI, W. & ZEGHLACHE, D. 2015, 'Exact multi-objective virtual network
embedding in cloud environments', The Computer Journal, vol. 58, no. 3, p. 13.

ITU-R_M.2083 2015, IMT Vision – Framework and overall objectives of the future development
of IMT for 2020 and beyond 09/2015, Technical Report, ITU-R M.2083-0 09/2015.

JARRAYA, Y., MADI, T. & DEBBABI, M. 2014, ' A survey and a layered taxonomy of
software-defined networking', IEEE communications surveys & tutorials, vol. 16, no. 4,
p. 26.

JENNINGS, B. & STADLER, R. 2014, 'Resource management in clouds: survey and research
challenges', Network System Management, vol. 2015, no. 23, p. 54.

KAMMOUN, A., TABBANE, N., DIAZ, G., DANDOUSH, A. & ACHIR, N. May 2018, 'End-
to-End Efficient Heuristic Algorithm for 5G Network Slicing', paper presented to the
2018 IEEE 32nd International Conference on Advanced Information Networking and
Applications (AINA), Pedagogical University of Cracow, Poland.

KATTA, N., GHAG, A., HIRA, M., KESLASSY, I., BERGMAN, A., KIM, C. & REXFORD, J.
2017, 'Clove: Congestion-Aware Load Balancing at the Virtual Edge', paper presented to
the Proceedings of the 13th International Conference on emerging Networking
EXperiments and Technologies, Seoul, South Korea.

KATTA, N., HIRA, M., GHAG, A., KIM, C., KESLASSY, I. & REXFORD, J. 2016, 'CLOVE:
How I Learned to Stop Worrying About the Core and Love the Edge', paper presented to
the Proceedings of the 15th ACM Workshop on Hot Topics in Networks.

KATTA, N., HIRA, M., KIM, C., SIVARAMAN, R. & REXFORD, J. 2016, 'HULA: Scalable
Load Balancing Using Programmable Data Planes', paper presented to the Proceedings
of the Symposium on SDN Research, Sanat Clara, CA, USA.

KHAN, M.M.A., SHAHRIAR, N., AHMED, R. & BOUTABA, R. 2016, 'Multi-path link
embedding for survivability in virtual networks', IEEE Transactions on Network and
Service Management, vol. 13, no. 2, p. 14.

KIM, C., BHIDE, P., DOE, E., HOLBROOK, H., GHANWANI, A., DALY, D., HIRA, M. &
DAVIE, B. 2016, Inband network telemetry (INT) specification, P4 Organization, viewed
July 5th 2017, <http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf>.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

191

KNIGHT, S., NGUYEN, H.X., FALKNER, N., BOWDEN, R. & ROUGHAN, M. 2011, 'The
internet topology zoo', EEE Journal on Selected Areas in Communications, vol. 29, no.
9, p. 11.

KOCHER, P.S. 2018, Microservices and containers, Addison-Wesley.

KREUTZ, D., RAMOS, F.M., VERISSIMO, P., ROTHENBERG, C.E., AZODOLMOLKY, S.
& UHLIG, S. 2015, 'Software-defined networking: A comprehensive survey',
Proceedings of the IEEE, vol. 103, no. 1, p. 63.

LANTZ, B. 2014, Mininet, <https://github.com/mininet/mininet/wiki/Documentation>.

LASDON, L.S. 1970, Optimization theory for large systems, 1 edn, The Macmilan Company,
New York.

LEBRUN, D., PREVIDI, S., FILSFILS, C. & BONAVENTURE, O. 2018, Design and
implementation of IPv6 Segment Routing, <http://www.segment-routing.org>.

LECONTE, M., PASCHOS, G.S., MERTIKOPOULOS, P. & KOZAT, U.C. 2018, 'A resource
allocation framework for network slicing', paper presented to the IEEE INFOCOM 2018-
IEEE Conference on Computer Communications, Honolulu, USA.

LEE, M.C. & SHEU, J.P. 2016, 'An efficient routing algorithm based on segment routing in
software-defined networking', Computer Networks, no. 103, p. 12.

