
Symmetry and Randomness in
Quantum Information Theory:

Several Applications

by

Wei Xie

A dissertation submitted for the degree of

Doctor of Philosophy

Centre for Quantum Software and Information
Faculty of Engineering and Information Technology

University of Technology Sydney, Australia

© 2020 Wei Xie



Certificate of Original Authorship

I, Wei Xie, declare that this thesis is submitted in fulfilment of the re-
quirements for the award of PhD in the School of Computer Science at the
University of Technology Sydney. This thesis is wholly my own work unless
otherwise reference of acknowledged. In addition, I certify that all informa-
tion sources and literature used are indicated in the thesis. This document
has not been submitted for qualifications at any other academic institu-
tion. This research is supported by the Australian Government Research
Training Program.

ii

Production Note:

Signature removed
prior to publication.



Abstract

This thesis studies four topics in quantum information theory using tools
from representation theory and (high-dimensional) probability theory.

First, we study the nonadditivity of minimum output von Neumann and
Rényi entropy of quantum channels. A sketch of the proof by Aubrun,
Szarek and Werner for nonadditivity of minimum output entropy is pre-
sented, and a slight simplification is given. We show that asymptotically
the minimum output entropy of the random channel E ⊗E ⊗E∗ is achieved
not by a tripartite genuinely entangled state, but by a tensor product of
two states. We also study another model of random channel, and our esti-
mation of the minimum output Rényi entropies fails to show the usefulness
of genuine multipartite entanglement for the multiple nonadditivity.

Second, we study the generic entanglement in the random near-invariant
tensors under the action of su(2), and random symmetric invariant tensors
under the action of su(d) for any d, serving as an extension of the random
invariant tensors under su(2). We show that both the random tensors are
asymptotically close to a maximally entangled state with respect to any
bipartite cut.

Third, we study efficient quantum certification for states and unitaries. We
present an algorithm that uses O(ε−4 ln |P|) copies of an unknown state to
distinguish whether the unknown state is contained in or ε-far from a finite
set P of known states with respect to the trace distance. This algorithm
is more sample-efficient in some settings. The previous study showed that
one can distinguish whether an unknown unitary U is equal to or ε-far from
a known or unknown unitary V in fixed dimension with O(ε−2) uses of the
unitary, in which an ancilla system should be used. We give an algorithm
that distinguishes the two cases with O(ε−1) uses of the unitary, without
using ancilla system or using ancilla system of much smaller dimension.

Finally, we study the parallel repetition of extended nonlocal game moti-
vated by its connection with multipartite steering and entanglement de-
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tection. We show that the probability of winning an n-fold parallel rep-
etition of commuting nonsignaling extended nonlocal game G decreases
exponentially in n, provided that the game value of G is strictly less than
1, following the approach used by Lancien and Winter based on de Finetti
reduction.
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Notation

Here is a list of some notation frequently used in this thesis, along with its description
unless otherwise noted.

ln Natural logarithm
log Binary logarithm
N The set of all nonnegative integers
Z The set of all integers
R The set of all real numbers
C The set of all complex numbers
[m] The set {1, 2, . . . ,m}
Pr(E) Probability of event E
EX Expectation of random variable X
VarX Variance of random variable X
MT Transpose of matrix M
M∗ Complex conjugate of matrix M
M † Transpose conjugate of matrix M
M ≥ N M −N is semidefinite positive for Hermitian M,N

∥M∥p Schatten p-norm of matrix M
⟨u, v⟩ Equal to

∑
i u

∗
i vi for vectors u, v

⟨M,N⟩ Equal to tr(M †N) for matrices M,N

H,K Typical (finite-dimensional) Hilbert spaces
L(H,K) The set of all linear operators from H to K
L(H) L(H,H)

f ≲ g For positive functions f, g of n, f(n) ≤ cg(n) holds
for some positive constant c and any sufficiently large
n, also written as g ≳ f , or f = O(g), or g = Ω(f)

f ≃ g Both f ≲ g and f ≳ g hold, also written as f = Θ(g)

f ∼ g f(n)/g(n) → 1 as n→ ∞
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U(d) Unitary group of degree d
SU(d) Special unitary group of degree d
SL(d) Special linear group of degree d over C
GL(d) General linear group of degree d over C
su(d) Lie algebra of SU(d)

sl(d) Lie algebra of SL(d) over C
Par(n) The set of all partitions of n
λ ⊢ n λ ∈ Par(n)
Par(n, d) The set of all partitions of n with length at most d
Type(n, d) The set of all types of strings in {1, 2, . . . , d}n

R The function that maps a group or an algebra to the
set of its representation matrices

Sn Symmetric group of degree n
Wπ The operator that permutates n tensor factors ac-

cording to π ∈ Sn

W Typical name for the swap operator
V L
λ The irrep of GL(d) of highest weight λ, sometimes

written as Vλ or Hλ

V S
λ The irrep of Sn labeled by partition λ, sometimes

written as Kλ

∨nCd The symmetric subspace of (Cd)⊗n

∧nCd The antisymmetric subspace of (Cd)⊗n

χ Character of a representation, or Holevo informa-
tion, or Holevo capacity

Sd−1 Unit sphere in Euclidean space Rd

S(H) Unit sphere in Hilbert space H
D(H) The set of all density operators on H
ρ, σ Typical density operators
ψ,φ ψ = |ψ⟩⟨ψ|, φ = |φ⟩⟨φ| (applied for all pure states)
ϕ, ω Typical maximally entangled state and maximally

mixed state respectively
Hp(·) (Quantum or classical) p-Rényi entropy
H(·) Shannon entropy, or von Neumann entropy
D(ρ, σ) Trace distance between two quantum states ρ, σ
F(ρ, σ) Fidelity between two quantum states ρ, σ
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Chapter 1

Introduction

1.1 Background and overview

The history of information theory can be traced back to 1948, when Shannon pub-
lished a seminal paper ‘A mathematical theory of communication’ [Sha48] laying the
foundations for the modern theory of information, in which he proposed a powerful
mathematical framework to study information processing tasks such as data compres-
sion and data transmission. In the early 1940s, people thought it is impossible to send
information at a positive rate with negligible error. Shannon challenged this opinion
by proving that the error probability of communication could be made nearly zero
for appropriate communication rate. Using this novel framework, Shannon’s theory
answers two fundamental questions in communication theory: What is the ultimate
data compression rate, and what is the ultimate data transmition rate. The entropy
and channel capacity are the respective answers.

Information theory, however, should not be viewed as merely a subfield of com-
munication theory. Over the past decades the ideas used in information theory have
made indispensable contributions to statistical physics, computer science, probabil-
ity and statistics, and even to economics. Landauer’s ‘information is physical’ claim
[Lan91] and Wheeler’s ‘it from bit’ concept [Whe90] summarize the deep connection
between physics and information. Information theory has been playing a more and
more important role in the study of physics and other science branches. The readers
are referred to [CT12] for an introduction to information theory.

Prior to the invention of information theory, the first half of the 20th century saw
the magnificent development of quantum mechanics. The counter-intuitive nature of
quantum mechanics puzzled physicists at first but then drastically changed the way
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1. INTRODUCTION

people understood the world. Our universe is governed fundamentally by the laws of
quantum mechanics, rendering the necessity to study the effect of quantum mechanics
upon information processing. It turns out that under the laws of quantum mechanics,
information behaves quite differently from classical world.

During the past decades, quantum information science has rapidly developed and
has become a rather rich science branch, with subfields including quantum computing,
quantum cryptography, quantum communication, quantum complexity theory, quan-
tum entanglement theory, etc. Over recent years it has been offering a new perspective
for the study of physics, including thermodynamics, condensed matter and quantum
gravity. The field of quantum computing was initiated in the first half of 1980s by the
works of Benioff [Ben80] and Manin [Man80], Feynman [Fey82], and Deutsch [Deu85].
Many remarkable quantum information processing techniques and quantum algorithms
were proposed in the 1990s [DJ92, BW92, BBC+93, Sho94, Sho96, Gro96, Sho99]. The
recent development of quantum information science is also drived by other factors. Due
to the decrease in the size of computing components over the past decades, quantum
mechanics will inevitably become more relevant to the construction of computer chips,
since it offers a remarkably accurate description of microscopic physical systems. The
technique of quantum parallelism and interference enables a quantum computer to per-
form a calculation upon a superposition of quantum states as input and then to extract
desired information via quantum measurement. In this way a quantum computer can
outperform its classical counterpart when dealing with certain computational tasks.
The principle of quantum mechanics is also introduced to the field of communication
and cryptography and makes the transmission of information more efficient and secure.

Mathematical foundation of quantum information theory has been based mainly
on the viewpoint of operator algebra. Nowadays many mathematical ideas have been
widely employed in the study of quantum information. Group symmetry is the founda-
tion for many fundamental theories of modern physics, and is also placed in the heart
of many mathematical theories. The basic idea of group symmetry has been applied to
various fields in physics, partical physics, quantum field theory and condensed matter
physics. As the theory of quantum information is an area utilizing the properties of
quantum world, group symmetry is undoubtedly a significant idea in quantum infor-
mation as well. Representation theory is a useful tool in the study of symmetry in that
it reduces problems in abstract algebra to that in linear algebra. The applications of
group-theoretic method can be found in almost every corner in quantum information
theory such as quantum compression and estimation; the interested reader is referred
to [Har05, Chr06, Hay17] and the references therein for more introduction.
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1.1 Background and overview

Another theme of this thesis is the applications of probabilistic methods in quantum
information theory. One striking trait of quantum theory is that the quantum object
in question usually lives in a high-dimensional vector space. It is often intractable or
impractical to give an analytical or numerical study, hence the curse of dimensionality.
The probabilistic methods, however, allow one to choose appropriate free parameters to
simplify the analysis, and thus transform the curse of dimensionality into the blessing
of dimensionality. Many tools from random matrix theory have been used successfully
in quantum information theory. In high dimension the phenomenon of concentration of
measure [Led05] could yield many surprising and powerful results. Roughly speaking,
concentration of measure refers to the phenomenon that a Lipschitz function of many
independent random variables is essentially constant. In some sense, the subject of
concentration of measure lies at the core of modern probability theory.

It is a curious but elementary fact that the uniform measure on the Euclidean unit
sphere Sn−1 concentrates strongly about any equator as n gets large. This observation
can be rigorously formulated by Levy’s lemma. Note that the phenomenon of measure
concentration happens not only for the uniform measure on Sn or the Haar measure
on compact group but for many general measures. As a quantum state is represented
by a unit vector, Levy’s lemma offers a natural tool for studying the properties of
random quantum state and related concepts such as random subspace, random uni-
tary and random channel in high dimension; see [HLSW04, HLW06, AS17] for more.
Among many important applications of concentration of measure to quantum infor-
mation theory is the disproof of the additivity conjecture of Holevo capacity, which
was arguably the most significant conjecture in quantum information theory. Hayden
and Winter [Win07, Hay07, HW08] employed random unitary channel and random
subspace in high dimension to yield counterexamples to the additivity conjecture of
minimum output p-Rényi entropy for all p > 1. Hastings [Has09] then showed that the
minimum output von Neumann entropy is not additive, and equivalently, the Holevo
capacity is not additive, also using a probabilistic method. The reasoning in [Has09]
was made clearer in [BH10], and a more concise proof was provided in [ASW11]. All
these counterexamples, explicitly or implicitly, use the idea of measure concentration
exhibited in high dimensional random quantum state, random subspace or random
quantum operation, although no explicit construction is known up to now.

The probabilistic method has close connection to the group-theoretic approach.
Indeed, the uniform measure on compact Lie group, widely used in the probabilis-
tic method, can be calculated and studied using group symmetry. The probabilistic
method and the group-theoretic method would continue to play an important role in
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1. INTRODUCTION

the study of quantum information theory.
The structure and main results of this thesis are summarized as follows. Chapter

1 introduces research background, notation and terminology, and presents basics of
linear algebra in Section 1.2, quantum information theory in Section 1.3, and group
representation theory and (high-dimensional) probability theory in Section 1.4.

Chapter 2 is devoted to the study of the usefulness of multipartite quantum entan-
glement in violating the additivity of minimum output entropy. Section 2.1 introduces
background of the additivity problem of minimum output entropy, sketches the proof
in [ASW11] using Dvoretzky’s theorem, and then slightly simplifies part of their ar-
gument by using a tighter bound on the Lipschitz constant of a function of bipartite
states. Section 2.2 uses the graphical Weingarten calculus to study the asymptotic
minimum output entropy of the random channel E ⊗ E ⊗ E∗, and shows that asymp-
totically it is the tensor product of a bipartite maximally entangled state and a pure
state, instead of any genuine tripartite state, that achieves the minimum output von
Neumann entropy of the triple channels in high dimension. Section 2.3 analyzes an-
other model of high-dimensional random quantum channels, and no evidence is found
to support the usefulness of genuine multipartite entanglement for nonadditivity of
minimum output Rényi entropy. So the multiple nonadditivity problem is still left
intact.

Chapter 3 studies the generic entanglement in the random near-invariant tensors
under the action of su(2) and random symmetric invariant tensors under the action
of su(d) for any dimension d. The symmetric invariant tensor is so named since it
lies in the tensor power of symmetric subspace. Section 3.1 introduces the represen-
tation theory for special unitary group, focusing on the Clebsch-Gordan transform
and the Gelfand-Tsetlin patterns. Section 3.2 shows that a high-dimensional random
near-invariant multipartite state is asymptotically perfect, i.e., close to a maximally
entangled state with respect to any bipartite cut. Section 3.3 shows that similarly a
high-dimensional random symmetric invariant multipartite state is also asymptotically
perfect.

Chapter 4 studies the quantum certification for states and unitaries, and gives
some efficient certification algorithms. Section 4.1 introduces the background and
literature review for the certification problem. Section 4.2 shows that in order to
distinguish whether an unknown state is contained in or ε-far from a finite set P of
known states with respect to the trace distance, O(ε−4 ln |P|) copies of the unknown
state are sufficient. In previous study, O(max{ε−2, δ−2} ln |P|) copies are needed, where
δ is the minimum distance between distinct states in P. Our algorithm uses less copies
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1.2 Linear algebra and notation

of states when δ ≲ ε. Section 4.3 shows that to order to distinguish whether an
unknown unitary U is equal to or far from a known or unknown unitary V in fixed
dimension, O(ε−1) uses of the unitary suffice, while O(ε−2) uses of unitary are needed
when using previous method based on Choi state. Another advantage of our approach
is that we do not need to introduce extra ancilla system or need an ancilla system of
much smaller dimension in the certification.

Chapter 5 studies the parallel repetition of extended nonlocal game using nonsignal-
ing strategy. Section 5.1 introduces background, notational convention and prior work
for the parallel repetition of nonlocal games. Section 5.2 presents several technical
lemmas on multipartite states and operator assemblages, focusing on symmetry-related
properties of them. Section 5.3 applies these technical lemmas to show that the prob-
ability of winning an n-fold parallel repetition of commuting nonsignaling extended
nonlocal game G decreases exponentially in n provided that the game value of G is
strictly less than 1, following the approach in [LW16] based on de Finetti reduction.
The question that whether this result can be extended to multiplayer case, or general
nonsignaling strategy case, is left for future work.

1.2 Linear algebra and notation

This section explains some concepts and basics in linear algebra.
We write C and R for the set of complex numbers and the set of reals respectively.

For complex number α, we write α∗ for its complex conjugate. For a complex matrixM ,
we write M∗ and M † for its complex conjugate and conjugate transpose respectively.1

A complex vector space is a nonempty set H together with two operations, i.e., vector
addition + : H × H → H and scalar multiplication · : C × H → H, satisfying the
following conditions: (H,+) is an abelian group, 1v = v, (α+β)v = αv+βv, α(βv) =
(αβ)v, α(v + u) = αv + αu for any α, β ∈ C, v, u ∈ H.

An inner product over a vector space H is a mapping ⟨·, ·⟩ : H ×H → C fulfilling
the following three properties. For any α1, α2 ∈ C, u, v, v1, v2 ∈ H, (i) Sesquilinearity:
⟨u, α1v1 + α2v2⟩ = α1⟨u, v1⟩ + α2⟨u, v2⟩, (ii) Conjugate symmetry: ⟨u, v⟩ = (⟨v, u⟩)∗,
(iii) Positive-definiteness: ⟨v, v⟩ ≥ 0 with equality if and only if v = 0. A vector v is
called a unit vector if ⟨v, v⟩ = 1. We adopt the Dirac notation, in which a unit vector
is written as |ψ⟩, the adjoint vector to |ψ⟩ is written as ⟨ψ|, and the inner product is
written as ⟨φ|ψ⟩.

1Some literature use overline to denote the complex conjugate and use asterisk to denote the
transpose conjugate.
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1. INTRODUCTION

A collection {|ψi⟩}i∈I of unit vectors is called an orthonormal basis of H if they
are orthogonal to each other and if each vector in H can be written as a linear com-
bination of vectors in this collection. The cardinality of I is called the dimension
of H. Throughout this thesis we consider only one type of Hilbert space: the finite-
dimensional complex vector spaces equipped with the Euclidean inner product, that is,
H ∼= Cd for some d <∞, and ⟨u, v⟩ ≡

∑d
i=1 u

∗
i vi for u =

∑d
i=1 ui|i⟩ and v =

∑d
i=1 vi|i⟩

where {|i⟩} is an orthonormal basis. We write ∥v∥ :=
√
⟨v, v⟩ for the length of v ∈ H.

A (linear) operator from Hilbert space H1 to Hilbert space H2 is a mapping M :

H1 → H2 satisfying M(u + v) = Mu + Mv and M(αv) = α(Mv) for any α ∈
C, u, v ∈ H. The set of all operators from H1 to H2 is denoted by L(H1,H2). A
linear operator on H is simply an operator from H to itself, and the set of operators
on H is denoted by L(H). The identity operator on a linear space H is usually written
as 1H. An associative algebra is a vector space equipped with an associative bilinear
multiplication, and a basic example of associative algebra is L(H).

With respect to any orthonormal bases (|j⟩) and (|i⟩) of H1 and H2 respectively,
an operator M can be written in the matrix form M =

∑
ijMij |i⟩⟨j|, its transposition

is MT =
∑

ijMij |j⟩⟨i|, and its adjoint is M † =
∑

ijM
∗
ij |j⟩⟨i|. The trace of an operator

M ∈ L(H) is tr(M) =
∑

iMii, which is independent of the basis chosen. We write
trk(M) for (trM)k. The Hilbert-Schmidt inner product on L(H1,H2) is denoted as
⟨X,Y ⟩ ≡ tr(X†Y ) for X,Y ∈ L(H1,H2), making L(H1,H2) a Hilbert space.

The concept of tensor is a generalization of that of vector and matrix. For any
nonnegative integers p and q, a (p, q) tensor is a linear mapping from H1 ⊗ · · · ⊗ Hp

to K1 ⊗ · · · ⊗ Kq. For instance, a usual vector is a (0, 1) tensor, and |w⟩⟨uv| is a (2, 1)

tensor.

An operatorM ∈ L(H) is said to be Hermitian ifM † =M , and the set of Hermitian
operators on H is denoted by Herm(H). An operator M ∈ L(H) is said to be positive
semidefinite, written M ≥ 0, if ⟨ψ|M |ψ⟩ ≥ 0 for all |ψ⟩ ∈ H, in which case M should
be Hermitian. The partial order ‘≥’ over the set of Hermitian operators on H is defined
by that M ≥ N if and only if M − N ≥ 0. An operator M ∈ L(H) is an orthogonal
projection operator (or projector for short) if M ≥ 0 and M2 = M . An operator
M ∈ L(H1,H2) is a (linear) isometry if M †M = 1. If an isometry maps a space H to
itself, it is called a unitary operator. The set of unitary operators on H is denoted by
U(H).

The singular value theorem states that for any operatorM ∈ L(H1,H2), there exist
real numbers s1(M) ≥ · · · ≥ sr(M) > 0 and orthonormal sets {|φ1⟩, . . . , |φr⟩} ⊂ H1
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1.2 Linear algebra and notation

and {|ψ1⟩, . . . , |ψr⟩} ⊂ H2 such that

M =

r∑
i=1

si(M)|ψi⟩⟨φi| .

The numbers s1(M), . . . , sr(M) are referred to as the singular values of M , and the
vector of singular values of M is written as s(M) := (s1(M), . . . , sr(M))T. Sometimes
it is convenient to define sk(M) = 0 for k > rank(M). The spectral theorem states that
an operator M ∈ L(H) is Hermitian if and only if there exist real numbers λ1, . . . , λr
and an orthonomal set {|ψ1⟩, . . . , |ψr⟩} ⊂ H such that

M =
r∑
i=1

λi|ψi⟩⟨ψi| .

The support of a Hermitian operatorM , denoted supp(M), is the vector space spanned
by the eigenvectors of M with nonzero eigenvalue.

Let {|a⟩} and {|b⟩} be orthonormal bases of HA and HB respectively. There exists
an isomorphism between the Hilbert space L(HA,HB) of operators and the Hilbert
space HA ⊗HB of bipartite vectors:

vec : L(HA,HB) → HA ⊗HB

|b⟩⟨a| 7→ |a⟩|b⟩ .
(1.1)

By linearity, it holds that vec(|u⟩⟨v|) = |v⟩∗⟨u| for |v⟩ ∈ HA and |u⟩ ∈ HB, where
the complex conjugate is with respect to the basis {|a⟩}. Obviously the definition of
vec depends on the choice of orthonormal bases. This operator-vector correspondence
is widely used in quantum information theory to enable some convenient calculation.
For example, via this correspondence the Schmidt decomposition can be derived from
the singular value theorem: any bipartite pure state |ψ⟩AB can be written as |ψ⟩AB =

µi|ψi⟩A|φi⟩B for some orthonomal bases (|ψi⟩A)i and (|φi⟩B)i, where µi are known as
Schmidt coefficients.

A norm on a vector space is a real-valued function on the space with three proper-
ties: positive definiteness, positive scalibility, and the triangle inequality. The p-norm
(or ℓp-norm) of a vector x = (x1, . . . , xd)

T ∈ Cd is

∥x∥p =
(∑

i
|xi|p

)1/p
.

For any operator M ∈ L(H1,H2) and any real number p ≥ 1, the Schatten p-norm of
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1. INTRODUCTION

M is defined as
∥M∥p =

(
tr(|M |p)

)1/p
,

where |M | :=
√
M †M . The Schatten 1-norm and 2-norm are also known as the trace

norm and the Frobenius norm respectively. The Schatten ∞-norm, also known as the
spectral norm or operator norm, is defined as

∥M∥∞ = max{∥Mv∥2 : v ∈ H1, ∥v∥2 = 1} ,

which coincides with limp→∞ ∥M∥p. It is easy to see that the Schatten p-norm of an
operator M is equal to the p-norm of the vector of singular values of M :

∥M∥p = ∥s(M)∥p .

We fix several miscellaneous notations as follows. We write Sn for the symmetric
group of degree n, while Sd−1 and S(Cd) denote the Euclidean unit spheres in Rd

and Cd respectively. For sets R and T , we sometimes use TR to denote the set of
all functions from R to T . For positive functions f(n) and g(n) of n ∈ N, we write
f(n) ≳ g(n) or g(n) ≲ f(n) iff f(n) ≥ cg(n) for constant c and any large n, write
f(n) ≃ g(n) iff f(n) ≲ g(n) and f(n) ≳ g(n), and write f(n) ∼ g(n) iff f(n)

g(n) → 1 as
n→ ∞. Throughout this thesis the letters c, c′, C, C ′ usually denote absolute positive
constants, independent of the dimensions involved, whose values may change from
occurrence to occurrence. Some notation used in this thesis is summarized in the table
on pages 3–4.

1.3 Quantum information theory

This section, largely based on [NC11, Wat18], explains some basic concepts and prin-
ciples in quantum mechanics and quantum information theory.

The first postulate of quantum mechanics provides the arena in which quantum
mechanics takes place. It asserts that associated to any closed physical system is a
complex Hilbert space, known as the state space of the system, and that the system
is completely described by its state vector, which is a unit vector in this space. We
denote by |A| or dA the dimension of the Hilbert space of system A (we also use |S| to
denote the cardinality of a set S when no confusion arises).

The system we are most concerned with and also the simplest one is the two-
dimensional system, known as a qubit. Supposing |0⟩ and |1⟩ form an orthonormal
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1.3 Quantum information theory

basis for this space, any state vector in this space can be written as

|ψ⟩ = α|0⟩+ β|1⟩

with α, β ∈ C satisfying |α|2 + |β|2 = 1.
The continuous-time dynamics of a closed quantum system is described by the

Schrödinger equation, i.e., iℏd|ψ⟩
dt = H|ψ⟩ where ℏ is Planck’s constant and H is the

Hamiltonian of the system. In quantum computation, we usually consider the discrete-
time evolution of a system. Suppose the states of a closed system at times t0 and t1
are |ψ0⟩ and |ψ1⟩, respectively. Then the two states are related to each other by a
unitary operator U which depends only on the times t0 and t1:

|ψ1⟩ = U |ψ0⟩ .

This is the second postulate of quantum mechanics. The Hadamard gate H and Pauli
matrices σx, σy, σz are among the most frequently used unitary operators acting on a
qubit.

A closed quantum system evolves according to unitary operator, but there are
times when people interact with quantum system to extract useful information from
it. The third postulate is introduced to explain what happens in this process of quan-
tum measurement. Quantum measurement is described by a collection {Mi}i∈I of
measurement operators Mi which satisfy that

∑
i∈IM

†
iMi = 1. The index i refers to

possible measurement outcome that may occur in the experiment. Suppose the state
of quantum system is |ψ⟩ before measurement, then for each i ∈ I the result i occurs
with probability pi = ⟨ψ|M †

iMi|ψ⟩. If the measurement outcome is i, the state of
system after measurement is Mi|ψ⟩ up to a normalization coefficient.

