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Abstract 
In this thesis, the strategies of hybrid power plants (HPPs) in electricity markets to 

minimize the impacts of wind power uncertainties through storage and demand 

managements are investigated.  

Firstly, a commercial Compressed Air Energy Storage (CAES) aggregator equipped 

with a simple cycle operation mode is correlated with a Wind Power Aggregator (WPA) as 

an HPP to participate in electricity markets. The WPA utilizes the CAES to tackle wind 

power forecasting errors and uncertainties associated with different electricity market prices, 

while CAES can get assistance from WPA to schedule its charging/discharging and simple 

cycle modes more economically. A three-stage stochastic decision-making method is 

formulated to model the proposed optimization problem. Besides, conditional value-at-risk 

(CVaR) is added to the model to control the financial risk of the problem and offer different 

operation strategies for different financial risk levels. It also provides both bidding quantity 

and bidding curves to be submitted to the electricity markets. 

Secondly, an offering strategy with a three-stage stochastic programming is presented 

for an HPP, which includes a WPA and a Demand Response Aggregator (DRA). Three 

electricity markets are considered including DA, intraday, and balancing market for the joint 

operation of WPA and DRA as an HPP. The CVaR is also added to the HPP offering 

strategy to control the profit risk. The offering strategy for the second case study is tested in 

a wind farm and electricity market located in Spain. The result shows that the HPP offering 

strategy can effectively assist the balancing and outage problem of the WPA and increase 

the overall profit of the joint operation. 
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Finally, an HPP, including a CAES aggregator with a WPA is modeled considering 

network constraints. Three objective functions are considered including electricity market 

maximization, congestion management, and voltage stability improvement. In order to 

accurately model the WPA, pitch control ability is added to wind generator models to 

control the wind power curtailment level. Multi-objective Pareto front solutions are 

considered to optimize all the mentioned objective functions properly, and finally, the best 

solution is suggested using the fuzzy method. The proposed approach is tested on a realistic 

case study based on a wind farm and electricity market located in Spain, and the IEEE 57 

bus test system is used to analyze the network constraint effects on the HPP scheduling for 

different objective functions. 

 

Keywords: Hybrid Power Plant; Wind Power Aggregator; Demand Response 

Aggregator; Compressed Air Energy Storage Aggregator   
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1 Introduction 

1.1 Background and Research Question 
Recently, the number of distributed generations (DGs) have been rapidly increased in 

electricity networks. Even though DGs have the capability of substituting the energy 

generated by conventional power plants, they require advanced technologies to safely and 

economically deliver energy to the system. With the high penetration of DGs, this attitude 

always causes the increasing total investment on the infrastructure and, in the long run, has 

an adverse impact on the DG integration [1, 2]. In order to find a solution to the mentioned 

issue, DGs must be incorporated by a current systematic arrangement which helps them to 

contribute simultaneously in different electricity markets. HPP is a concept that can be 

employed in accomplishing this objective [2]. The HPP aggregates many heterogeneous 

Distributed Energy Resources (DERs) to function as a single DER. It also has the inherent 

capacity to include the influence of the system on the aggregated DER output. Many 

projects have been done using HPP concepts, for example, the European virtual fuel cell 

power plant [3], and the FENIX HPP [4].  

In order to participate in the electricity market, the HPPs may have nondispatchable and 

dispatchable power plants including renewable and non-renewable ones, storage units such 

as batteries and pump storage, and responsive loads that have some flexibility in their 

energy consumption levels. In other words, in HPPs, there are diverse kinds of power plants 

and storage units combined to overcome and handle the stochastic nature of renewable 

generators, the energy price and so on in a coordinating attitude [2]. HPP consists of two 
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categories, the commercial HPP (CHPP) and Technical HPP (THPP). Fundamental and 

most essential functions of CHPP are to optimize and schedule the production of aggregated 

DER units and consumption of the aggregated Demand Response (DR) resources. These 

functions are generally based on submitting DERs' characteristics, predicting the production 

and energy consumption, forming offers or bids, submitting bids or offers to different 

electricity markets, calculating optimal production and consumption, and making a daily 

schedule, etc. On the other hand, the THPP, which is defined comprehensively in [5], takes 

into consideration the actual system impact on the DER aggregated profile in addition to the 

cost and operating characteristics of the portfolio. The THPP is composed of DERs which 

are located at the same geographical site. The most important tasks of the THPP are 

uninterrupted monitoring, managing of financial issues, fault detection and localization, and 

so on [6]. 

1.2 Research Objectives and Scope 
The aims and scopes of this thesis are as follows: 

 A coordinated strategy of an HPP, which includes different types and 

configurations of aggregators, will be identified to participate in electricity 

markets. 

 Novel bidding strategies will be found to maximize the profit of different 

possible configurations of HPP. 

 Bidding strategies of an HPP consisting of a WPA and a CAES aggregator will 

be proposed for the participation in three electricity markets (day-ahead, 

intraday, and balancing markets). 
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 An optimal offering strategy model for the joint operation of a WPA and a DRA 

as an HPP will be developed to maximize their expected profit and also to 

mitigate uncertainties related to stochastic nature and wind power outage. 

 HPP will be optimally managed to improve market profit, congestion 

management, and voltage stability considering network constraints. 

1.3 Dataset 
In this thesis, the preliminary intention was to utilize the data of the Australian 

electricity market. Unfortunately, due to the simple structure of the Australian electricity 

market, a proper alternative dataset from Spain electricity market, which has been used in 

numerous studies, was carefully chosen for the analysis and simulation. Spain electricity 

market includes deferent types of electricity markets, namely, DA, intraday, and balancing 

markets. In addition to market electricity prices, the data related to wind and costumers are 

also taken from Spain to be consistent.  

1.4 Contributions and Organization of the Thesis 

1.4.1 Intellectual contributions 
The key contributions of this these can be summarized as follows: 

 A CAES aggregator equipped with a simple cycle mode operation is modeled, where 

this aggregator has the ability to work as a gas turbine and is correlated with a WPA 

as an HPP to participate in electricity markets. In the proposed approach, the WPA 

uses the CAES to tackle its stochastic input and uncertainties related to different 

electricity market prices, and CAES can also use WPA to manage its 
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charging/discharging and simple cycle modes more economically. A three-stage 

stochastic decision-making method is used to model the mentioned optimization 

problem which considers three electricity markets, including DA, intraday, and 

balancing markets. The problem is formulated as mixed-integer linear programming 

which can be solved with available commercial solvers. Also, CVaR is added to the 

problem to control the financial risk of the problem and offer different operation 

strategies for different financial risk levels. The proposed method can provide both 

bidding quantity and bidding curves to be submitted to the electricity markets which 

is tested on a realistic case study based on a wind farm and electricity market located 

in Spain.  

 The stochastic nature of wind power generators and their possible outage are crucial 

issues which make them challenging to participate in electricity markets. However, 

demand-side as a decent balancing resource can be used to compensate for the 

challenges of supply-demand balance or state of outage for wind generators. In the 

next study, firstly the outage of wind generators is modeled. Then, an offering 

strategy with three-stage stochastic programming is presented for an HPP which 

includes a wind power producer and a demand response provider. Three electricity 

markets are also considered in this study, including DA, intraday, and balancing the 

market. The CVaR is also added to the offering strategy to control the profit risk. 

The offering strategy is tested in a wind farm and electricity market located in Spain.  

 In the final study, an HPP including a CAES aggregator with a WPA is modeled 

considering network constraints. Three objective functions are considered, including 

dict://key.25D62D261B9B6943BE86B7DCF8F9D255/issue
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electricity market maximization, congestion management, and voltage stability 

improvement. In order to properly model the WPA, pitch control curtailment wind 

power level is added to wind generators. Multi-objective Pareto front solutions are 

considered to properly optimize all the mentioned objective functions, and finally, 

the best solution is provided using the fuzzy method. The proposed approach is 

tested on a realistic case study based on a wind farm and electricity market located in 

Spain, and IEEE 57 bus test system is used to analyze the network constraint effects 

on the HPP scheduling for different objective functions. 

1.4.2 Thesis organization 
The rest of the thesis is organized as follows. Chapter 2 reviews the background, 

literature, and the concepts of different types of HPP, their operating systems, electricity 

markets, and stochastic programming. Chapter 3 studies a risk-constrained bidding strategy 

for the joint operation of wind power and compressed air energy storage aggregators. A 

risk-constrained demand response and wind energy systems integration are investigated to 

handle stochastic nature and wind power outage in Chapter 4. A bidding strategy of HPP 

considering network constraints is proposed in Chapter 5 for voltage stability improvement, 

electricity market profit maximization and congestion management. Finally, Chapter 6 

concludes the thesis along with suggestions for future works. 
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2 Background and Literature Review 
This chapter reviews the background, literature, and the concepts and different types of 

HPP, along with the corresponding HPP operating. Furthermore, it briefly summarizes the 

organization and agents involved in electricity markets. The fundamentals of stochastic 

programming are also provided.  

2.1 HPP Components 
There is some substantial literature that studied HPP problems such as the modeling of 

DERs, storage units, and other related components in an HPP. In what follows, the HPP 

components are firstly described, and then the most critical literature related to them is 

briefly introduced. 

An HPP usually has three active components. The first component consists of the 

conventional dispatchable power plants, which are usually small scale fossil fuel power 

stations, and intermittent generating units. The second component may include the storage 

units which store electrical energy at a specified time in order to use it in the future. The 

third component comprises responsive or flexible loads, which covers residential and 

industrial electrical energy systems.  

Different components and strategies are used in literature for HPPs; for example in [7], 

the HPP system consists of wind, solar, hydrogen and thermal units. In this study, the 

intermittent resources of the HPP are the wind and solar generating station units. Ref. [8] 

considers an HPP consisting of DGs, electric vehicles and capacitors. Ref. [9] studies an 

HPP which is equipped with intermittent and conventional power plants including 

renewable sources and storage units. In [10], an HPP which includes wind generation units 
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as an intermittent source pumps storage system as a storage facility, and a conventional 

dispatchable power plant is scheduled. Ref. [11] studies the typical HPP configuration and 

establishes an HPP with small generators including the wind, solar, CHP plants and flexible 

loads. In [12], an HPP, including solar units and responsive demands, is explored. Ref. [13] 

studies a CHPP which includes DERs, battery storage units, and flexible loads. Ref. [14] 

considers an HPP as the combination of wind power units along with electric vehicles. Ref. 

[15] suggests a procedure to create an HPP, including a wind generator and a DR provider. 

An HPP with wind generation units and pumped storage unit station working in a remote 

and isolated island is studied in [16].    

In the following subsections, different components of HPP are defined in detail, and the 

related recent literature is briefly described. 

2.1.1 Energy Production Units 
Gas turbines, diesel generators, and biodiesel or biogas resource-based generators are 

some of the examples of conventional dispatchable power plants that are used in an HPP.  

Nowadays, renewable energy resources are an essential part of an HPP. These kinds of 

energy resources are intermittent and have stochastic inputs.  In other words, their output 

comes from energy sources that generally depend on natural resources such as the wind or 

sunlight. As a consequence of the mentioned phenomena, the output of these kinds of 

stochastic generating units is naturally hard to predict. Besides, these stochastic generating 

units are nondispatchable. Therefore, they need to be provided with backup units such as 

conventional dispatchable power plants and storage units. 
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Besides, using an electrical generating station for providing electricity and heat together 

as CHP units are also very attractive and popular in an HPP. The CHP concept, in particular, 

has the best thermal efficiency. Also, in the direction of adjusting for the imbalance and 

likely financial disadvantages, the CHP is used to prevent the system from financial risks. 

For example, in [17], the capability of an HPP that includes CHP and solar units facilities is 

assessed to reduce the imbalance between the power generation and consumption due to the 

renewable generations. In this study, the HPP is willing to make energy bids into the 

markets, including the day-ahead (DA) and balancing markets. The balancing market 

alleviates the energy imbalance due to the difference between the expected value of the 

predicted electricity and the actual output. The CHP is used for adjusting this imbalance.  

Different control methods and the procedure can be used for CHP-based HPPs. For 

example, a decentralized control method is explored in [18] for optimizing the residential 

systems including CHPs, heating boilers and thermal storage. In [18, 19], the most desirable 

procedure of CHP arrangements is characterized. Ref. [20] demonstrates a system to assess 

the most desirable bidding planning of an HPP consisting of a CHP coupled with district 

heating (CHP–DH). In this paper, the ultimate goal is to investigate a bidding strategy for an 

HPP with maximum benefits. In [21], a stochastic profit-based model is taken into 

consideration for an industrial customer with CHP units in which the consumer 

requirements are provided by a responsive load.  

A modeling methodology for CHP systems is presented in [22] as an element of the 

HPP with a high penetration of renewable energy resources. The operational schemes of 

CHP systems are demonstrated in connection with the market. 
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2.1.2 Storage Units 
Storage units provide an opportunity for an HPP to transfer electrical energy from one 

period to another. The most important purpose of using storage units is to utilize this energy 

at a future time. Nowadays, in the production systems where stochastic renewable 

generators are used, the storage units are taken into consideration to balance the demand and 

generation. Ref. [23] reviews the storage units technologies used with stochastic renewable 

generators.  

Many types of storage units can be used in modern HPP. The most important storage 

units that can be combined with the HPP are Hydraulic Pumped Energy Storage (HPES), 

which is a sort of hydroelectric energy storage used for balancing load; Compressed Air 

Energy Storage (CAES), which is one way to store energy using compressed air; Flywheel 

Energy Storage (FES), which works by speeding up a rotor to an exceedingly high speed 

and preserving the produced energy for use at another time; Superconducting Magnetic 

Energy Storage (SMES) systems, which accumulate energy in the magnetic field generated 

by the flow of direct current in a superconducting coil; Electric double-layer capacitors 

(EDLC); Battery Energy Storage System (BESS); and so on. Ref. [24] reviews the HPES 

capabilities, technical progress, and hybrid systems that include wind-hydro, PV-hydro, and 

wind-PV-hydro. 

Also, electric vehicles, including both Plug-in Electric Vehicles (PEVs) and Plug-in 

Hybrid Electric Vehicles (PHEVs) can be considered as energy storage units in HPPs. For 

example, in [14], an HPP considered as the combination of wind power units and electric 

vehicles. In this study, wind units try to use electric vehicles as a reserve storage unit to 

handle the uncertain nature of wind generators. Taking advantage of the rapidly growing 

https://en.wikipedia.org/wiki/Energy_storage
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number of electric vehicles, this study confirms that there is no need for preliminary 

investment in storage systems. A novel technique for backing up the scheduling of an HPP 

is suggested in [25]. The purpose of this technique is to reduce operation costs by 

considering the extensive integration of Vehicle-to-Grid (V2G). Ref. [26] evaluates the 

opportunities of using electric vehicles as energy storage units in an HPP. The effects of 

market procedures on the behavior of market performers and the owners of electric vehicles 

are simulated in [27]. Ref. [28] presents a review of electric vehicles used in a smart grid. 

Also, the challenges and problems caused by the large numbers of electric vehicles and 

investigation of their abilities to interact with the RESs and DR programs are reviewed in 

[29]. 

The investment cost and efficiency associated with the energy storage systems are 

important parameters affecting the planning and operation programs in power systems [133]. 

The efficiency and investment cost for a different type of energy storage systems are 

illustrated in Fig. 2.1. According to this figure, the CAES investment cost is less than the 

other large-scale types of energy storage systems. The efficiency of large-scale CAES is 

close to 70%, and owing to the low investment cost, this efficiency level is fair. Also, 

lifetime is one of the important parameters of energy storages. Fig. 2.2 depicts the lifetime 

and size range of different types of energy storages. According to this figure, the CAES 

systems have a long life duration in comparison with many other types of energy storage 

systems which are capable of being employed in power systems to integrate with renewable 

energy resources. Other features such as penetration in power systems and applications for 

different types of energy storages are tabulated in Table 2.1. According to this table, the 

hydro pumps have the most penetration level in power systems while their applications are 
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less than some energy storage technologies such as CAES, secondary batteries, and flow 

batteries.  

 

Fig. 2.1 Comparison of the efficiency and investment cost for different type of energy storage systems 

 

Fig. 2.2 Comparison of the life time and size range of different types of energy storages 

 

 

 

 

 



Hybrid Power Plant Bidding Strategy for Electricity Market Participation 

12 
 

Table 2.1 Comparison of different energy storage systems 

Technology Penetrati
on Applications 

Hydro Pump 3% 
 

Electricity, Load Leveling 
 

CAES < 1% 
Integration with Renewables, Power Quality, Spinning Reserve, 
Electricity, Peak Shaving, Transmission and Distribution (T&D) 

Applications 

Fly Wheel < 1% 
 

Electricity, Power Quality 
 

Secondary 
Batteries < 1% 

 
Integration with Renewables, Power Quality, Spinning Reserve, 

Electricity, Peak Shaving, T&D Applications 
 

Flow Batteries < 1% 

 
Integration with Renewables, Power Quality, Spinning Reserve, 

Electricity, Peak Shaving, T&D Applications 
 

Double-layer 
Capacitor 

(DLC) 
< 1% 

 
Power Quality, Deployed in Uninterruptable Power Supplies 

 
Superconducti

ng Energy 
Storage 
(SMES) 

< 1% 
 

Electricity, Power Quality 
 

Sensible Heat 
Storage (SHS) < 1% 

 
Electricity, Power Quality, T&D Applications 

 
 

2.1.3 Flexible Loads  
Flexible loads refer to the loads that can adjust their typical consumption patterns in 

response to variations in the electricity price, or to incentive payments [30]. The flexible or 

so-called responsive loads are composed of two parts. The first part is a structure which is 

used for communication between the load and central section. The second part is a control 

system necessary to regulate the flexible loads’ utilization level. The flexible loads’ 

utilization level in an HPP can be changed to meet certain requirements. These changes can 

be done through an authorized control command or a kind of price signals called dynamic 

pricing methods. DR can mitigate the critical load periods and improve the reliability of the 
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system. However, implementing the DR needs an accurate demand forecast. The inaccurate 

forecast of demand is the main uncertainty in a system equipped with DR programs. 