LEWIS, J. 2012, Micro services - Java the UNIX way,
<http://2012.33degree.org/pdf/JamesLewisMicroServices.pdf>.

LI, J., KOSHIBE, A. & PRETE, L. 2019, ONOS monitoring applications, ONOS, viewed 12
October 2019, <https://wiki.onosproject.org/display/ONOS/Monitoring>.

LI, X., LUNG, C. & MAJUMDAR, S. 2015, 'Energy Aware Green Spine Switch Management
for Spine-Leaf Datacenter Networks', paper presented to the 2015 IEEE International
Conference on Communications (ICC).

LI, X., LUNG, C. & MAJUMDAR, S. 2016, 'Green spine switch management for datacenter
networks', Jounal of Cloud Computing: Advances, Systems and Applications vol. 5, no.
1, p. 9.

LI, Z., LU, Z., DENG, S. & GAO, X. 2018, 'A Self-Adaptive Virtual Network Embedding
Algorithm Based on Software-Defined Networks', IEEE Transactions on Network and
Service Management, vol. 16, no. 1, p. 12.

MALANDRINO, F., CHIASSERINI, C.F., EINZIGER, G. & SCALOSUB, G. Dec. 2019,
'Reducing Service Deployment Cost Through VNF Sharing', IEEE/ACM Transactions on
Networking., vol. 27, no. 6, p. 14.

MAROTTA, A., ZOLA, E., D'ANDREAGIOVANNI, F. & KASSLER, A. 2017, 'A Fast Robust
Optimization-based Heuristic for the Deployment of Green Virtual Network Functions',
Journal of Network and Computer Applications, vol. 95, p. 12.

MARSCH, P., BULAKCI, O., QUESETH, O. & BOLDI, M. 2018, 5G system design:
architectural and functional considerations and long term research, 1st edn, Wiley
Telecom.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

192

MAYER, G. 2018, 'RESTful APIs for the 5G service based architecture', Journal of ICT
Standardization, vol. 6, no. 1, p. 16.

MEDHI, D. 2017, Network routing: algorithms, protocols, and architectures (Ed 2), 2nd edn,
Morgan Kaufmann.

MIJUMBI, R., SERRAT, J., RUBIO-LOYOLA, J., BOUTEN, N., DE TURCK, F. & LATRE, S.
2014, 'Dynamic resource management in SDN-based virtualized networks', 10th
international conference on network and service management (CNSM) and workshop, p.
6.

MILLETT, S. 2015, Patterns, principles, and practices of domain-driven design, Wrox.

MIMIDIS-KENTIS, A., SOLER, J., VEITCH, P., BROADBENT, A., MOBILIO, M.,
RIGANELLI, O., ROSSEM, S., TAVERNIER, W. & SAYADI, B. 2019, 'The Next
Generation Platform as A Service: Composition and Deployment of Platforms and
Services', Future Internet, vol. 11, no. 5, p. 119.

MOORTHY, A. 2016, Connecting the world: a look inside facebook’s networking infrastructure,
2018, <http://cs.unc.edu/xcms/wpfiles/50th-symp/Moorthy.pdf>.

NECOS 2019, Novel Enablers for Cloud Slicing, viewed 16 April 2020, <http://www.h2020-
necos.eu/>.

NELSON, R. 2013, Probability, stochastic processes, and queueing theory: the mathematics of
computer performance modeling, Springer Science & Business Media.

NFV-MAN 2014, Network function virtualization: management and orchestration, ETSI.

NG, T.M.J. & HOANG, D. 1987, 'Joint optimization of capacity and flow assignment in a
packet-switched communications network', IEEE Transactions on Communications, vol.
35, no. 2, p. 8.

ODL 2019, OpenDayLight Controller Use cases, 2019, <https://www.opendaylight.org/use-
cases/>.

OKI, E. 2012, Linear programming and algorithms for communication networks: a practical guide
to network design, control, and management, CRC Press.

ONF 2014, Openflow Switch specification 1.3.4, Version 1.3.4, ONF.

ONF 2019a, Advanced ONOS+P4 tutorial Building an SRv6-enabled fabric with P4 and ONOS,
ONF, viewed 15 June 2019.