The general measurement described above has two variations. If the main item of
interest is the probabilities of the measurement outcomes, but not the post-measurement
states, the positive operator-valued measure (POVM) formalism is used to deal with
this case. A POVM is a set of positive semidefinite operators that sum up to an iden-
tity operator. In other words, a POVM is any {Ei}i∈I satisfying Ei ≥ 0 for each i ∈ I

and
∑

i∈I Ei = 1. A projective measurement is a special measurement in which each
measurement operator is a projector. A projective measurement is also described by an
observable which is simply a Hermitian operator, of which each eigenvalue represents
a possible measurement outcome and the projector onto each eigenspace is a measure-
ment operator. Any POVM can be realized as projective measurement by introducing
ancilla system.
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1. INTRODUCTION

We are always concerned with a composite quantum system made up of two or
more different physical systems. The fourth postulate describes how the state space of
a composite system is built up from the state spaces of the component systems. The
state space of a composite physical system is the tensor product of the state spaces
of the component physical systems. When the states of n systems A1 through An are
|ψ1⟩, . . . , |ψn⟩ respectively, the joint state of the total system is |ψ1⟩ ⊗ · · · ⊗ |ψn⟩.

Now we focus on a component system in a composite system. Suppose the compos-
ite system is in the singlet state 1√

2
(|0⟩A|1⟩B − |1⟩A|0⟩B), then the state of the system

A can be equivalently viewed as 1
21A from the perspective of local observers. If the

joint state is |ψ⟩AB, then the state of local system A is ρA := (1 ⊗ tr)(|ψ⟩⟨ψ|AB). An
operator in L(H) is called a density operator if it is positive semidefinite with trace
one. It can be shown that an operator in L(H) represents a valid quantum state of
some component system if and only if ρ is a density operator. Throughout this thesis
a pure state is usually labeled by a Greek letter, and the density operator of a pure
state is simply denoted by the letter, for example, ψ := |ψ⟩⟨ψ| and φ := |φ⟩⟨φ|. We
denote by D(H) the set of density operators on space H. For a joint state ρAB on AB,
the reduced state on A is ρA := (1⊗ tr)ρAB, where 1⊗ tr =: trB is called partial trace
and ρA is called the reduced state of ρAB on A. For an n-component composite system
H = H1 ⊗ · · · ⊗ Hn, any state of form ρ = ρ1 ⊗ · · · ⊗ ρn for ρi ∈ D(Hi) is called a
product state. Furthermore, if ρ ∈ D(H) can be written as a convex combination of
product states, it is called a separable state; otherwise, it is called an entangled state.

The density operator describes not only the local physical state but also the sta-
tistical mixture of an ensemble of states. If a system is in state ψi with probability pi
for each i ∈ I, then statistically the system can be viewed in the state

∑
i pi|ψi⟩⟨ψi|,

which is a density operator.
We use H(σ) := − tr(σ lnσ) to denote the von Neumann entropy [vN32] of a

quantum state σ, H(A|B)ρ := H(AB)ρ −H(B)ρ the conditional quantum entropy of
ρAB, and I(A : B)ρ := H(A)ρ+H(B)ρ−H(AB)ρ the quantum mutual information of
ρAB. For p ≥ 0 and p ̸= 1, the p-Rényi entropy of a density operator ρ is defined as

Hp(ρ) =
1

1− p
ln tr(ρp) .

Throughout this thesis we use the natural logarithm ln to define various entropies and
relevant concepts, while many texts use the binary logarithm instead. The cases of
p-Rényi entropy for p = 1, p = ∞ should be understood as the limits p → 1, p → ∞
respectively. It turns out H0(ρ) = ln rank ρ, H∞(ρ) = − ln ∥ρ∥∞, and the 1-Rényi
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1.3 Quantum information theory

entropy is exactly the von Neumann entropy. When p > 1, it holds that Hp(ρ) =
p

1−p ln ∥ρ∥p.
The two most natural measures of distance between quantum states are the fi-

delity and trace distance. The fidelity between states ρ and σ is defined as F(ρ, σ) :=
∥√ρ

√
σ∥1, and in particular, F(ψ,φ) =

√
⟨ψ,φ⟩. The trace distance between ρ and σ

is defined as D(ρ, σ) := 1
2∥ρ− σ∥1, and in particular, D(ψ,φ) =

√
1− ⟨ψ,φ⟩.

Any element in L(L(HA),L(HB)) is called a super-operator. A super-opertator
E ∈ L(L(HA),L(HB)) is called positive if E(MA) ≥ 0 for any MA ≥ 0; E is called
completely positive if E ⊗ 1 is positive for any identity super-operator 1; E is called
trace preserving if tr(E(M)) = tr(M) for any M ∈ L(HA). A quantum operation (or
quantum channel) EA→B with input system A and output system B is a completely
positive (CP), trace preserving (TP) linear map, mapping the linear operators on
HA to those on HB. Since the subscript of an operator or operation specifies its
input and output systems, sometimes we may write an operator or operation omitting
the identity operator or operation 1, e.g., XABYBC ≡ (XAB ⊗ 1C)(1A ⊗ YBC) and
EB→C(XAB) ≡ (1A ⊗ EB→C)XAB, and we may also write a partial trace by simply
omitting some subscript, e.g., ρA ≡ trB ρAB and EA→B ≡ trC ◦EA→BC .

There are several equivalent and convenient representations of quantum channel,
including Choi-Jamiołkowski matrix [Jam72, Cho75], Kraus decomposition [HK69,
HK70], and Stinespring representation [Sti55], which are introduced as follows.

In the same spirit as the operator-vector correspondence (1.1), the Choi-Jamiołkowski
isomorphism between L(L(HA),L(HB)) and L(HA ⊗HB) is as follows. The Choi ma-
trix of a super-operator EA→B is JE = (1Ã→A ⊗ EA→B)ϕÃA, where ϕÃA =

∑
ij |ii⟩⟨jj| is

a fixed unnormalized maximally entangled state. We call JE/ dim(HA) the Choi state
of E . The output of the channel EA→B with input ρA can be recovered from JE as
EA→B(ρA) = trA

(
TA(JE)ρA

)
, where TA(JE) is the partial transpose on A of JE . It can

be verified that E is completely positive iff JE is positive semidefinite, and that E is
trace preserving iff trB JE = 1A.

Any E ∈ L(L(HA),L(HB)) is completely positive iff there exist linear operators
Ki ∈ L(HA,HB) such that

E(X) =
∑
i

KiXK
†
i .

This is called Kraus decomposition and the Ki are known as Kraus operators. Further,
a completely positive E is trace preserving iff∑

i

K†
iKi = 1A .
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1. INTRODUCTION

Moreover, E ∈ L(L(HA),L(HB)) is completely positive iff there exists an operator
L ∈ L(HA,HB ⊗HR) for some choice of HR such that

E(X) = trR(LXL
†) ,

which is known as Stinespring dilation. Further, a completely positive E is trace
preserving iff L is an isometry.

1.4 Symmetry and randomness

In this section we briefly review some concepts and basics in probability theory and
representation theory.

A σ-algebra (or σ-field) on a set Ω is a collection F of subsets of Ω that includes
the empty subset and is closed under the operations of complement, countable unions
and countable intersections. The pair (Ω,F) is called a measurable space. A function
µ from F to the extended real number line is called a measure if it satisfies that,
µ(A) ≥ 0 for all A ∈ F , µ(∅) = 0, and µ(∪∞

k=1Ak) =
∑∞

k=1 µ(Ak) for any countable
collections {Ak}∞k=1 of pairwise disjoint sets in F . A triple (Ω,F , µ) is called a measure
space. A probability measure, usually written Pr, is a measure such that Pr(Ω) = 1. A
probability space is a measure space with a probability measure. Let (Ω,F) and (Ω′,F ′)

be two measurable spaces, a function f : Ω → Ω′ is called a measurable function if
f−1(A′) ∈ F for all A′ ∈ F ′.

Let (Ω,F ,Pr) be a probability space and (E, E) a measurable space. Then an
(E, E)-valued random variable is a (F , E)-measurable function X : Ω → E, that is,
X−1(B) ∈ F for any B ∈ E . This allows to define a probability measure µ on E , that
is, µ(B) = Pr(X−1(B)). When E = R, X is called a real-valued random variable.

A topological space is set X, along with a collection T of subsets of X satisfying
that T contains the empty set and that T is closed under the operations of arbitrary
union and finite intersection. The elements of T are called open sets. The Borel algebra
on a topological space X is the smallest σ-algebra containing all open sets. Thus one
may define a measure on a topological space.

The Markov inequality and its derived inequalities will be used repeatedly in this
thesis. The power of probabilistic method also partially relies on the phenomenon
of concentration of measure. It is often an effect related to high dimension or a large
number of variables, for which functions with small local oscillation are nearly constant
[Led05]. A well-known and illustrative example is the Euclidean sphere Sn−1 in Rn
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1.4 Symmetry and randomness

for large dimension n, on which the uniform measure is highly concentrated near any
equator. This observation may be formulated equivalently on functions as below,
known as Levy’s lemma [LPH51].

Let n > 2 and let f : Sn−1 → R be an L-Lipschitz function, that is, |f(x)−f(y)| ≤
L geo(x, y) for any x, y ∈ Sn−1 where geo denotes the geodesic metric. Let M be a
central value of f , that is, Pr(f ≥ M) ≥ 1

4 and Pr(f ≤ M) ≥ 1
4 for Pr denoting the

uniform probability measure on Sn−1. Then for any ε > 0,

Pr(f −M ≥ ε) ≤ e−
1
4
nε2/L2

. (1.2)

Another strong result is the Dvoretzky’s theorem which was conjectured by Grothendieck
[Gro56], first proved by Dvoretzky [Dvo61], and then refined by Milman [Mil71].
Roughly speaking, it states, in terms of function instead of convex body, that an
L-Lipschitz function f on a unit sphere Sn−1 with uniform probability measure is
at most ε-far from some central value on the intersection of Sn−1 and a random
O(nε2/L2)-dimensional subspace with probability 1 − exp(−Ω(nε2/L2)). The details
will be introduced in later chapter.

When there is difficulty in explicitly constructing some object of interest, one may
consider random choices of these objects and then show that the random object pos-
sesses the property with a nonzero probability. Thus various concentration inequalities
may be useful for this technique. This probabilistic existence argument has been suc-
cessfully ultilized in many fields to prove the existence of some desired object.

We now turn to introduction to representation theory. A group is a set together
with an associative binary operation such that an identity element exists and every
element has an inverse. A representation of a group G is a vector space V together
with a homomorphism from G to End(V ), i.e. a map R : G → End(V ) such that
R(g1g2) = R(g1)R(g2) for any g1, g2 ∈ G. Here, V and R are called representation
space and representation map respectively. When clear from the context, we denote
a representation (R, V ) simply by the representation space V . Sometimes we write
g · v or gv to denote R(g)v for g ∈ G and v ∈ V . Thoughout this thesis we consider
only representations on finite-dimensional complex vector spaces. The character for a
representation V is a map χ : G→ C given by χ(g) = tr(R(g)).

For any two vector spaces V1 and V2, define hom(V1, V2) to be the set of linear
transformations from V1 to V2. If V1 and V2 are representations of G with represen-
tation maps R1 and R2 respectively, then define homG(V1, V2) := {M ∈ hom(V1, V2) :

MR1(g) = R2(g)M for any g ∈ G}. If homG(V1, V2) contains an invertible map, we
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1. INTRODUCTION

say V1 and V2 are equivalent representation and always identify them.

For a representation (R, V ) of G, a subspace W is called an invariant subspace
under G if and only if R(g)v ⊂ W for any g ∈ G, v ∈ W . We say a representation
(R, V ) is irreducible (and call it an irreducible representation, or irrep for short) if the
only invariant subspaces of V of G are the empty subspace and the entire space V .

In some situations it is convenient to work with the group algebra (also known as
group ring) rather than the group itself. For a group G, its group algebra C[G] is the
algebra consisting of all complex-valued functions x : G → C, g 7→ x(g). Equivalently,
any element x in C[G] can be written as x =

∑
g∈G x(g)g for x(g) ∈ C. For two

elements x =
∑

g∈G x(g)g and y =
∑

g∈G y(g)g, one has

xy =
∑
g∈G

(∑
h∈G

x(h)y(h−1g)

)
g ,

and equivalently,
(xy)(g) =

∑
h∈G

x(h)y(h−1g) for any g ∈ G .

The irreps of symmetric group and some Lie groups are briefly introduced as
follows. Let Type(n, d) denote the set of all d-tuples of nonnegative integers that
sum to n. A partition of n is a nonincreasing tuple of nonnegative integers that
sum to n, and let Par(n) denote the set of all partitions of n. Let Par(n, d) de-
note the set of all nonincreasing d-tuples of nonnegative integers that sum to n, i.e.,
Par(n, d) = {(λ1, . . . , λd) : λ1 ≥ · · · ≥ λd ≥ 0,

∑
λi = n}. Two partitions (λ1, . . . , λk)

and (λ1, . . . , λk, 0, . . . , 0) are considered equivalent if they differ only in padded zeros.
A partition λ can be identified with a Young diagram in which there are λi empty
boxes in the i-th row. A Young tableau of shape λ and alphabet A is a result of filling
each box in Young diagram λ with a number in A. A standard Young tableau is a
Young tableau filled with numbers 1 through n which strictly increase from left to
right and from top to bottom. Denote by STab(λ) the set of standard Young tableaux
of shape λ. A semistandard Young tableau is a Young tableau filled with numbers
which weekly increase from left to right and strictly increase from top to bottom. De-
note by SSTab(λ, d) the set of semistandard Young tableaux of shape λ and alphabet
{1, . . . , d}.

As a special finite group, the symmetric group Sn of degree n consists of all permu-
tations on n symbols. Throughout this thesis a permutation is written as a product of
permutation cycles which is unique up to the ordering of the cycles. Given any π ∈ Sn,
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1.4 Symmetry and randomness

define an isometry Wπ such that

Wπ(u1 ⊗ · · · ⊗ un) = uπ−1(1) ⊗ · · · ⊗ uπ−1(n) ,

for any ui ∈ Hi. For the sake of brevity, we sometimes write

πu :=Wπu and π ·X :=WπXW
†
π

to denote the action of π ∈ Sn on u ∈ H1 ⊗ · · · ⊗ Hn and, respectively, on X ∈
L(H1 ⊗ · · · ⊗ Hn). Thus Wτ and its action are defined by linearity for any τ ∈ C[Sn].

Since the conjugacy classes of Sn are labeled by partitions of n, the number of
inequivalent irreps of Sn is equal to the number of partitions of n. Indeed, each
partition λ corresponds to an irrep of Sn. Choose a standard Young tableau T of shape
λ ∈ Par(n). Notice that the choice of standard Young tableau for each partition does
not matter since different choices for the same partition give rise to equivalent irreps.
Denote by PT the set of permutations π that permute numbers within each row in T ,
i.e., i and π(i) are in the same row for each i ∈ [n], and by QT the set of permutations
π that permute numbers within each column in T . The Young symmetrizer cT is thus
defined as cT :=

∑
p∈PT ,q∈QT

pq sgn(q). The left-modules V S
λ := C[Sn]cT are called

the Specht modules of Sn. The character for the irrep V S
λ is denoted by χSλ . Now we

give a basis for V S
λ . Let {|1⟩, . . . , |d⟩} be standard orthonomal basis for Cd. For each

T ∈ STab(λ), define vT to be the basis vector with i at the positions in row i of T ,
e.g., vT = |12121⟩ for T = 1 3 5

2 4
. Thus {cT vT : T ∈ STab(λ)} is a non-orthogonal

basis of V S
λ . By decomposing the irrep of Sk as direct sum of irreps of Sk−1 using the

branching rule, one can obtain an orthogonal basis known as Young-Yamanouchi basis
[Jam06].

The dimension of V S
λ , for λ ∈ Par(n), is given by

dimV S
λ =

n!

λ̃1! · · · λ̃d!

∏
1≤i<j≤d

(
λ̃i − λ̃j

)
, (1.3)

where λ̃i := λi + d− i. It can be bounded by [Hay02](
n

λ

)
(n+ d)−d(d−1)/2 ≤ dimV S

λ ≤
(
n

λ

)
(1.4)
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and furthermore

exp(nH(λ̄))(n+ d)−d(d+1)/2 ≤ dimV S
λ ≤ exp(nH(λ̄)) , (1.5)

where λ̄ := λ/n.

The representation theory of compact Lie group is always studied via that of Lie
algebra. A Lie algebra is a vector space g together with a skew-symmetric bilinear
map [·, ·] : g × g → g satisfying the Jacobi identity [[a, b], c] + [[b, c], a] + [[c, a], b] = 0

for any a, b, c ∈ g. This map is called Lie bracket. A representation of Lie algebra g is
a vector space together with a homomorphism f : g → EndV such that the Lie bracket
is preserved, i.e., f([a, b]) = f(a)f(b)− f(b)f(a) for any a, b ∈ g. As the Lie algebra can
be thought of as the tangent space at the identity of a Lie group, the representation
theories of Lie algebras and Lie groups parallel each other in some sense. For an
introduction to Lie group and Lie algebra and their representation theory see standard
literature, e.g. [FH13, Hal15, GW09].

Define the torus U(1)×d = U(1)× · · · ×U(1) as the subgroup of diagonal matrices.
Let (R, V ) be a rational irrep of U(d). Since the rational irrep of U(1) is given by u 7→ uk

for k ∈ Z and u ∈ U(1), V as a representation of the torus U(1)×d is decomposed as a
direct sum of orthogonal subspaces labeled by µ ∈ Zd. The subspace corresponding to
µ is V (µ) = {v ∈ V : R(diag(x1, . . . , xd))v = xµ11 · · ·xµdd v ∀xi ̸= 0}, called the µ-weight
space. Any v ∈ V (µ) is called a weight vector with weight µ. We say µ′ majorizes µ if∑d

i=1 µ
′
i =

∑d
i=1 µi and

∑k
i=1 µ

′
i ≥

∑k
i=1 µi for each k, denoted µ′ ≻ µ. It turns out

that every irrep has a highest weight µh, which majorizes any other weights in this irrep,
and that any d-tuple λ of integers as a highest weight gives rise to an irrep denoted
V L
λ . The tuples that differ only in order of numbers yield isomorphic representations.

Among these irreps there are two special ones: the symmetric subspace ∨nCd := {v ∈
(Cd)⊗n : Wπv = v ∀π ∈ Sn} corresponding to partition (n), and the antisymmetric
subspace ∧nCd := {v ∈ (Cd)⊗n : Wπv = sgn(π)v ∀π ∈ Sn} corresponding to partition
(1, . . . , 1) for d ≥ n.

By Weyl’s tensorial construction, V L
λ is isomorphic to cT (Cd)⊗n for any λ ∈

Par(n, d) and for any T ∈ STab(λ). Since gl(d) (resp. sl(d)) is the complexification
of the real Lie algebra u(d) (resp. su(d)) respectively, a representation of gl(d) (resp.
sl(d)) is irreducible iff so is the corresponding representation of u(d) (resp. su(d)). The
irrep of U(d) (resp. SU(d)) can be extended to GL(d) (resp. SL(d)). As the represen-
tation matrices for (λ1, . . . , λd) and that for (λ1+k, . . . , λd+k) are isomorphic up to a
factor (det g)k for g ∈ U(d), the irreps of SU(d) and SL(d) can be labeled by d-tuples
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with the last number being zero.
For each λ ∈ Par(n, d), R ∈ STab(λ), T ∈ SSTab(λ, d) and i ∈ [n], let mi be

the number such that the box containing i in R and the box containing mi in T are
in the same place, and define eT to be the vector |m1, . . . ,mn⟩, e.g., eT = |1323⟩ for
R = 1 2 4

3
and T = 1 3 3

2
. Thus for any choice of R, {cReT : T ∈ SSTab(λ, d)}

is a basis of V L
λ , which is not orthogonal in the Euclidean space (Cd)⊗n. By using

the branching rule, one can obtain an orthogonal basis known as Gelfand-Tsetlin basis
[GT50] which will be detailed and used in Chapter 3. In this basis the irrep of U(d) is
unitary, that is, each representation matrix of U is unitary for U ∈ U(d).

The character χLλ for the irrep V L
λ is

χLλ (diag(x1, . . . , xd)) =
det(x

λj+d−j
i )di,j=1

det(xd−ji )di,j=1

. (1.6)

The dimension of V L
λ is given by

dimV L
λ =

∏
1≤i<j≤d

λi − λj + j − i

j − i
, (1.7)

which is bounded above by (n+ 1)d(d−1)/2 [CM06].
The following Schur-Weyl duality, relating finite-dimensional irreps of the general

linear and symmetric groups, was first presented in Schur’s thesis [Sch] and developed
further by Weyl [Wey39]; see [FH13, EGH+11, GW09] for more details.

Theorem 1 (Schur-Weyl duality). Let G be either GL(d), SL(d), U(d) or SU(d).
Let A denote the algebra in End(Cd)⊗n generated by Wπ for all π ∈ Sn, and let B
denote the algebra in End(Cd)⊗n generated by U⊗n for all U ∈ G. Then A and B are
commutants of each other, and this leads to the following decomposition

(Cd)⊗n ∼=
⊕

λ∈Par(n,d)
V L
λ ⊗ V S

λ , (1.8)

where V L
λ and V S

λ are irreps of the Lie group G and the symmetric group Sn respectively.

The Haar measure µ on a compact group G is the unique normalized invariant
Borel probability measure over G. It can be intuitively thought of as the uniform
probability distribution over a group. More specifically, the measure µ is invariant
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with respect to both left and right multiplication by any group element:

µ(gS) = µ(S) = µ(Sg)

for any Borel subset S ⊂ G and group element g.
As an application of Schur-Weyl duality, the twirling operation stated as follows

has been widely used in quantum information theory.

Lemma 2. Given an operator X ∈ L((Cd)⊗n), denote

X̃ :=

∫
U⊗nXU †,⊗n dU , (1.9)

where dU is the normalized Haar measure on U(Cd) or SU(Cd).
(i) When n = 2,

X̃ = α1+ βW , (1.10)

where
α =

d tr(X)− tr(XW )

d3 − d
, β =

d tr(XW )− tr(X)

d3 − d
,

and W is the swap operator satisfying W (|u⟩ ⊗ |v⟩) = |v⟩ ⊗ |u⟩ for any |u⟩, |v⟩ ∈ Cd.
(ii) When X = |ψ⟩⟨ψ|⊗n,

X̃ =
Πsym
trΠsym

=
1

d↑n

∑
π∈Sn

Wπ , (1.11)

where Πsym is the projector onto the symmetric subspace ∨nCd and d↑n := d(d +

1) · · · (d+ n− 1) denotes the rising factorial.

Proof. (i) The integration is invariant under unitary conjugation, i.e., (U ⊗ U)X̃(U ⊗
U)† = X̃ for any U ∈ U(H). Thus X̃ is a linear combination of operators 1 andW due
to Schur-Weyl duality. The coefficients α and β are determined using the conditions
tr(X̃) = trX and tr(WX̃) = tr(WX).

(ii) Since X̃ commutes with each U⊗n and maps the irrep ∨nCd to itself, by
Schur’s lemma, X̃ equals Πsym up to a scalar. Since WπX̃ = X̃ for each π ∈ Sn,
X̃ = 1

f(n)

∑
π∈Sn

Wπ for some f(n). Thus f(n) =
∑

π∈Sn
trWπ =

∑
π∈Sn

d#π =:∑n
j=1 h(n, j)d

j , where #π denotes the number of cycles in π. Denote by Θn,j the set
of permutations in Sn having j cycles, and then h(n, j) = |Θn,j |. For π ∈ Θn,j ,
if π(1) = 1, there are h(n − 1, j − 1) such permutations; if π(1) = t ̸= 1, by
identifying numbers 1 and t, there are (n − 1)h(n − 1, j) such permutations. Thus
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h(n, j) = h(n−1, j−1)+(n−1)h(n−1, j), and f(n) = (d+n−1)f(n−1) follows.
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Chapter 2

On multiple nonadditivity of
minimum output Rényi entropy

Many quantities in quantum information theory have regularization form, such as var-
ious forms of capacity of a given quantum channel. A natural and important question
is whether the quantities, such as the entanglement of formation, Holevo capacity, and
minimum output entropy, are additive under tensor product. In this chapter we study
the nonadditivity of Holevo capacity, or equivalently that of minimum output entropy.
Several additivity results for the minimum output entropy were established for particu-
lar classes of channels, including unital qubit channels [Kin02], entanglement breaking
channels [Sho02], and depolarizing channel [Kin03].