Practical limits constrain the flexibility of dispatchable power plants and intermittent 

generating units. Therefore, the flexibility of the system is restricted if only energy 

production units are used [31, 32]. DR can be used to increase the flexibility of the system. 

An assessment of the DR flexibility of housing smart appliances is presented in [33]. Ref. 

[32] declares a comprehensive plan and model of DR and responsive loads. In this study, 

the flexibility of responsive loads is exploited using price-responsive shiftable demand bids 

in the energy market along with spinning reserve bids in the reserve market.  

 Different DR definition and categorization are considered through the Federal Energy 

Regulatory Commission (FERC). The state-of-the-art DR definition and categorization are 

presented thoroughly in [34]. In this study, a comprehensive advantage of DR, along with 

the impacts of DR on electricity prices, is considered.  

DR needs to be incorporated in a system like an HPP to participate in an electricity 

market. Ref. [35] assesses the action of incorporating a DR into an HPP trading in a DA 

market and a balancing market. In [36], a functioning process with novel DR programs for 

HPP to take part in an energy market is suggested. Also, a method to gain the best offering 

strategy for an HPP consisting of a WPA and a DR in electricity markets is proposed in [15].  

The high penetration of both DERs and DR in HPPs requires state-of-the-art 

technologies for preserving system reliability. The problems caused by high penetration of 

DERs are reviewed in [37]. Ref. [38] reviews the current application and operation strategy 

of DR in a smart grid. Ref. [39] presents a review of integrating the DERs and DR in 

electricity markets.  
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A new DR strategy is offered in [40] which is based on the consumers' submissions of 

candidate load profiles. Thus, forecasting the price elasticity of demand is not needed. 

Furthermore, the suggested DR strategy is improved and employed in a framework of the 

HPP. 

2.2 Operation Systems of HPP  
The HPP organizes the dispatchable power plants, intermittent generating units, storage 

units, and DRs using an Energy management system (EMS). EMS manages the energy 

transactions in the HPP through bidirectional communication. It controls all the units, 

including the non-dispatchable and dispatchable power plants, storage units along with 

responsive loads [6, 41]. The EMS has the capability of controlling the system for many 

different objectives, such as minimizing costs, minimizing the output pollution, or 

maximizing the profits. With the aim of these objectives, the EMS is required to receive 

data related to the units and predict the stochastic information such as renewable generators 

inputs, the price of energy, probable bottlenecks in the grid, etc. 

In many existing studies, the modeling of uncertainties is also taken into account, such 

as the uncertainties in non-dispatchable renewable recourses, as well as the uncertainties in 

linear and nonlinear optimization problems. To handle the uncertainty problem, the energy 

production units, storage units, and DRs should be coordinated by the EMS of HPP to 

guarantee the stability of the HPP. In [42], the energy and reserve are organized at the same 

time in an HPP, and the Point Estimate Method (PEM) is used for modeling the 

uncertainties. Ref. [43] offers a stochastic programming model for involving the joint 

activity of the wind farm hydro system. In this study, in order to effectively handle the 
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prediction error of wind power generation, the HPP owner considers its hydro plants as 

reserve capacity. The problem is also formulated as a Mixed Integer Linear Programming 

(MILP) to be solved by available commercial optimization programs. In [44], a probabilistic 

approach based on PEM is used in an HPP. In this study, the uncertainty of DERs is 

compensated by the additional reserves. The large-scale integration of DERs is considered 

thoroughly by industrialized economic dispatch algorithm. Ref. [14] considers an HPP with 

wind power units and electric vehicles. In this study, wind units use electric vehicles as a 

storage unit to handle the uncertain nature of wind generators. In [12], systematic control of 

an HPP, including solar units and responsive demands, is explored to handle the uncertain 

nature of solar generators. The purpose of this study is to propose a flexible load which can 

be changed in a wide range. In order to do so, the power output of the solar units and 

responsive demands are synchronized. This problem is formulated as a Mixed Integer 

Programming (MIP) problem. A trading model based on the stochastic programming to 

maximize the HPP bidding profits in the DA market and balancing market is presented in 

[45]. The trading model considers the uncertainty of stochastic variables of the HPP. In the 

direction of moderating the uncertain effects of wind and solar units in an HPP, a robust 

optimization is presented in [46] to produce a stochastic model considering DR. In [47], a 

stochastic approach is offered for HPPs considering diverse uncertainties in generation units, 

electricity consumption, and price. The stochastic approach allows them to participate in a 

DA market. Ref. [48] deliberates the firm capacity provision under an HPP prototype in 

which the stochastic and intermittent nature of renewable sources is provided. In this study, 

the decision trees are used in this stochastic optimization problem considering the short-

term and long-term firm capacity provision periods. This prototype makes it possible for the 
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HPP to make available reserve capacity and contribute efficiently in electricity markets. Ref. 

[49] proposes a distributed optimization algorithm for the HPP bi-level optimal dispatch 

considering the uncertain number of agents. An HPP model is presented in [50] to expand a 

heuristic dynamic game theory considering the price uncertainty in addition to the security 

constraint. The proposed model can efficiently simulate the actions of market performers in 

a given amount of time to evaluate the economic behavior of the performers.  

 The bidding strategies offered by an HPP can be organized to fulfill different 

objectives. For example, in [2, 51], the bidding problem faced by an HPP is presented with 

two objectives, participating in DA markets and providing spinning reserve service. The 

proposed bidding strategy is a non-equilibrium model based on the deterministic price-

based unit commitment (PBUC). The bidding strategy takes into account the supply-demand 

balancing constraint and security constraint. The objectives of [11] are to maximize the self-

supply and market revenue of the CHP-based HPP from the perspective of the HPP in 

addition to the system operators. Ref. [52] suggests a procedure based on an evolutionary 

optimization algorithm in order to minimize the operational cost of an HPP, which is in 

charge of DERs in a distribution network. The goal of Ref. [53] is to determine a two-stage 

operational planning structure for the short-term operation of the HPP. In this study, a 

stochastic bidding model is suggested for the HPP to maximize the profit from the energy 

market. Ref. [20] presents a method to find the optimal bidding planning of an HPP 

comprising a CHP and RES system for the maximum benefit. Ref. [13] studies the optimal 

bidding approach for a CHPP, which includes DERs, battery storage units, and flexible 

loads.  The proposed optimal bidding method is used to maximize the profit along with the 

expected real-time production and the consumption minimization. In [54], a model of THPP 
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is proposed to reduce its cost with non-linear programming considering the constraints of 

DGs, distribution systems and DR. One of the most important objectives that can be 

considered in an HPP is the system emission reduction. A multi-agent system is designed in 

[55] for the emission regulation of the aggregated micro-generators. In this study, the 

simulations of the operational system are confirmed by using an experimental system. The 

emissions of HPP are regulated to be close to the reference value. In [56], an EMS model 

for HPPs is proposed to investigate the cost and emission impacts of HPP formation and 

PHEV penetration for a case study in California. 

An arbitrage strategy can be used for HPPs taking part in energy and ancillary service 

such as spinning reserve and reactive power services markets [57]. In [58], the aggregation 

of DERs as an HPP is studied in a distribution network to allow it to take part in joint 

energy and reserve markets economically. This approach, which is predicated upon the 

price-based unit commitment method, has considered virtually all the technical data in the 

proposed model. Ref. [59] develops an HPP to economically offer conventional energy 

storage systems through the existing network assets along with flexible demands. The cost-

effective benefits of the HPP for frequency response services were assessed. In [60], energy 

and ancillary services are offered to solve the joint management for the following day in 

view of minimizing the HPP total operation costs. In [61], a probabilistic model is proposed 

and investigated for optimal DA scheduling of electrical and thermal energy resources in an 

HPP by simultaneously scheduling the energy and reserve in the presence of energy storage 

devices and demand response resources. 
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2.2.1 Co-operation of WPA and DRP 
Due to the stochastic, unstable and non-dispatchable nature of wind generations and 

their possible outage, it is usually challenging for these kinds of producers to take part in 

electricity markets and compete with other producers such as conventional power plants. 

Accordingly, it is vital to propose a new strategy for WPAs to assist them in tackling these 

problems [62].  

Recently, using demand response programs as a rapid resource generator has been 

growing fast for different purposes [63, 64]. The ability to rapidly respond makes demand 

response resources a flexible resource to manage the unstable nature or even possible outage 

of wind power generators [65, 66].  

Many studies provide an offering strategy for WPAs to participate in electricity markets 

[67-69]. For example, Ref. [70] offers a procedure to develop an offering strategy for a 

WPA including different types of electricity markets and considering the uncertainty related 

to the stochastic nature of wind and prices of different markets. Ref. [71] recommends an 

offering strategy by considering a WPA as a price-maker in the DA market. In this paper, 

the uncertainties related to the stochastic nature of wind and prices of different markets are 

also considered. Ref. [72] studies an offering strategy of a WPA as a price-taker in the DA 

market and a price-maker in the balancing market. Ref. [73] considers two different offering 

strategies for the cooperative contribution of a wind power generator in two electricity 

markets, including energy and primary reserve markets. 

Also, some studies provide offering strategies for WPAs, along with other producers 

[74-76]. For example, Ref. [77] studies the joint operation of a WPA and a pumped-storage 

facility by considering the uncertainty related to the stochastic nature of wind and market 

dict://key.25D62D261B9B6943BE86B7DCF8F9D255/manage
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prices.  The impact of the stochastic nature of wind on the amount of pumped-hydro stored 

energy in a future U.K. system is evaluated in [78]. Ref. [79] offers a bidding strategy for a 

WPA and hydro facility to be able to participate in a DA market using the CVaR model to 

control the financial risk. Ref. [80] evaluates two models including a WPA supported with a 

gas turbine and a WPA supported with a CAES. 

Recently, many studies offer demand response resources as a more flexible resource to 

manage the unstable nature of wind power generators [81-83]. For example, Ref. [84] 

specifies the optimized value of load as a demand response for congestion management and 

the improved use of wind power generations. An offering strategy for a WPA and a flexible 

load which can cover the wind power imbalances is suggested in [85] for participation in a 

DA electricity market. In order to minimize the total operational cost including imbalance 

fines because of wind energy over- and under-commitments, optimal scheduling of critical 

peak pricing events is evaluated in [86] from the perspective of a demand response facility. 

Ref. [87] offers a new offering strategy for a WPA to participate in three electricity markets 

including DA, intraday and balancing markets with the help of a demand response resource 

which is allowed to contribute to the intraday market. Ref. [88] offers a novel method that 

considers the uncertainty related to the amount of wind power generation and the load for 

corrective voltage control under contingencies. 

2.2.2 Co-operation of Commercial CAES Aggregator and WPA 
Nowadays, there is extensive attention towards energy storage systems primarily 

commercial CAES which is a developed energy storage system with the capability of 

functioning as a gas turbine when there is no air in the reservoir [89]. Commercial CAES 

dict://key.25D62D261B9B6943BE86B7DCF8F9D255/manage
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facilities can provide energy-shifting when there is instability in the electricity price. 

Besides, it is important to notice that the ability to work as a gas turbine (simple cycle mode 

operation) makes the CAES facilities different from other kinds of energy storages because 

they can follow their daily schedule in a more optimized approach and exploit price spikes 

when the reservoir is entirely depleted [90].  

To this end, several studies concentrate on best self-scheduling strategies for CAES 

facilities and calculate their energy arbitrage income in diverse electricity markets [91]. For 

example, a co-optimized CAES dispatch model to illustrate the significance of providing 

operating reserves and energy arbitrage in different U.S. electricity markets is presented in 

[78]. Ref. [90] proposes a risk-constrained bidding strategy for a commercial CAES plant 

that contributes to the DA energy market.  

Many studies provide an offering strategy for WPAs to participate in electricity markets. 

In [70], a procedure is proposed to develop an offering strategy for a WPA including 

different types of electricity markets and considering the uncertainty related to the stochastic 

nature of wind and prices of different markets. Ref. [71] recommends an offering strategy 

by considering a WPA as a price-maker in the DA market. Ref. [72] studies an offering 

strategy of a WPA as a price-taker in the DA market and a price-maker in the balancing 

market. Ref. [88] presents a novel method considering the uncertainty related to the amount 

of wind power generation and load for corrective voltage control to cope with the states in 

which the power systems experience voltage instability due to severe contingencies. 

Some studies provide offering strategies for WPAs, along with other producers [92]. In 

this regard, Ref. [77] studies the joint operation of a WPA and a pumped-storage unit by 

considering the uncertainty related to the fluctuating nature of wind and prices of the market.  
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The impact of wind uncertainty on the amount of pumped-hydro stored energy in the future 

U.K. system is evaluated in [78]. Ref. [79] proposes a bidding strategy for a WPA and 

hydro facility to be able to participate in a DA market using CVaR model to control the 

financial risk. Ref. [80] evaluates two models, including a WPA supported with gas turbines, 

and WPA supported with a CAES. An offering strategy for a WPA and a flexible load 

which can cover the wind power imbalances is suggested in [85] for participation in a DA 

electricity market. In order to minimize the total operational cost including imbalance fines 

because of wind energy over/under-commitments, an optimal scheduling of critical peak 

pricing events is evaluated in [86] from the perspective of a demand response unit which 

has wind energy to be able to trade in the DA market properly. Ref. [87] presents a new 

offering strategy for a WPA to participate in three electricity markets including DA, 

intraday and balancing markets with the help of a demand response resource which is 

allowed to contribute to the intraday market.  

2.3 Types of HPP  
The HPP is generally classified into two categories, which include technical and 

commercial ones.  The most important tasks of the Technical HPP (THPP) are uninterrupted 

and indefinitely long monitoring, managing of financial issues, fault detection and 

placement, and so on. Also, the most significant responsibilities of a Commercial HPP 

(CHPP) are the activity of protecting and submitting of DERs' characteristic, predicting the 

amount of consuming and producing energy, and so forth. Furthermore, these two types of 

HPP are described in more detail in the following:   
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2.3.1 Technical HPP (THPP) 
The THPP is composed of DERs which are located at the same geographical site, and 

also includes the simultaneous effect on the upstream network in addition to demonstrating 

the price and operational features of the portfolio. Amenities and roles that are performed by 

most THPPs are organizing the Distribution System Operator (DSO), along with making a 

possibility for Transmission System Operator (TSO) as well as ancillary services [4, 6].  

In THPP, small-scale units can have ancillary services and decrease unattainability 

possibilities through varying portfolios in comparison with individual and independent units. 

The technical abilities of DGs and their ancillary services potentials are comprehensively 

considered in [93, 94]. DSOs that are exploiting the THPP conception can be treated in 

place of Active Distribution Network (ADN) agents [41] which can also utilize ancillary 

services presented by DERs to enhance the operational performance of the network.  

Some of the essential capabilities of THPP are constant situation monitoring, benefits 

managing which is reinforced through statistic records information, self- recognition of the 

system modules, fault placement, easier maintenance services, and numerical investigation 

during task optimization [6]. 

2.3.2 Commercial HPP (CHPP) 
A CHPP has an accumulated profile which denotes the price and operational features of 

the DER portfolio. It is vital to mention that the influence of the upstream distribution 

network is not carefully contemplated in the accumulated profile of this kind of HPP. 

Facilities in a CHPP trade in different electricity markets including DA, intraday and 

balancing markets.  
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CHPP is a kind of speculator who trades aggressively in electricity markets and makes 

DER units having the opportunity to provide a clear, unobstructed view in the energy 

markets[6]. By using these benefits of CHPP for DER units, they can gain access to 

electricity markets, which in particular decreases the exposure to a chance of losing benefits. 

The DER units that are under the control of a CHPP can be spread out or scattered in all 

over the distribution networks or even throughout transmission networks. 

CHPP can schedule the production of the aggregated DER units to coordinate with the 

aggregated Demand Response Resources (DRRs). In general, the actions and activities 

expected from a CHPP include the generation of DER, prediction of energy consumption, 

supervision of possible demand outage, forming offers or bids, submitting bids and offers to 

electricity markets, calculating optimal production and consumption and making an 

everyday schedule. 

2.4 Electricity Markets 
This section provides a summary of the organization and agents involving in electricity 

markets. The purpose of this section is also to provide the fundamental structure needed to 

know about the scholastic programming problems addressed in different chapters of this 

thesis. More information about electricity markets is available in [95-100]. 

2.4.1 Organization and Agents 
In the last two decades, the power generation and consumption system have mostly 

developed from a central functioning form to a competitive one in the world. This process 

has begun in the US by the Federal Energy Regulatory Commission who legislated a charter 
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to raise competitiveness in the electricity markets in 1996 [101]. Also, at the same time, the 

European Union-sponsored Directive designed at the liberalization of buying of energy by 

eligible users to start the fundamental instructions for European electricity markets [102]. 

The new electricity markets competitive form has anticipated to raise the effectiveness 

of power systems while assuring a satisfactory quality of the electricity production and 

attaining the least possible price for consumers. 

1) Market Organization 
In the most electricity markets in the world, there are typically some trading arenas to 

let the electricity producers and consumers do their energy transactions which are 

categorized into pools (DA, intraday and balancing markets) and futures markets. Note that 

pools are electricity markets with short-term (commonly within a day) trading systems 

which mostly cover the more significant part of energy transactions. The DA and intraday 

markets are very similar, except, intraday markets are done later and after the DA market. 