ONF 2019b, Atrium Project, viewed 10 February 2019,
<https://www.opennetworking.org/projects/atrium/>.

ONOS 2019a, The Intent framework, viewed 13 October 2017,
<https://wiki.onosproject.org/display/ONOS/Intent+Framework>.

ONOS 2019b, ONOS wiki, ONF, viewed 6 Nov 2019, <https://wiki.onosproject.org/>.

ONOS 2019c, Segment Routing, ONOS, viewed 6 October 2019,
<https://github.com/opennetworkinglab/onos/tree/master/apps/segmentrouting>.

openvswitch.org 2016, Production Quality, Multilayer Open vVrtual Switch, viewed Jan 30
2018, <http://openvswitch.org>.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

193

OSGi_Alliance 2016, OSGi Specification, viewed 14 October 2019,
<https://osgi.org/download/r6/osgi.core-6.0.0.pdf>.

ÖZBEK, B., AYDOĞMUŞ, Y., ULAŞ, A., GORKEMLI, B. & ULUSOY, K. 2016, 'Energy
aware routing and traffic management for software defined networks', paper presented to
the 2016 IEEE NetSoft Conference and Workshops (NetSoft), Seoul, Korea.

PALOMAR, D.P. & CHIANG, M. 2006, 'A Tutorial on Decomposition Methods for Network
Utility Maximization', IEEE Journal on Selected Areas in Communications, vol. 24, no. 8,
p. 13.

PASCHOS, G.S., ABDULLAH, M.A. & VASSILARAS, S. 2018, 'Network Slicing with Splittable
Flows is Hard', paper presented to the 2018 IEEE 29th Annual International Symposium
on Personal, Indoor and Mobile Radio Communications (PIMRC).

PAUL, S., JAIN, R., IYER, J. & ORAN, D. 2014, 'Mobie applications on global clouds using
openflow and software-defined networking', Network innovation through OpenFlow and
SDN: principles and design, CRC Press.

PEI, X., MARTINY, K., OBANA, K., GAMELAS, A. & LEE, D.K. 2017, Network Functions
Virtualisation (NFV), White Paper, vol. 2019, ETSI.

PENTTINEN, J.T. 2019, 5G Explained: Security and Deployment of Advanced Mobile
Communications, Wiley.

PEREZ, X. 2017, 5G network slicing for verticals, viewed March 11 2019,
<http://www.5gsummit.org/greece/slides/Session1_02_Xavier%20Costa%20Perez.pdf>.

PETERSON, L. 2019, Open CORD wiki, viewed 20 Apr 2017, <https://wiki.opencord.org>.

PHAM, M. & HOANG, D.B. 2016, 'SDN applications-The intent-based Northbound Interface
realisation for extended applications', paper presented to the 2016 IEEE NetSoft
Conference and Workshops (NetSoft), Seoul, Korea.

PRADOS-GARZON, J., LAGHRISSI, A., BAGAA, M., TALEB, T. & LOPEZ-SOLER, J. 2019,
'A complete lte mathematical framework for the network slice planning of the epc', IEEE
Transactions on Mobile Computing, vol. 19, no. 1, p. 14.

RARDIN, R. 2017, Optimization in operations research, vol. 166, Pearson Higher Education, Inc.,
Hoboken, NJ.

REVIRIEGO, P., SIVARAMAN, V., ZHAO, Z., MAESTRO, J., VISHWANATH, A.,
SÁNCHEZ-MACIAN, A. & RUSSELL, C. 2012, 'An Energy Consumption Model for
Energy Efficient Ethernet Switches', paper presented to the 2012 International
Conference on High Performance Computing & Simulation (HPCS).

RICHARDSON, C. 2018, Microservices Patterns, Manning Publications.

RICHARDSON, C. 2019, Microservice Architecture Patterns, 2019,
<http://microservices.io/patterns/microservices.html>.

RODRIGUEZ, E., ALKMIM, G.P., DA FONSECA, N.L. & BATISTA, D.M. 2015, 'Energy-
Aware Mapping and Live Migration of Virtual Networks', IEEE Systems Journal, vol.
11, no. 2, p. 12.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

194

ROST, M. & SCHMID, S. 2018, 'Charting the complexity landscape of virtual network
embeddings', paper presented to the 2018 IFIP Networking Conference (IFIP
Networking) and Workshops.