The maximum output p-norm of a channel E is νp(E) := maxρ ∥E(ρ)∥p for p > 1

and the minimum output Rényi entropy is Hp(E) = p
1−p ln νp(E). Thus the additivity

of minimum output Rényi entropy can be turned into multiplicativity of the maxi-
mum output p-norm. Werner and Holevo [WH02] first constructed a counterexample
Ewh(ρ) = 1

d−1(tr(ρ)1 − ρT) for ρ ∈ D(d) which satisfies that νp(E⊗2
wh ) > νp(Ewh)

2 for
d = 3 and p > 4.79. This Werner-Holevo channel (or called antisymmetric channel)
Ewh violates the additivity conjecture also for other choices of dimension d and param-
eter p. Hayden and Winter [Win07, Hay07, HW08] employed random unitary channel
and random subspace in high dimension to yield counterexamples to the additivity
conjecture of minimum output p-Rényi entropy for all p > 1. Note that the case p = 1

corresponds to the von Neumann entropy. Hastings [Has09] then showed that the
minimum output von Neumann entropy is not additive, and equivalently, the Holevo
capacity is not additive, settling a longstanding open problem in quantum information
theory. It applied a probabilistic method to prove the existence of counterexample,
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using an unusual measure on quantum states. A detailed elucidation of Hastings’
proof was given in [FKM10]. The reasoning in [Has09] was made clearer in [BH10]
by explicitly using a measure concentration argument. By using the Dvoretzky’s the-
orem, a more concise disproof to the conjecture was provided in [ASW11]. In high
dimension, almost every channel and its conjugate violate the additivity conjecture,
but explicit construction of such channel is difficult. A constructive counterexample
for any p > 2 was obtained in [GHP10] using the antisymmetric subspace, and no
constructive counterexample to the minimum output von Neumann entropy is known
up to now.

The works mentioned above studied the additivity property all using a bipartite
state as input of a pair of channels. An important question is thus whether multipartite
entangled state is also useful for the subadditivity of the minimum output entropy of
quantum channels. If only bipartite entangled state is useful, then the regularized
form of the channel capacity may be formulated as a simpler expression. To deal
with this question, it was shown in [FN14] that the tensor product of maximally
entangled states asymptotically yields the minimum output entropy of random channel
(N ⊗ N ∗)⊗r. This phenomenon also occurs for the random channel N⊗2r where N
is induced by random orthogonal matrices via Stinespring dilation [FN17]. It thus
seems that only the bipartite entanglement could be the state achieving the minimum
output entropy. In order to further study the multiple additivity of minimum output
entropy, we consider alternative construction of random quantum channels. In order to
conveniently do the calculation for complicated random quantum channels, a graphical
calculus was developed in [CN10], in which the asymptotic spectrum of output state
of a pair of high-dimensional random quantum channels with input being maximally
entangled state was also studied. We will introduce in Section 2.2 the graphical calculus
and use it to study the spectrum of output state of high-dimensional random channels,
and study in Section 2.3 the multiple nonadditivity problem using concentration of
measure argument.

2.1 Introduction and subadditivity of a pair of channels

It is a fundamental problem in quantum information theory to determine the capacity
of a quantum-mechanical communication channel for conveying quantum, classical, or
private information. For the case of classical information transmission, the first major
result is due to Holevo, who proved in 1973 [Hol73] that the maximum amount of
information that can be extracted from an ensemble of states η := {(pi, ρi)} with pi
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denoting probabilities is bounded above by

χ(η) = H
(∑

i
piρi

)
−
∑

i
piH(ρi) , (2.1)

which is termed the Holevo χ-quantity (or Holevo information) of this ensemble. Here
H(σ) = − tr(σ lnσ) is the von Neumann entropy of density operator σ.

For any ensemble η = {(pi, ρi)} and any channel N , one naturally defines an
ensemble N (η) := {(pi,N (ρi))}. Thus the Holevo capacity [Hol98, SW97] of channel
N is defined as

χ(N ) = sup
η
χ(N (η)) , (2.2)

where the supremum is over all ensembles of input states.

The classical capacity of a given channel N is defined as the regularization of the
Holevo capacity

C(N ) = lim
n→∞

1

n
χ(N⊗n) . (2.3)

It is always rather difficult to evaluate or even to estimate the classical capacity
C of a given channel, unless its Holevo capacity is additive. If the Holevo capacity is
additive, then the classical capacity has a simple single-letter characterization. Oth-
erwise one can use the quantum channel collectively with entangled state as input to
gain more efficiency of communication.

Shor [Sho04] showed that the additivity conjecture of Holevo capacity and that
of minimum output entropy are equivalent. The minimum output entropy is defined
as Hmin(E) := minψH(E(ψ)) with the minimum over all pure states ψ. Based on
the works [Win07, Hay07, HW08], Hastings [Has09] showed that there exists channel
N such that Hmin(N ⊗N ∗) < Hmin(N ) +Hmin(N ∗), finally falsifying the additivity
conjecture. The proof was simplified in [ASW11] using the Doretzky’e theorem.

In the rest of this section we present a sketch of the proof in [ASW11], and then
further simplify the proof. Let S,R,A,B be quantum systems of respective dimensions
s, r, a, b such that HS ⊗ HR = HA ⊗ HB (and obviously sr = ab). We assume a ≤ b.
Consider the channel

ES→A(ρS) = trB(U(ρS ⊗ ξr)U
†) (2.4)

with ξr being a fixed pure state on HR in the following.

Let ϕq denote the maximally entangled state of rank q. Using the maximally
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entangled state as the input of E ⊗ E∗, for any U we have

⟨(E ⊗ E∗)ϕs, ϕa⟩ =
⟨
(U ⊗ U∗)(ϕs ⊗ ξ⊗2

r )(U ⊗ U∗)†, ϕa ⊗ 1BB′
⟩

≥
⟨
(U ⊗ U∗)(ϕs ⊗ ξ⊗2

r )(U ⊗ U∗)†, ϕa ⊗ ϕb
⟩

= ⟨ϕs ⊗ ξ⊗2
r , ϕs ⊗ ϕr⟩ =

1

r
=

s

ab
,

where we used (U ⊗ U∗)|ϕsϕr⟩ = |ϕaϕb⟩ for any U . Thus Hmin(E ⊗ E∗) ≤ H(λ) ≤
2 ln a − 1

r (ln
a2

r − 2) for large r, where λ := (1r ,
1−1/r
a2−1

, . . . , 1−1/r
a2−1

) ∈ Ra2 and the first
inequality is due to Schur-concavity of H. When r = ca for some constant c, there is
a constant C such that for any channel ES→A,

Hmin(E ⊗ E∗) ≤ 2 ln a− C
ln a

a
. (2.5)

In order to obtain a lower bound on Hmin(E) = Hmin(E∗), we consider the random
channel defined in (2.4) where USR→AB is a Haar-random unitary. Based on previous
works [Has09, BH10], Aubrun, Szarek and Werner [ASW11] applied the Dvoretzky’s
theorem to show that with high probability a random channel E satisfies

Hmin(E) = Hmin(E∗) ≥ ln a− 4

a
. (2.6)

Combining Eqs. (2.5) and (2.6), the subadditivity of minimum output entropy,Hmin(E⊗
E∗) < Hmin(E) +Hmin(E∗), is thus established.

Theorem 3 (Dvoretzky’s theorem for Lipschitz functions). There are constants c, c′

such that the following holds. Let f : SCn → R be an L-Lipschitz and phase-invariant
function, and µf be any central value of f . Let 0 < ε < 1, k ≤ cnε2/L2, and
E be a k-dimensional random subspace of Cn with respect to Haar measure. Then
Pr(osc(f, SE , µf ) > ε) ≤ e−c′nε2/L2, where SE := SCn ∩ E.

In the above theorem, for a function f : Ω → R, a subset Γ ⊂ Ω and a scalar
α ∈ R we denote osc(f,Γ, α) := supx∈Γ |f(x)− α|, the expression ‘L-Lipschitz’ means
that |f(x) − f(y)| ≤ ∥x − y∥2 for any x, y ∈ SCn , and ‘phase-invariant’ means that
f(x) = f(eiθx) for any x ∈ SCn and any θ ∈ R.

For σ ∈ D(Ca) with eigenvalues pi, it holds thatH(σ) = −
∑a

i=1 pi ln pi ≥ − ln
∑
p2i =
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ln a− ln(a
∑
p2i ) ≥ ln a− a trσ2 + 1 = ln a− a∥σ − ω∥22. It follows that

Hmin(E) = min
ψS

H(E(ψS))

≥ min
ψS

(ln a− a∥E(ψS)− ωA∥22)

= ln a− a max
|ψ⟩AB∈S(HS)

∥ψA − ωA∥22 . (2.7)

Considering HS as an s-dimensional random subspace of HAB, it suffices to show that

P := Pr
HS

(
max

|ψ⟩AB∈S(HS)
∥ψA − ωA∥2 ≤ 2/a

)
> 0 . (2.8)

When this is the case, there exists a subspace HS such that Hmin(E) ≥ ln a − 4
a and

hence Hmin(E ⊗ E∗) < Hmin(E) +Hmin(E∗). We now present a sketch of the proof in
[ASW11] of Eq. (2.8) as below.

Define functions g : S(HAB) → R, |ψ⟩AB 7→ ∥ψA − ωA∥2 and h : S(HAB) →
R, |ψ⟩AB 7→

√
∥ψA∥∞. Denote Ωt := {|ψ⟩ ∈ S(HAB) :

√
∥ψA∥∞ ≤ t} where t :=

4a−1/2, and let g′ denote the restriction of g on Ωt. The functions g′ and h are 2t-
Lipschitz and 1-Lipschitz respectively. Define g̃ : S(HAB) → R, |ψ⟩AB 7→ inf |φ⟩∈Ωt

(g(|φ⟩)+
2t∥|ψ⟩ − |φ⟩∥2) which is 2t-Lipschitz on S(HAB) and coincides with g′ on Ωt.

The bound
√

∥ψA∥∞ ≤ 1√
a
+ 1+ε√

b
holds with probability at least 1 − e−aε2 for

a ≤ b [AS17, Prop. 6.36]. It follows that g ≤ 3b−1/2 with high probability. Thus
h has a central value α ≤ 3a−1/2 and both functions g and g̃ have a central value
β ≤ 3b−1/2 for large a. Take b = 9a2. Then due to Dvoretzky’s theorem, we have
P1 := PrHS

(osc(g̃,S(HS), β) ≤ 1/a) ≥ 1 − e−cb and P2 := PrHS
(osc(h,S(HS), α) ≤

a−1/2) ≥ 1− e−cb for some c. Therefore,

P = Pr
HS

(osc(g,S(HS), 0) ≤ 2/a)

≥ Pr
HS

(
osc(g̃,S(HS), 0) ≤ 2/a

)
+ Pr

HS

(
osc(h,S(HS), 0) ≤ t

)
− 1 ≥ 1− 2e−cb ,

completing the proof of (2.8).

The proof in [ASW11] used the fact that the Lipschitz constant of the restriction
of g on Ωt is upper-bounded by 2t. Indeed, the function g is 2-Lipschitz on the sphere
S(HAB); see [HLW06, Lemma III.8], or Lemma 7 in this thesis for general case. In what
follows we directly apply Dvoretzky’s theorem once, instead of twice, to the function
g, further simplifying the argument.
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Simpler proof for bounding (2.8). We now show that P is close to 1 in high dimension.
Consider the function g : |ψ⟩AB 7→ ∥ψA − ωA∥2 which is 2-Lipschitz on S(HAB). Since√
∥ψA∥∞ ≤ 1√

a
+ c′√

b
holds with high probability for some constant c′ > 1 and ∥ψA −

ωA∥2 ≤
√
a∥ψA − ωA∥∞ ≤ 3√

b
, the function g has a central value β ≤ 3√

b
. Using

Dvoretzky’s theorem, PrHS
(osc(g,S(HS),

3√
b
) ≤ ε) ≥ 1 − e−cabε2 for some constant c.

Taking b = 9a2 and ε = 1
a , we thus have

P = Pr
HS

(osc(g,S(HS), 0) ≤ 2/a)

≥ Pr
HS

(osc(g,S(HS), 1/a) ≤ 1/a)

≥ 1− e−ca .

2.2 Minimum output entropy of a triple of random chan-
nels

In this section we investigate the asymptotic behavior of the output state of a triple
of quantum channels using tools from [FN14]. A graphical representation of quantum
state and quantum channel in the context of quantum information theory was proposed
in [CN10]. This graphical calculus can be well suited for the computation of integration
over unitary group, orthogonal group and symplectic group. We now review first the
result in [CŚ06] on calculation of integration over unitary group, and then the graphical
calculus for tensors [CN10].

The (unitary) Weingarten function Wgn,d, also written Wgd or Wg, is the inverse
of

∑
π∈Sn

π tr(Wπ) in the symmetric group algebra C[Sn], namely∑
π

(trWπ−1)Wg(πσ) = δσ,id , (2.9)

where δ denotes Kronecker delta. The Weingarten function is a class function on
symmetric group since so is its inverse.

Proposition 4 ([CŚ06, Corollary 2.4]). Let U be a random unitary or random spe-
cial unitary according to the Haar measure, and Ukl be its elements. Then for any
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it, jt, i
′
t, j

′
t ∈ {1, 2, . . . , d} with t ∈ {1, 2, . . . , n},∫

U(d)
Ui1j1 · · ·UinjnU∗

i′1j
′
1
· · ·U∗

i′nj
′
n
dU =

∑
π,σ∈Sn

δiσ(1)i
′
1
· · · δiσ(n)i

′
n
δj1j′π(1)

· · · δjnj′π(n)
Wg(πσ) .

(2.10)

We give a concise proof as follows.

Proof. The character of Sn acting on (Cd)⊗n is written as χS :=
∑

π∈Sn
π tr(Wπ) ∈

C[Sn]. By the Schur-Weyl decomposition (Cd)⊗n ∼=
⊕

λ∈Par(n,d) V
L
λ ⊗ V S

λ , it can be
also written as χS =

∑
λ∈Par(n,d) dim(V L

λ )χSλ , where χSλ is the character for irrep V S
λ of

Sn. Notice that
∑

λ∈Par(n,d) pλ = id where pλ :=
dimV S

λ
n! χSλ , and χSλχSλ′ = n!

dimV S
λ

δλ,λ′χ
S
λ .

Take
Wg =

1

n!2

∑
λ

(dimV S
λ )2

dimV L
λ

χSλ ,

where the sum is over Par(n) or Par(n, d), in either case it can be verified that the
equality χSWg = id holds.

Denote X̃ := EUU⊗nXU †,⊗n where U is a Haar-random unitary or special uni-
tary. Since X̃ commutes with each U⊗n, X̃ =

∑
σ cσWσ for some numbers cσ.

Thus tr(XWπ) = tr(X̃Wπ) =
∑

σ cσ trWσπ. It follows that
∑

π tr(XWπ)Wg(σ′π) =∑
σ cσ

∑
π tr(Wσπ)Wg(σ′π) = cσδσ,σ′ , where the latter equality used (2.9), hence cσ =∑

π tr(XWπ)Wg(σπ). Therefore X̃ =
∑

π,σ tr(XWπ)Wg(πσ)Wσ. Then

tr(X̃Y ) = EU tr(U⊗nXU †,⊗nY ) =
∑

π,σ∈Sn

tr(XWπ) tr(YWσ)Wg(πσ) . (2.11)

Taking X = |j1⟩⟨j′1| ⊗ · · · ⊗ |jn⟩⟨j′n| and Y = |i′1⟩⟨i1| ⊗ · · · ⊗ |i′n⟩⟨in|, we have
tr(X̃Y ) = EUi1j1 · · ·UinjnU∗

i′1j
′
1
· · ·U∗

i′nj
′
n
. The result follows by noticing that tr(XWπ) =

δj1,j′π(1)
· · · δjn,j′π(n)

and tr(YWσ) = δiσ(1),i
′
1
· · · δiσ(n),i

′
n
.

Since (2.11) holds for any Y , we have

EU (U⊗nXU †,⊗n) =
∑

π,σ∈Sn

Wg(πσ) tr(XWπ)Wσ . (2.12)
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The following is some examples of Weingarten function:

Wgd(1) =
1

d

Wgd(12) =
1

d2 − 1

Wgd(2) =
−1

d(d2 − 1)

Wgd(13) =
d2 − 2

d(d2 − 1)(d2 − 4)

Wgd(12) =
−1

(d2 − 1)(d2 − 4)
,

where the permutations are described by their cycle shapes, that is, (1µ1 · · ·nµn) de-
notes the conjugacy class in Sn which has µj cycles of length j for j = 1, . . . , n.

Let π ∈ Sn be written as product of disjoint cycles: π = C1C2 · · ·C#π. Denote
|π| := n−#π and Mob(π) :=

∏
i(−1)|Ci|Cat|Ci|, where |Ci| is the number of elements

in Ci minus 1, and the Catalan number is Catm = 1
m+1

(
2m
m

)
. The Weingarten function

has the following asymptotics:

Wgn,d(π) = d−n−|π|(Mob(π) +O(d−2)) . (2.13)

In particular, Wg(id) ∼ d−n(1 +O(d−2)).

We now introduce the graphic presentation of the unitary integration, which makes
the calculation more convenient in some complicated situations; see [CN10] for more
details (but notice some minor difference from here). Each tensor is represented by
a box attached labels of different shapes corresponding to vector spaces. The label
can be empty (white color) or filled (black color). A (p, q)-tensor is represented by a
box with p white labels and q black labels. Besides boxes the diagram contains wires
connecting the labels, which represents the contraction on tensor. One can compute
expectation values of such diagrams containing Haar-random unitary box. There is a
trick on dealing with the transpose of unitary. One can simply turn the color of each
label of the unitaries U †, UT to its opposite while replacing U †, UT by U∗, U respectively
to obtain a diagram without U † or UT. First we index the boxes by positive integers.
Each pair of permutations, (π, σ), in Eq. (2.10) will be used to eliminate the boxes of
U and U∗ as follows. Wires are added to connect the white label of the U box with
index i from inside to the black label of the U∗ box with index π(i), or connect the
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black label of the U∗ box with index i from inside to the white label of the U box
with index σ(i). After this action the unitary boxed are eliminated, and the remaining
diagram is called an (π, σ)-removal.

See Fig. 2.1 for examples of representation of a matrix and a quantum channel.
The integration formula (2.12) thus can be represented by the graphics in Fig. 2.2.

MA S U
ρ

|0⟩⟨0|
U †

S S

R R

A A

B B

Figure 2.1: Diagrams for a matrix MS→A and a quantum channel ES→A(ρ) = trB(U(ρ⊗
|0⟩⟨0|)U †)

EU

=
∑

π,σ∈Sn

Wg(πσ)

U

U

U

X

U∗

U∗

U∗

U

U

U

X

U∗

U∗

U∗

...
...

...
...

...
...

...
...

σ−1(1)

σ−1(2)

σ−1(n)

π(1)

π(2)

π(n)

σ(1)

σ(2)

σ(n)

π−1(1)

π−1(2)

π−1(n)

Figure 2.2: Graphical presentation for the integration EU (U⊗nXU †,⊗n) in (2.12). The
boxes for unitaries U and U∗ have been removed after integration, and the lines out
from the interior of these boxes are joined according to permutation π or σ.

U∗

U

U

U

U∗

U∗

A

A

A

B

B

B

S

S

S

A

A

A

B

B
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S

S

S

3

2

1

3

2

1

X†X
(1,1)

(1,2)

(2,3)

(2,1)

(2,2)

(1,3)

U∗

U

U

U

U∗

U∗

A

A

A

B

B

B

S

S

S

A

A

A

B

B

B

S

S

S

6

5

4

6

5

4

X†X
(3,1)

(3,2)

(4,3)

(4,1)

(4,2)

(3,3)

U∗

U

U

U

U∗

U∗

A

A

A

B

B

B

S

S

S

A

A

A

B

B

B

S

S

S

9

8

7

9

8

7

X†X
(5,1)

(5,2)

(6,3)

(6,1)

(6,2)

(5,3)

Figure 2.3: Diagram for calculating E tr(Z3). The pure state on system R is omitted.
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Let S,R,A,B be quantum systems of respective dimensions s, r, a, b such that
HS ⊗HR = HA ⊗HB and s = b. For any unitary USR→AB, define a quantum channel
ES→A as

ES→A(ρ) = trB(U(ρ⊗ ξR)U
†) , (2.14)

where ρ ∈ D(HS) and ξ is a fixed pure state. Similarly the quantum channel E∗ can
be defined for the unitary U∗. A random quantum channel E is thus obtained by
choosing a Haar-random unitary U . We now investigate the minimal ouput entropy of
the random channel E ⊗E ⊗E∗ when the pure input state is fixed following the method
in [FN14].

Let |ψ⟩ be a tripartite state on systems 1, 2 and 3. Using the operator-vector
correspondence (1.1), the state |ψ⟩ can be represented by an operator X from systems
1 and 2 to system 3. Denote by Z the output state of quantum channel EU ⊗EU ⊗EU∗

with input state ψ. We first calculate E tr(Zp) to study the asymptotic property of Z
using the moment method. See Fig. 2.3 for the diagram of E tr(Zp) for the case p = 3.

The unitaries U in tr(Zp) are labeled by integers 1, 2, . . . , 3p, and the unitaries
U∗ are labeled by 1, 2, . . . , 3p. Define γ ∈ S3p as γ(k) = k − 3 if k mod 3 = 1 or 2,
γ(k) = k + 3 if k mod 3 = 0 except that γ(1) = 3p− 2, γ(2) = 3p− 1, γ(3p) = 3.
Using the integration formula (2.12), we write E tr(Zp) as

E tr(Zp) =
∑

π,σ∈S3p

Kπ,σ with Kπ,σ := a#σγb#σfX(π)Wg(πσ) ,

where fX(π) := tr(Wπ(X ⊗X†)⊗2p).

We relabel the 6p systems S of 2p boxes X,X∗ as [i, x] where i ∈ [2p] denotes the
position of box and x ∈ [3] denotes the label attached on it. Consider the subset Θ of
S3p:

Θ := {π ∈ S3p : ∃E⊔F = [2p] s.t. |E| = |F | = 2p and ∀i ∈ E, ∃j ∈ F, π([i, x]) = [j, y]} .
(2.15)

Using technique in [FN14, Theorem A.1], denoting t := minθ∈Θ |π−1θ|, we can write

fX(π) = tr(Y1Wπ1Y2Wπ2) . (2.16)

where Y1, Y2 both are tensor products ofX,X∗ and 1bt . Thus, using Cauchy inequality,

|fX(π)| ≤ ∥Y1∥2∥Y2∥2 = bt . (2.17)
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Thus |Kπ,σ| ≤ a#σγb#σbtWg(πσ) ∼ a#σγ−3p−|πσ|b#σ+t−3p−|πσ|Mob(πσ), where we
have used the asymptotics of Wg function, (2.13). We are concerned with the case
that b goes to infinity and a is fixed and finite.

It is known that the distance on Sn defined as |π−1σ| ≡ n−#(π−1σ) for π, σ ∈ Sn

satisfies the triangle inequality |π−1
1 π2| + |π−1

2 π3| ≥ |π−1
1 π3| for any π1, π2, π3 ∈ Sn.

Using this triangle inequality, the power of b can be bounded as

#σ +min
θ∈Θ

|π−1θ| − 3p− |πσ|

≤ min
θ∈Θ

|π−1θ| − |π|

≤ min
θ∈Θ

|θ| = 0 ,

(2.18)

where the first inequality is saturated iff |σ| + |πσ| = |π| (in this case we write σ ≤
π−1) and the second is saturated iff |π−1θ| ≥ |π| for any θ ∈ Θ. Denoting J1 =

{3k − l : k ∈ [p], l ∈ [2]} and J2 = {3k : k ∈ [p]}, the set {(i, j) ∈ S3p : i, j ∈
J1 or i, j ∈ J2 or ⌈i/3⌉ ̸= ⌈j/3⌉} is contained in Θ. Following the reasoning in [FN14],
the inequalities in (2.18) are saturated iff

(π, σ) ∈ Ξ := {(id, id), ((13), id), ((13), (13)), ((23), id), ((23), (23))} .

Denote Ξ′ := {id, (13), (23)}.
Using the integration formula, we have

EZ =
∑

π,σ∈S3

Wg(πσ)fX(π)b#σWA
σ

∼
∑

(π,σ)∈Ξ

a−3−|πσ|(−1)|πσ|
fX(π)

bt
WA
σ

= a−3
∑

(π,σ)∈Ξ

fX(π)

bt
Rπ ,

where t := minθ∈Θ |π−1θ| and Rπ :=
∑

σ:(π,σ)∈Ξ(−a−1)|πσ|WA
σ . Following [FN14] we

call the sequence of X (or equivalently |ψ⟩) well-behaved if fX(π)
bt → απ as b → ∞.

Then EZ converges almost surely to Y = a−3
∑

π∈Ξ′ απRπ. Define ρid = a−31, ρ(13) =
a−3WA

(13)+(a−3− a−4)1, ρ(23) = a−3WA

(23)+(a−3− a−4)1, all of which act on (Ca)⊗3.
Thus Y can be rewritten as Y =

∑
σ pσρσ with pσ :=

∑
(π,σ)∈Ξ(−1)|πσ|απ. Due to the

Schur-concavity of von Neumann entropy, H(ρ(13)) = H(ρ(23)) < H(ρid). Thus the
largest p(13) or p(23) achieves least H(Y ). Since p(13) = α(13) achieves maximal value 1
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when |ψ⟩ is tensor of a maximally entangled state and a pure state. Thus we have the
following:

Theorem 5. Among all sequences of well-behaved input states, the tensor product
of a bipartite maximally entangled state and a pure state achieves asymptotically the
minimum output entropy of the random channel E ⊗ E ⊗ E∗.