Similarly, the balancing market provides short-term (commonly within an hour or half an 

hour) trading systems usually helping non-dispatchable renewable power plants such as 

wind or solar power producers to compensate for their lack of production or sell their excess 

production. In contrast, the futures market provides long-term (commonly within a week to 

a year) trading systems.  

There are some other types of electricity markets, namely reserve (spinning and non-

spinning) and regulation (automatic generation control, AGC) markets that are usually used 

to guarantee a safe and balance energy trading. 
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 Fig. 2.3 electricity markets trading framework with producers: dispatchable and non-dispatchable 

producers 

Fig. 2.3 shows the electricity markets trading framework, including the futures market,  

pool, reserve, and regulation markets with producers including dispatchable and non-

dispatchable producers. In general, market operator clears DA, intraday, balancing and 

futures markets, and the independent system operator clears the other markets. 

2) Agents 
Agents contributing to the futures market,  pool, reserve, and regulation markets are 

briefly defined as follows:  

 Consumers: consumers are the buyers of the electricity who possibly buy electricity 

in the electricity markets such as the futures market and pool targeting for the 

minimization of their cost. Also, consumers sometimes contribute to the reserve 

market as a demand response provider by changing their consumption to get more 

benefits.  

 Retailers: a retailer delivers energy to the end-users that do not want to buy 

electricity from markets directly. Different from other producers, a retailer itself 
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usually has no power generation units to provide electricity to its customers. 

Retailers make the most of their profit by buying electricity as cheap as possible. 

They sell electricity to their clients at minimum prices because of the possibility of 

losing them to other retailers.  

 Dispatchable Producers: a producer is an entity possessing some power generation 

units, including renewable generators or non-renewable ones. Producers sell their 

produced electricity markets such as the futures market and pool targeting for the 

maximization of their profit. Also, producers sometimes contribute to the reserve 

and regulation market to get more benefits.  

 Non-dispatchable producers: Non-dispatchable energy producers such as wind and 

solar producers have the challenge to deal with the uncertainty and stochastic nature 

of their sources. They usually sell in the pool but need to contribute to the balancing 

market to buy for their deficient production or sell their excess of produced energy. 

As it is seen in Fig. 2.3, there are two primary recognized electricity market agents: the 

independent system operator and the market operator, which are briefly discussed as follows: 

 Market operator: Market operators are usually impartial agents in charge of the 

financial supervision and administration of the electricity markets. Moreover, the 

market decision-maker oversees the market instructions and procedures and decides 

on the energy quantities and its prices.  

 Independent system operator: This operator is also an impartial agent responsible for 

the technical supervision parts and usually takes control of the regulation electricity 

market.  
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3) Pool 
As is shown in Fig. 2.3, the pool is composed of three essential markets, including DA, 

intraday markets, which are shorter-term markets and balancing market and are well known 

as a real-time market. 

Fig. 2.4 shows the pool and its procedures. As can be seen from Fig. 2.4, producers 

offer their energy production quantity and prices, and consumers and retailers bids their 

energy consumption quantity and prices. As shown in Fig. 2.3, and Fig. 2.4, there are three 

electricity markets, including the DA, adjustment, and balancing markets. As mentioned 

before and shown in Fig. 2.4, the market operator is in charge of clearing these three 

markets and finalizes the electricity quantities for each participant in the markets and price.  

From the perspective of energy adjustment in the pool markets, the intraday market is 

usually cleared after DA market to adjust the imbalance energy while balancing markets are 

used to make last-minute adjustments. Therefore, non-dispatchable producers, such as wind 

or solar power plants based producers, usually tend to participate in markets such as 

intraday and balancing market when their forecasts of power production are more accurate. 

On the other hand, dispatchable producers, such as conventional power plants, tend to 

participate in the DA market, which has less financial risk among all electricity markets. 

As can be seen in Fig. 2.4, producers, including dispatchable and non-dispatchable 

producers, offer their energy quantity and prices to the DA, intraday and balancing markets, 

while simultaneously retailers and consumers bid their energy quantity and prices. After 

energy bids and offers are collected, the market-clearing process is performed by the market 

operator, and its outcome is the final energy quantity and prices. 
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 Fig. 2.4 pool and its procedures 

The balancing market is an hourly based market which constitutes the energy trading 

for covering both the lack of energy production and excess of energy production. This 

market, which is also called real-time market, provides the latter market for energy trading 

to make a balance between the produced and consumed power. In this case, the energy 

producers, especially non-dispatchable producers such as wind power plants, participate in 

the balancing market to compensate for their lack or excess of energy production by 

submitting their offers or bids.  

Fig. 2.5 shows the balancing market and its procedures. The producers, especially non-

dispatchable producers and consumers, contribute to the balancing market to compensate for 

their productions and consumptions, respectively. Also, the outcomes of balancing the 

market are cleared by the market operator after analyzing the offers and bids of producers 

and consumers, as shown in Fig. 2.5. 
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 Fig. 2.5 the balancing market and its procedures 

As a final point for pool electricity markets, it is essential to mention that in some 

electricity markets such as Australian electricity market, the period is shortened and is based 

on 30-minute periods [103, 104]. 

4) Futures Market 
The main feature of prices of pool-based electricity markets (DA, intraday, and 

balancing markets) is high unpredictability, and this feature makes these electricity markets 

prices extremely uncertain. High volatility in the pool prices is not desirable due to its 

adverse effects on profits or costs anticipated by the producers and consumers contributing 

to these markets. On the contrary to the pool-based electricity markets, the futures market is 

a market which delivers electricity at fixed prices on a specified date in the future [105, 106].  

Fig. 2.6 shows the futures market and its procedures. As can be seen in Fig. 2.6, there 

are generally two major types of products of futures markets (financial and physical), which 

include forward contracts and options. These two types of futures market have the time 

duration from one single week to possible few years, which let producers and users tackle 

and compensate the financial risk over the pool-based electricity markets.  
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 Fig. 2.6 the futures market and its procedures 

The significant difference between a forward contract and an option is that in a forward 

contract, there is a contracted amount of energy to be delivered in a future at a fixed and 

contracted price, while in an option, there is a choice of a contracted amount of energy to be 

delivered in the future.  

From Fig. 2.6, a producer might contribute to the futures market to sell its energy 

production at a deterministic price. On the other hand, consumers usually participate in this 

market to buy their required energy at a deterministic price. Finally, after analyzing the 

offers and bids of producers and consumers, the outcomes of the futures market is 

determined and cleared by the market operator, as shown in Fig. 2.6. 

5) Ancillary Service Markets (Reserve and Regulation) 
Electricity markets generally include three products: energy, reserve, and regulation. As 

discussed earlier, the energy market is the most essential and critical product. On the other 

hand, the reserve market is another significant product that provides secure energy when 

there are some failures in the equipment or uncertainties in the non-dispatchable producers. 

Fig. 2.7 shows the reserve market and its procedures. As can be seen from Fig. 2.7, the 

reserve market clearing process is usually performed by the independent system operator.  
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 Fig. 2.7 the reserve market and its procedures 

Typically, producers, especially dispatchable energy producers, offer energy to reserve 

market, but consumers (usually demand response providers) also deliver energy to reserve 

market by changing their consumption levels [107, 108]. After analyzing the offers and bids 

of producers and consumers, the adequate reserve level is determined by the independent 

system operator. 

The regulation is also a significant product that guarantees that the frequency of the 

power system is kept within desirable values. Fig. 2.8 shows the regulation market and its 

procedures. As can be seen from Fig. 2.8, similar to reserve market, the regulation market 

clearing process is also completed by the independent system operator a couple of hours 

before the power delivery. Unlike the reserve market in which consumers could use 

provider reserve, in the regulation market, only producers, particularly dispatchable energy 

producers, offer energy to the market. As arrows indicate it in Fig. 2.7, after analyzing the 

offers of dispatchable producers, the adequate regulation level is cleared by the independent 

system operator. 
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 Fig. 2.8 the regulation market and its procedures 

2.4.2 Decision Sequence and Uncertainty 

1) Time Framework 
In this subsection, the decision sequence of the different electricity markets, including 

the pool-based electricity markets (DA, intraday, and balancing), reserve, regulation, and 

futures markets, are discussed. 

Fig. 2.9 shows the decision sequence of different markets, including the DA, intraday, 

reserve, regulation, and balancing markets. As can be seen from Fig. 2.9, the DA market is 

usually cleared before midday (12 pm) of the day d (today). After the clearance of DA 

market, intraday markets are generally cleared every couple of hours on both day d (today) 

and day d+1 (tomorrow). Also, after the clearance of DA market, reserve and regulation 

markets are normally cleared on day d. The balancing market is also cleared 10 to 15 

minutes before each hour on day d+1 (tomorrow) as shown in Fig. 2.9.  
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 Fig. 2.9 the decision sequence of different markets 

On the other hand, the futures markets, including forward contracts and options, 

provide energy for producers and consumers in any periods from at least one week to a 

couple of years [109, 110].  

2) Uncertainty 
As mentioned earlier in this chapter, due to the nature of electricity markets and 

intermittent energy resources, generally decision-making problems related to producers, 

users and decision-makers, such as offering in electricity markets and futures market trading 

are involved with uncertainties.  

There are some methods for solving problems with uncertainties such as stochastic 

programming which offers a satisfactory framework to accurately formulate these types of 

problems [111]. Note that stochastic programming needs sufficient historical data for 

scenario generation, and if there is not much available historical data, some other types of 

methods such as robust optimization or information gap theory, can be used to solve the 

decision-making problems problem [112-115]. 
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2.4.3 Decision Making 
This thesis discusses decision-making problems within different planning frameworks 

for consumers, producers including intermittent and conventional ones and HPPs which 

coordinates different types of producers and consumers. The decision-making tools used in 

this thesis are briefly discussed as follows: 

1) Consumer 
Fig. 2.10 shows the diagram of different consumer decision-making problems with all 

possible electricity market participation [116]. As can be seen from Fig. 2.10, a consumer 

can participate in pool-based electricity markets including DA, intraday, and balancing 

markets, reserve market, and futures market. As it can be indicated from the arrows of Fig. 

2.10, consumers prefer to buy through the futures, DA, intraday and balancing markets, and 

to sell electric power as a demand response provider [117, 118] to reserve market.  

 

 Fig. 2.10 Decision-making problem of consumer  
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 Fig. 2.11 Problems related to the dispatchable producer  

 

 Fig. 2.12 Decision-making problem of the non-dispatchable producer 

2) Dispatchable Producer 
Fig. 2.11 shows the diagram of different dispatchable producer decision-making 

problems with all possible electricity market participation. As can be seen from Fig. 2.11, a 

dispatchable producer can contribute to reserve market, regulation market, futures market, 

and pool-based electricity markets, which include DA, intraday, and balancing markets. As 

it can be indicated from the arrows of Fig. 2.11, a dispatchable producer tends to sell energy 

to the futures, DA, intraday, balancing reserve, and regulation markets.  
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Fig. 2.13 Decision-making problem of an HPP 

3) Non-dispatchable Producer 
Fig. 2.12 shows the diagram of different non-dispatchable producer decision-making 

problems with all possible electricity market participation. As can be seen from Fig. 2.12, a 

dispatchable producer can contribute to pool-based electricity markets, including DA, 

intraday, and balancing markets. From the arrows of Fig. 2.12, a dispatchable producer is 

likely to sell electricity to the DA market, and buy/sell electricity to intraday and balancing 

markets. A non-dispatchable producer, such as solar or wind power plant based producers, 

needs to contribute to the balancing market to handle its stochastic power production as a 

result of its uncertain nature. These types of producers need to commonly contribute to the 

intraday market because of their closer power delivery time, which allows the non-

dispatchable producer to predict more precisely its production. 

4) Hybrid Power Plant 
HPP has four significant producers. The first and the most crucial producer is the 

conventional dispatchable producer, which is usually small scale fossil fuel power stations. 

The second and another essential producer is the storage units which store electrical energy 
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at a specified time in order to use it in the future. The third producer includes responsive or 

flexible loads, which encompass residential housing and industrial electrical energy. The 

last producer is non-dispatchable producer, which is composed of solar or wind power plant 

based producers. 

Fig. 2.13 shows the diagram of different HPP decision-making problems with all 

possible electricity market participations. As can be seen from Fig. 2.13, an HPP can 

contribute to reserve market, regulation market, futures market, and pool-based electricity 

markets, which include DA, intraday, and balancing markets. As it can be indicated from 

the arrows of Fig. 2.13, an HPP is likely to sell electricity to the DA, reserve and regulation 

market, and buy/sell electricity from/to futures market, intraday and balancing markets. 

2.5 Stochastic Programming Fundamentals 
In real life, there are many decision-making problems with stochastic information and 

knowledge. The corresponding data shortage is usual in decision-making problems among 

different areas of study, including finances, engineering, economics, and in particular 

electricity decision-making problems such as electricity market problems. As a matter of 

fact, in electricity markets, decision-making problems and the corresponding stochastic 

information or uncertainties are usually prevalent. For instance, electricity prices and wind 

power generations are uncertain when a non-dispatchable wind power producer wants to 

participate in pool-based electricity markets such as DA and intraday markets. Also, 

electricity prices and consumption level are uncertain when a consumer wants to buy energy 

from electricity markets and sell to the markets as a demand response provider. 
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Nevertheless, even with stochastic information and knowledge, the electricity market 

decision-making problems must be solved, which encourages the electricity market agents 

to model their problems using stochastic programming. 

Most problems, including electricity market decision-making problems, can be 

expressed as an optimization problem. The probability distribution of these optimization 

problem input data can be estimated by a group of probable sets with their related 

probabilities of occurrence. After the estimation and production of the scenarios and their 

associated probabilities of occurrence, the electricity market decision-making problems can 

be formulated as a stochastic optimization problem to attain a particular solution that can be 

the best solution for all scenarios. This specific solution is not the best solution for each 

single scenario, but it is the best solution if all of the scenarios with their related 

probabilities of occurrence are considered at the same time. 

Due to the conversion of the stochastic input data to set scenarios, the subsequent 

objective function is a stochastic objective function and has to be categorized as a random 

variable. 

This section of the thesis provides the fundamentals of stochastic programming. More 

information about stochastic programming problems are available in [111, 119-121],  

solution processes can be found in [122], and some useful tutorials are provided in [123, 

124]. 

2.5.1 Random Variables and Stochastic Processes 
Stochastic programming is one of the most common methods which is used to solve 

stochastic decision-making problems. In stochastic decision-making problems, there are 
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usually some uncertain parameters; and random variables are normally used in stochastic 

programming to model decision-making problems with these types of parameters. 

Random variables used in stochastic programming are commonly indicated by a limited 

number of scenarios [125]. Consider a random variable 𝜆  and denote it by 𝜆(𝑠), 𝑠 =

1, … , 𝑁𝛺, where 𝑠 is the scenario index. 𝑁𝛺 and 𝛺 are the total number and set of scenarios. 

Accordingly, the set of possible realizations 𝜆𝛺 for a random variable 𝜆 is equal to  𝜆𝛺 =

{𝜆(1), … , 𝜆(𝑁𝛺)}. 

The only difference between a random variable and a stochastic process is that the 

random values of a stochastic process evolve and have progress over time [119]. For 

example, the price of DA electricity market over 24 hours of a day is a stochastic process. In 

other words, a stochastic process can be created by random variables that are dependent and 

consecutively appear in time. For example, the price of DA electricity market at 1 pm is 

influenced by the prices in other 23 hours, and in Error! Reference source not found., if 𝜆 i

ndicates the 24 hours prices for the following day, 𝜆(𝑠) should be a vector of  24 × 1 

demonstrating one possible realization of DA electricity market prices. 

2.5.2 Scenarios 
It is mentioned in Section 2.5.1 that each scenario is a particular realization of a 

stochastic process, and using scenarios from a computational perspective is an appropriate 

way to distinguish stochastic processes. 

To simply define a stochastic process and intending to cover its most credible 

realizations, it is essential to produce an adequate amount of scenarios initially. In order to 

do so, it is commonly needed to produce a vast number of scenarios, which in fact would be 
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computationally difficult to deal with the related stochastic programming problem. 

Therefore, it is necessary to introduce a method to reduce the number of scenarios which is 

generated in the beginning. This specific method must keep the most important data in the 

stochastic process with remarkably less number of scenarios and the reduced scenarios must 

be representative enough. 

2.5.3 Stochastic Programming Problems 
In most stochastic decision-making problems, including electricity market decision-

making problems, the optimal decisions by the operator have to be made with the lack of 

data during a decision horizon in which few stages are considered. The uncertainty in 

stochastic decision-making problems is partly or eliminated in each stage. In other words, 

the quantity of accessible data is not generally the same from stage to stage for the operator. 

Stochastic programming problems with a different number of stages (two-stage and 

multistage) are briefly explained in the following: 

In the first type of stochastic programming decision-making problems, a two-stage 

problem is considered where the stochastic process is characterized using a set of scenarios 

formed in two stages. 

In a two-stage decision-making problem, the decisions are separated and characterized 

into two stages: The first-stage decision which is called here-and-now decision is usually 

made before the stochastic process realization. The Second-stage decisions, which are called 

wait-and-see decisions, are made after the stochastic process realization. In other words, in 

the case of wait-and-see decisions, the decision-maker is supposed to be capable of waiting 

for realization of the random coefficients, while in the case of here-and-now decisions, the 
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decision-maker is supposed to make decisions before and with no understanding of the 

realizations. 

Fig. 2.14 shows the scenario tree for a two-stage problem. As can be seen from Fig. 