ROUT, S., PATRA, S.S. & SAHOO, B. 2018, 'Saving energy and improving performance in
SDN using rate adaptation technique', International Journal of Engineering &
Technology, vol. 7, no. 2.6, p. 6.

RUBIN, P. 2010, 'Binary variables and quadratic terms',
<https://orinanobworld.blogspot.com/2010/10/binary-variables-and-quadratic-
terms.html>.

SCHMITT, P., LANDAIS, B. & YONGYANG, F. 2018, Control and User Plane Separation of
EPC nodes (CUPS), 2019, <https://www.3gpp.org/cups>.

SCIANCALEPORE, V., SAMDANIS, K., COSTA-PEREZ, X., BEGA, D., GRAMAGLIA, M.
& BANCHS, A. 2017, 'Mobile traffic forecasting for maximizing 5G network slicing
resource utilization', paper presented to the INFOCOM 2017-IEEE Conference on
Computer Communications.

SUNAY, O. 2017, M-CORD platform and Roadmap, Linux Foundation, viewed 27 Februaury
2018, <youtube M-CORD Platform and Roadmap >.

SUNAY, O. 2019, COMAC: converged Multi Access and Core, ONF, viewed 16 April 2020,
<https://www.youtube.com/watch?v=qHRCpXgKg0w>.

TAHMASBI, M. 2017, Lab 3 Monitoring and Debugging, P4.org, viewed 18 Jan 2018,
<https://www.youtube.com/watch?v=1lHxU1EpeF0&feature=youtu.be>.

TOOTOONCHIAN, A., GORBUNOV, S., GANJALI, Y., CASADO, M. & SHERWOOD, R.
2012, 'On Controller Performance in Software-Defined Networks', paper presented to the
2nd USENIX Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise
Networks and Services.

TR_22.891 Sep 2016, Feasibility Study on New Services and Markets Technology Enablers,
Stage 1 (Rel. 14), Technical report, TR 22.891 Sep 2016 (Rel-14).

TR_28.801 Jan. 2018, Study on management and orchestration of network slicing for next
generation network (Rel-15).

TR-521 2016, SDN Architecture v1.1, Technical report, ONF TR-521.

TR-526 2016, Applying SDN Architecture to 5G Slicing, ONF.

TS_23.501 Jun. 2019, System architecture for 5G systems; Stage 2 (Rel-16), Technical report.

TS_23.502 2019, Procedures in 5G systems, Technical Report, TS 23.502 V16.1.1 (2019-06).

TSAI, P., TSAI, C., HSU, C. & YANG, C. 2018, 'Network monitoring in software-defined
networking: a review', IEEE Systems, vol. 12, no. 4, p. 12.

University_of_Adelaide 2012, The internet topology zoo, <http://www.topology-zoo.org>.

VAHDAT, A. 2015, Pulling Back the curtain on Google’s Network Infrastructure, viewed Jan 30
2018, <http://research.googleblog.com/2015/08/pulling-back-curtain-on-googles-
network.html>.

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

195

VAN ROSSEM, S., SAYADI, B., ROULLET, L., MIMIDIS, A., PAOLINO, M., VEITCH, P.,
BERDE, B., LABRADOR, I., RAMOS, A., TAVERNIER, W. & OLLORA, E. 2018, 'A
vision for the next generation platform-as-a-service', paper presented to the 2018 IEEE 5G
World Forum (5GWF).

VASSILARAS, S., GKATZIKIS, L., LIAKOPOULOS, N., STIAKOGIANNAKIS, I.N., QI, M.,
SHI, L., LIU, L., DEBBAH, M. & PASCHOS, G.S. 2017, 'The algorithmic aspects of
network slicing', IEEE Communications Magazine, vol. 55, no. 8, p. 8.