2.3 On multiple nonadditivity of minimum output p-Rényi
entropy

It was shown in [FW07] that weak additivity of minimum output entropy (for two
identical channels) implies its strong additivity (for different ones). It can be easily
extended to the case of triple channels following similar construction. We claim that for
1 ≤ p ≤ ∞, if Hmin

p (E1⊗E2⊗E3) < Hmin
p (E1)+Hmin

p (E2)+Hmin
p (E3) for some channels

E1, E2, E3, then there exists a channelN such thatHmin
p (N⊗3) < 3Hmin

p (N ). Indeed, let
ρi be the states that minimize Hmin

p (Ei) for i = 1, 2, 3 respectively, and define N1(·) =
E1(·)⊗E2(ρ2)⊗E3(ρ3), N2(·) = E1(ρ1)⊗E2(·)⊗E3(ρ3), N3(·) = E1(ρ1)⊗E2(ρ2)⊗E3(·)
andN = N1⊕N2⊕N3. ThusHmin

p (N ) = miniH
min
p (Ni) andHmin

p (N1) = Hmin
p (N2) =

Hmin
p (N3) = Hmin

p (E1)+Hmin
p (E2)+Hmin

p (E3). It follows thatHmin
p (N⊗3) ≤ Hmin

p (N1⊗
N2 ⊗N3) = 2(Hmin

p (E1) +Hmin
p (E2) +Hmin

p (E3)) +Hmin
p (E1 ⊗E2 ⊗E3) < 3(Hmin

p (E1) +
Hmin
p (E2) +Hmin

p (E3)) = 3Hmin
p (N ), obtaining the claim.

Now consider a random unitary U : Cs ⊗ Cr → Ca ⊗ Cb with sr = ab. Define the
channel E1 = E2 ∈ L(L(Cs),L(Ca)) by ρS 7→ trB(U(ρS ⊗ ξR)U

†). Similarly, define the
channel E3 ∈ L(L(Cs2),L(Ca2)) which is induced by U∗ ⊗U∗ via Stinespring dilation.

The following two lemmas will be used to estimate νp(E3).

Lemma 6. Consider the random state |ψ⟩AB = U⊗2|ξ⟩, where U is a Haar-random
unitary in SU(Ca ⊗ Cb), |ξ⟩ ∈ (Cd)⊗2 is a fixed state with d = ab, and the systems
A and B have dimensions a2 and b2 respectively with a ≤ b. Let 1 ≤ p < ∞ be an
integer. Then limd→∞

E∥ψA∥p
((2p)!)1/pa−2+2/p ≤ 1.

Proof. We have

(E∥ψA∥p)p ≤ E∥ψA∥pp
= E trψpA

= E⟨ψ⊗p
A ,WA

γ ⟩

= E⟨ψ⊗p
AB,W

A
γ ⟩ ,
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where the first inequality is due to the convexity of xp for p ≥ 1, and γ = (135 · · · (2p−
1))(246 · · · (2p)) ∈ S2p.

By Schur-Weyl duality, Eψ⊗p
AB = EU⊗2pξ⊗pU †,⊗2p =

∑
π∈S2p

cπWπ where cπ’s
are coefficients. Thus for each σ ∈ S2p, ⟨Eψ⊗p,Wσ⟩ = ⟨

∑
π∈S2p

cπWπ,Wσ⟩, i.e.,∑
π∈S2p

cπd
#πσ = ⟨ξ⊗p,Wσ⟩, which constitute a system of (2p)! linear equations in

variables cπ. Consider the (2p)! × (2p)! matrix M := (d#πσ)π,σ∈S2p , and the matrix
Mπ formed by replacing the column (d#πσ)σ∈S2p in M by the vector (⟨ξ⊗p,Wσ⟩)σ∈S2p .
Then by Cramer’s rule, cπ = detMπ

detM . Since each element of M equals dk with k ∈ [2p]

and d2p appears exactly once in every column and row of M , limd→∞
| detM |
d2p·(2p)!

= 1.
Since |⟨ξ⊗p,Wσ⟩| ≤ 1, we have limd→∞

| detMσ |
d2p·((2p)!−1) ≤ 1. Thus for each π,

lim
d→∞

|cπ|d2p ≤ 1 . (2.19)

Since ⟨Wπ,W
A
γ ⟩ = a#πγb#π, we have

d−2p⟨Wπ,W
A
γ ⟩ = a#πγ−2pb#π−2p

≤ a#πγ+#π−4p

= a−|πγ|−|π|

≤ a−|γ|

= a−2p+2 ,

where |π| := 2p−#π for π ∈ S2p is a metric, the first inequality used that a ≤ b, and
the second inequality used the triangle inequality.

It then follows that (E∥ψA∥p)p ≤
∑

π∈S2p
cπ⟨Wπ,W

A
γ ⟩ ≤

∑
π∈S2p

cπd
2pa−2p+2.

Thus by (2.19), limd→∞
( E∥ψA∥p
((2p)!)1/pa−2+2/p

)p ≤ limd→∞
1

(2p)!

∑
π∈S2p

|cπ|d2p ≤ 1, com-
pleting the proof.

The Lipschitz constants of von Neumann entropy and 2-norm of reduced state are
upper-bounded by

√
8 log |A| and 2 respectively [HLW06]. Following their approach,

we now give an upper-bound for the case of general p-norm.

Lemma 7. The Lipschitz constant of function f : (S(HAB), ∥·∥2) → R, |ψ⟩AB 7→ ∥ψA∥p
with p ≥ 1, is upper-bounded by 2.

Proof. For fixed orthonormal bases {|j⟩} and {|k⟩}, we write |ψ⟩AB =
∑

jk ψjk|j⟩A|k⟩B =∑
jk(tjk0+ itjk1)|j⟩|k⟩ where tjkl’s are reals. Thus ψA =

∑
j,j′,k ψjkψ

∗
j′k|j⟩⟨j′|. Consider

first the commutative case. For diagonal ψA =
∑

jk ψjkψ
∗
jk|j⟩⟨j| =

∑
j xj |j⟩⟨j|, where
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xj :=
∑

kl t
2
jkl with l ∈ {0, 1}, we have ∥ψA∥p = (

∑
j x

p
j )

1/p. Then ∂
∂tj′k′l′

∥ψA∥p =

1
p(
∑

j x
p
j )

1/p−1pxp−1
j′ 2tj′k′l′ . It follows that

∥∇f(|ψ⟩)∥22 =
∑
j′k′l′

4
(∑

j
xpj

)2/p−2
x2p−2
j′ t2j′k′l′

= 4
(∑

j
xpj

)2/p−2
∑

j′
x2p−1
j′

≤ 4
(∑

j
xpj

)2/p−2(∑
j′
xpj′

)2−1/p

= 4∥ψA∥p
≤ 4 ,

where the first inequality is due to the convexity of x2−1/p for p ≥ 1. Therefore, for
any |ψ⟩AB, |φ⟩AB with diagonal ψA, φA, we have |∥ψA∥p − ∥φA∥p| ≤ 2∥|ψ⟩ − |φ⟩∥2.

For general states |ψ⟩, |φ⟩, choosing the eigenvectors of φA as fixed basis, i.e., φA =

diag(φA), we have ∥ψA∥p ≥ ∥diag(ψA)∥p due to the Schur-convexity of p-norm and the
Schur-Horn theorem. Thus ∥ψA∥p − ∥φA∥p ≤ ∥ψA∥p − ∥diag(φA)∥p ≤ 2∥|ψ⟩ − |φ⟩∥2,
where we have assumed w.l.o.g. that ∥ψA∥p ≥ ∥φA∥p, completing the proof.

The following two lemmas will be used to estimate νp(E1).

Lemma 8. Consider random state |ψ⟩ = U |ξ⟩, where |ξ⟩ ∈ Cd is a fixed state with
d = ab and a ≤ b, U ∈ SU(Cd) is distributed Haar-randomly, and the systems A

and B have dimensions a and b respectively. Let 1 ≤ p < ∞ be an integer. Then
E∥ψA∥p ≤ (p!)1/pa1/p−1.

Proof. Using similar method as in Lemma 6, we have (E∥ψA∥p)p ≤ E⟨ψ⊗p
AB,W

A
γ ⟩ for
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γ = (12 · · · p) ∈ Sp. It holds that Eψ⊗p
AB = (d↑p)−1

∑
π∈Sp

Wπ. Thus

(E∥ψA∥p)p ≤ (d↑p)−1
∑
π∈Sp

⟨Wπ,W
A
γ ⟩

= (d↑p)−1
∑
π∈Sp

a#πγb#π

≤
∑
π∈Sp

a#πγ−pb#π−p

≤
∑
π∈Sp

a−|πγ|−|π|

≤
∑
π∈Sp

a−|γ|

= p!a1−p ,

where the second inequality is due to that d↑p > dp.

Lemma 9. Let s < abε2

16 ln(2/δ) be an integer for positive ε, δ. There exists an s-
dimensional subspace of Ca ⊗ Cb that contains only states |ψ⟩ such that ∥ψA∥p <

(p!)1/pa−1+1/p + ε+ 2δ.

Proof. Using Levy’s lemma (1.2) on a sphere and Lemmas 7 and 8, we have

Pr(∥ψA∥p ≥ (p!)1/pa1/p−1 + ε) ≤ e−
1
4
abε2 .

Since any s-dimensional subspace HS with Euclidean metric has a δ-net N that has
(2δ )

2s elements, we have PrHS
(∃|φ⟩ ∈ N s.t. ∥ψA∥p ≥ (p!)1/pa1/p−1+ε) ≤ (2δ )

2se− 1
4
abε2 .

When s takes the required value, this probability is less than 1, and there exists a
subspace HS such that any state |φ⟩ in N satisfies ∥φA∥p < (p!)1/pa1/p−1 + ε. Then
∀|ψ⟩ ∈ HS , ∃|φ⟩ ∈ N such that ∥|ψ⟩− |φ⟩∥2 ≤ δ and ∥ψA∥p ≤ ∥φA∥p+2∥|ψ⟩− |φ⟩∥2 <
(p!)1/pa1/p−1 + ε+ 2δ.

It follows from the above lemma that

νp(E1) := max
|ψ⟩

∥E1(ψ)∥p < (p!)1/pa1/p−1 + ε+ 2δ . (2.20)

Lemma 10. Let s be an integer such that s2 < abε2

16 ln π
δ

. Then νp(E3) < 2((2p)!)1/pa−2+2/p+

ε+ 2δ.
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Proof. Consider the function f : U 7→ ∥ trB(U⊗2ξU †,⊗2)∥p. Due to Lemma 7,

|f(U)− f(V )| ≤ 2∥U⊗2|ξ⟩ − V ⊗2|ξ⟩∥2
≤ 2g2(U

⊗2|ξ⟩, V ⊗2|ξ⟩)

≤ 2g2(U
⊗2, V ⊗2)

= 2g2(U, V )2

≤ 2g2(U, V ) ,

where the first inequality is due to Lemma 7 and the last inequality is valid when
g2(U, V ) ≤ 1 for g2 denoting the geodesic metric induced by 2-norm. For arbi-
trary U, V , there are unitaries U1, . . . , Un such that U1 ≡ U,Un ≡ V and g2(U, V ) =

g2(U1, U2) + · · · + g2(Un−1, Un) with each summand less than 1. Then |f(U)−f(V )|
g2(U,V ) ≤

|f(U1)−f(U2)|+···+|f(Un−1)−f(Un)|
g2(U1,U2)+···+g2(Un−1,Un)

≤ maxk
|f(Uk)−f(Uk+1)|
g2(Uk,Uk+1)

≤ 2, that is, the Lipschitz con-
stant of f is bounded by 2. By Lemma 6, for large d, E∥ψA∥p ≤ 2((2p)!)1/pa−2+2/p. Due
to Levy’s lemma for SU(d) [AS17, Eq. 5.22], we have Pr(∥ψA∥p ≥ 2((2p)!)1/pa−2+2/p+

ε) ≤ e− 1
8
abε2 .

Since any s2-dimensional subspace (Cs)⊗2 equipped with geodesic metric g2 induced
by 2-norm has a δ-net N that has (πδ )2s

2 elements, we have Pr(∃|ψ⟩ ∈ N s.t. ∥ψA∥p ≥
2((2p)!)1/pa−2+2/p+ε) is less than (πδ )

2s2e− 1
8
abε2 . When s takes the required value, the

probability is less than 1, and there exists a subspace of dimension s2 such that any
state in N satisfies ∥ψA∥p < 2((2p)!)1/pa−2+2/p + ε. Then ∀|ψ⟩ ∈ HS , ∃|φ⟩ ∈ N such
that g2(|ψ⟩, |φ⟩) ≤ δ and thus ∥ψA∥p ≤ ∥φA∥p + 2g2(|ψ⟩, |φ⟩) < 2((2p)!)1/pa−2+2/p +

ε+ 2δ, completing the proof.

Lemma 11. For s2 = abε2

17 ln π
δ

, when a = b gets large enough, we have νp(E1⊗E2⊗E3) ≥

a−2 ε2

17 ln π
δ

.

Proof. Denoting by ϕq the maximally entangled state of rank q, we have

νp(E1 ⊗ E2 ⊗ E3) ≥ ∥(E1 ⊗ E2 ⊗ E3)(ϕ⊗2
s )∥p

≥ ⟨(E1 ⊗ E2 ⊗ E3)ϕ⊗2
s , ϕ⊗2

a ⟩

≥ ⟨U⊗4ϕ⊗2
s U †,⊗4, ϕ⊗2

ab ⟩

= ⟨ϕ⊗2
s , ϕ⊗2

ab ⟩

=
s2

a2b2
= a−2 ε2

17 ln(π/δ)
.
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Unfortunately, it turns out that the above construction and calculation in this
section fail to show the multiple nonadditivity of minimum output p-entropy. The
bounds on the minimum output p-entropy obtained in the lemmas above may be
too loose. However, the multiple nonadditivity of minimum output p-entropy or von
Neumann entropy using an alternative random channels deserves further study. For
example, one may consider E1, E2, E3 which are induced respectively via Stinespring
dilation by U, V, U ⊗V for independent random unitaries U and V , or random unitary
channels F1 = 1

n

∑n
i=1 Ui(·)U

†
i ,F2 = 1

n

∑n
j=1 Vj(·)V

†
j ,F3 = 1

n2

∑n
i,j=1(Ui ⊗ Vj)(·)(Ui ⊗

Vj)
† where Ui, Vj are all independent. In order to find multiple nonadditivity, if exists,

alternative models or methods may be needed.
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Chapter 3

Generic entanglement in random
invariant tensors

Quantum entanglement as a mysterious and striking phenomenon exhibits fundamental
nonclassical manifestation of quantum world. Since the celebrated Einstein-Podolsky-
Rosen (EPR) state as an entanglement was first discussed in 1935 [EPR35], this coun-
terintuitive feature has been a central theme in many fields of physics. Nowadays
quantum entanglement is a key resource in quantum information theory with appli-
cations in quantum cryptography [BB84], quantum dense coding [BW92], quantum
teleportation [BBC+93] and distributed computation [FGM01]. Entanglement is also
used in many quantum algorithms although its role is not quite clear yet.

An n-partite tensor on H1 ⊗ · · · ⊗ Hn is called perfect if it is proportional to an
isometric tensor from A to B for any bipartite cut A : B of the n systems such
that the dimension of party A is no larger than that of B [PYHP15]. This class of
entangled states has been studied in quantum information theory, condensed matter
theory and quantum gravity [HQRY16, PYHP15, ADH15]. Such states are also known
as absolutely maximally entangled states [HCL+12, Hel13]. It is obvious that the
Greenberger-Horne-Zeilinger (GHZ) state 1√

2
(|000⟩ + |111⟩) is perfect while the W

state 1√
3
(|001⟩+ |010⟩+ |100⟩) is not.

An invariant state is in the tensor power of an irreducible representation of SU(2),
and it is invariant under global SU(2) action. Let V be an irrep of SU(2), then |ψ⟩ ∈
V ⊗n is an invariant state if U⊗n · |ψ⟩ = |ψ⟩ for any U ∈ SU(2). Invariant tensor is a
significant notion in the theory of loop quantum gravity [Thi08, HMH07, AL04, RV14].

Because of the importance of invariant state and perfect state in quantum gravity,
the concept of invariant perfect state was introduced and studied in [LHGZ17, LHRZ18]
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which also showed that random invariant state is asymptotically perfect as the rep-
resentation dimension goes to infinity. This is similar to the well-known fact that a
high-dimensional random pure bipartite state |ψ⟩AB is nearly maximally entangled,
that is, for large dimensions dA ≤ dB, the entanglement entropy of ψAB is highly con-
centrated around its expectation EH(ψA) which is at least ln(dA)− dA

2dB
[HLW06]. The

entanglement in bipartite su(2)-invariant state was also studied in [Sch03, Sch05] using
various entanglement criteria.

In this chapter we study two classes of states: the states that could be slightly
disturbed by the global SU(2) action, and the states that are kept invariant by SU(d)

instead of SU(2). As extension of the concept of invariant state, the two classes of states
will be shown still generically perfect. The SU(d)-invariant state will find important
application in Chapter 2. The random invariant state serves as an alternative model
for random quantum state, and it is tempting to apply the model into other scenarios.

In the calculation of the entanglement entropy, one needs to decompose tensor
product of two irreps into a direct sum of irreps which is known as the Clebsch-
Gordan transform, and the coefficients arising in this transform are called Clebsch-
Gordan coefficients (CGCs). The Clebsch-Gordan transform is a basic tool in the
analysis of invariant state. In physics, the SU(2) CGCs arise in the context of angular
momentum coupling, and the SU(3) CGCs arise for example, in the context of quantum
chromodynamics. The SU(d) CGCs are useful for some new standard model [Sla81]
and for the numerical calculation for various models with SU(d) symmetry in which
the application of Wigner-Eckart theorem needs knowledge of CGCs [AKHvD11]. The
Clebsch-Gordan transform is also used to construct the Schur-Weyl transform [BCH06].

3.1 Representation theory of special unitary group

The Lie algebra su(d) consists of all traceless skew-Hermitian matrices with Lie bracket
being the commutator. Since SU(d) is a simply connected compact group, there is
a one-to-one correspondence between the representations of SU(d) and su(d). We
introduce here the irreps of su(d) from which the irreps of SU(d) can be obtained via
the exponential mapping. We first briefly review the representation theory of su(2),
which can be found in standard textbook of quantum mechanics, and then that of
su(d). For detailed introduction to representation theory of Lie groups, we refer to
[FH13, Hal15, GW09].

Angular momentum operators are Hermitian operators Jx, Jy, Jz satisfying [Jk, Jl] =
iϵklmJm where k, l,m ∈ {x, y, z} and ϵklm is Levi-Civita symbol (we take ℏ = 1 for
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simplicity). The three operators iJx, iJy, iJz constitute a basis of Lie algebra su(2).
The raising and lowering operators are J± := Jx ± iJy.

For any positive integer k, there exists a k-dimensional irrep of su(2). Let j be
such that k = 2j + 1 and let V(j) := span{|j, j⟩, |j, j − 1⟩, . . . , |j,−j⟩} denote this k-
dimensional irrep. Any k-dimensional irrep of su(2) is isomorphic to V(j). The action
of su(2) on V(j) can be written as

Jz|j,m⟩ = m|j,m⟩

J±|j,m⟩ =
√
(j ∓m)(j ±m+ 1)|j,m± 1⟩ .

(3.1)

The tensor product of irreps of su(2) is decomposed into a direct sum of irreps:

V(j1) ⊗ V(j2) =
⊕

j
V(j) , (3.2)

which is Clebsch-Gordan transform. The basis state of
⊕

j V(j) can be written as

|(j1j2)jm⟩ =
∑
m1,m2

|j1m1j2m2⟩⟨j1m1j2m2|(j1j2)jm⟩ , (3.3)

where ⟨j1m1j2m2|(j1j2)jm⟩ =: Cj1,j2,jm1,m2,m are Clebsch-Gordan coefficients.

The Littlewood-Richardson rule is a combinatorical method to decompose a prod-
uct of two Schur polynomials into a linear combination of Schur polynomials. It follows
from the Littlewood-Richardson rule that V(j) has multiplicity one if and only if j is
at least |j1 − j2| and at most j1 + j2. The fact that |j1 − j2| ≤ j ≤ j1 + j2 can be also
seen from the selection rule:

if m ̸= m1 +m2 then Cj1j2jm1m2m = 0 , (3.4)

which is obtained by applying Jz to both sides of (3.3).

The action of J± on both sides of (3.3) gives a recurrence relation for CGCs. By
the phase convention Cj1,j2,jj1,j−j1,j > 0, it is clear that all CGCs are real, which constitute
an orthogonal matrix. It follows from the recurrence relation and the normalization
condition that Cj1,j2,0m1,m2,0

= δj1,j2δm1,−m2

(−1)j1−m1√
2j1+1

.

A closed-form expression for the CGCs of su(2), known as Racah’s formula [Rac42],
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is

Cj1,j2,jm1,m2,m = δm,m1+m2

√
(2j + 1)(j + j1 − j2)!(j − j1 + j2)!(j1 + j2 − j)!

(j1 + j2 + j + 1)!√
(j +m)!(j −m)!(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!

∑
k
(−1)kf−1

k ,

where fk = k!(j1+j2−j−k)!(j1−m1−k)!(j2+m2−k)!(j−j2+m1+k)!(j−j1−m2+k)!.
We now introduce the representation theory for su(d). Since sl(d) is the complex-

ification of the Lie algebra su(d), there is a one-to-one correspondence of their irreps.
It is convenient for our purpose to work with sl(d) and gl(d).

An irrep of gl(d) is labeled by its highest weight, i.e., a sequence λ of d nonincreasing
integers. Let Vλ denote the irrep of highest weight λ = (λd1, . . . , λ

d
d). As irreps of sl(d)

and su(d), V(λd1,...,λdd) and V(λd1+c,...,λdd+c) are equivalent for any integer c. Thus irreps of
sl(d) or su(d) are labeled by sequences of d nonincreasing integers with the last integer
being zero. The basis states of the irrep Vλ can be labeled by the Gelfand-Tsetlin (GT)
patterns, which are arrays of integers, of the following form

λ =


λd1 λd2 · · · λdd
λd−1
1 · · · λd−1

d−1

. . . . .
.

λ11

 .

Each GT pattern λ corresponds to a basis state, denoted |λ⟩, and via the branching
rule, these states constitute an orthonormal basis of Vλ, i.e., Vλ = span{|λ⟩ : λ ∈
GT(λ)}.

For each k and l, the k-th element in row l of λ is denoted by λlk or λlk. Each
row λl := (λl1, . . . , λ

l
l), also written λl, for l = 1, . . . , d, is a nonincreasing sequence of

integers. Here the superscript is used to distinguish different sequences of numbers.
The top row of λ is written λ := λd for short. Any two adjacent rows, say λl and λl−1,
satisfy the interlacing condition:

λl1 ≥ λl−1
1 ≥ λl2 ≥ λl−1

2 ≥ · · · ≥ λl−1
l−1 ≥ λll . (3.5)

Let GT(λ) denote the set of GT patterns with the top row being λ, and let GT(λ;λd−1)

denote the set of GT patterns with the top two rows being λ and λd−1 respectively.
In this chapter, the bold letters λ,µ,ν denote GT patterns with the top row being
partitions λ, µ, ν respectively.
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In the same spirit as that a partition can be represented by a Young diagram, a
GT pattern λ can be represented by a semistandard Young tableau of shape λ and
alphabet {1, . . . , d}, e.g.,

 5 3 2
4 2

3

 ⇐⇒
1 1 1 2 3
2 2 3
3 3

.

Let λ+ 1K,L denote the array of integers such that λ+ 1K,L and λ have the same
elements except that the K-th element in row L of λ + 1K,L is λLK + 1. The array
λ− 1K,L is defined in the same fashion. Notice that λ± 1K,L may not be a valid GT
pattern.

Denote by Ei,j the matrix with a one in the j-th entry in row i and with zero
elsewhere. For 1 ≤ l ≤ d− 1, a basis state |λ⟩ is acted by gl(d) as

El,l|λ⟩ = (rλl − rλl−1)|λ⟩ ,

El,l+1|λ⟩ =
l∑

k=1

aλk,l|λ+ 1k,l⟩ ,

El+1,l|λ⟩ =
l∑

k=1

bλk,l|λ− 1k,l⟩ ,

(3.6)

where

rλl =
∑l

k=1
λlk and rλ0 = 0 ,

aλk,l =

(
−

∏l+1
i=1(λ̂

l+1
i − λ̂lk)

∏l−1
i=1(λ̂

l−1
i − λ̂lk − 1)∏l

i=1,i ̸=k(λ̂
l
i − λ̂lk)(λ̂

l
i − λ̂lk − 1)

)1/2

,

bλk,l = aλ−1k,l

k,l ,

(3.7)

and λ̂li := λli−i for i ≤ l, λ̂li := 0 for i > l, and zero factors in the products are skipped.
The coefficient aλk,l vanishes if λ+1k,l is not a valid pattern, and bλk,l vanishes if λ−1k,l

is not a valid pattern. It can be seen that the expressions (3.6) subsume (3.1) as a
special case for su(2) by observing that |j,m⟩ =

∣∣(2j 0
j+m

)⟩
.

The direct product of two irreps of su(d), Vλ and Vµ, acted by X ⊗ 1+ 1⊗X for
X ∈ su(d), is still a representation, and is in general reducible. Consider the following
decomposition

Vλ ⊗ Vµ =
⊕
ν

V
⊕Nν

λ,µ
ν , (3.8)
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where Nν
λ,µ is the multiplicity of Vν in the decomposition of Vλ ⊗ Vµ, or in short, the

multiplicity of ν in λ⊗µ. The multiplicity of Vν can be determined by the Littlewood-
Richardson rule.

The basis state of the space on the right-hand side of Eq. (3.8) is written as

|ν, γ⟩ =
∑
λ,µ

Cν,γ
λ,µ|λ⟩|µ⟩ , (3.9)

where γ = 1, . . . , Nν
λ,µ.