2.14, a scenario tree includes several nodes in addition to the between branches. These 

nodes indicate the problem state points where required decisions are made. Each of these 

nodes is composed of a particular predecessor as well as numerous successors. As seen in 

the figure, the root is the first node related to the beginning of the decision framework 

where the first-stage decisions are completed. The nodes associated with the first node (root) 

are so-called the second-stage nodes and indicate the problem state points where the second-

stage decisions are finalized. The number of scenarios is equal to the number of nodes in the 

second stage for a two-stage problem. In a problem with a two-stage scenario tree structure, 

a second-stage node is called leaf, and each branch indicates a realization of random 

variables. 

It is noteworthy to mention that this two-stage problem is optimally solved as a single 

optimization problem. Two types of formulation are usually used to formulate a stochastic 

programming problem which is called node-variable and scenario-variable formulations. 

The node-variable formulation depends on variables related to decision points, while the 

scenario-variable formulation depends on variables related to scenarios. The size of the 

node-variable formulation is relatively smaller than the scenario-variable one and is mainly 

compatible with a straightforward solution, while the scenario-variable formulation needs 

much more variables and constraints. However, the scenario-variable formulation has a 

useable structure that is compatible with decomposition. 
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Fig. 2.14 A problem with a two-stage scenario tree structure. 

In a real-life situation, generally most of the decision-making stochastic programming 

problems are in excess of two stages, and for these decision-making problems, two-stage 

problems are not valid and should be extended to a multi-stage decision-making problem.  

Fig. 2.15 shows the scenario tree for a three-stage problem, which is a three-stage 

sample of a multi-stage problem. It can be clearly seen from Fig. 2.15 that a scenario tree 

comprises several nodes along with the branches in between. These nodes which are shown 

by red color point out the problem state points where decisions are made. As it is seen in the 

figure, the first node, which is called the root, indicates the beginning of the decision 

framework where the first-stage decisions are formed. The nodes linked to the first-stage 

decision node (root) are the second-stage nodes and indicate the problem state points where 

the second-stage is created. The amount of scenarios is equal to the number of the nodes in 

the last stage (e.g. third stage in a three-stage problem, as shown in Fig. 2.15) for a multi-

stage problem. Also, in a multi-stage scenario tree, the nodes in the last stage are called a 

leave, and each branch designates a realization of random variables. Note that in multi-stage 

https://www.wordhippo.com/what-is/another-word-for/real-life.html
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decision-making problems, the problem is also optimally solved as a single optimization 

problem. 

2.5.4 Solving Stochastic Programming Problems 
Due to the addition of scenarios to the stochastic programming problems, the amount of 

variables is usually amplified, making them large-scale problems with at least millions of 

variables. Therefore, it is significantly vital to wisely choose the number of scenarios to 

characterize the stochastic programming problem processes appropriately. On the other 

hand, scenario reduction techniques can be used to reduce the number of scenarios properly. 

Also, stochastic programming problems usually comprise of nonlinear constraints that 

can be easily decomposed as linear ones by scenario approaches. Generally, decomposition 

methods are most suitable for dealing with these problems. More detail about 

decomposition methods are available in [126]. Also, Decomposition methods for linear 

stochastic programming problems can be found in [122]. 

 

Fig. 2.15 A problem with a three-stage scenario tree structure. 
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2.6 Summary 
This chapter has gone through the background, previous studies, and the conceptions of 

HPP and its operating systems and diverse kinds of HPP. Additionally, it has summarized 

the concepts of organization and agents involving in electricity markets such as producers, 

consumers, and retailers. The basics of stochastic programming have also been briefly 

provided.   
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3 Risk-Constrained Bidding Strategy for 
a Joint Operation of Wind Power and 
Compressed Air Energy Storage 
Aggregators 

This chapter proposes a coordinated strategy of a hybrid power plant (HPP) which 

includes a wind power aggregator (WPA) and a commercial compressed air energy storage 

(CAES) aggregator to participate in three electricity markets (DA, intraday and balancing 

markets). The CAES aggregator has an extra ability which is called a simple-cycle mode 

operation which makes it work like a gas turbine when needed; this helps the HPP to 

economically handle the errors in the wind power and electricity price predictions. The 

coordinated strategy of the HPP is formulated as a three-stage stochastic optimization 

problem. To control the financial risks, the CVaR model is added to the optimization 

problem. Moreover, the proposed offering method is capable of submitting both bidding 

quantity and curves to the DA market. A mixed-integer linear programming formulation is 

obtained for the problem which can be easily solved by commercially available software 

such as GAMS. The models are tested on a realistic case study located in Spain, and the 

results show the applicability of the suggested method to increase the joint operation profit 

and reduce the financial risks. 

3.1 Motivation 
Recently, numerous studies have focused on self-scheduling approaches for CAES 

facilities and aggregators and analyzed the energy trading in different types of electricity 
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markets to maximize their profit [91]. For instance, a co-optimized CAES model to clarify 

the importance of providing operating reserves and energy arbitrage in diverse electricity 

markets located in the United States is presented in [78]. Ref. [90] offers a risk-constrained 

bidding strategy for a commercial CAES aggregator that participates in a DA market. The 

CAES used in this study has an additional facility called simple-cycle mode, which works 

as an extra gas turbine. 

On the other hand, many studies concentrate on the best offering strategies for WPAs to 

contribute to different types of electricity markets [67]. For example, in [70], a method is 

suggested to advance an offering strategy for a WPA participating in different electricity 

markets considering the uncertainties of the wind power and electricity market prices. Ref. 

[71] offers a strategy for a WPA to participate in a DA market by considering the WPA as a 

price-maker producer. Ref. [72] also offers a strategy for a WPA as a price-taker producer 

in a DA market, but as a price-maker producer in the real-time (balancing) market. Ref. [88] 

presents a new model considering the uncertainties of the wind power and loads for 

corrective voltage control to handle the condition when power systems have voltage 

instability because of unexpected failure and contingencies. 

Besides, a variety of studies provide strategies for WPAs in conjunction with other 

types of aggregators [82, 92, 127]. For example, Ref. [77] analyses the combined operation 

of a pumped-storage unit and a WPA. The uncertainties included in this study are the wind 

power and market price fluctuations. In this regard, a very similar study is done in [78], 

which evaluates the impact of wind power uncertainties in a joint operation with a pumped-

hydro aggregator. Ref. [79] offers a bidding strategy for a hydro aggregator and a WPA to 

contribute to a DA market. In this study, in order to control the financial risk, the CVaR is 
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added to the model. Ref. [80] assesses two separate models comprising a joint operation of a 

WPA and a gas turbine aggregator, as well as a WPA and a CAES aggregator. An offering 

strategy for a WPA along with a flexible load (demand response provider) is provided in 

[85], which helps the WPA to handle the wind uncertainties. To minimize the operational 

cost and imbalance payments due to the wind power imbalances, an offering strategy for 

controlling critical peak pricing events is assessed in [86]. The strategy is done from the 

viewpoint of a demand response aggregator which owns a wind facility. Ref. [87] provides a 

bidding strategy for a WPA and a demand response provider to contribute to the intraday 

market along with DA and balancing markets. 

3.2 Contributions 
This chapter proposes a framework in which a WPA can compensate its deviation 

between the actual and forecasted value of wind generation by the coordinated operation 

with a commercial CAES aggregator in the form of an HPP. HPP gathers information from 

the WPA and CAES and takes part in DA, intraday, and balancing markets. The 

uncertainties of the WPA production and the three mentioned market prices are considered 

stochastic using the stochastic programming method. To find the best bidding strategy, 

which also controls the financial risk, the CVaR is added to the stochastic programming 

model.  

The contributions of the chapter are given as follows: 

 The development of a two-stage stochastic decision-making model for the 

participation of CAES aggregator equipped with a simple-cycle mode operation 

dict://key.25D62D261B9B6943BE86B7DCF8F9D255/control
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which gives it the ability to work as a gas turbine in both DA and intraday 

markets. 

 The development of an optimal offering strategy model for the joint operation of 

a WPA and a CAES aggregator as an HPP to maximize their expected profit and 

also to mitigate wind power uncertainties. 

 The implementation and analysis of the proposed framework on three different 

electricity markets in a realistic case study. 

 A robust risk constrained HPP model to overcome the financial risks of 

electricity markets. 

3.3 WPA Modeling 

3.3.1 Introduction to WPA 
The number of wind farms and producers with significant utilization of wind power 

resources is exponentially growing all over the world. At this moment, being a wind power 

producer is a worthwhile and money-making investment. The major reason for wind power 

developments is the increase and fluctuation of fossil fuel prices, especially the oil price. 

For example, from 1985 to September 2003, the price of a barrel of crude oil on NYMEX 

was normally less than US$25/barrel. For the year 2003, the price of crude oil was increased 

up to US$30/barrel, and then from the beginning of 2004 to August 2005 gradually 

increased to US$60/barrel, and even experienced an unbelievable price of US$147.30/barrel 

in July 2008.  

https://en.wikipedia.org/wiki/Barrel_(unit)
https://en.wikipedia.org/wiki/Crude_oil
https://en.wikipedia.org/wiki/New_York_Mercantile_Exchange
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However, three straightforward features distinguish the conventional non-renewable 

producers from wind power producers from the energy-selling viewpoint. The first feature 

is the WPA’s emission-free productions, which is usually supported by governments. The 

second feature is their almost zero cost and no fuel consumption. The third feature is a 

negative feature though, i.e., wind power generation is uncertain and usually cannot be 

precisely predicted. The third feature leads to a non-dispatchable output and makes the wind 

energy trading quite risky. 

Even though the first and second features undoubtedly improve the involvement of 

WPAs in electricity markets, the third feature, the uncertainty of wind power production, 

creates the main problem to the regular involvement of WPAs in electricity markets. This 

problem includes both technical and economic ones, which makes it difficult for a WPA to 

stay alive in competitive electricity markets exclusively intended for conventional 

deterministic producers. 

From a technical point of view, the right running of WPA uncertainty is mostly 

accomplished using a balancing market that lets WPAs compensate for their lack of 

production or even selling their excess production. 

From an economic view, the market operator determines the balancing market prices 

that are usually less profitable for producers than other markets such as DA and intraday 

markets. Consequently, as WPA’s survival depends on the balancing market to balance its 

energy production, its cost-effectiveness declines in comparison with other types of 

producers especially those who have deterministic resources and can participate in 

electricity markets such as DA and intraday markets.  
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So far, three main approaches have been developed by regulators in order to overcome 

this issue. In the first approach, WPAs are directly controlled by the market operator as a 

negative demand, and WPAs are paid with a fixed price for their real-time energy 

production. This approach allows the WPAs to decrease the financial risk. However, WPAs 

lose the chance of making a higher profit through participating in all markets when the price 

of electricity peaks. In the second approach, WPAs participate only in balancing market, in 

which they make a profit by selling their real-time energy production like other producers as 

well as receiving a subsidy from the government to support them. Finally, in the third 

approach, which is used in this thesis, WPAs must participate in electricity markets like any 

other producers without receiving any subsidies from the government. 

For competing with other producers in a severely competitive environment, one of the 

most effective ways for a WPA is to use or coordinated with other producers such as 

conventional power plants, energy storages, and demand response programs. However, 

other producers, such as conventional power plants, have no strong motivation to work with 

WPAs [77, 128-130]. Another effective way for a WPA to compete with other producers in 

a competitive environment is to exploit less uncertain markets such as future markets and 

options [131]. 

3.3.2 Decision Framework 
In this chapter, it is assumed that a WPA participates in three pool-based electricity 

markets, including DA, intraday, and balancing markets. It is also assumed that the WPA 

has no market-power capability in any of the markets mentioned above. The objective 
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function considered in these problems is to maximize the expected profits of the WPA in all 

mentioned pool-based electricity markets. 

Fig. 3.1 shows the time framework for the three electricity markets. As can be seen 

from Fig. 3.1, for the next operating day D+1, the DA market is cleared in day D, and the 

intraday market is cleared after the DA market and a couple of hours before the day D+1. 

Due to later clearance of the intraday market in comparison with the DA market, the 

intraday market has fewer uncertainties and is an excellent opportunity for the WPA to 

compensate for its deficient production. For the sake of simplicity, it is assumed that the 

intraday market is cleared two and a half hours before the day D+1, as shown in Fig. 3.1. 

Also, the balancing market guarantees the balance between power production and 

consumption by compensating the differences between the actual power and the scheduled 

one. Accordingly, the balancing market is cleared close to each energy delivery period (10 

to 15 minutes) of day D+1. Consequently, using this latter market, energy imbalance 

between generation and consumption is balanced and evaluated. 

In summary, a WPA competing in the market structure mentioned above has to firstly 

decide to optimally participate in the DA market, secondly modify its forecasted energy and 

participate in the intraday market, and finally adjust its produced energy deviations and 

participate in the balancing market. 

 

Fig. 3.1 Three electricity markets framework 
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Fig. 3.2 Imbalance price clearance for more demand or less demand 

3.3.3 Mechanism for Imbalance Prices 
In this chapter, the balancing market is used to assure the balance between energy 

production provided by WPAs and its scheduled energy offered to other pool-based 

electricity markets such as DA and intraday markets. As mentioned earlier in this chapter, 

balancing markets are usually cleared very near to the actual energy supply time when there 

are much fewer uncertainties in the market and WPAs have very precise knowledge about 

their wind power production levels. Therefore, it is confidently assumed that every WPA 

participates in the balancing market with no uncertainties. 

Every WPA tends to adjust its energy deviations using balancing markets if the final 

wind power production is less or more than the power scheduled in the previous pool-based 

electricity markets such as DA and intraday markets. These energy deviations can be either 

positive, when there is a higher wind power production or negative when there is a lower 

wind power production in each hour of day D+1 (see Fig. 3.1). Accordingly, every WPA 
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with energy deviations must sell its extra produced power to or buy for its deficient power 

production from the balancing market, respectively. It is worthwhile to mention that the 

final price of selling and buying in the balancing market is determined by the market 

operator after receiving and analyzing the offering or bidding powers from producers and 

consumers. 

Fig. 3.2 shows the imbalance price clearance for negative and positive system 

imbalance. As can be seen from Fig. 3.2, it is assumed that the price of the DA market 𝜌𝑡𝐷𝐴 

is achieved as the connecting point of the offering and demand curves (the planned demand 

curve with a dashed vertical line in both Fig. 3.2(A) and (B)). Note that, for the sake of 

simplicity, the activities of consumers are assumed to be entirely constant. The offering 

curve is similarly created from the all energy producers offers. 

However, the price 𝜌𝑡+ for positive energy deviations (i.e. producing higher productions 

than planned) and the price 𝜌𝑡−  for negative energy deviations (i.e. producing lower 

productions than planned) are established for each period in the balancing market. These 

introduced positive and negative prices 𝜌𝑡+ and 𝜌𝑡− indicate the required energy cost to offset 

the system imbalance as defined as follows: 

 If there is a lack of energy production or more demand as shown in Fig. 3.2(A) 

(the actual demand curve with solid vertical line), then Eqs. (3.1) and (3.2) can be 

defined: 

𝜌𝑡
+ = 𝜌𝑡

𝐷𝐴 (3.1) 

𝜌𝑡
− = max (𝜌𝑡

𝐷𝐴, 𝜌𝑡
𝑢𝑝) (3.2) 
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where 𝜌𝑡
𝑢𝑝  is defined as the price to which the energy price is required to be 

increased, as explicitly shown in Fig. 3.2(A). In this condition, the market 

decision-maker arranges a balancing market in which the producers, including 

WPAs, can participate and buy for their deficient production. It is essential to 

mention that as the energy price 𝜌𝑡
𝑢𝑝 is usually more than the DA market price 

𝜌𝑡
𝐷𝐴, the producers who participate in the balancing market need to pay more cost 

in comparison with the DA market. 

 If there are extra energy productions or less demand, as shown in Fig. 3.2(B) 

(the actual demand curve with solid vertical line), Eqs. (3.3) and (3.4) can be 

defined: 

𝜌𝑡
+ = min (𝜌𝑡

𝐷𝐴, 𝜌𝑡
𝑑𝑜𝑤𝑛) (3.3) 

𝜌𝑡
− = 𝜌𝑡

𝐷𝐴 (3.4) 

where 𝜌𝑡𝑑𝑜𝑤𝑛 is the price to which the energy price is required to be reduced, as 

clearly shown in Fig. 3.2(B). In this circumstance, the market operator organizes 

a balancing market in which all producers, including WPAs, can contribute and 

sell their excess production. Note that as the energy price 𝜌𝑡𝑑𝑜𝑤𝑛 is usually less 

than DA market 𝜌𝑡𝐷𝐴 , the producers who contribute to the balancing market 

achieve less profit in comparison with the DA market. 

3.3.4 WPA Profit and Imbalance Cost 
Imagine a WPA is scheduled to provide the energy level 𝐸𝑤𝑡𝐷𝐴 to the DA market for 

period t, but actually produces 𝐸𝑤𝑡. If the price of the DA market is cleared by the market 

operator which is equal to 𝜌𝑡𝐷𝐴, and the profit from the balancing market is equal to 𝐵𝑡, then 
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the profit 𝑍𝑤𝑡 of this WPA can be formulated as (3.5). Note that, in this section, no intraday 

market is considered for simplicity. 

𝑍𝑤𝑡 = 𝜌𝑡
𝐷𝐴𝐸𝑤𝑡

𝐷𝐴+𝐵𝑡, (3.5) 

It is essential to mention that the balancing market profit 𝐵𝑡 can sometimes be negative, 

which means there is a cost resulting from balancing market process for the WPA. In 

general, the total deviation 𝛥𝑤𝑡 experienced by the WPA is equal to the actual energy 

produced by WPA 𝐸𝑤𝑡 minus the WPA scheduled energy 𝐸𝑤𝑡𝐷𝐴 which can be positive or 

negative as formulated in (3.6):  

𝜀𝑤𝑡 = 𝐸𝑤𝑡 − 𝐸𝑤𝑡
𝐷𝐴, (3.6) 

Accordingly, the profit or cost from the balancing market 𝐵𝑡 for a WPA can be defined 

as follows: 

𝐵𝑡 = {
𝜌𝑡
+𝜀𝑤𝑡, 𝜀𝑤𝑡 ≥ 0

 𝜌𝑡
−𝜀𝑤𝑡,         𝜀𝑤𝑡 < 0.