WANG, Q., ALCARAZ-CALERO, J., RICART-SANCHEZ, R., WEISS, M.B., GAVRAS, A.,
NIKAEIN, N., VASILAKOS, X., GIACOMO, B., PIETRO, G., RODDY, M. & HEALY,
M. June 2019, 'Enable advanced QoS-aware network slicing in 5G networks for slice-
based media use cases', IEEE Transactions on Broadcasting, vol. 65, no. 2, p. 10.

WILLIAMS, H.P. 2013, Model building in mathematical programming, Fifth edn, John Wiley &
Sons., England.

WOLFF, E. 2017, Microservices Flexible software archiecture, Peason Education.

Y.3011 Jan 2012, Framework of network virtualization for future networks, Technical report.

YE, Q., ZHUANG, W., LI, X. & RAO, J. 2018, 'End-to-End Delay Modeling for Embedded VNF
Chains in 5G Core Networks', IEEE Internet of Things Journal, vol. 6, no. 1, p. 13.

YU, M., YI, Y., REXFORD, J. & CHIANG, M. 2008, 'Rethinking virtual network embedding:
substrate support for path splitting and migration', ACM SIGCOMM Computer
Communication Review, vol. 38, no. 2, p. 13.

ZAHAVI, E., SHPINER, A., ROTTENSTREICH, O., KOLODNY, A. & KESLASSY, I. 2016,
'Links as a Service (LaaS): Guaranteed tenant isolation in the shared cloud', Proceedings
of the 2016 Symposium on Architectures for Networking and Communications Systems,
ACM, p. 12.

ZHANG, Z., SU, S., LIN, Y., CHENG, X., SHUANG, K. & XU, P. 2015, 'Adaptive multi-
objective artificial immune system based virtual network embedding', Journal of Network
and Computer Applications, vol. 53, p. 16.

ZHU, Y. & AMMAR, M.H. 2006, 'Algorithms for Assigning Substrate Network Resources to
Virtual Network Components', INFOCOM, vol. 1200, no. 2006, p. 12.

ZINNER, T., GEISSLER, S., LANGE, S., GEBERT, S., SEUFERT, M. & TRAN-GIA, P. 2017,
'A discrete-time model for optimizing the processing time of virtualized network
functions', Computer Networks, vol. 125, p. 11.

	Title Page
	Dedication
	Acknowledgement
	Certificate of Original Authorship
	The Author's Publications
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Chapter 1 Introduction
	1.1 Motivation and Research Issues
	1.2 Research aims and Research questions
	1.2.1 Research aims
	1.2.2 Research questions

	1.3 Research objectives and scope
	1.3.1 Research objective 1
	1.3.2 Research objective 2
	1.3.3 Research objective 3
	1.3.4 Research objective 4

	1.4 Contributions of Thesis
	1.5 The significance of research
	1.6 Methodology overview
	1.7 Thesis outlines
	1.8 Summary

	Chapter 2 Literature Review and Related Work
	2.1 Software-defined networking
	2.1.1 What is SDN paradigm?
	2.1.2 SDN architecture
	2.1.2.1 Layer model
	2.1.2.2 Service model
	2.1.2.3 Resource model

	2.1.3 SDN controller
	2.1.3.1 Main characteristics
	2.1.3.2 Core services

	2.1.4 SDN applications
	2.1.5 SDN switches
	2.1.6 Mininet
	2.1.7 Segment routing
	2.1.8 Segment routing architecture
	2.1.9 Segment routing with IPv6

	2.2 Network virtualization
	2.2.1 What is network virtualization
	2.2.2 Resource optimization
	2.2.3 Current issues in network virtualization
	2.2.4 Related works of chapter 4 Congestion aware, Energy-aware VNE

	2.3 Network function virtualization
	2.3.1 NFV definition
	2.3.2 Service function chaining
	2.3.3 Current issues with NFV and SFC
	2.3.4 Related work of chapter 5 Realization of CEVNE virtual link embedding

	2.4 Network slicing in 5G networks
	2.4.1 5G core networks
	2.4.1.1 The control plane (CP) user plane (UP) separation (CUPS)
	2.4.1.2 The service-based architecture of 5G core network
	2.4.1.3 Three main types of 5G applications