Denote the weight wλ := (wλ
1 , . . . , w

λ
d−1) where wλ

l = rλl −
1
2(r

λ
l+1+r

λ
l−1). Applying

Jz,l :=
1
2(E

l,l − El+1,l+1) to both sides of (3.9) yields wν
l |ν, γ⟩ =

∑
λ,µC

ν,γ
λ,µ(w

λ
l +

wµ
l )|λ⟩|µ⟩. It follows that C

ν,γ
λ,µ ̸= 0 only if wν = wλ + wµ.

When |ν⟩ is a highest-weight state, applying El,l+1 to both sides yields its CGCs.
An outer multiplicity larger than one leads to ambiguous choices of CGCs, which can
be resolved by adopting some fixed rules. Applying J−,l to both sides of the expression
for highest-weight states just obtained, one gets the CGCs for lower-weight states. See
[AKHvD11] for an algorithmatic description of the Clebsch-Gordan transform.

3.2 Random near-invariant tensors

Throughout this section we denote by V(s) the irrep of su(2) of dimension 2s + 1 for
any nonnegative integer or half-integer s, and we consider the states in V ⊗n

(s) which are
kept invariant under the action of su(2). Then V ⊗n

(s) , as a new representation of su(2),
has the following decomposition based on Clebsch-Gordan transform

V ⊗n
(s) =

⊕
j≤ns

V
⊕N(n,j)
(j) , (3.10)

where N(n, j) is the multiplicity of V(j) in decomposition of V ⊗n
(s) .

The coupled basis of V ⊗n
(s) , i.e. the basis of the right-hand side of the above equation,

consists of |j,m, γ⟩ with j ∈ {0, 1, . . . , ns} (or j ∈ {1
2 ,

3
2 , . . . , ns} when s is a half-

integer), γ ∈ {1, 2, . . . , N(n, j)} and m ∈ {j, j − 1, . . . ,−j}. A state |ψ⟩ ∈ V ⊗n
(s) is

called an invariant tensor (or invariant state) if X · |ψ⟩ := (X ⊗ 1⊗(n−1) + 1 ⊗ X ⊗
1⊗(n−2)+ · · ·+1⊗(n−1)⊗X)|ψ⟩ = 0 for any X ∈ su(2), or equivalently, U⊗n · |ψ⟩ = |ψ⟩
for any U ∈ SU(2). Obviously, |ψ⟩ is invariant if and only if it is a superposition of
states |j = 0,m = 0, γ⟩.

Denote the basis states of V(s) by |s,m⟩ =: |s−m+ 1⟩ for m = s, s − 1, . . . ,−s.
For n = 2, the invariant tensor |ψ⟩ satisfies (Jk ⊗ 1 + 1 ⊗ Jk)|ψ⟩ = 0 for each k =
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x, y, z. It is readily verified that the unique invariant tensor for the case n = 2 is
|ψs⟩ = (|1, 2s+ 1⟩−|2, 2s⟩+ · · ·+(−1)2s|2s+ 1, 1⟩)/

√
2s+ 1, e.g., |ψ1⟩ = (|13⟩−|22⟩+

|31⟩)/
√
3 for s = 1. For the case n = 3 and s = 1, the unique invariant tensor is

(|123⟩+ |231⟩+ |312⟩ − |132⟩ − |213⟩ − |321⟩)/
√
6 ∈ ∧3C3.

It is shown in [LHGZ17] that invariant perfect tensor exists for n = 2 or n = 3

but not for n = 4 and that a random four-partite invariant tensor is asymptotically
perfect as the local dimension (2s+1) goes to infinity. This result is then extended in
[LHRZ18] which shows a random invariant tensor is asymptotically perfect for any n.

A random SU(2) invariant state, corresponding to j = 0, has asymptotic perfect-
ness [LHGZ17, LHRZ18]. Does a random state corresponding to bounded j is also
asymptotically perfect? Besides, when s is a half-integer and n is odd, the invariant
tensor does not exist, since for this case j cannot be zero in the decomposition (3.10).
Thus it is necessary to consider a generalized notion of invariant tensor for this setting.
We introduce the notion of near-invariant state, which is kept invariant or slightly dis-
turbed by the action of SU(2). To be specific, for the decomposition (3.10), we define
in this section the near-invariant state space as Hinv

s,n,j0
:= span{|j,m, γ⟩ : j ≤ j0,−j ≤

m ≤ j, 1 ≤ γ ≤ N(n, j)} where j0 is finite and fixed. Any state in this space is called
a near-invariant state.

Consider a bipartition of the n Hilbert spaces such that Alice holds p systems and
Bob holds q := n− p systems, where p ≤ q. Thus

V ⊗n
(s) =

( ⊕
j1≤ps

V
⊕N(p,j1)
(j1)

)⊗( ⊕
j2≤qs

V
⊕N(q,j2)
(j2)

)
. (3.11)

The space V ⊗n
(s) on the left-hand side of (3.11) has a basis {|j,m, γ⟩}, while the

space on the right-hand side has a basis {|j1,m1, αj1⟩ ⊗ |j2,m2, βj2⟩} where 1 ≤ αj1 ≤
N(p, j1) and 1 ≤ αj2 ≤ N(q, j2). The near-invariant state space Hinv

s,n,j0
has a basis

{|jmj1j2αj1βj2⟩ : j ≤ j0,−j ≤ m ≤ j, j1 ≤ ps, j2 ≤ qs, 1 ≤ αj1 ≤ N(p, j1), 1 ≤ βj2 ≤
N(q, j2)}, where

|jmj1j2αj1βj2⟩ =
∑

m1,m2:m1+m2=m

|j1m1αj1⟩A|j2m2βj2⟩BCj1,j2,jm1,m2,m . (3.12)

Let φ = φAB be a uniformly random (normalized) state in Hinv
s,n,j0

, and φA be its
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reduced state on system A. The 2-Rényi entropy of φA is

H2(φA) = − ln tr(φ2
A) = − ln tr(WAA′(φA ⊗ φA′))

= − ln tr(WAA′(φAB ⊗ φA′B′)) ,
(3.13)

where A′, B′ denote isomorphic systems of A,B respectively, the second equality uses
the swap trick, WAA′ is the swap operator, and φAB and φA′B′ are the same state.

Note that the 2-Rényi entanglement entropy of a maximally entangled state on AB
is Hmax := ln(2s + 1)p. We are concerned with how close the random invariant state
φAB is to a maximally entangled state, measured by the ratio

η(φAB) :=
H2(φA)

Hmax
. (3.14)

As it is difficult to calculate the average of H2(φA) directly, we will estimate the
average of e−H2(φA), and then show that the random variable H2(φA) is highly con-
centrated around − lnEφe−H2(φA) with small fluctuation for large dimension.

It follows from Eq. (3.13) that

Eφe−H2(φA) = Eφ tr(φ2
A) = tr(WAA′Eφ(φAB ⊗ φA′B′)) . (3.15)

Using the Werner twirling formula (1.10) in Lemma 2, where the unitary U in the
integration is over U(Hinv

s,n,j0
), we have

Eφ(φAB ⊗ φA′B′) =
1⊗2

inv +Winv
d2inv + dinv

, (3.16)

where 1inv is the projector onto the near-invariant space Hinv
s,n,j0

, dinv = tr(1inv) is its
dimension, and Winv is the swap operator on (Hinv

s,n,j0
)⊗2.

Theorem 12. Asymptotically, a random near-invariant state is perfect (i.e. maximally
entangled with respect to any bipartite cut). To be specific, for any p, q such that
q ≥ p ≥ 2 and q ≥ 3, and for any fixed δ > 0, a random near-invariant state
φAB ∈ Hinv

s,n,j0
⊂ V ⊗p

(s) ⊗ V ⊗q
(s) satisfies Pr(|η(φAB)− 1| ≥ δ) → 0 as s→ ∞.

Indeed, it can be seen from the proof of the theorem above that δ can be chosen
arbitrarily small as long as δ ≳ s−1/2−ε for any ε > 0. The theorem above follows from
the two propositions as below.
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Proposition 13. Let q ≥ p ≥ 2. For random near-invariant state φAB, as s→ ∞,

s−p ≲ Eφe−H2(φA) ≲ s−p ln s .

Proposition 14. Let q ≥ p ≥ 2 and q ≥ 3. For random near-invariant state φAB, as
s→ ∞,

Eφ tr2 φ2
A

(Eφ trφ2
A)

2
− 1 ≲ s−1 .

Proof of Theorem 12. Denoting K := − lnEe−H2(φA), by Proposition 13, there exists
constants c, C such that p ln s − ln ln s − lnC ≤ K ≤ p ln s − ln c. Thus K

Hmax
→ 1 as

s→ ∞. So for any δ > 0 and s large enough,∣∣∣ K

Hmax
− 1

∣∣∣ ≤ δ

2
. (3.17)

We have

Pr
(∣∣∣H2(φA)

Hmax
− 1

∣∣∣ ≥ δ
)
= Pr

(∣∣∣H2(φA)−K

Hmax
+

K

Hmax
− 1

∣∣∣ ≥ δ
)

≤ Pr(|H2(φA)−K| ≥ Hmaxδ/2)

≤ Pr
(∣∣∣ trφ2

A

E trφ2
A

− 1
∣∣∣ ≥ ε

)
≤ 1

ε2

( E tr2 φ2
A

(E trφ2
A)

2
− 1

)
≲ 1

sε2
→ 0 ,

where ε := 1 − e−Hmaxδ/2, the second line uses Eq. (3.17), the third line uses the fact
that if | lnx| ≥ t then |x − 1| ≥ 1 − e−t, the fourth line uses Markov inequality, and
the last line is due to Proposition 14.

Before proving Propositions 13 and 14, we give several lemmas.

Lemma 15. Let N(n, k) denote the multiplicity of irrep V(k) in V ⊗n
(s) for n ≥ 2. Then,

as s→ ∞,
N(n, k) ≲ sn−2 for each k , (3.18)

and
N(n, k) ≃ sn−2 for each k ∈ [s, (n− 1)s] . (3.19)

Proof. Consider V ⊗n
(s) =

⊕
k V

⊕N(n,k)
(k) for s ∈ 1

2N. When k > ns or k < 0, set N(n, k) =

0. Note that V(j) ⊗ V(s) contains V(k) iff |s − j| ≤ k ≤ s + j. Thus N(n, k) =
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N(n − 1, k − s) + · · · + N(n − 1, k + s). It follows that by induction for 0 ≤ k ≤ ns,
N(n, k) ≤ (2s+1)maxk′ N(n−1, k′) ≤ · · · ≤ (2s+1)n−2maxk′′ N(2, k′′) = (2s+1)n−2.
Conversely, for s ≤ k ≤ (n − 1)s, N(n, k) ≥ smins≤k′≤(n−2)sN(n − 1, k′) ≥ · · · ≥
sn−2N(2, s) = sn−2.

Lemma 16. Let j,∆,m be finite and fixed, and m1 may depends on j1. As j1 → ∞,

|Cj1,j1+∆,j
m1,j−m1,j

| ≃ j
−j− 1

2
1 (j1 −m1)

1
2
(j+∆)(j1 +m1)

1
2
(j−∆) , (3.20)

and

|Cj1,j1+∆,j
m1,m−m1,m| ≲ j

−j− 1
2

1

j−∆∑
k=0

(j1 −m1)
j−k+ 1

2
(m−∆)(j1 +m1)

k+ 1
2
(∆−m) . (3.21)

Proof. Eq. (3.20) simply follows from that

(Cj1,j1+∆,j
m1,j−m1,j

)2 =
(2j + 1)!(2j1 +∆− j)!

(2j1 +∆+ j + 1)!(j +∆)!(j −∆)!

(j1 −m1 + j +∆)!(j1 +m1)!

(j1 +m1 − j +∆)!(j1 −m1)!

≃ j−2j−1
1 (j1 −m1)

j+∆(j1 +m1)
j−∆ .

Due to Racah’s formula for the CGCs, |Cj1,j1+∆,j
m1,m−m1,m| ≤

√
C1

√
C2C3, where

C1 =
(2j + 1)(j −∆)!(j +∆)!(2j1 +∆− j)!

(2j1 +∆+ j + 1)!
≃ j−2j−1

1 ,

C2 = (j +m)!(j −m)!(j1 +m1)!(j1 −m1)!(j1 −m1 +∆+m)!(j1 +m1 +∆−m)! ,

C3 =
∑j−∆

k=0
f−1
k

with fk = (j1−m1−j+∆+k)!(j1+m1−k)!(j−∆−k)!(j+m−k)!k!(∆−m+k)!. The
summation in C3 is extended over those k such that the argument of every factorial is
nonnegative (thus 0 ≤ k ≤ j −∆). Note that C3 ≤

∑
k((j1 −m1 − j + ∆ + k)!(j1 +

m1 − k)!)−1. It follows that

√
C2C3 ≲

∑
k

((j1 +m1)!(j1 −m1)!(j1 −m1 +∆+m)!(j1 +m1 +∆−m)!

(j1 −m1 − j +∆+ k)!2(j1 +m1 − k)!2

) 1
2

≃
∑
k

(j1 −m1)
j−k+ 1

2
(m−∆)(j1 +m1)

k+ 1
2
(∆−m) ,

completing the proof of Eq. (3.21).
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Lemma 17. For any nonnegative integers t and r,
∑n−1

i=1 i
t(n−i)r ≃ nt+r+1 as n→ ∞.

Proof. It is known
∑n

k=1 k
t ∼ nt+1

t+1 as n→ ∞ by Faulhaber’s formula. The case rt = 0

is readily verified, and we now prove the case r, t > 0. We have

n∑
i=1

it(n− i)r =
r∑

k=0

(−1)k
(
r

k

)
nr−k

n∑
i=1

it+k

∼
r∑

k=0

(−1)k
(
r

k

)
nr−k

nt+k+1

t+ k + 1

=: F (t+ 1, r)nt+r+1 ,

where the second line holds if the coefficient F (t + 1, r) is nonzero. To complete the
proof of this lemma, it suffices to show F (t+ 1, r) ̸= 0. We now prove that

F (t, r) :=

r∑
k=0

(−1)k
(
r

k

)
1

k + t
=

1

t
(
r+t
t

) (3.22)

for positive integers t, r.
For any positive integer m, denote

f(m) :=

r∑
j=0

(−1)j
(
r +m

j +m

)
. (3.23)

By calculating f(m) + f(m+ 1), we have f(m) =
(
r+m−1
m−1

)
.

Now we calculate F (1, r) and F (2, r). It holds that F (1, r) =
∑r

k=0(−1)k
(
r
k

)
1

k+1 =
1
r+1

∑r
k=0(−1)k

(
r+1
k+1

)
= 1

r+1 and that F (2, r) = 1
r+1

∑r
k=0(−1)k

(
r+1
k+1

)
− 1

(r+1)(r+2)

∑r
k=0(−1)k

(
r+2
k+2

)
=

1
(r+1)(r+2) , where we have used Eq. (3.23).

Since F (t, r + 1) =
∑r+1

k=0(−1)k
(
r+1
k

)
1
k+t , we have

F (t, r)− F (t, r + 1) =

r∑
k=1

(−1)k+1

(
r

k − 1

)
1

k + t
− (−1)r+1 1

r + 1 + t

=

r−1∑
k=0

(−1)k
(
r

k

)
1

k + t+ 1
+ (−1)r

1

r + 1 + t

= F (t+ 1, r)

Consequently, by induction on t, using the recurrence relation F (t+1, r) = F (t, r)−
F (t, r + 1) and the expressions of F (1, r) and F (2, r), we achieve the desired result
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(3.22).

Proof of Proposition 13. Since {|jmj1j2αj1βj2⟩} is a basis of the near-invariant space,

1⊗2
inv +Winv =

∑ (∣∣jmj1j2αj1βj2⟩∣∣j′m′j′1j
′
2α

′
j′1
β′j′2

⟩
+
∣∣j′m′j′1j

′
2α

′
j′1
β′j′2

⟩∣∣jmj1j2αj1βj2⟩)(⟨
jmj1j2αj1βj2

∣∣⟨j′m′j′1j
′
2α

′
j′1
β′j′2

∣∣) ,
(3.24)

the sum over j,m, j1, j2, αj1 , βj2 , j′,m′, j′1, j
′
2, α

′
j′1
, β′
j′2
.

Using Eq. (3.12), we have

tr
(
WAA′(|jmj1j2αj1βj2⟩|j′m′j′1j

′
2α

′
j′1
β′j′2

⟩)(⟨jmj1j2αj1βj2 |⟨j′m′j′1j
′
2α

′
j′1
β′j′2

|)
)

=
∑

m1+m2=m
m′

1+m
′
2=m

′

|j1m1αj1⟩|j2m2βj2⟩Cj1j2jm1,m2,m|j
′
1m

′
1α

′
j′1
⟩|j′2m′

2β
′
j′2
⟩Cj

′
1j

′
2j

′

m′
1,m

′
2,m

′

∑
m̂1+m̂2=m
m̂′

1+m̂
′
2=m

′

⟨j1m̂1αj1 |⟨j2m̂2βj2 |C
j1j2j
m̂1,m̂2,m

⟨j′1m̂′
1α

′
j′1
|⟨j′2m̂′

2β
′
j′2
|Cj

′
1j

′
2j

′

m̂′
1,m̂

′
2,m

′

=
∑
m1

δj1,j′1δαj1
,α′

j1

(
Cj1,j2,jm1,m−m1,m

)2(
C
j1,j′2,j

′

m1,m′−m1,m′
)2
,

(3.25)

and similarly,

tr
(
WAA′(|j′m′j′1j

′
2α

′
j′1
β′j′2

⟩|jmj1j2αj1βj2⟩)(⟨jmj1j2αj1βj2 |⟨j′m′j′1j
′
2α

′
j′1
β′j′2

|)
)

=
∑
m2

δj2,j′2δβj2 ,β
′
j2

(
Cj1,j2,jm−m2,m2,m

)2(
C
j′1,j2,j

′

m′−m2,m2,m′
)2
.

(3.26)

It follows that

tr(WAA′1⊗2
inv) =

∑
j,m,j1,j2,αj1

,βj2 ,j
′,m′,j′2,β

′
j′2

∑
m1

(
Cj1,j2,jm1,m−m1,m

)2(
C
j1,j′2,j

′

m1,m′−m1,m′
)2
,

tr(WAA′Winv) =
∑

j,m,j1,j2,αj1
,βj2 ,j

′,m′,j′1,α
′
j′1

∑
m2

(
Cj1,j2,jm−m2,m2,m

)2(
C
j′1,j2,j

′

m′−m2,m2,m′
)2
.

(3.27)
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Denoting j2 := j1 +∆ and j′2 := j1 +∆′, noticing |∆| ≤ j and |∆′| ≤ j′, we have

tr(WAA′1⊗2
inv) ≥

∑
j,j1,∆,αj1

,βj1+∆,j′,∆′,β′
j1+∆′

∑
|m1|<j1

(
Cj1,j1+∆,j
m1,j−m1,j

)2(
Cj1,j1+∆′,j′

m1,j′−m1,j′
)2

≃
∑

j,j1,∆,αj1
,βj1+∆,j′,∆′,β′

j1+∆′

∑
|m1|<j1

j−2j−2j′−2
1 (j1 −m1)

j+j′+∆+∆′
(j1 +m1)

j+j′−∆−∆′

≃
∑

j,j1,∆,αj1
,βj1+∆,j′,∆′,β′

j1+∆′

j−1
1

≳
∑
j1

N(p, j1)N(q, j1)
2j−1

1

≃
∑
j1

sp−2(sq−2)2j−1
1

∼ sp+2q−6 ln(p− 1) ,
(3.28)

and thus tr(WAA′1⊗2
inv) ≳ sp+2q−6. In the above derivation, the first line uses the special

cases m = j and m′ = j′, the second line uses Eq. (3.20), the third line uses Lemma
17, the fourth line, where the sum is over j1 ∈ [s, (p − 1)s], uses the special cases
∆ = ∆′ = 0, the fifth line uses Lemma 15, and the last line uses the asymptotics of
the harmonic series, i.e.

∑k
n=1

1
n ∼ ln k as k → ∞.

In the other direction,

tr(WAA′1⊗2
inv) ≤

∑
j,j1,∆,αj1

,βj1+∆,j′,∆′,β′
j1+∆′

∑
m1

j−2j−1
1

j−∆∑
k=0

(j1 −m1)
2j−2k−∆+m(j1 +m1)

2k+∆−m

· j−2j′−1
1

j′−∆′∑
k′=0

(j1 −m1)
2j′−2k′−∆′+m′

(j1 +m1)
2k′+∆′−m′

≃
∑

j,j1,∆,αj1
,βj1+∆,j′,∆′,β′

j1+∆′

j−1
1

≲ max
j2

∑
j1

N(p, j1)N(q, j2)
2j−1

1

≲ sp+2q−6 ln(ps) ,

where the first line uses Eq. (3.21) and that (
∑n

k=1 ak)
2 ≤ n

∑n
k=1 a

2
k, the ‘≃’ is due

to Lemma 17, and the last line uses Lemma 15.
Consequently,

sp+2q−6 ≲ tr(WAA′1⊗2
inv) ≲ sp+2q−6 ln s .

55



3. GENERIC ENTANGLEMENT IN RANDOM INVARIANT
TENSORS

In the same way, we have

s2p+q−6 ≲ tr(WAA′Winv) ≲ s2p+q−6 ln s .

Since {|jmj1j2αj1βj2⟩} is a basis of the near-invariant space, its dimension is

dinv =
∑
j,m,∆

∑
j1

N(p, j1)N(q, j1 +∆) ≃
∑
j1

sp−2sq−2 ≃ sn−3 . (3.29)

Thus,

sp+2q−6 + s2p+q−6

(sn−3)2
≲ Eφ tr(φ2

A) ≲
(sp+2q−6 + s2p+q−6) ln s

(sn−3)2
, (3.30)

completing the proof by noticing p ≤ q.

Proof of Proposition 14. By Lemma 2,

E(trφ2
A)

2 =
1

(dinv)↑4
tr
(
(WA

(12)W
A

(34))
∑

π∈S4

Wπ

)
(3.31)

and
(E trφ2

A)
2 =

1

d2inv(dinv + 1)2
tr
(
(WA

(12)W
A

(34))
∑

π∈S2×S2

Wπ

)
, (3.32)

whereWA

(12) swaps the first and second system A, andWA

(34) swaps the third and fourth
system A. Thus

E(trφ2
A)

2

(E trφ2
A)

2
− 1 =

−4dinv − 6

(dinv + 2)(dinv + 3)
+

(dinv − 1)!

(dinv + 3)!

1

(E trφ2
A)

2

∑
π∈S4\S2×S2

tr
(
(WA

(12)W
A

(34))Wπ

)
.

(3.33)

Together with Eq. (3.29) and Eq. (3.32), it follows that

E tr2 φ2
A

(E trφ2
A)

2
− 1 ≲ s−2p−4q+12

∑
π∈S4\S2×S2

tr
(
(WA

(12)W
A

(34))Wπ

)
. (3.34)

In the following, for π ∈ S4\S2 × S2, denote ti := π−1(i) for i ∈ {1, 2, 3, 4}. We
have

Wπ =
∑∣∣jt1mt1jt11 j

t1
2 α

t1
j
t1
1

βt1
j
t1
2

⟩∣∣jt2mt2jt21 j
t2
2 α

t2
j
t2
1

βt2
j
t2
2

⟩∣∣jt3mt3jt31 j
t3
2 α

t3
j
t3
1

βt3
j
t3
2

⟩∣∣jt4mt4jt41 j
t4
2 α

t4
j
t4
1

βt4
j
t4
2

⟩
⟨j1m1j11j

1
2α

1
j11
β1j12

|⟨j2m2j21j
2
2α

2
j21
β2j22

|⟨j3m3j31j
3
2α

3
j31
β3j32

|⟨j4m4j41j
4
2α

4
j41
β4j42

| ,
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where the sum is over jk,mk, jk1 , j
k
2 , α

k
jk1
, βk
jk2

for k ∈ {1, 2, 3, 4}, and the superscripts
indicate different systems. In the following, k in each summation also ranges over
{1, 2, 3, 4}.

Using

∣∣jkmkjk1 j
k
2α

k
jk1
βk
jk2

⟩
=

∑
mk

1+m
k
2=m

k

∣∣jk1mk
1α

k
jk1

⟩∣∣jk2mk
2β

k
jk2

⟩
C
jk1 j

k
2 j

k

mk
1m

k
2m

k ,

⟨
jkmkjk1 j

k
2α

k
jk1
βk
jk2

∣∣ = ∑
m̂k

1+m̂
k
2=m

k

⟨
jk1 m̂

k
1α

k
jk1

∣∣⟨jk2 m̂k
2β

k
jk2

∣∣Cjk1 jk2 jk
m̂k

1m̂
k
2m

k ,
(3.35)

we have

tr
(
(WA

(12)W
A

(34))Wπ

)
=

∑
k,jk,mk,jk1 ,j

k
2

TcgcTαβ ,

where

Tαβ =
∑

k,αk

jk1

,βk

jk2

1 ,

and

Tcgc =
∑

k,mk
1+m

k
2=m

k

C
j11 ,j

1
2 ,j

1

m1
1,m

1
2,m

1C
j21 ,j

2
2 ,j

2

m2
1,m

2
2,m

2C
j31 ,j

3
2 ,j

3

m3
1,m

3
2,m

3C
j41 ,j

4
2 ,j

4

m4
1,m

4
2,m

4

C
j
t2
1 ,j12 ,j

1

m
t2
1 ,m

t1
2 ,m

1
C
j
t1
1 ,j22 ,j

2

m
t1
1 ,m

t2
2 ,m

2
C
j
t4
1 ,j32 ,j

3

m
t4
1 ,m

t3
2 ,m

3
C
j
t3
1 ,j42 ,j

4

m
t3
1 ,m

t4
2 ,m

4
.