 (3.7) 

As stated by (3.7), a positive or negative deviation means excessive or deficient 

production from WPA, respectively. Accordingly, the WPA will be paid by the price 𝜌𝑡+ for 

its excess of energy production and will be charged by the price 𝜌𝑡−  for its deficient 

production. In order to use the price of the DA market for (3.7), the following can be 

defined: 

𝜂𝑡
+ =

𝜌𝑡
+

𝜌𝑡
𝐷𝐴 ,    𝜂𝑡

+ ≤ 1, 
(3.8) 

𝜂𝑡
− =

𝜌𝑡
−

𝜌𝑡
𝐷𝐴 ,    𝜂𝑡

− ≥ 1 
(3.9) 

From these two definitions, Eq. (3.7) can be rewritten as (3.10):   
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𝐵𝑡 = {
𝜂𝑡
+𝜌𝑡

𝐷𝐴𝜀𝑤𝑡, 𝜀𝑤𝑡 ≥ 0

 𝜂𝑡
−𝜌𝑡

𝐷𝐴𝜀𝑤𝑡,         𝜀𝑤𝑡 < 0.
 

(3.10) 

Now after defining the profit or cost 𝐵𝑡 from the balancing market, Eq. (3.5) can be 

reformulated as two separate cases:  

1) If there are extra wind energy productions and the energy deviation 𝜀𝑤𝑡 experienced 

by the WPA is positive (𝜀𝑤𝑡 ≥ 0), then by substituting (3.10), 𝐵𝑡 = 𝜂𝑡
+𝜌𝑡

𝐷𝐴𝜀𝑤𝑡, into (3.5), 

the profit 𝑍𝑤𝑡 can be redefined as (3.11): 

𝑍𝑤𝑡 = 𝜌𝑡
𝐷𝐴𝐸𝑤𝑡

𝐷𝐴+𝜂𝑡
+𝜌𝑡

𝐷𝐴𝜀𝑤𝑡 ,      𝜀𝑤𝑡 ≥ 0. (3.11) 

By substituting 𝐸𝑤𝑡𝐷𝐴 from (3.6), i.e., 𝐸𝑤𝑡 − 𝜀𝑤𝑡, into (3.11), Eq. (3.11) can be altered 

as follows: 

𝑍𝑤𝑡 = 𝜌𝑡
𝐷𝐴(𝐸𝑤𝑡 − 𝜀𝑤𝑡)+ 𝜂𝑡

+𝜌𝑡
𝐷𝐴𝜀𝑤𝑡 = 𝜌𝑡

𝐷𝐴𝐸𝑤𝑡 − 𝜌𝑡
𝐷𝐴(1 − 𝜂𝑡

+)𝜀𝑤𝑡, 𝜀𝑤𝑡 ≥ 0,     (3.12) 

2) If there is a lack of wind energy production and the energy deviation 𝜀𝑤𝑡 

experienced by the WPA is negative (𝜀𝑤𝑡 < 0), then by substituting (3.10), 𝐵𝑡 = 𝜂𝑡
−𝜌𝑡

𝐷𝐴𝜀𝑤𝑡, 

into (3.5), the profit 𝑍𝑤𝑡 in this situation can be defined as (3.13): 

𝑍𝑤𝑡 = 𝜌𝑡
𝐷𝐴𝐸𝑤𝑡

𝐷𝐴+𝜂𝑡
−𝜌𝑡

𝐷𝐴𝜀𝑤𝑡 ,      𝜀𝑤𝑡 < 0 . (3.13) 

Similar to the previous case, by substituting 𝐸𝑤𝑡𝐷𝐴 from (3.6) into (3.13), Eq. (3.13) can 

be rewritten as follows: 

𝑍𝑤𝑡 = 𝜌𝑡
𝐷𝐴(𝐸𝑤𝑡 − 𝜀𝑤𝑡)+ 𝜂𝑡

−𝜌𝑡
𝐷𝐴𝜀𝑤𝑡 = 𝜌𝑡

𝐷𝐴𝐸𝑤𝑡 − 𝜌𝑡
𝐷𝐴(1 − 𝜂𝑡

−)𝜀𝑤𝑡, 𝜀𝑤𝑡 < 0,     (3.14) 

If the common form is used, Eqs. (3.13) and (3.14) can be written as follows: 

𝑍𝑤𝑡 = 𝜌𝑡
𝐷𝐴𝐸𝑤𝑡 − 𝑄𝑤𝑡, (3.15) 

where 

𝑄𝑤𝑡 = {
𝜌𝑡
𝐷𝐴(1 − 𝜂𝑡

+)𝜀𝑤𝑡, 𝜀𝑤𝑡 ≥ 0

𝜌𝑡
𝐷𝐴(𝜂𝑡

− − 1)𝜀𝑤𝑡,         𝜀𝑤𝑡 < 0.
 (3.16) 
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The first term 𝜌𝑡𝐷𝐴𝐸𝑤𝑡 in (3.16) sets up the maximum amount of profit that the WPA 

may accumulate from selling its produced energy production when the WPA has a thorough 

data about its upcoming wind energy production, and there is no uncertainty for its energy 

output. The last term 𝑄𝑤𝑡  corresponds to the above-mentioned profit or cost which is a 

consequence of selling the positive energy deviations (𝜀𝑤𝑡 ≥ 0) or buying the negative 

energy deviations (𝜀𝑤𝑡 < 0) in the balancing market. The profit or cost mentioned above is 

generally called imbalance cost and can also be inferred as the cost related to inadequate 

predictions of wind energy production. In a usually very rare situation in which the WPA 

perfectly predicts its future wind generation, and there are no positive or negative energy 

deviations (𝜀𝑤𝑡 = 0) in the balancing market for the WPA, there is no imbalance cost and 

𝑄𝑤𝑡 will be zero in (3.50). Furthermore, it is important to mention that, as 𝜌𝑡𝐷𝐴𝐸𝑤𝑡 in (3.16) 

is the term that cannot be controlled, in order to maximize (3.16), the imbalance cost 𝑄𝑤𝑡 

should be minimized. 

However, if the intraday market is added to the analysis mentioned above, the 

characterization of imbalance cost turns out to be slightly vague as a result of the price 

changes between the DA and intraday markets. Apart from this vagueness and complexity, 

it is very obvious that, even if there is an intraday market, all market agents who have 

uncertainties in their energy production including WPAs are obliged to finally amend their 

positive or negative energy deviations in the balancing market. 
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3.3.5 Certainty Gain Effect 
The intraday market is a market similar to DA market intended to let all market agents 

who have uncertainties in their energy production including WPAs to adjust their energy 

production schedule according to the formerly gained market price results and their 

modified energy production predictions. Therefore, the intraday market is planned after the 

DA market and may cover the duration similar to the DA market. In addition to this service, 

the intraday market offers the other market agents who do not have uncertainties in their 

energy production, such as conventional power plants with an extra chance of participating 

in pool-based markets and make additional profit by manipulation of the energy price 

changes between these two markets. 

Thanks to the later clearance of intraday market in comparison with the DA market, it is 

notably more beneficial for WPAs since the level of uncertainty is lower and the WPAs can 

have a better forecast for its energy production. For instance, the predictions of wind three 

hours in advance are considerably more precise than the predictions one day before. This 

certainty improvement is a phenomenon that is called certainty gain effect which is a 

financial surplus that the WPA gains if it offers to the DA market while it knows there is an 

intraday market to be offered with fewer uncertainties in its forthcoming wind energy 

production. 
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Fig. 3.3 Scenario tree to describe the uncertainties of pool-based market prices and wind generation in a 

WPA problem 

3.3.6 Scenario Tree 
A scenario tree describing the uncertainties related to market prices in addition to wind 

generation in a WPA problem participating in three electricity markets, including DA, 

intraday, and balancing markets can be described, as shown in Fig. 3.3. In order to build this 

scenario tree, firstly, DA market price and wind power scenarios are produced, and then for 

each realization of these generated scenarios, some scenarios are generated to model the 

changes between DA and intraday market prices and the wind powers. In the next step, for 

each of these generated scenarios for the two market prices, imbalance price ratio scenarios 

are generated to model the balancing market.  



Hybrid Power Plant Bidding Strategy for Electricity Market Participation 

60 
 

3.3.7 WPA Basic Model 
For the sake of simplicity, in the first step of modeling the WPA optimization problem, 

the intraday market is not considered. By considering the DA market and the imbalance cost 

of the balancing market, the optimization problem intended to maximize the expected profit 

of a WPA can be formulated as (3.17): 

Max𝑃𝑤𝑡𝐷𝐴,∀𝑡;𝜀𝑤𝑡,𝑠,∀𝑡,𝑠 [𝒵𝑃𝑟𝑜𝑓𝑖𝑡
𝑊𝑃𝐴 ] 

[𝒵𝑃𝑟𝑜𝑓𝑖𝑡
𝑊𝑃𝐴 ] = ∑∑𝜋𝑠[𝜌𝑡,𝑠

𝐷𝐴. 𝑃𝑤𝑡
𝐷𝐴𝑑𝑡 + 𝐵𝑡,𝑠]

𝑁𝑇

𝑡=1

𝑁𝑠

𝑠=1

. 
(3.17) 

where 𝑁𝑠  and 𝑁𝑇  are the total number of scenarios and periods of time, respectively.  

𝜋𝑠  is the probability of occurrence of scenario s, and 𝑑𝑡  is the time interval. This 

optimization problem maximizes the expected profit gained by the WPA from trading its 

wind power production in the two markets mentioned above. The objective function (3.17) 

is subject to constraints (3.18) and (3.19): 

0 ≤ 𝑃𝑤𝑡
𝐷𝐴 ≤ 𝑃𝑤𝑀𝑎𝑥,      ∀𝑡 (3.18) 

𝜀𝑤𝑡,𝑠 = 𝐸𝑤𝑡,𝑠 − 𝐸𝑤𝑡
𝐷𝐴 = 𝑑𝑡(𝑃𝑤𝑡,𝑠 − 𝑃𝑤𝑡

𝐷𝐴),      ∀𝑡, 𝑠 (3.19) 

where constraint (3.18) limits the offering power of WPA to the DA market, and 𝑃𝑤𝑀𝑎𝑥 is 

the maximum capacity of WPA. Eq. (3.19) formulates the total deviation 𝜀𝑤𝑡,𝑠 experienced 

by the WPA for each period of time 𝑡 and scenario 𝑠 which can be positive or negative 

based on the excess or deficiency of energy produced by WPA. The profit or cost 𝐵𝑡,𝑠 from 

the balancing market for each period of time 𝑡 and scenario 𝑠 can be defined as in (3.20): 

𝐵𝑡,𝑠 = {
𝜂𝑡,𝑠
+ 𝜌𝑡,𝑠

𝐷𝐴𝜀𝑤𝑡,𝑠, 𝜀𝑤𝑡,𝑠 ≥ 0

 𝜂𝑡,𝑠
− 𝜌𝑡,𝑠

𝐷𝐴𝜀𝑤𝑡,𝑠,         𝜀𝑤𝑡,𝑠 < 0
       ∀𝑡, 𝑠 

(3.20) 
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As the profit or cost from the balancing market 𝐵𝑡,𝑠 in the WPA optimization problem 

(3.17)-(3.20) is a piecewise function and does not let the problem be solved by optimization 

methods, a binary variable 𝛤𝑡,𝑠  demonstrating whether the total deviation is positive or 

negative can be simply defined and added to the problem formulation to avoid this 

difficulty. Therefore, the WPA optimization problem (3.17)-(3.20) can be rewritten as the 

one in (3.21)-(3.26): 

 

Max𝑃𝑤𝑡𝐷𝐴,∀𝑡;𝜀𝑤𝑡,𝑠,∀𝑡,𝑠 [𝒵𝑃𝑟𝑜𝑓𝑖𝑡
𝑊𝑃𝐴 ] 

[𝒵𝑃𝑟𝑜𝑓𝑖𝑡
𝑊𝑃𝐴 ] =∑∑𝜋𝑠[𝜌𝑡,𝑠

𝐷𝐴. 𝑃𝑤𝑡
𝐷𝐴𝑑𝑡 + 𝜂𝑡,𝑠

+ 𝜌𝑡,𝑠
𝐷𝐴𝜀𝑤𝑡,𝑠(1 − 𝛤𝑡,𝑠) + 𝜂𝑡,𝑠

− 𝜌𝑡,𝑠
𝐷𝐴𝜀𝑤𝑡,𝑠𝛤𝑡,𝑠]

𝑁𝑇

𝑡=1

𝑁𝑠

𝑠=1

 
(3.21) 

subject to 

0 ≤ 𝑃𝑤𝑡
𝐷𝐴 ≤ 𝑃𝑤𝑀𝑎𝑥,      ∀𝑡 (3.22) 

𝜀𝑤𝑡,𝑠 = 𝐸𝑤𝑡,𝑠 − 𝐸𝑤𝑡
𝐷𝐴 = 𝑑𝑡(𝑃𝑤𝑡,𝑠 − 𝑃𝑤𝑡

𝐷𝐴),      ∀𝑡, 𝑠 (3.23) 

𝜀𝑤𝑡,𝑠 ≤ 𝜘(1 − 𝛤𝑡,𝑠),      ∀𝑡, 𝑠 (3.24) 

−𝜀𝑤𝑡,𝑠 ≤ 𝜘𝛤𝑡,𝑠,      ∀𝑡, 𝑠 (3.25) 

𝛤𝑡,𝑠 = (0, 1),      ∀𝑡, 𝑠 (3.26) 

where 𝜘 is a large number which is higher than any possible amount of |𝜀𝑤𝑡,𝑠| . It is 

important to mention that the value of the binary variable 𝛤𝑡,𝑠 is equal to 1 if the energy 

deviation 𝜀𝑤𝑡,𝑠 experienced by the WPA in time 𝑡 and scenario 𝑠 is negative (lack of wind 

power production), and is equal to 0 if the energy deviation 𝜀𝑤𝑡,𝑠 experienced by the WPA 

in time 𝑡 and scenario 𝑠 is positive (excess of wind power production). 
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The WPA optimization problem (3.21)-(3.26) is a mixed-integer non-linear 

programming problem. It is an integer problem due to the usage of 𝛤𝑡,𝑠 binary variable. Also, 

it is non-linear as a result of the product of variables (𝜀𝑤𝑡,𝑠(1 − 𝛤𝑡,𝑠) and 𝜀𝑤𝑡,𝑠𝛤𝑡,𝑠) in (3.21). 

Solving a mixed-integer non-linear programming problem is generally difficult due to the 

absence of mathematical methods to find certified solutions. However, the WPA 

optimization problem (3.21)-(3.26) can be simply converted into a mixed-integer linear 

programming problem. To do so, the energy deviation 𝜀𝑤𝑡,𝑠  is decomposed into two 

separate energy deviations presenting positive and negative energy deviations. After this 

decomposing 𝜀𝑤𝑡,𝑠 into sum a of the 𝜀𝑤𝑡,𝑠+  and 𝜀𝑤𝑡,𝑠− , the problem formulation (3.21)-(3.26) 

is transformed into problem (3.27)-(3.33): 

Max𝑃𝑤𝑡𝐷𝐴,∀𝑡;𝜀𝑤𝑡,𝑠+ ,∀𝑡,𝑠;𝜀𝑤𝑡,𝑠− ,∀𝑡,𝑠 [𝒵𝑃𝑟𝑜𝑓𝑖𝑡
𝑊𝑃𝐴 ] 

[𝒵𝑃𝑟𝑜𝑓𝑖𝑡
𝑊𝑃𝐴 ] =∑∑𝜋𝑠[𝜌𝑡,𝑠

𝐷𝐴. 𝑃𝑤𝑡
𝐷𝐴𝑑𝑡 + 𝜂𝑡,𝑠

+ 𝜌𝑡,𝑠
𝐷𝐴𝜀𝑤𝑡,𝑠

+ − 𝜂𝑡,𝑠
− 𝜌𝑡,𝑠

𝐷𝐴𝜀𝑤𝑡,𝑠
− ]

𝑁𝑇

𝑡=1

𝑁𝑠

𝑠=1

 
(3.27) 

subject to 

0 ≤ 𝑃𝑤𝑡
𝐷𝐴 ≤ 𝑃𝑤𝑀𝑎𝑥,      ∀𝑡 (3.28) 

𝜀𝑤𝑡,𝑠 = 𝐸𝑤𝑡,𝑠 − 𝐸𝑤𝑡
𝐷𝐴 = 𝑑𝑡(𝑃𝑤𝑡,𝑠 − 𝑃𝑤𝑡

𝐷𝐴),      ∀𝑡, 𝑠 (3.29) 

𝜀𝑤𝑡,𝑠 = 𝜀𝑤𝑡,𝑠
+ − 𝜀𝑤𝑡,𝑠

− ,      ∀𝑡, 𝑠 (3.30) 

0 ≤ 𝜀𝑤𝑡,𝑠
+ ≤ 𝜘1(1 − 𝛤𝑡,𝑠),      ∀𝑡, 𝑠 (3.31) 

0 ≤ 𝜀𝑤𝑡,𝑠
− ≤ 𝜘2𝛤𝑡,𝑠,      ∀𝑡, 𝑠 (3.32) 

𝛤𝑡,𝑠 = (0, 1),      ∀𝑡, 𝑠 (3.33) 

where 𝜘1 and 𝜘2 are large numbers which are higher than any possible amount of 𝜀𝑤𝑡,𝑠+  and 

𝜀𝑤𝑡,𝑠
− , respectively. Proper values can be chosen for 𝜘1 and 𝜘2 with two simple ideas. Firstly, 
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the maximum of 𝜀𝑤𝑡,𝑠+  happens in scenarios where the WPA does not sell any energy to the 

DA market that is 𝑃𝑤𝑡𝐷𝐴 = 0, but it finally produces 𝑃𝑤𝑡,𝑠 of power. For that reason, the 

constant 𝜘1  can be fixed to 𝑃𝑤𝑡,𝑠 . In the same way, the maximum of 𝜀𝑤𝑡,𝑠−  occurs in 

scenarios where the WPA sells its maximum capacity in the DA market that is 𝑃𝑤𝑡𝐷𝐴 =

𝑃𝑤𝑀𝑎𝑥, but its ultimate production 𝑃𝑤𝑡,𝑠 is equal to 0. Therefore, the constant 𝜘2 can be 

fixed to 𝑃𝑤𝑀𝑎𝑥. 