	2.4.2 Network slicing in 5G
	2.4.2.1 5G service
	2.4.2.2 5G network slicing

	2.4.3 Related work of chapter 6 named Latency-aware resource optimization for 5G core network slicing

	2.5 Micro-service architecture and patterns
	2.5.1 Micro-service architecture
	2.5.2 Micro-service Patterns
	2.5.2.1 Decomposition pattern
	2.5.2.2 Discovery pattern
	2.5.2.3 Database patterns
	2.5.2.4 Integration into an application

	2.6 Software architecture patterns: module pattern
	2.6.1 Reusable function blocks and Next generation PaaS
	2.6.1.1 Reusable function block
	2.6.1.2 Next generation platform as a service

	2.7 Optimization and Mathematical modelling
	2.7.1 Mathematical models
	2.7.2 Solving mathematical programs
	2.7.3 Multi-objective programming
	2.7.4 Large systems, structure systems

	2.8 Queueing theory and performance modelling
	2.8.1 Probability models and overview
	2.8.1.1 Performance metrics
	2.8.1.2 Job response time
	2.8.1.3 Job waiting time
	2.8.1.4 Other metrics
	2.8.1.5 Random variables
	2.8.1.6 Kendall notation

	2.8.2 Markov chains
	2.8.2.1 Discrete-Time Markov Chain (DTMC)
	2.8.2.2 Continuous-Time Markov Chain (CTMC)

	2.8.3 M/M/1 queue
	2.8.4 Mₜ/G/1 queue
	2.8.4.1 Definition
	2.8.4.2 Two-rate MMPP
	2.8.4.3 State transition diagram of MMPP process
	2.8.4.4 Phase-type distribution and the matrix analytic method
	2.8.4.5 Functional behaviors

	2.9 P4 language and SDN 2.0
	2.9.1 What is P4 language
	2.9.2 The in-band network telemetry

	2.10 Summary

	Chapter 3 An Intent Service-Based (ISB) Architecture For SDN Applications
	3.1 Introduction
	3.2 NBI and application layer in SDN architecture
	3.2.1 NBI: Intent, Flow rules, Flow objectives
	3.2.2 The application layer

	3.3 The proposed solution architecture
	3.3.1 The requirements of the architecture
	3.3.2 The proposed solution architecture
	3.3.2.1 Micro service architecture (MSA) design
	3.3.2.2 The three-tier application architecture
	3.3.2.3 Domain driven design
	3.3.2.4 The controller platform

	3.4 Proposed architecture for applications in service-based architecture
	3.4.1 Requirements for the 5G custom core services
	3.4.2 Proposed architecture for 5G custom core services
	3.4.2.1 MSA, MS design pattern, and three-tier architecture

	3.5 The realization of the architecture for extended SDN application
	3.5.1 MSA and MS design patterns
	3.5.2 Three-tier architecture

	3.6 Prototypes
	3.6.1 DRM application prototype
	3.6.1.1 Test bed setup
	3.6.1.2 DRM application setup
	3.6.1.3 Results
	3.6.1.4 Applying the proposed architecture
	3.6.1.5 Running DRM on ONOS controller

	3.6.2 Prototype of CEVNE LiM application

	3.7 Summary

	Chapter 4 Congestion-Aware Energy-Aware Virtual Network Embedding
	4.1 CEVNE Overview
	4.1.1 The Virtual network embedding problem
	4.1.1.1 Substrate networks and virtual networks
	4.1.1.2 The virtual network embedding

	4.1.2 Overview of CEVNE multi-objectives
	4.1.2.1 Cost saving objective
	4.1.2.2 Energy saving objective
	4.1.2.3 Congestion avoidance objective
	4.1.2.4 The maximum congestion ratio
	4.1.2.5 Modelling techniques and solution approaches

	4.1.3 The augmented substrate networks

	4.2 CEVNE Problem formulation
	4.2.1 The problem statements
	4.2.2 The problem formulation
	4.2.3 CEVNE’s enabling technologies
	4.2.3.1 Software-defined networks
	4.2.3.2 Segment routing

	4.3 CEVNE Algorithms
	4.3.1 CEVNE node embedding algorithm
	4.3.2 CEVNE Link embedding algorithm
	4.3.3 CEVNE embedding algorithm