In the following, we consider π ∈ S4\S2×S2, for which the pair (#π,#((12)(34)π))

is in the set {(3, 1), (2, 2), (1, 3), (1, 1)}. Using Lemma 17 and Eq. (3.21), we have
Tcgc ≲ 1 for each such π.

When #π = 1 or 2,

tr(WA

(12)W
A

(34)Wπ) ≲
∑
j1,∆

N(p, j1)
#((12)(34)π)N(q, j1 +∆)#π .

Thus, tr(WA

(12)W
A

(34)Wπ) ≲ s3p+q−7 for #π = 1, and tr(WA

(12)W
A

(34)Wπ) ≲ s2p+2q−7 for
#π = 2.
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Specially, when #π = 3, we have Tcgc ≃ (j11)
−2, and thus

∑
k,jk1

Tcgc ≲ 1, hence

tr(WA

(12)W
A

(34)Wπ) ≲ max
j1

N(p, j1)
#((12)(34)π)N(q, j1 +∆)#π ≲ sp+3q−8 .

Consequently, using Eq. (3.34), it follows that

E tr2 φ2
A

(E trφ2
A)

2
− 1 ≲ max{sp−3q+5, s−2q+5, s−p−q+4} ,

of which the right-hand side vanishes as s→ ∞ provided q ≥ 3 and q ≥ p ≥ 2.

We studied the generalized case of the near-invariant states, subsuming the results
for invariant states. The idea of our proof of Theorem 12 is similar to that used in
[HNQ+16] and [LHRZ18]. Our proof, however, does not involve the uncoupled basis,
simplifies the calculation, and gives explicit asymptotic estimate for some variables.

3.3 Symmetric invariant tensors of higher degree

Although the basic idea of representation of su(d) for d ≥ 3 is similar to that of su(2),
substantive difference exists between the two cases as the former case involves complex
structure of roots and weights [Hal15]. In this section we study the random su(d)-
invariant states to investigate whether the entanglement property still holds for this
new symmetry.

Consider the Schur-Weyl decomposition (Cd)⊗n =
⊕

λ∈Par(n,d) Vλ ⊗ Kλ, where Vλ
and Kλ are the Weyl module of su(d) and Specht module Sn respectively. Let Cd be
the defining irrep of su(d), then when n is divisible by d, the invariant state space
in (Cd)⊗n always exists uniquely, which is Vλ ⊗ Kλ for λ being (k, k, . . . , k). This
section studies the invariant state space in V ⊗n

(s) where V(s) is the symmetric subspace
of (Cd)⊗s. Still, the invariant state is vanished by the action of su(d). As V(s) is the
symmetric subspace, this invariant state is called symmetric invariant state (tensor) in
this section.

We say two partitions λ := (λ1, . . . , λd) and µ := (µ1, . . . , µd) are dual to each
other if λk + µd+1−k = λ1 + µd for any k ∈ [d]. Similarly, we say two GT patterns
λ := (λlk)l∈[d],k∈[l] and µ := (µlk)l∈[d],k∈[l] are dual to each other if λlk+µll+1−k = λl1+µ

l
l

for any l ∈ [d] and k ∈ [l].

Lemma 18. Let λ := (λ1, . . . , λd) and µ := (µ1, . . . , µd) be two partitions. As repre-
sentation of su(d), Vλ ⊗ Vµ contains invariant state space if and only if λ and µ are
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dual to each other. Further, for λ ∈ GT(λ) and µ ∈ GT(µ), C0
λ,µ ̸= 0 if and only if λ

and µ are dual to each other.

Proof. Vλ⊗ Vµ contains invariant state space iff Vλ⊗ Vµ contains Vν for ν being (λ1 +

µd, . . . , λ1 + µd). Due to the Littlewood-Richardson rule, we first add µd boxes filled
with integer 1 in the first row, and then add µd boxes filled with integer 2 and λ2 −λ1

boxes filled with integer 1. Continuing so, we need to add µd+λ1−λd+1−k boxes filled
with k for each k. Thus λk + µd+1−k = λ1 + µd for each k, that is, λ is dual to µ.

Given a partition λd, Vλd is an irrep of SU(d). By the branching rule, as irrep of
su(d− 1), Vλd decomposes as Vλd =

⊕
λd−1 V(λd;λd−1), where the direct sum is over all

partitions λd−1 interlacing λd, and V(λd;λd−1) := span{|λ⟩ : λ ∈ GT(λd;λd−1)}. The
irrep Vµd decomposes in the same fashion. It follows that

Vλd ⊗ Vµd =
⊕

λd−1,µd−1

V(λd;λd−1) ⊗ V(µd;µd−1) . (3.36)

Due to Littlewood-Richardson rule, in the orthogonal direct sum the term V(λd;λd−1)⊗
V(µd;µd−1) contains V(0) iff λd−1 and µd−1 are dual to each other. Continuing so, we
have C0

λ,µ ̸= 0 iff λ is dual to µ.

Lemma 19. For each dual pair of partitions λ and µ, and for each dual pair of GT
patterns λ ∈ GT(λ) and µ ∈ GT(µ), |C0

λ,µ| = (dimVλ)
−1/2.

Proof. The irrep V(0) is contained in decomposition of Vλ ⊗ Vµ, hence

|0⟩ =
∑
λ

C0
λ,µ|λ⟩|µ⟩ (3.37)

for |0⟩ ∈ V(0).
For l ∈ [d− 1], applying El,l+1 to Eq. (3.37), we have

0 =
∑
k∈[l],λ

C0
λ,µ

(
aλk,l|λ+ 1k,l⟩|µ⟩+ aµk,l|λ⟩|µ+ 1k,l⟩

)
=

∑
k∈[l],λ

C0
λ,µ

(
aλl+1−k,l|λ+ 1l+1−k,l⟩|µ⟩+ aµk,l|λ⟩|µ+ 1k,l⟩

)
.

The coefficient of |λ⟩|µ+ 1k,l⟩ is

C0
λ−1l+1−k,l,µ+1k,la

λ−1l+1−k,l

l+1−k,l + C0
λ,µa

µ
k,l = 0 .
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It can be verified from Eq. (3.7) that

aλ−1l+1−k,l

l+1−k,l = aµk,l .

It follows that C0
λ−1l+1−k,l,µ+1k,l

+ C0
λ,µ = 0 for each pair (λ,µ) of dual patterns.

Thus for any dual pairs (λ,µ) and (λ′,µ′), either C0
λ,µ = C0

λ′,µ′ or C0
λ,µ = −C0

λ′,µ′ .
Using the normalization condition of (3.37) and the fact that GT(λ) has cardinality
dim(Vλ), the result follows.

We now restrict our attention to the dual pairs of partitions and patterns in V ⊗p
(s) ⊗

V ⊗q
(s) . In the rest of this section we assume that p+q

d s is an integer so that V ⊗p
(s) ⊗

V ⊗q
(s) contains invariant states. Given λ = (λ1, . . . , λd) ∈ Par(ps, d), the dual of λ in

Par(qs, d) is unique and denoted by λ∗, and moreover, for given λ ∈ GT(λ), the dual
of λ in GT(µ) with µ ∈ Par(qs, d) is also unique and denoted by λ∗. For a state φAB,
denote

η(φAB) :=
H2(φA)

Hmax
, (3.38)

where Hmax := ln(dimV ⊗p
(s) ) = ln

(
s+d−1
d−1

)p ≃ ln s(d−1)p.
For any integer k and λ ∈ Par(ks), denote by N(λ) the multiplicity of Vλ in decom-

position of V ⊗k
(s) , or in short, the multiplicity of λ in (s)⊗k. Consider the decomposition

V ⊗n
(s) = V ⊗p

(s) ⊗ V ⊗q
(s) =

(⊕
λ⊢ps

V
⊕N(λ)
λ

)⊗(⊕
µ⊢qs

V ⊕N(µ)
µ

)
. (3.39)

For any dual pair of partitions λ ∈ Par(ps, d) and µ ∈ Par(qs, d) and for 1 ≤ αλ ≤ N(λ)

and 1 ≤ βµ ≤ N(µ),

|λ, αλ, βµ⟩ =
∑

C0
λ,µ|λ, αλ⟩A|µ, βµ⟩B , (3.40)

where the sum is over dual pairs of patterns λ ∈ GT(λ) and µ ∈ GT(µ), is an invariant
state.

Using the same approach used in last section, in what follows we first estimate the
expectation

Ee−H2(φA) = Eφ trφ2
A =

tr(WAA′(1⊗2
inv +Winv))

d2inv + dinv
, (3.41)

where
dinv =

∑
λ⊢ps,λ∗⊢qs

N(λ)N(λ∗) (3.42)

is the dimension of invariant state space, and then give a bound on its variance for

60



3.3 Symmetric invariant tensors of higher degree

using Markov inequality.
The states of form (3.40) constitute an orthonormal basis of the invariant state

space, so

1⊗2
inv =

∑
λ,αλ,βµ
λ′,α′

λ′ ,β
′
µ′

(
|λ, αλ, βµ⟩|λ′, α′

λ′ , β
′
µ′⟩

)(
⟨λ, αλ, βµ|⟨λ′, α′

λ′ , β
′
µ′ |

)
,

(3.43)

where λ ⊢ ps is dual to µ ⊢ qs. Inserting (3.40) into (3.43), we have

tr(WAA′1⊗2
inv) =

∑
λ,αλ,βλ∗ ,β

′
λ∗

∑
λ

(C0
λ,λ∗)

4 =
∑
λ

N(λ)N(λ∗)
2 1

dimVλ
, (3.44)

since (C0
λ,λ∗

)2 = (dimVλ)
−1.

Similarly,
tr(WAA′Winv) =

∑
λ

N(λ)2N(λ∗)
1

dimVλ
. (3.45)

The multiplicities of irreps in decomposition of V ⊗p
(s) ⊗ V ⊗q

(s) with q ≥ p are given in
the following two lemmas.

Lemma 20. Let µ = µp = (µ1, µ2, . . . , µmin{p,d}) be any strictly decreasing sequence
of positive numbers that sum to p. Then, as s→ ∞,

(i) N(µs) ≃ s(p−1)(p−2)/2 when p ≤ d,
(ii) N(µs) ≃ s(d−1)(d−2)/2+(d−1)(p−d) when p ≥ d,
(iii) N(λp) ≲ N(µs) for any λp ∈ Par(ps,min{p, d}).

Proof. Without loss of generality we here consider the closest partition in Par(ps,min{p, d})
to µs if µs itself is not a valid partition, since the distance between the two vectors
vanishes as s→ ∞.

For (i), let µp−1 = (µp−1
1 , . . . , µp−1

p−1) be a strictly decreasing sequence of sum p− 1.
By Littlewood-Richardson rule, the decomposition of µp−1s⊗ (s) contains µs iff µp−1

interlaces µ, i.e. µ1 ≥ µp−1
1 ≥ µ2 ≥ µp−1

2 ≥ · · · ≥ µp−1
p−1 ≥ µp. For given µ, such a µp−1

exists iff µ1 > 1 > µp. Continuing so, there exists a strictly decreasing sequence µp−2 =

(µp−2
1 , . . . , µp−2

p−2) such that µp−2s ⊗ (s) contains µp−1s, iff µ1 + µ2 > 2 > µp−1 + µp.
Consequently, µs has nonzero multiplicity in (s)⊗p iff

∑k
i=1 µi > k for each k. Indeed,

the condition
∑k

i=1 µi > k holds for each k, since µ is a strictly decreasing sequence of
sum p. Now we have obtained µk ∈ Rk of sum k for each k ∈ {2, . . . , p}, such that µks
is contained in µk−1s⊗ (s) for each k. Since N(µ2s) = 1, using induction it suffices to
show N(µks) ≃ sk−2N(µk−1s) for each k.
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Let θ = (θ1, . . . , θk) be such that θ1 ∈ (0, 1), θi ∈
(
0, 1−

∑i−1
j=1 θj

)
for 2 ≤ i ≤ k−1,

and θk = −
∑k−1

j=1 θj , and let θ′ = (θ′1, . . . , θ
′
k) be defined similarly. For ε > 0 small

and fixed (independent of s), denote µkθ = µk + θε. Set ε so small that µk−1
θ interlaces

µkθ′ for each θ, θ′. Since µk−1
θ s has ≃ sk−2 choices as θ varies for given µk−1, and

N(µkθ′s) ≥
∑

θN(µk−1
θ s), we have N(µks) ≳ sk−2N(µk−1s). Due to the upcoming

proof of (iii) (for p ≤ d), it holds that N(µks) ≲ sk−2N(µk−1s), completing the proof
of (i).

We now prove (iii) for the case p ≤ d. SinceN(λ2) = 1 for λ2 ∈ Par(2s, 2), it suffices
to show that N(λk) ≲ sk−2maxλk−1 N(λk−1) for any 2 ≤ k ≤ p and λk ∈ Par(ks, k),
where the maximum is over λk−1 ∈ Par((k−1)s, k−1). λk is contained in decomposition
of λk−1 ⊗ (s) for some λk−1 iff λk−1 interlaces λk. Since λki − λki−1 ≲ s for each i, and
λk−1 has sum (k − 1)s, the number of λk−1’s that interlace λk is ≲ sk−2. Thus
N(λk) ≲ sk−2maxλk−1 N(λk−1).

The case p > d in (ii) and (iii) is proved in the same way. For p ≥ d+ 1, N(µs) ≃
sd−1N(µp−1s) ≃ s(d−1)(p−d)N(µds) ≃ s(d−1)(d−2)/2+(d−1)(p−d).

Lemma 21. Let p ≤ q, and denote b := p+q
d and t := p + q − d. Let µ = µp =

(µ1, µ2, . . . , µmin{p,d}), where µ1 < b, be any strictly decreasing sequence of positive
numbers that sum to p. If t ≤ 0, N(λ∗) = 0 for any λ ∈ Par(ps,min{p, d}). If t > 0,

(i) N((µs)∗) ≃ s(d−1)(d−2)/2+(d−1)(q−d) when p ≥ d,
(ii) N((µs)∗) ≃ s(d−1)(d−2)/2+(d−1)(t−d)+(p+d−1)(d−p)/2 when p ≤ d and t ≥ d,
(iii) N((µs)∗) ≃ s(p+t−1)(q−d)/2+(t−1)(d−t)+(t−1)(t−2)/2 when p ≤ d, t ≤ d and q ≥ d,
(iv) N((µs)∗) ≃ s(p−1)(d−p)+(t−1)(t−2)/2 when p ≤ d, t ≤ d and q ≤ d,
(v) N((λp)∗) ≲ N((µs)∗) for any λp ∈ Par(ps,min{p, d}).

Proof. Notice that λ∗ ∈ Par(qs) for λ ∈ Par(ps). Since the proof idea is similar to
that of Lemma 20, a brief calculation is given as follows.

For (i), when p ≥ d, for any λ = (µ1, . . . , µd)s ∈ Par(ps, d), λ∗ = (b−µd, . . . , b−µ1)s
is a strictly decreasing sequence of sum q. Since q ≥ d, and µ1 < b, by Lemma 20,
N(λ∗) ≃ s(d−1)(d−2)/2+(d−1)(q−d).

When p < d, for any λ = µps = (µ1, . . . , µp)s with µ1 < b, we have λ∗ = νqs, where
νq := (b, . . . , b, b − µp, . . . , b − µ1) has sum q. Let νq be interlaced by νq−1, νq−1 be
interlaced by νq−2, and so on until ν2 be interlaced by ν1 = (1), where νk has sum k

for each k. Three subcases are calculated as follows.
For (ii), when t ≥ d, νqs has multiplicityN(νqs) ≃ spN(νq−1s) ≃ sp+(p+1)+···+(d−1)N(νts) =

s(p+d−1)(d−p)/2N(νts), νts has multiplicity N(νts) ≃ s(d−1)(p+q−2d)N(νds), and νds has
multiplicity N(νds) ≃ s(d−1)(d−2)/2. Thus N((µs)∗) = N(νqs) is obtained.
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For (iii), when t < d and d ≤ q, νqs has multiplicity N(νqs) ≃ spN(νq−1s) ≃
sp+(p+1)+···+(p+q−d−1)N(νds) = s(2p+q−d−1)(q−d)/2N(νds), νds has multiplicityN(νds) ≃
s(p+q−d−1)(2d−p−q)N(νts), and νts has multiplicity N(νts) ≃ s(p+q−d−1)(p+q−d−2)/2.
Thus N(νqs) is obtained.

For (iv), when t < d and d ≥ q, νqs has multiplicity N(νqs) ≃ s(p−1)(d−p)N(νts),
and νts has multiplicity N(νts) ≃ s(t−1)(t−2)/2.

For large n and constant k, we have |Par(n, k)| ≃ nk−1 since 1
k! |Type(n, k)| ≤

Par(n, k) ≤ |Type(n, k)| and |Type(n, k)| =
(
n+k−1
k−1

)
. By Weyl dimension formula,

dimVλ ≃ sh(h−1)/2 for h := min{p, d}.
We now estimate the value of η.

Theorem 22. For p ≥ d ≥ 2, a random symmetric invariant state is asymptotically
maximally entangled with respect to any bipartite cut. To be specific, for any p ≤ q,
and for any fixed δ > 0, a random invariant state φAB ∈ Hinv

s,n ⊂ V ⊗p
(s) ⊗ V ⊗q

(s) satisfies
Pr(|η(φAB)− 1| ≥ δ) → 0 as s→ ∞.

Proof. Using the proof idea of Theorem 12 we only need to estimate E trψ2
A and

E tr2 ψ2
A

(E trψ2
A)2

.
For p ≥ d, λ has sd−1 choices. By Weyl dimension formula, dimVλ ≃ sd(d−1)/2.

Let µ = µp = (µ1, µ2, . . . , µh), where µ1 < b, be any strictly decreasing sequence of
positive numbers that sum to p, and let λ = µs. Then by Lemmas 20 and 21,

dinv =
∑

λ⊢ps,λ∗⊢qs
N(λ)N(λ∗)

≃ sd−1s(d−1)(d−2)/2+(d−1)(p−d)s(d−1)(d−2)/2+(d−1)(q−d)

= s(d−1)(t−1) ,

(3.46)

and

tr(WAA′1⊗2
inv) + tr(WAA′Winv) ≃ sd−1s(d−1)(d−2)/2+(d−1)(p−d)(s(d−1)(d−2)/2+(d−1)(q−d))2s−d(d−1)/2

= s(d−1)(p+2q−2d−2) ,

from which it follows that E trφ2
A ≃ s−p(d−1) by (3.41).

We now give a bound on the variance of trφ2
A. Using Eq. (3.46), and Eq. (3.33)

which still holds for the case d ≥ 3, we have

E(trφ2
A)

2

(E trφ2
A)

2
− 1 ≲ s−2(d−1)(p+2q−2d−2)

∑
π∈S4\S2×S2

tr
(
(WA

(12)W
A

(34))Wπ

)
. (3.47)
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Wπ =
∑

k,λk,αk
λk
,βk

µk

|λt1αt1
λt1
βt1
µt1

⟩|λt2αt2
λt2
βt2
µt2

⟩|λt3αt3
λt3
βt3
µt3

⟩|λt4αt4
λt4
βt4
µt4

⟩

⟨λ1α1
λ1β

1
µ1 |⟨λ

2α2
λ2β

2
µ2 |⟨λ

3α3
λ3β

3
µ3 |⟨λ

4α4
λ4β

4
µ4 |

=
∑

k,λk,αk
λk
,βk

µk

∑
k,λk

|λt1αt1
λt1

⟩|µt1βt1
µt1

⟩|λt2αt2
λt2

⟩|µt2βt2
µt2

⟩|λt3αt3
λt3

⟩|µt3βt3
µt3

⟩|λt4αt4
λt4

⟩|µt4βt4
µt4

⟩

⟨λt2α1
λ1 |⟨µ

t1β1µ1 |⟨λ
t1α2

λ2 |⟨µ
t2β2µ2 |⟨λ

t4α3
λ3 |⟨µ

t3β3µ3 |⟨λ
t3α4

λ4 |⟨µ
t4β4µ4 |

· C0
λt1 ,µt1C

0
λt2 ,µt2C

0
λt3 ,µt3C

0
λt4 ,µt4 · C0

λt2 ,µt1C
0
λt1 ,µt2C

0
λt4 ,µt3C

0
λt3 ,µt4

(3.48)

where λk, λ̂k ∈ GT(λk), and µk, µ̂k ∈ GT(µk).

In order to calculate tr(WA

(12)W
A

(34)Wπ), assume w.l.o.g. that λt1 = λ̂2, λt2 = λ̂1,
λt3 = λ̂4, λt4 = λ̂3, µt1 = µ̂1, µt2 = µ̂2, µt3 = µ̂3, µt4 = µ̂4, α1

λ1 = αt2
λt2

, α2
λ2 = αt1

λt1
,

α3
λ3 = αt4

λt4
, α4

λ4 = αt3
λt3

, β1µ1 = βt1
µt1

, β2µ2 = βt2
µt2

, β3µ3 = βt3
µt3

, β4µ4 = βt4
µt4

.

Thus

tr(WA

(12)W
A

(34)Wπ) =
∑

λ1,λ2,λ3,λ4

TcgcTαβ , (3.49)

where

Tαβ =
∑

k,αk
λk
,βk

µk

1 ≃ N(λ)#(Wπ)N(λ∗)
#π ,

and

Tcgc =
∑

λ1,λ2,λ3,λ4

C0
λt1 ,µt1C

0
λt2 ,µt2C

0
λt3 ,µt3C

0
λt4 ,µt4

C0
λt2 ,µt1C

0
λt1 ,µt2C

0
λt4 ,µt3C

0
λt3 ,µt4

(3.50)

Since the summand in right-hand side of Eq. (3.50) is nonzero only if λt1 = λt2

and λt3 = λt4 . It follows that Tcgc ̸= 0 only if λt1 = λt2 and λt3 = λt4 , in which case,

Tcgc =
∑

λt1 ,λt3
(dimVλt1 )

−2(dimVλt3 )
−2 = (dimVλt1 )

−1(dimVλt3 )
−1 ≃ s−d(d−1) .

(3.51)
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Thus
tr(WA

(12)W
A

(34)Wπ) ≃
∑

λt1 ,λt3

N(λ)#(Wπ)N(λ∗)
#πs−d(d−1) . (3.52)

When #(Wπ) = 1 and #π = 3,

tr(WA

(12)W
A

(34)Wπ) ≃ s2(d−1)s(d−1)(d−2)/2+(d−1)(p−d)(s(d−1)(d−2)/2+(d−1)(q−d))3s−d(d−1)

= s(d−1)(p+3q−3d−2) .

Using Eq. (3.47), we have

E(trφ2
A)

2

(E trφ2
A)

2
− 1 ≲ s(d−1)(−p−q+d+2) , (3.53)

which vanishes as s→ ∞ if p+ q > d+2. Under the condition q ≥ p ≥ d, p+ q > d+2

iff q ≥ 3.
When (#π,#((12)(34)π)) equals (2, 2), (1, 3), or (1, 1), the estimate similar to Eq.

(3.53) can be obtained. Combining these estimates, we have

E(trφ2
A)

2

(E trφ2
A)

2
− 1 ≲ max

{
s(d−1)(−p−q+d+2), s(d−1)(−2q+d+2), s(d−1)(p−3q+d+2), s(d−1)(−p−3q+2d+4)

}
= s(d−1)(−p−q+d+2) .

Using the same calculation method, when p < d, we have that E trφ2
A ≳ s−p(p−1),

and thus − lnE trφ2
A

Hmax
≤ p−1

d−1 < 1 for large s. The calculation in this chapter is not valid
for the case where the numbers p, q of systems Alice and Bob holds are relatively small
compared with the local dimension d, in that trφ2

A is so small that − lnE trφ2
A is far

from −E ln trφ2
A, as the second-order derivative of − lnx is large for small positive x.
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Chapter 4

Certification of quantum states
and unitaries

4.1 Introduction and previous work

In the emerging quantum information technology, a fundamental task in building re-
liable quantum information processing devices is to obtain parameters of an unknown
quantum state or device. The process is called tomography if all parameters are re-
quired to be known. In many scenarios, however, we are concerned only with whether
the unknown state or operation satisfies specific property. For example, to assess the
quality of a quantum chip after production, one needs to check whether the circuit is
close to a given unitary transformation, and it is unnecessary to get all parameters
about this chip. This process is called certification, which usually saves samples and
storage space compared with the quantum tomography. See [MdW16] for a survey on
quantum certification.