As for each pried of time 𝑡 and scenario 𝑠, the total energy deviation 𝜀𝑤𝑡,𝑠 = 𝜀𝑤𝑡,𝑠+ −

𝜀𝑤𝑡,𝑠
−  in (3.30) experienced by the WPA in the optimization problem guarantees that one of 

the variables 𝜀𝑤𝑡,𝑠+  or 𝜀𝑤𝑡,𝑠−  is equal to 0 thanks to the fact that 𝜂𝑡,𝑠+ ≤ 1 and 𝜂𝑡,𝑠− ≥ 1 in (3.8) 

and (3.9). Therefore, the binary variable 𝛤𝑡,𝑠 is actually not needed, and consequently, the 

WPA optimization problem (3.27)-(3.33) which is a mixed-integer programming problem 

can be equally altered into a linear programming problem (3.34)-(3.39): 

Max𝑃𝑤𝑡𝐷𝐴,∀𝑡;𝜀𝑤𝑡,𝑠+ ,∀𝑡,𝑠;𝜀𝑤𝑡,𝑠− ,∀𝑡,𝑠 [𝒵𝑃𝑟𝑜𝑓𝑖𝑡
𝑊𝑃𝐴 ] 

[𝒵𝑃𝑟𝑜𝑓𝑖𝑡
𝑊𝑃𝐴 ] =∑∑𝜋𝑠[𝜌𝑡,𝑠

𝐷𝐴. 𝑃𝑤𝑡
𝐷𝐴𝑑𝑡 + 𝜂𝑡,𝑠

+ 𝜌𝑡,𝑠
𝐷𝐴𝜀𝑤𝑡,𝑠

+ − 𝜂𝑡,𝑠
− 𝜌𝑡,𝑠

𝐷𝐴𝜀𝑤𝑡,𝑠
− ]

𝑁𝑇

𝑡=1

𝑁𝑠

𝑠=1

 
(3.34) 

subject to 

0 ≤ 𝑃𝑤𝑡
𝐷𝐴 ≤ 𝑃𝑤𝑀𝑎𝑥,      ∀𝑡 (3.35) 

𝜀𝑤𝑡,𝑠 = 𝐸𝑤𝑡,𝑠 − 𝐸𝑤𝑡
𝐷𝐴 = 𝑑𝑡(𝑃𝑤𝑡,𝑠 − 𝑃𝑤𝑡

𝐷𝐴),      ∀𝑡, 𝑠 (3.36) 

𝜀𝑤𝑡,𝑠 = 𝜀𝑤𝑡,𝑠
+ − 𝜀𝑤𝑡,𝑠

− ,      ∀𝑡, 𝑠 (3.37) 

0 ≤ 𝜀𝑤𝑡,𝑠
+ ≤ 𝑃𝑤𝑡

𝐷𝐴𝑑𝑡,      ∀𝑡, 𝑠 (3.38) 

0 ≤ 𝜀𝑤𝑡,𝑠
− ≤ 𝑃𝑤𝑀𝑎𝑥𝑑𝑡,      ∀𝑡, 𝑠 (3.39) 
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3.3.8 Offering Curves 
The WPA optimization problem (3.34)-(3.39) is formulated to achieve the optimal 

single value instead of optimal offering curves for every hour of the DA. However, it is 

more appropriate to attain optimal offering curves for a WPA to be submitted to the DA 

market. To do so, variables 𝑃𝑤𝑡𝐷𝐴  must be extended to all scenarios as 𝑃𝑤𝑡,𝑠𝐷𝐴  and the 

constraints (3.40) and (3.41) must be added to the WPA optimization problem (3.34)-(3.39), 

(𝑃𝑤𝑡,𝑠
𝐷𝐴 − 𝑃𝑤𝑡,𝑠′

𝐷𝐴). (𝜌𝑡,𝑠
𝐷𝐴 − 𝜌𝑡,𝑠,

𝐷𝐴) ≥ 0     ∀𝑡, ∀𝑠, ∀𝑠 , (3.40) 

𝑃𝑤𝑡,𝑠
𝐷𝐴 = 𝑃𝑤𝑡,𝑠′

𝐷𝐴 ,       ∀𝑡, 𝑠, 𝑠′:      𝜌𝑡,𝑠
𝐷𝐴 = 𝜌𝑡,𝑠′

𝐷𝐴 . (3.41) 

 

Constraint (3.40) is intended to make offering curves to be non-decreasing, which is an 

obligation in mostly all electricity markets. Constraint (3.41) is also used for a non-

anticipativity formulation as only one offering curve can be submitted to the DA market for 

each hour. It is important to mention that the new model with (3.41) has fewer constraints 

due to the removal of too many constraints by non-anticipativity formulation. 

3.3.9 Risk Modeling 
In a stochastic programming decision-making problem, the problem is usually 

formulated to maximize an objective function demonstrating an expected profit or minimize 

an objective function demonstrating cost. By default, these minimization or maximization 

problems are considered and modeled to be risk-neutral which means the operator only tries 

to maximize the expected value of the profit and minimize the cost while paying no 

attention to the characteristics of the distribution of the profit or cost. 

 



Hybrid Power Plant Bidding Strategy for Electricity Market Participation 

65 
 

 

Fig. 3.4 Concept of risk 

On the other hand, to maximize the expected value of the profit or minimize the cost, 

the operator can also evaluate the scenarios with worse profit values considering risk and 

solve a risk-averse problem. 

Fig. 3.4 demonstrates the concept of risk. As can be seen from Fig. 3.4, there are two 

examples of profit variables probability mass functions that are signified by A and B. The 

expected profit of A and B are equal to 0.7 Euros. Consequently, both expected profits are 

similarly acceptable for an operator with a risk-neutral standpoint. However, the profit of B 

is positive at all times, and the operator does not lose any money in all scenarios. In contrast, 

the profit of A is negative in two scenarios, as shown by the red color in Fig. 3.4, and the 

operator loses money in two scenarios. Therefore, even with having the same expected 

profit, A is considered to be riskier than B. 

Note that the operator can set different risk factors for a stochastic programming 

problem considering risk, which allows him/her to achieve different expected profits with 

different objective function variability. 

For instance, a consumer may participate in the DA market by bidding strategies 

pursuing the minimum cost and ignoring cost variability. On the other hand, this consumer 
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may pursue the minimum cost but restricting the variance of the cost distribution it attains. 

Strategies achieved by solving these different models would usually be quite different. 

Since the amount of risk factor is an input parameter, operators should previously 

identify the amount of risk factor they want to choose. 

The easiest way to regulate the risk of financial profit in the WPA optimization problem 

(3.34)-(3.41) is to add the CVaR at the 𝜎 confidence level to the optimization problem. 

Adding the CVaR to the WPA optimization problem does not change mathematical assets, 

and the problem still can be linear. The risk-constrained WPA optimization problem can be 

defined as follows [100],  

Max𝑃𝑤𝑡,𝑠𝐷𝐴,∀𝑡;𝜀𝑤𝑡,𝑠+ ,∀𝑡,𝑠;𝜀𝑤𝑡,𝑠− ,∀𝑡,𝑠;𝜑𝑠,∀𝑠;𝜃[𝒵𝑃𝑟𝑜𝑓𝑖𝑡
𝑊𝑃𝐴 ] + 𝜁 (𝜃 −

1

(1 − 𝜎)
∑𝜋𝑠𝜑𝑠

𝑁𝑠

𝑠=1

) 
(3.42) 

subject to constraints (3.35)-(3.41) in addition to constraints (3.43) and (3.44), 

−∑𝜋𝑠[𝜌𝑡,𝑠
𝐷𝐴. 𝑃𝑤𝑡

𝐷𝐴𝑑𝑡 + 𝜂𝑡,𝑠
+ 𝜌𝑡,𝑠

𝐷𝐴𝜀𝑤𝑡,𝑠
+ − 𝜂𝑡,𝑠

− 𝜌𝑡,𝑠
𝐷𝐴𝜀𝑤𝑡,𝑠

− ]

𝑁𝑇

𝑡=1

+ 𝜃 − 𝜑𝑠 ≤ 0,      ∀𝑠 
(3.43) 

𝜑𝑠 ≥ 0,      ∀𝑠 (3.44) 

where 𝜃  is a supplementary variable to calculate CVaR. 𝜑𝑠  is continuous non-negative 

variable to calculate CVaR. The risk-constrained WPA optimization objective function 

(3.42) comprises the expected profit ([𝒵𝑃𝑟𝑜𝑓𝑖𝑡𝑊𝑃𝐴 ] in (3.14)) and the CVaR multiplied by the 

risk factor 𝜁 with the values between 0 for not considering the financial risk and 1 for fully 

considering the financial risk. Noteworthily, as shown in Fig. 3.5, (1 − 𝜎) regulates the area 

of the profit distribution function covering the least profitable scenarios. More information 

about CVaR modeling is provided in [100, 132]. 
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Fig. 3.5 CVaR to control the financial risks 

3.3.10 Intraday Market 
Three changes will be made if the intraday market is added to the WPA basic model in 

Subsection 3.3.7. Firstly, a term for the benefit/cost is added to the objective function of the 

WPA basic model that shows how much the WPA gains/loses from selling/buying energy in 

the intraday market. This added term can be clearly seen in the following: 

[𝒵𝑃𝑟𝑜𝑓𝑖𝑡
𝑊𝑃𝐴 ] =∑∑𝜋𝑠[𝜌𝑡,𝑠

𝐷𝐴. 𝑃𝑤𝑡
𝐷𝐴𝑑𝑡 + 𝜌𝑡,𝑠

𝐼𝑁 . 𝑃𝑤𝑡
𝐼𝑁𝑑𝑡 + 𝜂𝑡,𝑠

+ 𝜌𝑡,𝑠
𝐷𝐴𝜀𝑤𝑡,𝑠

+ − 𝜂𝑡,𝑠
− 𝜌𝑡,𝑠

𝐷𝐴𝜀𝑤𝑡,𝑠
− ]

𝑁𝑇

𝑡=1

𝑁𝑠

𝑠=1

 
(3.45) 

where 𝜌𝑡,𝑠𝐼𝑁 . 𝑃𝑤𝑡𝐼𝑁𝑑𝑡 is the benefit/cost that the WPA gets/loses from/to the intraday market. 

Note that term 𝜌𝑡,𝑠𝐼𝑁 . 𝑃𝑤𝑡𝐼𝑁𝑑𝑡 in (3.45) can be sometimes negative if the WPA chooses to buy 

energy from the intraday market (𝑃𝑤𝑡𝐼𝑁 < 0). Secondly, the total energy deviation 𝜀𝑤𝑡,𝑠 is 

calculated based on the final energy schedule 𝐸𝑤𝑡,𝑠𝑆𝐶 . The final power schedule 𝑃𝑤𝑡,𝑠𝑆𝐶   which 

can be easily converted to the final energy schedule 𝐸𝑤𝑡,𝑠𝑆𝐶  is calculated based on (3.46).  

𝑃𝑤𝑡,𝑠
𝑆𝐶 = 𝑃𝑤𝑡,𝑠

𝐷𝐴 + 𝑃𝑤𝑡,𝑠
𝐼𝑁 ,       ∀𝑡, ∀𝑠 (3.46) 
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0 ≤ 𝑃𝑤𝑡,𝑠
𝑆𝐶 ≤ 𝑃𝑤𝑀𝑎𝑥,      ∀𝑡, 𝑠 (3.47) 

𝜀𝑤𝑡,𝑠 = 𝐸𝑤𝑡,𝑠 − 𝐸𝑤𝑡,𝑠
𝑆𝐶 = 𝑑𝑡(𝑃𝑤𝑡,𝑠 − 𝑃𝑤𝑡,𝑠

𝑆𝐶),      ∀𝑡, 𝑠 (3.48) 

Finally, constraints related to non-anticipativity of intraday market can be added to the 

WPA basic model as follows:  

𝑃𝑤𝑡,𝑠
𝐼𝑁 = 𝑃𝑤𝑡,𝑠′

𝐼𝑁 ,       ∀𝑡, 𝑠, 𝑠′:     (𝜌𝑡,𝑠
𝐷𝐴 = 𝜌𝑡,𝑠′

𝐷𝐴 , ∀𝑡) and 𝑃𝑤𝜏,𝑠 = 𝑃𝑤𝜏,𝑠′ ,       ∀𝜏

= 1,2, … ,𝑁𝐻1 (3.49) 

where 𝑁𝐻1 is the number of time periods between the DA and intraday markets closing 

time.  

3.3.11 WPA Model 
In this section, the bidding strategy of the WPA is formulated for profit maximization. 

Three electricity markets, including DA, intraday, and balancing markets, are considered in 

this model, as shown in Fig. 3.1 [81]. As can be seen in Fig. 3.1, the intraday market 

remains two and a half hours before the balancing market. With regard to the three 

mentioned electricity markets and considering the CVaR to control the financial risks, the 

objective function 𝒵𝑂𝑏𝑗𝑊𝑃𝐴  of the optimization problem Max𝛩𝑤𝑡,𝑠;𝜑𝑠,∀𝑠;𝜃 [𝒵𝑂𝑏𝑗
𝑊𝑃𝐴]  can be 

written as (3.50) [81]. Note that the time interval 𝑑𝑡 is considered to be 1 hour and removed 

from the formulations. 

[𝒵𝑂𝑏𝑗
𝑊𝑃𝐴] =∑∑𝜋𝑠[𝜌𝑡,𝑠

𝐷𝐴. 𝑃𝑤𝑡,𝑠
𝐷𝐴 + 𝜌𝑡,𝑠

𝐼𝑁 . 𝑃𝑤𝑡,𝑠
𝐼𝑁 +  𝜌𝑡,𝑠

𝐷𝐴. 𝜂𝑡,𝑠
+ . 𝜀𝑤𝑡,𝑠

+ − 𝜌𝑡,𝑠
𝐷𝐴. 𝜂𝑡,𝑠

− . 𝜀𝑤𝑡,𝑠
− ]

𝑁𝑇

𝑡=1

𝑁𝑠

𝑠=1

 

+   𝜁 (𝜃 −
1

(1 − 𝜎)
∑𝜋𝑠𝜑𝑠

𝑁𝑠

𝑠=1

) 

(3.50) 
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where 𝛩𝑤𝑡,𝑠 = [ 𝑃𝑤𝑡,𝑠
𝐷𝐴,  𝑃𝑤𝑡,𝑠

𝐼𝑁 ,  𝑃𝑤𝑡,𝑠
𝑆𝐶 , 𝜀𝑤𝑡,𝑠

+ ,  𝜀𝑤𝑡,𝑠
− ,     ∀𝑡, ∀𝑠]  are the variables related to 

the WPA optimization problem. The objective function is composed of the expected profit 

of WPA, and the CVaR, which is multiplied by the risk-aversion factor 𝜁 . The total 

revenue/cost of WPA comes from the following: firstly, selling energy in the DA market; 

secondly, selling/purchasing energy in the intraday market and thirdly, the revenue/cost of 

participation in the balancing market due to positive/negative scheduling deviations from 

the actual generated power of producer. In (3.50), the terms 𝜌𝑡,𝑠𝐷𝐴. 𝑃𝑤𝑡,𝑠𝐷𝐴 and 𝜌𝑡,𝑠𝐼𝑁 . 𝑃𝑤𝑡,𝑠𝐼𝑁 state 

the revenue from DA market and revenue/cost from the intraday market, respectively; while 

the terms  𝜌𝑡,𝑠𝐷𝐴. 𝜂𝑡,𝑠+ . 𝜀𝑤𝑡,𝑠+ and 𝜌𝑡,𝑠𝐷𝐴. 𝜂𝑡,𝑠− . 𝜀𝑤𝑡,𝑠−  indicate the revenue/cost from the 

positive/negative energy deviations in the balancing market. The last term in (3.50) is 

related to considering the CVaR to control the financial risks.  

The objective function of profit maximization of WPA in (3.50) is subject to some 

important constraints as follows [81]: 

0 ≤ 𝑃𝑤𝑡,𝑠
𝛽
≤ 𝑃𝑤𝑀𝑎𝑥      ∀𝑡, ∀𝑠, 𝛽 = 𝐷𝐴, 𝑆𝐶 (3.51) 

|𝑃𝑤𝑡,𝑠
𝐼𝑁| ≤ Λ. 𝑃𝑤𝑡,𝑠

𝐷𝐴     ∀𝑡, ∀𝑠 (3.52) 

𝑃𝑤𝑡,𝑠
𝑆𝐶 = 𝑃𝑤𝑡,𝑠

𝐷𝐴 + 𝑃𝑤𝑡,𝑠
𝐼𝑁    ∀𝑡, ∀𝑠 (3.53) 

where (3.51) limits the offering power of WPA to the DA market and its scheduled power. 