	4.4 Performance evaluation of CEVNE node embedding
	4.4.1 CEVNE evaluation setup
	4.4.1.1 Topology generation
	4.4.1.2 Resource and demand generation
	4.4.1.3 The congestion ratio parameter
	4.4.1.4 The simulation environment and scenario generators

	4.4.2 Challenging and near congestion experiments
	4.4.2.1 The design of near-congestion or challenging scenarios
	4.4.2.2 Introduction of Approximate resource scarcity concept
	4.4.2.3 Network parameters in challenging scenarios
	4.4.2.4 Evaluation results of challenging scenarios

	4.4.3 The node embedding evaluation results
	4.4.3.1 Runtime
	4.4.3.2 Average active node stress

	4.4.4 Energy consumption
	4.4.4.1 Energy consumption
	4.4.4.2 Acceptance ratio
	4.4.4.3 Total costs

	4.5 Summary

	Chapter 5 Realization of CEVNE Virtual Link Embedding
	5.1 Motivation for a heuristic algorithm
	5.1.1 The review of CEVNE problem and solution approach
	5.1.2 Motivation for a heuristic virtual link embedding

	5.2 Proposed architecture to realize CEVNE LiM
	5.2.1 Services to handle multi-objective link embedding process
	5.2.1.1 Cost saving
	5.2.1.2 Energy saving
	5.2.1.3 Congestion avoidance

	5.2.2 Monitoring application
	5.2.3 The initialization processes
	5.2.4 Path selection algorithm

	5.3 CEVNE LiM algorithm and realization
	5.3.1 CEVNE LiM algorithm
	5.3.2 Operational diagram of CEVNE LiM
	5.3.3 Realization of CEVNE LiM application

	5.4 Performance evaluation
	5.4.1 Test scenarios
	5.4.2 CEVNE LiM application execution platform
	5.4.3 Evaluation results
	5.4.3.1 Runtime
	5.4.3.2 Average path length
	5.4.3.3 Average node stress and average link stress
	5.4.3.4 Energy consumption
	5.4.3.5 Acceptance ratio

	5.5 Summary

	Chapter 6 Latency-Aware Resource Optimization for 5G Core Network Slicing
	6.1 Modelling network slicing for mobile services in 5G core networks
	6.1.1 Application classification in 5G
	6.1.2 Control plane data plane separation (CUPS)
	6.1.3 Network slicing and related concepts
	6.1.4 Resource model of network slicing
	6.1.5 Network slicing performance model using queueing theory
	6.1.5.1 Markov-modulated Poisson Process
	6.1.5.2 VNF performance model

	6.1.6 VNF total delay
	6.1.7 Linear function of delay on allocated resources
	6.1.8 Solution approach

	6.2 Problem statement
	6.2.1 Network slicing problem statement
	6.2.2 Network slicing: objectives
	6.2.3 Problem formulation

	6.3 Solution design
	6.3.1 Solution strategy
	6.3.2 Convex relaxation
	6.3.3 Decomposition
	6.3.3.1 Strategy for resource optimization

	6.3.4 Linearized problem formulation
	6.3.5 Algorithms
	6.3.5.1 The master algorithm
	6.3.5.2 VNF embedding optimization algorithm
	6.3.5.3 Virtual links connecting VNFs Embedding optimization algorithm
	6.3.5.4 Multiple NSR embedding optimization algorithms in a time window

	6.4 Performance evaluation
	6.4.1 The evaluation setup
	6.4.1.1 The infrastructure
	6.4.1.2 The network slice requests
	6.4.1.3 The simulation environment

	6.4.2 Evaluation results
	6.4.2.1 The embedding based on NSR topologies
	6.4.2.2 Resource allocation by service types
	6.4.2.3 Resource consumption
	6.4.2.4 Latency satisfaction
	6.4.2.5 Total latency by NSR topologies
	6.4.2.6 Execution time
	6.4.2.7 Expected total delay by arrival rates

	6.5 Summary

	Chapter 7 Conclusions and Future Work
	7.1 Summary and contributions of the thesis
	7.2 Future work
	7.3 Conclusion remarks

	Bibliography