The abstract setting for certification can be described as follows. Given a known
set P and an unknown element x, a tester (or an algorithm) T either accepts (i.e.
reports x ∈ P) or rejects (i.e. reports x /∈ Pε) with some probability after measuring
x, where Pε := {y : dist(y,P) ≤ ε} with dist denoting some metric. The tester T is
eligible if the following conditions hold:

(1) (Completeness) If x ∈ P , T accepts with probability at least 2/3;
(2) (Soundness) If x ̸∈ Pε, T accepts with probability at most 1/3.
The numbers 2/3, 1/3 have no special meaning and can be replaced by any constants

c > 1/2, s < 1/2 respectively due to the confidence amplification by using repeating
the test. If the tester accepts with certainty when x ∈ P , we say the tester has perfect
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completeness.
We first recall that the trace distance between two quantum states is D(ρ, σ) :=

1
2∥ρ− σ∥1, and their fidelity is F(ρ, σ) := ∥√ρ

√
σ∥1. Given a known state |φ⟩ and an

unknown state |ψ⟩, the aim is to decide whether ψ = φ, i.e., |ψ⟩ = eiθ|φ⟩ for some
real θ, or D(ψ,φ) ≥ ε. In this simple task of certification, P is {eiθ|φ⟩ : θ ∈ R} and
x is |ψ⟩. It turns out O(ε−2) copies of given states are sufficient for this task. The
test is simply to perform the POVM {|φ⟩⟨φ|,1 − |φ⟩⟨φ|} independently n times, and
accept if and only if every outcome is the first one. If D(ψ,φ) =

√
1− ⟨ψ,φ⟩ ≥ ε, then

⟨ψ,φ⟩n ≤ (1− ε2)n ≤ 1
3 and one can take n =

ln 1
3

ln(1−ε2) = O(ε−2) for small ε.
In order to test whether a pair of unknown states ρ and σ on H are equal, the

swap test [BCWdW01] is usually used. The swap test is simply a two-outcome mea-
surement {P,Q}, where P and Q are projectors onto the symmetric subspace and the
antisymmetric subspace of H⊗2 respectively. The first outcome occurs with probabil-
ity 1

2(1+tr(ρσ)), and when this is the case, we say the swap test accepts or passes. By
applying group representation theory, it is shown in [BOW19] that O(d/ε2) copies of
quantum states suffices to distinguish whether an unknown ρ is equal to some known σ
or ε-far from σ in trace distance. This method is efficient since the tomography needs
Ω(d2) copies of quantum states.

Let P be a finite set of pure states such that minφ̸=φ′∈P D(φ,φ′) =: δ, and let ψ
be an unkown pure state. Then O(max{ε−2, δ−2} ln |P|) copies suffice to distinguish
whether ψ ∈ P or D(ψ,P) ≥ ε [Wan11]. By using the method in [BOW19] one
can use O(ε−2|P|) copies of the unknown state ρ to distinguish whether ρ ∈ P or
minσ∈P ∥ρ − σ∥2 ≥ ε. We also show that O(ε−4 ln |P|) copies of unknown state ψ
suffice to distinguish whether ψ ∈ P or D(ψ,P) ≥ ε. When δ is small compared with
ε, our method exhibits advantage by using notably less samples.

The certification of unitaries is quite different from that of quantum states in that
the quantum unitary certification requires a double optimization, one is the input state
for the quantum unitary and the other is the choice of measurement after the action
of quantum unitary. The works in [dSLCP11, SdSF+12, RGK13] used methods based
on Monte Carlo sampling to estimate the fidelity of an unknown gate to a fixed one,
and also studied the optimality of estimation strategy. Given an unknown unitary
U and a known or unknown unitary V , by using the Choi correspondence between
quantum unitaries and states, there exists a tester that distinguishes whether their
distance is zero or larger than ε with O(ε−2) uses of unitaries. By using the Schur-
Weyl decomposition, we show that for fixed dimension of the unitary, only O(ε−1) uses
of the unitaries suffice to achieve the same goal. Another advantage of our algorithm
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is that we do not need to introduce extra ancilla system as in the method using Choi
state.

The productness property can be tested with O(ε−2) copies [HM13] using the proce-
dure first discussed in [MKB05] which applies the swap test across each corresponding
pair of subsystems of two copies of |ψ⟩. In [HM13], using the Choi-Jamiołkowski iso-
morphism, testing product unitaries is reduced to testing product pure states. The
tasks of testing Pauli matrices and Clifford gates are also studied in [MO10] and
[Low09, Wan11] respectively. The method based on group representation theory may
be useful in testing other properties of quantum states and unitaries, which deserves
further study.

4.2 Testing membership of a finite set of states

In the study of testing whether an unknown state is close to or far from a given state
and whether two unknown states are close to each other, Bădescu et al. [BOW19]
used the Chebyshev inequality to bound the deviation of a random variable from its
expectation so that the completeness and soundness conditions can be satisfied. To be
specific, for a real-valued random variable X and a scalar 0 < γ < 1

2 , consider a tester
which reports EX ≤ (1 − 2γ)θ when X ≤ (1 − γ)θ is observed and reports EX ≥ θ

when X > (1− γ)θ is observed. When EX ≤ (1− 2γ)θ, the probability that the tester
reports correctly is

Pr(X ≤ (1− γ)θ) ≥ 1− VarX
((1− γ)θ − EX)2

≥ 1− VarX
(γθ)2

. (4.1)

When EX ≥ θ, the probability that the tester reports correctly is

Pr(X > (1− γ)θ) ≥ 1− VarX
(EX − (1− γ)θ)2

≥ 1− VarX
(γθ)2

. (4.2)

If VarX is small enough as compared with γθ, the tester is eligible. In our settings, let
X denote the random variable of measurement outcome of M on a state ϱ. Obviously
the expectation of X is EX = tr(ϱM) and the variance of X is VarX = tr(ϱM2) −
(tr ϱM)2. A quantum algorithm was proposed in [BOW19] to test whether an unknown
state is close to or far from a fixed state:

Proposition 23 ([BOW19]). Given access to an unknown state ρ, for a fixed state σ
and a constant α ∈ (0, 1], there exists a tester that distinguishes whether ∥ρ − σ∥2 ≤
(1− α)ε or ∥ρ− σ∥2 ≥ ε using O(ε−2) copies of ρ.
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Proof sketch [BOW19]. Choose an orthonormal basis such that σ = diag(β1, . . . , βd).
Let Πt denote the projector onto the subspace of (Cd)⊗n spanned by basis states of
type t. Define observables M =

∑
t∈Type(n,d)

⟨β,t⟩
n Πt and N =

∑
1≤i<j≤nW(ij)/

(
n
2

)
,

where W(ij) is the operator swapping the i-th and j-th systems. Denote L := N +

tr(σ2)1−2M , and denote by X the measurement outcome of the observable L on state
ρ⊗n. It can be calculated that EX = ∥ρ− σ∥22, and VarX = O

(
1
n2 +

∥ρ−σ∥22
n

)
. Finally

taking γ = α − 1
2α

2 and θ = ε2, and using Eqs. (4.1) and (4.2) we get that O(ε−2)

copies of ρ are sufficient.

In order to test whether an unknown state is contained in or far from a given finite
set of states, we need a revised tester. For the random variable Y = min{X1, . . . , Xm}
where Xi’s are independent random variables, consider the tester which accepts (i.e.
reports mini EXi ≤ (1 − 2γ)θ) when miniXi ≤ (1 − γ)θ and rejects (i.e. reports
mini EXi ≥ θ) otherwise.

When minEXi ≤ (1− 2γ)θ, we have

Pr(minXi ≤ (1− γ)θ) = 1−
∏

i
Pr(Xi > (1− γ)θ)

≥ 1− Pr(Xk > (1− γ)θ)

≥ 1− VarXk

(γθ)2
,

(4.3)

where EXk = mini EXi.
When minEXi ≥ θ, we have

Pr(minXi > (1− γ)θ) =
∏

i
Pr(Xi > (1− γ)θ)

≥
∏

i

(
1− VarXi

(EXi − (1− γ)θ)2

)
.

(4.4)

Using the above bounds, Proposition 23 yields the following:

Corollary 24. Given a finite set P of states and an unknown state ρ, there exists a
tester that distinguishes whether ρ ∈ P or minσ∈P ∥ρ−σ∥2 ≥ ε using O(ε−2|P|) copies
of the unknown state.

Proof. Take γ = 1
2 , θ = ε2 and denote m = |P|. Using Eq. (4.3) and the estimate of

variance of Xk, O(ε−2) copies of ρ suffice to ensure that Pr(minXi ≤ (1− γ)θ) ≥ 2/3.
For Eq. (4.4), Pr(minXi > (1 − γ)θ) ≥

(
1 − cε−4( 1

n2 + ε2

n )
)m for some constant c

and large n. So n should satisfy that 1 − cε−4( 1
n2 + ε2

n ) ≥ (23)
1/m. In order for this

inequality to hold, take n = cε−2
(
1− (23)

1/m
)−1

= O(ε−2m).
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We now apply the exponential Markov inequality to bound the deviation of X from
its expectation, yielding an alternative sample complexity for testing the property of
a finite set of pure states. When EX ≤ (1− 2γ)θ, the tester accepts with probability

Pr(X ≤ (1− γ)θ) = 1− Pr(X > (1− γ)θ) ≥ 1− EesX
es(1−γ)θ

, (4.5)

for any s > 0. When EX ≥ θ, then the tester rejects with probability

Pr(X > (1− γ)θ) = 1− Pr(X ≤ (1− γ)θ) ≥ 1− EesX
es(1−γ)θ

, (4.6)

for any s < 0.

Theorem 25. Given a finite set P of pure states and an unknown pure state ψ,
there exists a tester with perfect completeness that distinguishes whether ψ ∈ P or
D(ψ,P) ≥ ε using O(ε−4 ln |P|) copies of the unknown state.

Proof. For any φ ∈ P , choose an orthonormal basis such that φ = diag(1, 0, . . . , 0) in
this basis, and denote the diagonal elements of ψ by x1, x2, . . . , xd in this basis. Let Πt
denote the projector onto the subspace of (Cd)⊗n spanned by states of type t. Consider
the observable M =

∑
t∈Type(n,d)

t1
nΠt which was first used in [BOW19]. Let X denote

the measurement outcome of M on ψ⊗n, then EX = tr(ψ⊗nM) = ⟨ψ,φ⟩ = x1. The
moment-generating function of X is

EesX = tr(ψ⊗nesM ) =
∑

t1+···+td=n
est1/n tr(ψ⊗nΠt)

=

n∑
t1=0

est1/n
∑

t2+···+td=n−t1

tr(ψ⊗nΠt)

=
n∑

t1=0

est1/n
∑

t2+···+td=n−t1

(
n

t

)
xt11 · · ·xtdd

=
n∑

t1=0

est1/n
(
n

t1

)
xt11 (1− x1)

n−t1

=
(
1 + (es/n − 1)x1

)n
,

where
(
n
t

)
:= n!

t1!···td! and
(
n
t1

)
:= n!

t1!(n−t1)! .
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When EX = x1 ≤ 1− ε2, take s = 2nε2. Since x1 = ⟨ψ,φ⟩ ≤ 1− ε2, we have

EesX ≤
(
1 + (e2ε2 − 1)(1− ε2)

)n
= (1 + 2ε2 +O(ε6))n .

Using Eqs. (4.5) and (4.6) with γ = ε2/2 and θ = 1, it follows that

Pr(X ≤ 1− ε2/2) ≥ 1− EesX

es(1−ε2/2)

≥ 1− (1 + 2ε2 +O(ε6))n

en(2ε2−ε4)
= 1− (1− 2ε4 +O(ε6))n .

When EX = x1 = 1, the measurement outcome X of M is 1 with certainty.

Now we consider the task of testing whether an unknown state ψ is contained in or
far from the set P. For each φ ∈ P , one can define an corresponding observable Mφ.
Measure the observableMφ on the state ψ⊗n, and denote the outcome byXφ. Consider
the tester that reports D(ψ,P) ≥ ε i.e. maxφ EXφ ≤ 1 − ε2 when maxφXφ ≤ 1 − ε2

2 ,
and reports ψ ∈ P otherwise. For the soundness condition, in order for

Pr
(
maxφXφ ≤ 1− ε2/2

)
= Πφ Pr(Xφ ≤ 1− ε2/2) ≥

(
1− (1− 2ε4 +O(ε6))n

)|P| ≥ 2

3

to hold, it suffices to take

n =
ln
(
1− (23)

1/|P|)
ln(1− 2ε4 +O(ε6))

= O(ε−4 ln |P|) .

As for the completeness condition, when ψ ∈ P , maxφXφ = 1. Thus this tester
has perfect completeness. Therefore using O(ε−4 ln |P|) copies of ψ the tester fulfills
both completeness and soundness conditions.

Denote δ := {D(φ1, φ2) : φ1 ̸= φ2 ∈ P}. It was shown in [Wan11] thatO(max{ε−2, δ−2} ln |P|)
copies of states suffice to distinguish whether ψ ∈ P or D(ψ,P) ≥ ε. When δ = O(ε2),
our method is more sample-efficient than that in [Wan11]. The method based on
Schur-Weyl decomposition used in this chapter may be useful in the certification of
bipartite or multipartite states.
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4.3 Testing equality of unitaries

Following [MdW16], define the distance between two unitaries U, V ∈ U(d) as

dist(U, V ) =

√
1−

∣∣∣1
d
⟨U, V ⟩

∣∣∣2 , (4.7)

where ⟨U, V ⟩ := tr(U †V ). The distance of two unitaries is no larger than 1.
Notice that the normalized inner product of unitaries is equal to the inner product

of their Choi states, i.e.,

1

d
⟨U, V ⟩ = ⟨ϕm|(U † ⊗ 1)(V ⊗ 1)|ϕm⟩ . (4.8)

Here and in the following we use |ϕm⟩ to denote the (normalized) maximally entangled
state. Consider the Schur-Weyl decomposition

(Cd)⊗n =
⊕

λ⊢(n,d)

Hλ ⊗Kλ ,

where Hλ are irreducible representation spaces of U(d) and Kλ are multiplicity spaces.
The entanglement between the representation space and multiplicity space was used
to estimate the group transformation [CDS05]. It turns out that it can be also used
in the certification of unitaries as shown in the following.

Theorem 26. Given access to an unknown single-qubit unitary U , there exists a tester
with perfect completeness that distinguishes whether U is equal to a fixed and known
V up to a phase or dist(U, V ) ≥ ε with O(ε−1) uses of U , without using any ancilla
system.

Proof. By Schur-Weyl duality, (C2)⊗n =
⊕

j Hj ⊗Kj where Hj is the irrep of U(2) of
dimension 2j + 1 and Kj is the corresponding irrep of Sn. In this decomposition we
write U⊗n =

⊕
j Uj ⊗1j for any U ∈ U(2) since U⊗n acts as identity operator on each

Kj .
Notice that Hn

2
−1 and Kn

2
−1 have the same dimension n − 1. Let |ϕm⟩ be the

maximally entangled state in Hn
2
−1 ⊗ Kn

2
−1, i.e. |ϕm⟩ = 1√

n−1

∑n−1
i=1 |αi⟩|βi⟩ where

{|αi⟩} and {|βi⟩} are orthonormal bases of Hn
2
−1 and Kn

2
−1 respectively.

Apply the unitary U⊗n to |ϕm⟩, and then perform the POVM {ϕm
V ,1− ϕm

V } where
|ϕm
V ⟩ := (Vn

2
−1 ⊗ 1n

2
−1)|ϕm⟩. The tester reports that U equals V up to a phase if

the first outcome occurs, and reports dist(U, V ) ≥ ε otherwise. Obviously the tester
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has perfect completeness irrespective of the choice of n. Next step is to derive the
requirement for n to ensure the soundness condition ⟨U⊗nϕmU †,⊗n, ϕm

V ⟩ ≤ 1/3 when
dist(U, V ) ≥ ε.

Denote the eigenvalues of U †V by eiα and eiβ for α, β ∈ [0, 2π). When dist(U, V ) ≥
ε, then by the definition (4.7), |⟨U, V ⟩|2 ≤ 4(1 − ε2), i.e. |eiα + eiβ |2 ≤ 4(1 − ε2). It
follows that | sin 1

2(α− β)| ≥ ε. We thus have√
⟨U⊗nϕmU †,⊗n, ϕm

V ⟩ =
∣∣∣ 1

n− 1

⟨
Un

2
−1, Vn

2
−1

⟩∣∣∣
=

∣∣∣ 1

n− 1

ei(nα+β) − ei(α+nβ)

eiα − eiβ

∣∣∣
=

∣∣∣ 1

n− 1

sin n−1
2 (α− β)

sin 1
2(α− β)

∣∣∣
≤

∣∣∣ 1

n− 1

1

sin 1
2(α− β)

∣∣∣
≤ 1

(n− 1)ε
, (4.9)

where the second equality used the Weyl character formula (1.6) for irrep Hn
2
−1. We

now take n =
√
3
ε + 1 = O(ε−1) so that the soundness condition ⟨U⊗nϕmU †,⊗n, ϕm

V ⟩ ≤
1/3 for dist(U, V ) ≥ ε is satisfied.

When both single-qubit unitaries are unknown, we have the following.

Theorem 27. Given access to two unknown single-qubit unitaries U and V , there
exists a tester with perfect completeness that distinguishes whether U equals V up to
a phase or dist(U, V ) ≥ ε with O(ε−1) uses of U and V , without using any ancilla
system.

Proof. Similar to the proof of Theorem 26, we first decompose the space as (C2)⊗n =⊕
j Hj ⊗ Kj where Hj and Kj are irreps of U(2) and Sn respectively. Denote by

|ϕm⟩ the maximally entangled state in Hn
2
−1 ⊗ Kn

2
−1. Then we apply the swap test

to U⊗n|ϕm⟩ and V ⊗n|ϕm⟩. Repeat the above procedure, and report that the two
unitaries are equal up to a phase if and only if the swap test accepts twice. When U
and V are equal, the tester reports correctly with certain. When dist(U, V ) ≥ ε, since∣∣⟨ϕm|U †,⊗nV ⊗n|ϕm⟩

∣∣ ≤ 1
(n−1)ε by (4.9), the tester reports incorrectly with probability

less than
(
1
2(1 +

1
(n−1)2ε2

)
)2, which is in turn less than 1/3 if we take n = 3

ε + 1.

In order to deal with the higher dimensional case, an upper bound on | trUλ|/dλ
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is needed given | trU |/d ≤ 1− ε2, where Uλ is representation matrix of U on irrep Hλ

for appropriate λ ∈ Par(n) and dλ is the dimension of Hλ.

Lemma 28. Let λ = (d − 1, d − 2, . . . , 0)n/
(
d
2

)
∈ Par(n, d) and s = n/

(
d
2

)
+ 1. If

1
d |⟨U, V ⟩| ≤ 1− ε2 for U, V ∈ U(d), then

1

dimHλ
|⟨Uλ, Vλ⟩| ≤

( 2

sε

)m
for some positive m.

Proof. The dimension of the irrep Hλ is

dimHλ = sd(d−1)/2 . (4.10)

The character for Hλ is

χLλ (diag(x1, . . . , xd)) =
∏

1≤j<k≤d(x
s
k − xsj)∏

1≤j<k≤d(xk − xj)
.

Since Rλ : U 7→ Uλ is a unitary representation of U(d), we have UλVλ = (UV )λ and
(Uλ)

† = (U †)λ. Thus ⟨Uλ, Vλ⟩ = ⟨(U †V )λ,1⟩. It suffices to consider the case V = 1.
Consider a unitary U having eigenvalues eiθk with 0 ≤ θk < 2π for each k ∈ [d].

We have

| trU |2 =
∣∣∣∣ d∑
k=1

eiθk
∣∣∣∣2 = d+ 2

∑
1≤j<k≤d

cos(θk − θj)

= d2 − 4
∑

1≤j<k≤d
sin2

1

2
(θk − θj) , (4.11)

while

| trUλ| =
∏

1≤j<k≤d

∣∣∣∣eisθk − eisθj

eiθk − eiθj

∣∣∣∣
=

∏
1≤j<k≤d

∣∣∣∣sin s
2(θk − θj)

sin 1
2(θk − θj)

∣∣∣∣ . (4.12)

Before proceeding with the proof we now show that∣∣∣sin sx
sinx

∣∣∣ ≤ s (4.13)

holds for any odd positive integer s and any |x| ≤ π. Indeed, it suffices to consider the
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case 0 ≤ sinx ≤ 1
s , and (4.13) follows by noticing that the function sin sx

s sinx is even and
is symmetric about the line x = π

2 . When 0 ≤ sinx ≤ 1
s , since sinx ≥ 2

πx, we have
sx ≤ π

2 . It follows that for any s ≥ 1, we have cosx ≥ cos sx, and thus s sinx ≥ sin sx,
completing the proof of (4.13).

As for the soundness condition, when 1
d | trU | ≤ 1− ε2, by (4.11) we have

∑
1≤j<k≤d

sin2
1

2
(θk − θj) ≥

1

4
d2(2ε2 − ε4) .

It follows that there exists (j, k) satisfying

sin2
1

2
(θk − θj) ≥

d(2ε2 − ε4)

2(d− 1)
,

and let m be the number of such pairs in totally
(
d
2

)
pairs. For any such pair,

| sin s
2(θk − θj)|

| sin 1
2(θk − θj)|

≤ 1

| sin 1
2(θk − θj)|

≤

√
2(d− 1)

d(2ε2 − ε4)
≤ 2

ε
(4.14)

for ε ≤ 1. On the other hand, there are
(
d
2

)
−m pairs of (j, k) satisfying sin2 1

2(θk−θj) <
d(2ε2−ε4)
2(d−1) . For any such pair, since |12(θk − θj)| ≤ π, by (4.13) we have

| sin s
2(θk − θj)|

| sin 1
2(θk − θj)|

≤ s . (4.15)

Therefore, combining (4.10), (4.12), (4.14) and (4.15),

1

dimHλ
| trUλ| ≤ s−(

d
2
)(2/ε)ms−m+(d

2
) =

( 2

sε

)m
.

Theorem 29. Given access to an unknown unitary U ∈ U(d) and a known or unknown
unitary V ∈ U(d), there exists a tester with perfect completeness that distinguishes
whether dist(U, V ) = 0 or dist(U, V ) ≥ ε with O(d2/ε) uses of unitaries.

Proof. Consider the partition λ = (d−1, d−2, . . . , 0)n/
(
d
2

)
, and denote s := n/

(
d
2

)
+1.

The proof follows similar approach used in Theorems 26 and 27.
By noticing that λ/n is independent of n, it follows from (1.5) and (1.7) that when

ε is so small that n is much larger than d, the dimension of Kλ is exponential in n

while the dimension of Hλ is polynomial in n, thus dimKλ is larger than dimHλ.
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Denote by |ϕm⟩ the maximally entangled state in Hλ ⊗ Kλ, and denote |ϕm
U ⟩ :=

U⊗n|ϕm⟩ and |ϕm
V ⟩ = V ⊗n|ϕm⟩. When U is unknown and V is given, perform a

measurement {ϕm
V ,1−ϕm

V } on ϕm
U , and repeat, and accept iff the first outcome occurs.

When U and V are both unknown, perform a swap test for ϕm
U and ϕm

V , and repeat.
The completeness condition is obvious. When dist(U, V ) ≥ ε, using Lemma 28, the

soundness condition is satisfied by taking s to be the smallest odd integer larger than
6/ε, for which n ≤

(
d
2

)
(6ε + 1) = O(d2/ε).

For the asymptotic case where the value of ε is small, n will be so large that
the irrep Hλ has smaller dimension than its multiplicity space Kλ does. Thus there
exists a maximally entangled state ϕm on Hλ ⊗ Hλ which is a subspace of Hλ ⊗
Kλ. If ε is not small enough and thus n is not large enough, one can introduce a
reference system of dimension dimHλ

dimKλ
to make them have equal dimension [CDS05]. The

dimension of the ancilla system, however, has been exponentially decreased compared
with the method using Choi states directly. Since it is common to deal with low-
dimensional quantum systems in quantum computing under current technology, our
method exhibits advantage in practice.

For the certification of identity of qudit unitaries, we have considered the irrep
corresponding partition λ = (d− 1, d− 2, . . . , 0)n/

(
d
2

)
. One issue that would be worth

investigating is whether the irreps of unitary group used in this chapter are optimal
compared with other irreps.

Using Theorem 29, one can also efficiently test whether one unitary is identity,
and whether two unitaries are inverse to each other. It is known that many properties
of quantum channel can be reduced to testing properties of quantum state via the
Choi-Jamiołkowski isomorphism, but by employing this approach one usually needs
to use quantum channels too many times and also to introduce extra ancilla sys-
tem. In this section we used group representation to test properties of unitaries more
sample-efficiently without using ancilla system. Our approach may be promising in
the property testing of noisy quantum operation and measurement to achieve better
performance.
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Chapter 5

Parallel repetition for extended
nonlocal games

5.1 Introduction and overview

The model of nonlocal games has been extensively studied in theoretical physics and
computational complexity theory. In physics, the celebrated Bell inequality experi-
ments, proposed by Bell [Bel64] and then studied by Clauser et al. [CHSH69], are built
on nonlocal game as theoretical basis. The experiments provided substantial evidence
for that the world is not locally realistic, and made the theory of quantum mechanics
more convincing. In computational complexity theory, nonlocal game is employed as
a simple model via which interactive proof systems can be analyzed [GMR85, Bab85].

In a two-player one-round nonlocal game G, the referee selects a pair of questions
(x1, x2) at random from a set according to a probability distribution µ which is fixed
and publicly known, then sends x1 to one player and x2 to the other, who then respond
with answers a and b respectively. Upon receiving the answers a1 and a2, the referee
evaluates a publicly known predicate V (a1, a2, x1, x2). The two players jointly win the
game if the predicate V (a1, a2, x1, x2) is satisfied, and they lose otherwise. Before the
game starts, the players can corroborate on a strategy based on µ and V to maximize
their winning probability. During the game, each player is unware of the questions
received by other players. For example, in the CHSH game, the question pair (x, y) is
randomly selected uniformly from the set {0, 1} × {0, 1}, the answer from each player
is a single bit, and the predicate is a⊕ b = x ∧ y. The maximum winning probability
for the players is 3

4 , but using entanglement shared by the two players their winning
probability can be cos2 π8 > 0.85.
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We first fix some notation for discussion. Given finite alphabets A and B, for
a function PAB on A × B, denote PA(a) :=

∑
b∈B PAB(a, b) for each a ∈ A. For a

space H which may be trivial and a function V : B → L(H), we define V ∧n : Bn →
L(H⊗n), bn 7→ V (b(1))⊗ · · · ⊗ V (b(n)) for bn := (b(1), . . . , b(n)) ∈ Bn.