Note that 𝑃𝑤𝑡,𝑠𝐷𝐴 and 𝑃𝑤𝑡,𝑠𝑆𝐶  in (3.51) can only be positive values. In other words, WPA can 

only sell electricity to the DA market and have a positive value for its scheduled power. The 

amount of WPA power to participate in the intraday market is also limited to an upper 

bound, which equals Λ (a bounding factor for biddings to intraday market) multiplied by its 

participation capacity to the DA market as formulated in (3.52). The total scheduled powers 
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of WPA is also limited to its participation in DA and intraday offers, as formulated in (3.53) 

[81]. 

𝜀𝑤t,s = 𝑃𝑤𝑡,𝑠 − 𝑃𝑤𝑡,𝑠
𝑆𝐶      ∀𝑡, ∀𝑠 (3.54) 

𝜀𝑤𝑡,𝑠 = 𝜀𝑤𝑡,𝑠
+ − 𝜀𝑤𝑡,𝑠

−      ∀𝑡, ∀𝑠 (3.55) 

0 ≤ 𝜀𝑤𝑡,𝑠
+ ≤ 𝑃𝑤𝑡,𝑠     ∀𝑡, ∀𝑠 (3.56) 

0 ≤ 𝜀𝑤𝑡,𝑠
− ≤ 𝑃𝑤𝑚𝑎𝑥      ∀𝑡, ∀𝑠 (3.57) 

−∑[𝜌𝑡,𝑠
𝐷𝐴. 𝑃𝑤𝑡,𝑠

𝐷𝐴 + 𝜌𝑡,𝑠
𝐼𝑁 . 𝑃𝑤𝑡,𝑠

𝐼𝑁  + 𝜌𝑡,𝑠
𝐷𝐴. 𝜂𝑡,𝑠

+ . 𝜀𝑤𝑡,𝑠
+ − 𝜌𝑡,𝑠

𝐷𝐴. 𝜂𝑡,𝑠
− . 𝜀𝑤𝑡,𝑠

− ]

𝑁𝑇

𝑡=1

+  𝜃 − 𝜑𝑠

≤ 0     ∀𝑠 (3.58) 

𝜑𝑠 ≥ 0     ∀𝑠 (3.59) 

(𝑃𝑤𝑡,𝑠
𝐷𝐴 − 𝑃𝑤𝑡,𝑠,

𝐷𝐴). (𝜌𝑡,𝑠
𝐷𝐴 − 𝜌𝑡,𝑠,

𝐷𝐴) ≥ 0     ∀𝑡, ∀𝑠, ∀𝑠 , (3.60) 

𝑃𝑤𝑡,𝑠
𝐷𝐴 = 𝑃𝑤𝑡,𝑠,

𝐷𝐴     ∀𝑡, ∀𝑠, ∀𝑠 , ∶  𝜌𝑡,𝑠
𝐷𝐴 = 𝜌𝑡,𝑠,

𝐷𝐴 (3.61) 

The total negative and positive imbalances according to the amount of scheduled and 

actual wind power productions are formulated in (3.54)-(3.57). Constraints (3.58) and (3.59) 

formulate the required limitations for the CVaR calculation. (3.60) and (3.61) are used to 

offer non-decreasing curves to the DA electricity market. 

3.4 CAES Aggregator Modeling 
In this section, a bidding strategy for a CAES aggregator to participate in the electricity 

markets is modeled as a stochastic optimization problem, in which the goal is to maximize 

the profit which includes the total profits of the CAES aggregator from the electricity 

markets minus its operational costs. From the reliability point of view, CAES has very 
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reliable performance and output in comparison with other producers like WPA [90]. 

Therefore, there is no need for CAES aggregator to participate in the balancing market. In 

this case, two electricity markets, including DA and intraday, are considered in this chapter 

for the modeling of CAES aggregator. With the two mentioned electricity markets model, 

the CAES operational cost, and considering the CVaR to control the financial risks, the 

objective function 𝒵𝑂𝑏𝑗𝐶𝐴𝐸𝑆  of the optimization problem Max𝛩𝑐𝑡,𝑠;𝜑𝑠,∀𝑠;𝜃 [𝒵𝑂𝑏𝑗
𝐶𝐴𝐸𝑆]  can be 

written as follows in (3.62): 

[𝒵𝑂𝑏𝑗
𝐶𝐴𝐸𝑆] = ∑∑𝜋𝑠[𝜌𝑡,𝑠

𝐷𝐴. 𝑃𝑐𝑡,𝑠
𝐷𝐴 + 𝜌𝑡,𝑠

𝐼𝑁 . 𝑃𝑐𝑡,𝑠
𝐼𝑁 −𝑂𝐶𝑡,𝑠]

𝑁𝑇

𝑡=1

𝑁𝑠

𝑠=1

 +  𝜁 (𝜃 −
1

(1 − 𝜎)
∑𝜋𝑠𝜑𝑠

𝑁𝑠

𝑠=1

) 

(3.62) 

where 𝛩𝑐𝑡,𝑠 = {
 𝑃𝑐𝑡,𝑠

𝐷𝐴,   𝑃𝑐𝑡,𝑠
𝐼𝑁 ,   𝑃𝑐𝑡,𝑠

𝑆𝐶 , 𝑃𝑐𝑡,𝑠
𝑆𝐶,𝐷𝑖𝑠,  𝑃𝑐𝑡,𝑠

𝑆𝐶,𝑆𝑖𝑚, 𝑃𝑐𝑡,𝑠
𝑆𝐶,𝐶ℎ𝑎, 𝑈𝑐𝑡,𝑠

𝑆𝐶,𝐷𝑖𝑠,   𝑈𝑐𝑡,𝑠
𝑆𝐶,𝑆𝑖𝑚,

   𝑈𝑐𝑡,𝑠
𝑆𝐶,𝐶ℎ𝑎,   𝐸𝑐𝑡,𝑠

𝑆𝐶 ,     ∀𝑡, ∀𝑠 
}  are 

the variables of the CAES aggregator optimization problem. The objective function has two 

general terms, including the expected profit of CAES aggregator, which is the difference 

between its revenue and operating cost, and the CVaR (multiplied by the risk-aversion 

factor 𝜁). The revenue/cost of CAES aggregator is obtained from selling energy in DA and 

intraday markets, while its costs are the sum of the purchased energy to charge the air 

cavern plus variable costs of simple-cycle mode. The terms 𝜌𝑡,𝑠𝐷𝐴. 𝑃𝑐𝑡,𝑠𝐷𝐴  and 𝜌𝑡,𝑠𝐼𝑁 . 𝑃𝑐𝑡,𝑠𝐼𝑁 

express the revenue/cost from the selling/purchasing of energy in CAES in DA and intraday 

markets, respectively. The term 𝑂𝐶𝑡,𝑠  in the objective function is related to the CAES 

operational cost which is computed according to the different CAES operating modes 

(charging, discharging and simple-cycle modes) and their amount of power. The last term is 

for modeling of the CVaR, and it is multiplied by 𝜁  (risk-aversion factor) The CVaR 
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signifies the expected profit of the (1 − 𝜎) × 100 percent of scenarios yielding the lowest 

profits, and it is used to regulate the risk due to profit variability confronted by the CAES 

aggregator. 𝜎 is the confidence level with 𝜎 ∈ (0,1). Note that 𝜃 is an auxiliary variable, 

and its value is simultaneously optimized along with variables 𝛩𝑐𝑡,𝑠 and 𝜑𝑠, where 𝜑𝑠 is a 

continuous non-negative variable equal to the maximum of 𝜃 − ∑ [𝜌𝑡,𝑠
𝐷𝐴. 𝑃𝑐𝑡,𝑠

𝐷𝐴 +
𝑁𝑇
𝑡=1

𝜌𝑡,𝑠
𝐼𝑁 𝑃𝑐𝑡,𝑠

𝐼𝑁 − 𝑂𝐶𝑡,𝑠] and 0.  

The objective function defined in (3.62) is subject to the following constraints [90]: 

−𝑃𝑐𝐶𝑜𝑚
𝑀𝑎𝑥 ≤ 𝑃𝑐𝑡,𝑠

𝛽
≤ 𝑃𝑐𝐸𝑥𝑝

𝑀𝑎𝑥      ∀𝑡, ∀𝑠, 𝛽 = 𝐷𝐴, 𝑆𝐶 (3.63) 

−Λ.𝑃𝑐𝐶𝑜𝑚
𝑀𝑎𝑥 ≤ 𝑃𝑐𝑡,𝑠

𝐼𝑁 ≤ Λ. 𝑃𝑐𝐸𝑥𝑝
𝑀𝑎𝑥      ∀𝑡, ∀𝑠 (3.64) 

𝑃𝑐𝑡,𝑠
𝑆𝐶 = 𝑃𝑐𝑡,𝑠

𝐷𝐴 + 𝑃𝑐𝑡,𝑠
𝐼𝑁      ∀𝑡, ∀𝑠 (3.65) 

𝑃𝑐𝑡,𝑠
𝑆𝐶 = 𝑃𝑐𝑡,𝑠

𝑆𝐶,𝐷𝑖𝑠 + 𝑃𝑐𝑡,𝑠
𝑆𝐶,𝑆𝑖𝑚 − 𝑃𝑐𝑡,𝑠

𝑆𝐶,𝐶ℎ𝑎      ∀𝑡, ∀𝑠 (3.66) 

0 ≤ 𝑃𝑐𝑡,𝑠
𝑆𝐶,𝜛 ≤ 𝑃𝑐𝐸𝑥𝑝

𝑀𝑎𝑥. 𝑈𝑐𝑡,𝑠
𝑆𝐶,𝜛      ∀𝑡, ∀𝑠,ϖ =  𝐷𝑖𝑠, 𝑆𝑖𝑚, 𝐶ℎ𝑎 (3.67) 

𝑈𝑐𝑡,𝑠
𝑆𝐶,𝐷𝑖𝑠 + 𝑈𝑐𝑡,𝑠

𝑆𝐶,𝑆𝑖𝑚 + 𝑈𝑐𝑡,𝑠
𝑆𝐶,𝐶ℎ𝑎 ≤ 1  ∀𝑡, ∀𝑠 (3.68) 

𝐸𝑐𝑡,𝑠
𝑆𝐶 = 𝐸𝑐𝑡−1,𝑠

𝑆𝐶 + 𝐸𝑟(𝑃𝑐𝑡,𝑠
𝑆𝐶,𝐶ℎ𝑎 − 𝑃𝑐𝑡,𝑠

𝑆𝐶,𝐷𝑖𝑠)    ∀𝑡 > 1, ∀𝑠 (3.69) 

𝐸𝑐1,𝑠
𝑆𝐶 = 𝐸𝑐𝐼𝑁𝑇   ∀𝑠 (3.70) 

𝐸𝑐𝑀𝑖𝑛 ≤ 𝐸𝑐𝑡,𝑠
𝑆𝐶 ≤ 𝐸𝑐𝑀𝑎𝑥     ∀𝑡, ∀𝑠 (3.71) 

𝑂𝐶𝑡,𝑠 = 𝑃𝑐𝑡,𝑠
𝑆𝐶,𝐷𝑖𝑠(𝐻𝑐𝐷𝑖𝑠. 𝑁𝐺 + 𝑉𝑐𝐸𝑥𝑝) + 𝑃𝑐𝑡,𝑠

𝑆𝐶,𝑆𝑖𝑚(𝐻𝑐𝑆𝑖𝑚. 𝑁𝐺 + 𝑉𝑐𝐸𝑥𝑝 + 𝑉𝑐𝐶𝑜𝑚)

+ 𝑃𝑐𝑡,𝑠
𝑆𝐶,𝐶ℎ𝑎𝑉𝑐𝐶𝑜𝑚     ∀𝑡, ∀𝑠 (3.72) 

−∑[𝜌𝑡,𝑠
𝐷𝐴. 𝑃𝑐𝑡,𝑠

𝐷𝐴 + 𝜌𝑡,𝑠
𝐼𝑁 𝑃𝑐𝑡,𝑠

𝐼𝑁 − 𝑂𝐶𝑡,𝑠]

𝑁𝑇

𝑡=1

+  𝜃 − 𝜑𝑠 ≤ 0     ∀𝑠 
(3.73) 
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𝜑𝑠 ≥ 0     ∀𝑠 (3.74) 

(𝑃𝑐𝑡,𝑠
𝐷𝐴 − 𝑃𝑐𝑡,𝑠,

𝐷𝐴). (𝜌𝑡,𝑠
𝐷𝐴 − 𝜌𝑡,𝑠,

𝐷𝐴) ≥ 0     ∀𝑡, ∀𝑠, ∀𝑠 , (3.75) 

𝑃𝑐𝑡,𝑠
𝐷𝐴 = 𝑃𝑐𝑡,𝑠,

𝐷𝐴     ∀𝑡, ∀𝑠, ∀𝑠 , ∶  𝜌𝑡,𝑠
𝐷𝐴 = 𝜌𝑡,𝑠,

𝐷𝐴 (3.76) 

where (3.63) limits the offering CAES power to the DA market and its scheduled power, 

respectively, where 𝑃𝑐  is the power related to CAES. 𝑃𝑐𝐸𝑥𝑝/𝐶𝑜𝑚𝑀𝑎𝑥  is the maximum 

expanding/compressing capacity of CAES. Note that both of 𝑃𝑐𝑡,𝑠𝐷𝐴 and 𝑃𝑐𝑡,𝑠𝑆𝐶  in (3.63) in 

each hour can be positive or negative, which means that the CAES aggregator has the 

capability of either buying or selling energy in each hour of the day. The amount of CAES 

aggregator power to participate in the intraday market is also limited to Λ  times its 

participation capacity to the DA market as formulated in (3.64). In other words, according 

to (3.64), CAES is not allowed to use its full capacity to participate in the intraday market, 

even it is more economical [100]. The total scheduled CAES power, which is based on the 

summation of CAES bidding powers to DA and intraday electricity markets, is expressed in 

(3.65). Eq. (3.66) shows that the CAES scheduled power is based on three CAES working 

modes (i.e., discharging (superscript Dis), simple-cycle (superscript Sim) or charging 

(superscript Cha) modes). The restrictions of CAES power in these modes are formulated in 

(3.67), where 𝑈𝑐 is the binary variable related to the ON/OFF operating status of CAES. It 

is worthwhile to mention that at each period and scenario, the CAES can only work in one 

of the charging, discharging, or simple-cycle modes. This limitation can be precisely 

specified in (3.68). The scheduled CAES energy level, which is also called the state-

transition equation, is expressed in (3.69), where 𝐸𝑟 is the CAES energy ratio for converting 

power to energy in cthe avern and 𝐸𝑐 is the energy level related to the CAES. The initial 
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value (𝐸𝑐𝐼𝑁𝑇 ) of this energy is limited by (3.70). This energy is also restricted by the 

capacity of CAES cavern as mathematically formulated in (3.71), where 𝐸𝑐𝑀𝑎𝑥/𝑀𝑖𝑛 is the 

maximum/minimum schedulable level of energy in CAES cavern. Eq. (3.72) formulates the 

operational cost of CAES, which is used in the objective function (3.62), where 𝐻𝑐 stands 

for the CEAS heat rate in one of the operating modes, NG is the natural gas price and 

𝑉𝑐𝐸𝑥𝑝/𝐶𝑜𝑚  is the CAES variable operation and maintenance cost for 

expanding/compressing modes. The CAES operational cost is computed according to the 

different CAES operating modes (charging, discharging and simple-cycle modes) and their 

amount of power. In order to calculate and control the functional risk, (3.73) and (3.74) are 

required for the model. The stochastic programming model (3.62)–(3.74) can be solved to 

attain the optimal quantities to be submitted in the DA market. However, it is more 

appropriate to develop optimal offering curves for every hour of this market. For this 

purpose, variable 𝑃𝑐𝑡𝐷𝐴, which are the power traded in the DA market for each time period t, 

is considered to be dependent on scenarios (𝑃𝑐𝑡𝐷𝐴 → 𝑃𝑐𝑡,𝑠𝐷𝐴) and the constraints (3.75) and 

(3.76) are added to the model (3.62)–(3.74). Constraints (3.75) make offering curves non-

decreasing, which is an obligation in most electricity markets. Eqs. (3.76) are non-

anticipativity constraints, which enforce the idea that only one offering curve can be 

submitted to the DA market regardless of the imbalance price and actual wind power 

generation. Note that the bidding strategy model remains decomposable at each period, and 

even constraints (3.75) and (3.76) are included. 
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3.5 HPP Modeling 
In this section, a bidding strategy for the HPP is modeled to achieve the maximum 

profit of the joint operation of CAES aggregator and WPA. All three electricity markets 

used in WPA modeling, as shown in Fig. 3.1 are also taken into consideration in HPP 

modeling [81]. With regards to the CVaR model, the objective function 𝒵𝑂𝑏𝑗
𝐻𝑝𝑝  of the 

optimization problem Max𝛩ℎ𝑡,𝑠;𝜑𝑠,∀𝑠;𝜃 [𝒵𝑂𝑏𝑗
𝐻𝑝𝑝]  for the participation of HPP in all given 

electricity markets can be written as follows:   

[𝒵𝑂𝑏𝑗
𝐻𝑝𝑝] = ∑∑𝜋𝑠[𝜌𝑡,𝑠

𝐷𝐴. 𝑃ℎ𝑡,𝑠
𝐷𝐴 + 𝜌𝑡,𝑠

𝐼𝑁 . 𝑃ℎ𝑡,𝑠
𝐼𝑁 + 𝜌𝑡,𝑠

𝐷𝐴. 𝜂𝑡,𝑠
+ . 𝜀ℎ𝑡,𝑠

+ − 𝜌𝑡,𝑠
𝐷𝐴. 𝜂𝑡,𝑠

− . 𝜀ℎ𝑡,𝑠
−

𝑁𝑇

𝑡=1

𝑁𝑠

𝑠=1

− 𝑂𝐶𝑡,𝑠]  +  𝜁 (𝜃 −
1

(1 − 𝜎)
∑𝜋𝑠𝜑𝑠

𝑁𝑠

𝑠=1

) 