In the rest of this chapter we denote A := A1 × A2 and X := X1 × X2 with
each Ai,Xi being finite alphabet, and correspondingly we write a := (a1, a2) ∈ A,
x := (x1, x2) ∈ X . Let µ be a probability distribution (or called distribution for short)
on a set X , and let V : A× X → {0, 1} be a function. The game value val(G) of the
two-player game G specified by µ and V is defined as the maximum winning probability

max
P

E
x∼µ

∑
a∈A

P (a|x)V (a, x) ,

where the maximum is over some class of strategy P which is a conditional probability
distribution on A|X . Based on the strategy class, the nonlocal games can be divided
into several categories. For classical strategy, P (a|x) can be written as P (a|x) =

P1(a1|x1)P2(a2|x2) for some conditional distributions Pi. For quantum strategy, or
called entangled strategy, it can be written as P (a|x) = ⟨ρ,E1(a1|x1)⊗ E2(a2|x2)⟩
where ρ is a quantum state shared by the two players and {Ei(ai|xi)}ai is a POVM
for each xi. Nonsignaling strategies are those strategies which do not imply communi-
cation.

The parallel repetition question is the following natural question: what is the value
of the game Gn, in which n independent instances of G are played in parallel? In the
game Gn, the questions xn := (x(1), . . . , x(n)) are chosen independently, the answers
an := (a(1), . . . , a(n)) are decided collectively, and the players win the game iff they
win all the n instances. The players may use the information of x(i) to give a(j), so the
value val(Gn) may be larger than val(G)n. For the classical strategy, Raz’s parallel
repetition theorem [Raz98] states that val(Gn) ≤ (1 − (1 − val(G))3)cn where c is
a constant on G. The proof has been simplified and improved upon in [Hol09] and
[BG16]. For the multiplayer setting, the exponential decay of the nonsignaling value
of a game G was established in [BFS14], and similar results were achieved in [LW16]
and [AFRV16] using a different technique based on de Finetti reduction.

The extended nonlocal game as a generalization of (ordinary) nonlocal game dis-
cussed above was studied in [JMRW16]. In this new type of games, the predicate
becomes operator-valued, and the result of the game is determined by the outcome
of measurement performed by the referee. The monogamy-of-entanglement games
[TFKW13] and the steering game [Fri12] are examples of entended nonlocal game.
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For two functions PX , QX : X → Pos, where Pos denotes the set of positive semidef-
inite operators on some Hilbert space, the trace distance D between PX and QX is
defined as D(PX , QX ) :=

∑
x∈X

1
2∥PX (x)−QX (x)∥1. An operator assemblage on A|X

is a function PA|X : A × X → Pos such that
∑

a∈A PA|X (a|x) has unit trace for
each x ∈ X . An operator assemblage PA|X is called nonsignaling [Rus17], denoted
NS, if for each i = 1, 2 there exists a conditional distribution P ′

i on Ai|Xi such that
P (ai|x) = P ′

i (ai|xi). It is also required that
∑

a1
P ′
1(a1|x1) =

∑
a2
P ′
2(a2|x2).

In a two-player extended game, the referee holds a system R ∼= Cd and the i-th
player holds a quantum system Hi. Let µ be a distribution on the set X of questions,
and let V : A × X → [0,1R] be an operator-valued function. The game value of the
extended nonlocal game specified by µ and V is defined as

max
P

E
x∼µ

∑
a∈A

⟨P (a|x), V (a, x)⟩ , (5.1)

where the maximum is over some class of operator assemblage P on A|X .
For quantum strategy in an extended game, there is a state shared by the referee

and all players such that P (a|x) = trH(ρ(E1(a1|x1) ⊗ E2(a2|x2) ⊗ 1R)) where H :=

H1 ⊗ H2, and {Ei(ai|xi)}ai is POVM for each xi. Equivalently, ⟨P (a|x), V (a, x)⟩ =

⟨ρ,E1(a1|x1) ⊗ E2(a2|x2) ⊗ V (a, x)⟩. The quantum and nonsignaling value of the ex-
tended game G thus can be defined as the game value using quantum and nonsignaling
strategies respectively.

In an n-fold parallel repetition of a two-player game G, n pairs of questions are
selected independently according to µ∧n. The questions (x1, . . . , xn) are sent to one
player and (y1, . . . , yn) to the other. The players respond with values (a1, . . . , an) and
(b1, . . . , bn) respectively. They win this game if the predicate Q(xi, yi, ai, bi) is satisfied
for all i ∈ [n]. Thus the value of n-fold parallel repetition of an extended nonlocal
game G is

max
QAn|Xn

∑
an,xn

µ∧nX (xn)
⟨
QAn|Xn(an|xn), V ∧n

AX (a
n, xn)

⟩
, (5.2)

where an := (a(1), . . . , a(n)) ∈ An, xn := (x(1), . . . , x(n)) ∈ X n, and the maximum is
over some class of strategies.

The extended games may be viewed as being equivalent to multipartite steering
inequalities, in a similar way to the equivalence between nonlocal games and Bell
inequalities [JMRW16]. The study of parallel repetition of extended nonlocal game is
partly motivated by its connection with multipartite quantum steering. Similarly to
the fact that the violation of Bell inequalities certifies the presence of entanglement in
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device-independent scenario, the violation of steering inequalities certifies the presence
of entanglement in semi-device-independent scenario [CSA+15]. In order to distinguish
two possible cases corresponding to two game values in this task, the parallel repetition
is always used to amplify the gap between the two values. Thus it is necessary to study
the behavior of extended game under parallel repetition.

In this chapter we consider the nonsignaling value of parallel repetition of a two-
player game G, denoted val(Gn). When elements in {V (a, x) : a ∈ A, x ∈ X} commute
with each other, it suffices to consider the commuting operator assemblage PA|X , for
which elements in {PA|X (a|x) : a ∈ A, x ∈ X} commute with each other. Similarly to
the nonsignaling correlations used in the ordinary games studied in [Hol09], the com-
muting nonsignaling operator assemblage enjoys a nice property, denoted P. Namely,
for any distribution QAX with A = A1 × A2,X = X1 × X2, if D(QXRA1|X1

, QA1X )

and D(QXTA2|X2
, QA2X ) are both small for some conditional distributions RA1|X1

and TA2|X2
, then there exists a nonsignaling conditional distribution PA|X such that

D(QXPA|X , QAX ) is also small.
Following the approach in [LW16] we show that the value of n-fold parallel repeti-

tion of a two-player game G with commuting nonsignaling strategy is no larger than
(1− cδ)n for constant c, provided that the game value of G is no larger than 1− δ with
δ > 0. It can be seen from the proof that this parallel repetition theorem still holds
for general nonsignaling strategy if any nonsignaling operator assemblage satisfies the
property P.

In order to extend the parallel repetition theorem for nonsignaling games to the
extended games using the de Finetti reduction in [LW16], we need to further study
properties of the operator assemblages. For the parallel repetition problem, we need
to deal with the symmetry in QAn|Xn(an|xn) which is an operator on (Cd)⊗n, while in
the ordinary game it is simply a scalar. Thus the calculation is not straightforward in
the study of the parallel repetition of extended games.

5.2 Technical lemmas

In this section we will give some necessary lemmas for the proof in next section. The
fidelity F(X,Y ) :=

∥∥√X√
Y
∥∥
1
and the trace distance D(X,Y ) := 1

2∥X − Y ∥1 are
two widely used functions to measure the similarity of two quantum states. Some
properties of the functions are collected in the following.

Lemma 30 (See e.g. [Wat18]). For any positive semidefinite operators X,X ′, Y, Y ′, Z

and any quantum states ρ, σ,
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(1) Additivity under direct sum: F(X ⊕X ′, Y ⊕ Y ′) = F(X,Y ) + F(X ′, Y ′);
(2) Multiplicativity under tensor product: F(X ⊗X ′, Y ⊗ Y ′) = F(X,Y )F(X ′, Y ′);
(3) Superadditivity under addition: F(X +X ′, Y +Y ′) ≥ F(X,Y )+F(X ′, Y ′), and

in particular, F(X,Y ) ≤ F(X,Z) if Y ≤ Z;
(4) Monotonicity: for any CPTP E, F(X,Y ) ≤ F(E(X), E(Y )) and D(X,Y ) ≥

D(E(X), E(Y ));
(5) Fuchs-van de Graaf inequalities [FVDG99]: F(ρ, σ)2+D(ρ, σ)2 ≤ 1 ≤ F(ρ, σ)+

D(ρ, σ).

Lemma 31. For each k ∈ [p], denote by ρk the reduced state on Hk of a state
ρ ∈ D(H1 ⊗ · · · ⊗Hp), and denote by Πk the projector onto the support of ρk. It holds
that

ρ ≤ Π1 ⊗ · · · ⊗ Πp . (5.3)

Proof. For any state σ acting on H1 ⊗ · · · ⊗ Hp, let Πσk denote the projector onto the
support of the reduced state σk of σ on Hk. We first consider the pure state case that
ρ = |ψ⟩⟨ψ|. Let {|ik⟩}dkik=1 be an orthonormal basis of the support of ψk, and it can be
extended to {|ik⟩}Dk

ik=1 which is an orthonormal basis of Hk. Let the general form of
|ψ⟩ be |ψ⟩ =

∑D1,...,Dp

i1,...,ip=1 λi1,...,ip |i1 · · · ip⟩. Thus

ψ =

D1,...,Dp∑
i1,...,ip=1

D1,...,Dp∑
i′1,...,i

′
p=1

λi1,...,ipλ
∗
i′1,...,i

′
p
|i1 · · · ip⟩⟨i′1 · · · i′p|

and ψ1 =
∑

i1,i′1,i2,...,ip
λi1,...,ipλ

∗
i′1,i2,...,ip

|i1⟩⟨i′1|. For integer t1 satisfying d1 < t1 ≤ D1,
one has ⟨t1|ψ1|t1⟩ = 0. That is, λt1,i2,...,ip = 0 for each t1 > d1 and each i2, . . . , ip.
Similarly, for k and tk satisfying dk < tk ≤ Dk, we have λi1,...,ik−1,tk,ik+1,...,ip = 0. So
|ψ⟩ =

∑d1,...,dp
i1,...,ip=1 λi1,...,ip |i1 · · · ip⟩ with normalization condition

∑
i1,...,ip

|λi1,...,ip |2 = 1.
It follows that ⟨ψ|Π1 ⊗ · · · ⊗ Πp|ψ⟩ = 1, and thus |ψ⟩ is a unit vector in the subspace
corresponding to the projector Π1 ⊗ · · · ⊗ Πp, so ψ ≤ Πψ1 ⊗ · · · ⊗ Πψp .

When ρ is a general state, it can be written as a convex combination of pure states,
i.e. ρ =

∑
ψ cψ|ψ⟩⟨ψ|. Since ρk ≥ cψψk for each ψ and each k, we have supp(ψk) ⊂

supp(ρk) where supp denotes the support space of a Hermitian operator. To see this,
notice the fact that |φ⟩ ∈ supp(M) for a Hermitian operatorM if and only if ⟨φ|ξ⟩ = 0

holds for any |ξ⟩ satisfying ⟨ξ|M |ξ⟩ = 0. We thus have Πψk ≤ Πρk and hence
⊗

k Π
ψ
k ≤⊗

k Π
ρ
k. It follows that

ρ =
∑
ψ

cψψ ≤
∑
ψ

cψ
⊗
k

Πψk ≤
⊗
k

Πρk ,
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completing the proof.

Similarly to [DSW16, Lemma 18], we have the following lemma.

Lemma 32. Let B = [m]. For each bn :=
(
b(1), . . . , b(n)

)
∈ Bn, PBn(bn) is a

positive semidefinite operator on (Cd)⊗n such that if b(i) = b(j) for i ̸= j, then
W(ij)PBn(bn)W †

(ij) = PBn(bn), where W(ij) is the operator swapping the i-th and j-th
systems. Then there exists some measure dρB on (D(Cd))B such that for any bn ∈ Bn,

PBn(bn)

trPBn(bn)
≤ poly(n)

∫
F
( PBn(bn)

trPBn(bn)
, ρ∧nB (bn)

)2
ρ∧nB (bn) dρB , (5.4)

where ρ∧nB (bn) := ρB(b
(1))⊗ · · · ⊗ ρB(b

(n)).

Proof. We first consider the pure state case that PBn(bn) is a pure state ψBn(bn) on
(Cd2)⊗n for each bn. Let dφB = dφ1 · · · dφm, where dφi is the uniform spherical mea-
sure on SCd for each i. For each bn, There exists π ∈ Sn such that πbn = 1q12q2 · · ·mqm

for some integers qi. Since the inequality (5.4) is permutation invariant in the sense that
it is implied by ψBn(σbn) ≤ poly(n)

∫
⟨ψBn(σbn), φ∧n

B (σbn)⟩φ∧n
B (σbn) dφB for σ ∈ Sn,

it suffices to prove the case that bn = 1q12q2 · · ·mqm . It holds that

ψBn(bn) = (Π1 ⊗ · · · ⊗ Πm)ψBn(bn)(Π1 ⊗ · · · ⊗ Πm) , (5.5)

where Πi is the projector onto the symmetric subspace ∨qiCd. Denote βd,N :=
(
d−1+N
d−1

)
for any positive integers d and N . Note that Herm

(
∨qi Cd

) ∼= Rβ
2
d,qi , and thus that

{|ψ⟩⟨ψ|⊗qi : |ψ⟩ ∈ SCd}, subject to the normalization condition, is contained in a real
affine space of dimension β2d,qi − 1. Due to Caratheodory’s theorem, for each i there
exists an ensemble {(pki , |φki⟩⟨φki |)}ki such that

∫
|φ⟩∈SCd

|φ⟩⟨φ|⊗qi dφ =

β2
d,qi∑
ki=1

cki |φki⟩⟨φki |
⊗qi , (5.6)

where dφ stands for the uniform probability measure on the unit sphere S(Cd). Thus
since Πi = βd,qi

∫
|φ⟩∈SCd

|φ⟩⟨φ|⊗qi dφ,

Π1 ⊗ · · · ⊗ Πm = βd,q1 · · ·βd,qm
∑

k1,...,km

ck1 · · · ckmφ
⊗q1
k1

⊗ · · · ⊗ φ⊗qm
km

(5.7)

where ki ranges over
[
β2d,qi

]
.
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It follows from Eqs. (5.5) and (5.7) that

ψBn(bn) ≤ β4d,q1 · · ·β
4
d,qm

∑
k1,...,km

c2k1 · · · c
2
km

⟨
ψBn(bn),

⊗
i
φ⊗qi
ki

⟩⊗
i
φ⊗qi
ki

≤ β3d,q1 · · ·β
3
d,qm

∑
k1,...,km

ck1 · · · ckm
⟨
ψBn(bn),

⊗
i
φ⊗qi
ki

⟩⊗
i
φ⊗qi
ki

, (5.8)

where the first inequality is due to that
∑r

i,j=1MiXM
†
j ≤ r

∑r
i=1MiXM

†
i for X ≥ 0

[LW17], and the second follows from that pki ≤ β−1
d,qi

.

Notice that β3d,q1 · · ·β
3
d,qm

= poly(n) for fixed d and m. Since Eq. (5.6) holds when
all |φki⟩ are replaced by U |φki⟩ for any unitary U , one can integrate Eq. (5.8) with
respect to all φki to obtain

ψBn(bn) ≤ poly(n)
∫ ⟨

ψBn(bn), φ∧n
B (bn)

⟩
φ∧n
B (bn) dφB . (5.9)

We now turn to the general case that PBn(bn) is positive semidefinite for each bn.
Using the operator-vector correspondence (1.1), any permutation invariant operator
acting on H1⊗· · ·⊗Hn has a symmetric purification on H1⊗K1⊗· · ·⊗Hn⊗Kn. Let
ψBn(bn) be such purification of PBn(bn) for each bn. Then the desired result follows.

Lemma 33 ([AFR15]). Let X = [m],A = [l], and let PAn|Xn : An × X n → [0, 1]

be some permutation invariant conditional distribution in the sense that P (an|xn) =
P (πan|πxn) for any xn ∈ X n, an ∈ An and π ∈ Sn. Then there exists some measure
dQA|X on [0, 1]A×X such that

PAn|Xn ≤ (n+ 1)m(l−1)

∫
Q∧n

A|X dQA|X . (5.10)

Lemma 34. Let Y = [m],B = [l], and let PBn|Yn : Bn × Yn → Pos
(
(Cd)⊗n

)
be an

operator assemblage satisfying P (πbn|πyn) = π · P (bn|yn) for any π ∈ Sn. Then there
exists a measure dQB|Y on (Cd)B×Y such that

PBn|Yn ≤ poly(n)
∫
Q∧n

B|Y dQB|Y . (5.11)

Proof. Let dQB|Y =
dp1,1
c1,1

· · · dp1,l−1

c1,l−1
· · · dpm,l−1

cm,l−1
dφ1,1 · · · dφ1,l · · · dφm,l where dφy,b is the
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uniform spherical measure. Thus∫
Q∧n

B|Y(b
n|yn) dQB|Y =

∫ c1,1

0

dp1,1
c1,1

· · ·
∫ cm,l−1

0

dpm,l−1

cm,l−1
p
q1,1
1,1 · · · pq1,l1,l · · · pqm,l

m,l

·
Πq1,1
βd,q1,1

⊗ · · · ⊗
Πqm,l

βd,qm,l

,

(5.12)

where py,b, qy,b, cy,b are defined in the same way as in Lemma 33.
Since P (πbn|πyn) = π · P (bn|yn), one has trP (bn|yn) = trP (πbn|πyn). Due to

Lemma 33,

trP (bn|yn) ≤ (n+ 1)m(l−1)

∫ c1,1

0

dp1,1
c1,1

· · ·
∫ cm,l−1

0

dpm,l−1

cm,l−1
p
q1,1
1,1 · · · pq1,l1,l · · · pqm,l

m,l .

(5.13)

Due to Lemma 31, we have

P (bn|yn)
trP (bn|yn)

≤ Πq1,1 ⊗ · · · ⊗ Πqm,l
. (5.14)

Taking together (5.12), (5.13) and (5.14), and using that βd,q1,1 · · ·βd,qm,l
= poly(n),

we obtain
PBn|Yn ≤ poly(n)

∫
Q∧n

B|Y dQB|Y .

5.3 Parallel repetition for nonsignaling strategy

In this section we show that for n-fold parallel repetition of an extended nonlocal game
G using commuting nonsignaling strategy, the game value val(Gn) vanishes exponen-
tially as n grows, given that the one-shot game value val(G) is strictly less than 1. By
definition,

val(Gn) = max
QAn|Xn∈NS

∑
an,xn

µ∧nX (xn)
⟨
QAn|Xn(an|xn), V ∧n

AX (a
n, xn)

⟩
. (5.15)

We now study the symmetric property in this expression and shall exploit this
symmetry in later analysis. For π ∈ Sn, an :=

(
a(1), . . . , a(n)

)
∈ An and xn :=(

x(1), . . . , x(n)
)
∈ X n, we write πan := π · an :=

(
a(1

′), . . . , a(n
′)
)
where k′ := π−1(k),

and write π · (an|xn) := (πan|πxn). We also write π ·X := WπXW
†
π where Wπ is the
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operator permuting the systems according to π ∈ Sn.

Notice that V ∧n(an, xn) = V (a(1), x(1)) ⊗ · · · ⊗ V (a(n), x(n)). For any π ∈ Sn we
have that π · V ∧n = V ∧n, and thus∑

an,xn

µ∧n(xn)⟨Q(an|xn), V ∧n(an, xn)⟩

=
∑
an,xn

µ∧n(xn)⟨Q(πan|πxn), V ∧n(πan, πxn)⟩

=
∑
an,xn

µ∧n(xn)⟨Q(πan|πxn), π · V ∧n(an, xn)⟩

=
∑
an,xn

µ∧n(xn)
⟨
(π−1 ·Q · π)(an|xn), V ∧n(an, xn)

⟩
.

Thus the strategies Q and π−1 · Q · π give the same game value for any π ∈ Sn.
Therefore by using the symmetrization 1

n!

∑
π∈Sn

π−1 · Q · π, we can assume w.l.o.g.
that the strategy Q in (5.15) satisfies

Q = π−1 ·Q · π (5.16)

for any π ∈ Sn.

If a(i) = a(j) and x(i) = x(j) for some i ̸= j, it follows from (5.16) thatW(ij)Q(an|xn)W †
(ij) =

Q(an|xn) for this case, where W(ij) is the operator swapping the i-th and j-th systems.
Thus, for any an, xn, there exists σ ∈ Sn and integers qi,j with i ∈ [|A|] and j ∈ [|X |],
such that (π1,1 ⊗ · · · ⊗ π|A|,|X |) · σ ·Q(an|xn) = σ ·Q(an|xn) holds for any πi,j ∈ Sqi,j .

Theorem 35. Let G be a two-player game such that val(G) ≤ 1−δ for some 0 < δ < 1.
Then for any positive integer n, we have

val(Gn) ≤
(
1− cδ2

)n (5.17)

for some constant c.

Proof. Due to Lemma 32, by noticing that F(X, |u⟩⟨u|)2 = ⟨X, |u⟩⟨u|⟩ for X ≥ 0, one
has for any an and xn,

µ∧nX (xn)QAn|Xn(an|xn)≤poly(n)
∫
F
(
µ∧nX (xn)QAn|Xn(an|xn), R∧n

AX (a
n, xn)

)2
R∧n

AX (a
n, xn) dRAX .

(5.18)
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The fidelity F in the expression above can be upper-bounded using Lemma 30 as

F
(
µ∧nX (xn)QAn|Xn(an|xn), R∧n

AX (a
n, xn)

)
≤ F

(
µ∧nX QAn|Xn , R∧n

AX
)

≤ F
(
µ∧nX QAn

i |Xn , R∧n
AiX

)
= F

(
µ∧nX Q′

An
i |Xn

i
, R∧n

AiX
)

≤ poly(n)F
(
µ∧nX

∫
T∧n
Ai|Xi

dTAi|Xi
, R∧n

AiX

)
≤ poly(n) max

TAi|Xi

F(µXTAi|Xi
, RAiX )

n , (5.19)

where the second line uses the additivity of fidelity under direct sum, the third uses the
superadditivity of fidelity under addition, the fourth uses definition of the nonsignaling
strategy, the fifth uses Lemma 34, and the sixth uses the multiplicativity of fidelity
under tensor product.

Since the inequality (5.19) holds for each i = 1, 2, denoting

F̃(RAX ) := min
i

max
TAi|Xi

F
(
µXTAi|Xi

, RAiX
)
.

we have that

F
(
µ∧nX (xn)QAn|Xn(an|xn), R∧n

AX (a
n, xn)

)
≤ poly(n)F̃(RAX )

n . (5.20)

Inserting (5.20) into (5.18), we have

µ∧nX (xn)QAn|Xn(an|xn) ≤ poly(n)
∫

F̃(RAX )
2nR∧n

AX (a
n, xn) dRAX . (5.21)

Denoting Qε :=
{
RAX : F̃(RAX ) ≥ 1− ε

}
, we have

µ∧nX (xn)QAn|Xn(an|xn)

≤ poly(n)
(∫

R∈Qε

F̃(RAX )
2nR∧n

AX (a
n, xn) dRAX +

∫
R ̸∈Qε

F̃(RAX )
2nR∧n

AX (a
n, xn) dRAX

)
≤ poly(n)

(∫
R∈Qε

R∧n
AX (a

n, xn) dRAX + (1− ε)2n
∫
R ̸∈Qε

R∧n
AX (a

n, xn) dRAX

)
.
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For RAX ∈ Qε, applying the Fuchs-van de Graaf inequality, we have

max
i

min
TAi|Xi

D(µXTAi|Xi
, RAiX ) ≤

√
2ε . (5.22)

By the property of the commuting nonsignaling strategies, there exists a nonsignaling
operator assemblage KA|X such that

D(µXKA|X , RAX ) ≤ C
√
ε (5.23)

for some constant C. From the hypothesis val(G) ≤ 1− δ we get that∑
a,x

µ(x)⟨P (a|x), V (a, x)⟩ ≤ 1− δ (5.24)

for any nonsignaling PA|X . Combining Eqs. (5.23) and (5.24), we have∑
a,x

⟨R(a|x), V (a, x)⟩ ≤ 1− δ + C
√
ε ,

since ∥V (a, x)∥∞ ≤ 1 for any a and x. It follows that∑
an,xn

⟨R∧n(an|xn), V ∧n(an, xn)⟩ ≤ (1− δ + C
√
ε)n .

Notice that for RAX /∈ Qε,
∑

an,xn⟨R∧n(an|xn), V ∧n(an, xn)⟩ ≤ 1. Thus the win-
ning probability val(Gn) is upper bounded by poly(n)

(
(1 − δ + C

√
ε)n + (1 − ε)n

)
.

Taking ε = ( δ
2C )

2, one has

val(Gn) ≤ poly(n)
(
1− cδ2

)n (5.25)

for some constant c. Notice that val(Gn) ≥ val(G)n. Using the fact that if a non-
negative series tk satisfy that tmn ≥ tmn for any positive integers m and n, and if
tn ≤ poly(n), then tn ≤ 1 for any n, one can remove the prefactor poly(n) in (5.25) to
conclude the proof.
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