(3.77) 

where 𝛩ℎ𝑡,𝑠 = {𝑃ℎ𝑡,𝑠
𝐷𝐴, 𝑃ℎ𝑡,𝑠

𝐼𝑁 ,  𝑃ℎ𝑡,𝑠
𝑆𝐶 ,  𝜀ℎ𝑡,𝑠

+ ,  𝜀ℎ𝑡,𝑠
− , 𝑃𝑤𝑡,𝑠

𝐷𝐴, 𝑃𝑐𝑡,𝑠
𝐷𝐴,  𝑃𝑤𝑡𝜔

𝐼𝑁 , 𝑃𝑐𝑡,𝑠
𝐼𝑁 , 𝑃𝑤𝑡,𝑠

𝑆𝐶 , 𝑃𝑐𝑡,𝑠
𝑆𝐶 , 

𝑃𝑐𝑡,𝑠
𝑆𝐶,𝐷𝑖𝑠,  𝑃𝑐𝑡,𝑠

𝑆𝐶,𝑆𝑖𝑚,   𝑃𝑐𝑡,𝑠
𝑆𝐶,𝐶ℎ𝑎,   𝑈𝑐𝑡,𝑠

𝑆𝐶,𝐷𝑖𝑠,   𝑈𝑐𝑡,𝑠
𝑆𝐶,𝑆𝑖𝑚, 𝑈𝑐𝑡,𝑠

𝑆𝐶,𝐶ℎ𝑎,  𝐸𝑐𝑡,𝑠
𝑆𝐶       ∀𝑡, ∀𝑠}  are the 

variables related to the HPP optimization problem. As can be seen from (3.77), two general 

expressions of the objective function are included, the expected profit of HPP (i.e., as the 

result of market transactions and operational cost) and the CVaR. The revenue/cost of HPP 

comes from selling/purchasing energy in both of the DA and intraday markets as well as the 

revenue/cost from the positive/negative energy deviations in the balancing market. In (3.77), 

the terms 𝜌𝑡,𝑠𝐷𝐴. 𝑃ℎ𝑡,𝑠𝐷𝐴  and 𝜌𝑡,𝑠𝐼𝑁 . 𝑃ℎ𝑡,𝑠𝐼𝑁  refer to the revenue/cost of HPP from the DA and 

intraday markets, and the terms 𝜌𝑡,𝑠𝐷𝐴. 𝜂𝑡,𝑠+ . 𝜀ℎ𝑡,𝑠+  and 𝜌𝑡,𝑠𝐷𝐴. 𝜂𝑡,𝑠− . 𝜀ℎ𝑡,𝑠−  indicate the revenue/cost 

from the positive/negative energy deviations in the balancing market. The term 𝑂𝐶𝑡,𝑠 in the 
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objective function is related to the CAES operational cost which is computed according to 

the different CAES operating modes (charging, discharging and simple-cycle modes) and 

their amount of power; see (3.72). The last term in the HPP modeling objective function is 

for modeling of the CVaR which is multiplied by the risk-aversion factor 𝜁.  

The objective function of the HPP optimization problem (3.77) is subject to some joint 

constraints associated with both of the WPA and CAES providers, some constraints 

associated specifically with for modeling of CAES aggregator, and some only for the WPA 

model. 

The constraints of HPP associated with the CAES model are defined previously in the 

CAES modeling section; see (3.63)-(3.72). The constraints of HPP associated specifically 

with the WPA model are also previously defined in the WPA modeling section; see (3.51)-

(3.57). 

The joint constraints associated with both of the WPA and CAES providers to function 

as an HPP are defined as bellow: 

𝑃ℎ𝑡,𝑠
𝛽
= 𝑃𝑤𝑡,𝑠

𝛽
+ 𝑃𝑐𝑡,𝑠

𝛽
     ∀𝑡, ∀𝑠, 𝛽 = 𝐷𝐴, 𝑆𝐶, 𝐼𝑁 (3.78) 

𝑃ℎ𝑡,𝑠
𝑆𝐶 = 𝑃ℎ𝑡,𝑠

𝐷𝐴 + 𝑃ℎ𝑡,𝑠
𝐼𝑁     ∀𝑡, ∀𝑠 (3.79) 

𝜀ℎ𝑡,𝑠 = 𝑃𝑤𝑡,𝑠 + 𝑃𝑐𝑡,𝑠 − 𝑃ℎ𝑡,𝑠
𝑆𝐶      ∀𝑡, ∀𝑠 (3.80) 

𝜀ℎ𝑡,𝑠 = 𝜀ℎ𝑡,𝑠
+ − 𝜀ℎ𝑡,𝑠

−      ∀𝑡, ∀𝑠 (3.81) 

0 ≤ 𝜀ℎ𝑡,𝑠
+ ≤ 𝑃𝑤𝑡,𝑠 + 𝑃𝑐𝑡,𝑠     ∀𝑡, ∀𝑠 (3.82) 

0 ≤ 𝜀ℎ𝑡,𝑠
− ≤ 𝑃𝑤𝑀𝑎𝑥 + 𝑃𝑐𝐸𝑥𝑝

𝑀𝑎𝑥     ∀𝑡, ∀𝑠 (3.83) 
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−∑[𝜌𝑡,𝑠
𝐷𝐴. 𝑃ℎ𝑡,𝑠

𝐷𝐴 + 𝜌𝑡,𝑠
𝐼𝑁 𝑃ℎ𝑡,𝑠

𝐼𝑁 + 𝜌𝑡,𝑠
𝐷𝐴. 𝜂𝑡,𝑠

+ . 𝜀ℎ𝑡,𝑠
+ − 𝜌𝑡,𝑠

𝐷𝐴. 𝜂𝑡,𝑠
− . 𝜀ℎ𝑡,𝑠

− ]

𝑁𝑇

𝑡=1

+  𝜃 − 𝜑𝑠

≤ 0     ∀𝑠 (3.84) 

𝜑𝑠 ≥ 0     ∀𝑠 (3.85) 

(𝑃ℎ𝑡,𝑠
𝐷𝐴 − 𝑃ℎ𝑡,𝑠,

𝐷𝐴). (𝜌𝑡,𝑠
𝐷𝐴 − 𝜌𝑡,𝑠,

𝐷𝐴) ≥ 0     ∀𝑡, ∀𝑠, ∀𝑠 , (3.86) 

𝑃ℎ𝑡,𝑠
𝐷A = 𝑃ℎ𝑡,𝑠,

𝐷A     ∀𝑡, ∀𝑠, ∀𝑠 , ∶  𝜌𝑡,𝑠
𝐷𝐴 = 𝜌𝑡,𝑠,

𝐷𝐴 (3.87) 

where (3.78) limits DA and intraday offers and the total scheduled power of HPP. The total 

scheduled power of HPP includes its DA and intraday offers formulated in (3.79). The total 

negative and positive imbalances according to the HPP scheduled power and the actual 

wind and CAES powers at the time of balancing market are formulated in (3.80) to (3.83). 

As previously mentioned, unlike the WPA, the CAES aggregator is very reliable and has a 

deterministic output. For that reason, in this chapter, it is supposed that the actual CAES 

powers at the time of balancing market are equal to its power that has been scheduled. 

Similar to WPA and CAES modeling, constraints (3.84) and (3.85) are formulated for 

CVaR calculation, and (3.86) and (3.87) are defined for obtaining the non-decreasing DA 

market offering curves. 

3.6 Wind Generation and Market Prices Modeling 
The wind power and market price uncertainties are modeled as follows: 𝑁1, 𝑁2, 𝑁3 and 

𝑁4 scenarios are generated for wind power generation, DA market, intraday market and 

balancing market prices, respectively. 

These uncertainty sources are separated into two categories; 1) wind power generation 

(𝑃𝑤(𝑤)) and DA market price 𝜌𝐷𝐴(𝑑) which are independent uncertainty parameters (here-
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and-now), 2) the intraday market prices 𝜌𝐼𝑁(𝑑, 𝑖)  which are feasible for each possible 

realization of DA market price scenarios. In other words, the intraday market price 

scenarios are generated based on DA market price scenarios. Similarly, the balancing 

market price (𝜂+(𝑏), 𝜂−(𝑏)) scenarios are generated based on each possible wind power 

generation scenarios, DA market, and intraday market price scenarios. 

Due to the dependency of intraday and balancing market prices on wind power 

generation and DA market price, the correlation among these stochastic variables is defined 

as (𝜌𝐷𝐴 − 𝜌𝐼𝑁) and (𝜂+ + 𝜂− − 1) for all scenarios. Also, the symmetric scenario tree is 

implemented to construct the 𝑁𝑆 = 𝑁1 ×𝑁2 ×𝑁3 ×𝑁4 scenarios based on the independent 

and dependent scenarios. 

 

Fig. 3.6 Flowchart of the stochastic variable modeling process 
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Fig. 3.6 shows the flowchart of the stochastic modeling process which leads to the 

generation of all scenarios (𝑃𝑤(𝑤), 𝜌𝐷𝐴(𝑑), 𝜌𝐼𝑁(𝑑, 𝑖), 𝜂+(𝑏), 𝜂−(𝑏)) . It is worthy to 

mention that the red highlighted sections indicate the first category (i.e., the wind power 

generation and DA market price scenarios), and the blue and green highlighted sections 

indicate the second category (i.e., the intraday and balancing market price scenarios). After 

scenario generation of balancing market prices 𝜂(𝑏), the highlighted green color parts of Fig. 

3.6 show that there are two ways of calculating the balancing market prices (𝜂+(𝑏), 𝜂−(𝑏)) 

based on the values of 𝜂(𝑏). 

The uncertainties of wind power and market prices are produced with a set of scenarios 

using an adapted hybrid neural network and a hybrid Jaya algorithm [134]. Jaya algorithm 

[135] is a new simple and efficient algorithm. Similar to the other algorithms, it only has the 

common parameters that will be determined by the user like population number and 

iterations of an algorithm without the need of any specific control parameters that would be 

determined by the user. This algorithm is based on the best and the worst candidate 

solutions in the iterations [135]. It has good feasibility and performance in solving different 

engineering optimization problems such as complex constrained design optimization [136], 

dimensional optimization of a micro-channel heat sink [135], and surface grinding process 

optimization [137]. An efficient improved hybrid Jaya algorithm based on time-varying 

acceleration coefficients (TVAC) and learning phase introduced in teaching-learning-based 

optimization (TLBO), named LJaya-TVAC algorithm along with an adapted hybrid neural 

network is proposed to produce the uncertainties of wind power and market prices. The 

search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is 
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firstly tested on the standard real-parameter uni-modal and multi-model functions with the 

dimension of 30 to 100 and then tested on various types of nonlinear mixed-integer 

reliability–redundancy allocation problems (RRAPs). The results are compared with the 

original Jaya algorithm and best results reported in the recent literature. The obtained 

optimal results of the proposed LJaya-TVAC algorithm provide evidence for the better and 

acceptable optimization performance compared to the original Jaya algorithm and other 

reported optimal results. 

3.6.1 Jaya algorithm 
Jaya algorithm is a recently proposed algorithm which is a powerful and simple 

optimizer for real-world optimization problems. The original flowchart of the optimization 

process for Jaya algorithm is shown in Fig. 3.7 [135]. In the Jaya algorithm, each member of 

all population (N), has its location (solution) in the ith iteration (i = 1:imax) of the algorithm. 

𝑋𝑘
𝑖  (k =1: N) is defined by the optimization problem parameters in the d-dimensional 

solution search space: 𝑋𝑘𝑖 = [𝑋1,𝑘
𝑖 , 𝑋2,𝑘

𝑖 , … , 𝑋𝑑,𝑘
𝑖 ] . The new location value 𝑋𝑘𝑖+1 =

[𝑋1,𝑘
𝑖+1, 𝑋2,𝑘

𝑖+1, … , 𝑋𝑑,𝑘
𝑖+1] for the kth member 𝑋𝑘𝑖  is achieved by updating the locations iteratively. 

If 𝑓(𝑋𝑘𝑖+1) ≤ 𝑓(𝑋𝑘𝑖 ), where 𝑓(∙) is the evaluation function, the new location value (𝑋𝑘𝑖+1) 

replaces the old location value (𝑋𝑘𝑖 ) using the following equation [135]:  

𝑋𝑘
𝑖+1 = 𝑋𝑘

𝑖 + 𝑟𝑎𝑛𝑑1
𝑖 (𝑋𝑏𝑒𝑠𝑡

𝑖 − |𝑋𝑘
𝑖 |) − 𝑟𝑎𝑛𝑑2

𝑖 (𝑋𝑤𝑜𝑟𝑠𝑡
𝑖 − |𝑋𝑘

𝑖 |) (3.88) 

where, 𝑋𝑏𝑒𝑠𝑡𝑖 = [𝑋1,𝑏𝑒𝑠𝑡
𝑖 , 𝑋2,𝑏𝑒𝑠𝑡

𝑖 , … , 𝑋𝑑,𝑏𝑒𝑠𝑡
𝑖 ]  and 𝑋𝑤𝑜𝑟𝑠𝑡𝑖 = [𝑋1,𝑤𝑜𝑟𝑠𝑡

𝑖 , 𝑋2,𝑤𝑜𝑟𝑠𝑡
𝑖 , … , 𝑋𝑑,𝑤𝑜𝑟𝑠𝑡

𝑖 ] 

are the best and worst solutions obtained until the ith iteration of the algorithm, respectively. 

𝑟𝑎𝑛𝑑1
𝑖 = [𝑟𝑎𝑛𝑑1,1

𝑖 , 𝑟𝑎𝑛𝑑1,2
𝑖 , … , 𝑟𝑎𝑛𝑑1,𝑑

𝑖 ]  and 𝑟𝑎𝑛𝑑2𝑖 = [𝑟𝑎𝑛𝑑2,1𝑖 , 𝑟𝑎𝑛𝑑2,2
𝑖 , … , 𝑟𝑎𝑛𝑑2,𝑑

𝑖 ]  are 
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two vectors of random numbers in the range [0, 1] in the ith iteration of the algorithm. Also, 

|𝑋𝑘
𝑖 | is the absolute value of 𝑋𝑘𝑖 . 

Initialize the population with 
problem design variables

Calculate the objective function for each 
population with the selected best and worst 

solutions  

YesNo

Modify solution based on the best and worst solutions 

   1 rand rand worstbest1 2
i i i i i i i iX X X X X Xk k k k
     

Keep the previous
solution

Accept the new solution and
 replace the previous solution

Yes

No

   1if ?i i
k kf X f X 

   bestif ?i i
kf X f X

best
i i

kX X

No
maxif ?i i

Yes

Select the best solution and 
end the process.  

Fig. 3.7 The optimization process of the original Jaya algorithm. 
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3.6.2 The hybrid enhanced Jaya algorithm 
In this section, the hybrid enhanced Jaya algorithm using TVAC and learning phase is 

presented. This algorithm increases the search power around the globally optimal solution 

(𝑋𝑏𝑒𝑠𝑡) in the primary iterations for faster convergence, and also increases the search power 

in the latest iterations.  

1) Jaya algorithm with time-varying acceleration coefficients (Jaya-
TVAC) 

In the first phase, two new time-varying acceleration coefficients 𝐶1𝑖  and 𝐶2𝑖  are 

proposed based on the method by [138] to improve the Jaya algorithm, which is called Jaya-

TVAC algorithm. The new location value for 𝑋𝑘𝑖  is then modified as follows: 

𝑋𝑘
𝑖+1 = 𝑋𝑘

𝑖 + 𝐶1
𝑖 × 𝑟𝑎𝑛𝑑1

𝑖 (𝑋𝑏𝑒𝑠𝑡
𝑖 − |𝑋𝑘

𝑖 |) − 𝐶2
𝑖 × 𝑟𝑎𝑛𝑑2

𝑖 (𝑋𝑤𝑜𝑟𝑠𝑡
𝑖 − |𝑋𝑘

𝑖 |) (3.89) 

𝐶1
𝑖 = 𝐶1

1 − (𝐶1
1 − 𝐶1

𝑖max) (
𝑖 − 1

𝑖max − 1
) (3.90) 

𝐶2
𝑖 = 𝐶2

𝑖max − (𝐶2
𝑖max − 𝐶2

1) (
𝑖max − 𝑖

𝑖max − 1
) (3.91) 

where 𝐶11 = 𝐶21 = 1 and 𝐶1
𝑖max = 0.5 and 𝐶2

𝑖max = 0 are obtained for the best values. 

2) Hybrid Jaya-TVAC algorithm with learning phase (LJaya-TVAC) 
based on TLBO algorithm 

In the second phase, a learning phase introduced in [139-141] is added to the proposed 

algorithm for finding the better final solutions with higher convergence rate through the 

increased local search of Jaya algorithm. The flowchart of the optimization process for 

LJaya-TVAC algorithm is shown in Fig. 3.8. The new location value 𝑋𝑘𝑖+1 can be achieved 

using (3.92). Here two solution variables 𝑋𝑗𝑖  (jth member of the population) and 𝑋ℎ𝑖  (hth 
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member of the population) are randomly selected as shown in (3.92). If the value of the 

objective function for the new location value 𝑋𝑘𝑖+1  is better than the old location value 

𝑋𝑘
𝑖 (𝑓(𝑋𝑘

𝑖+1) ≤ 𝑓(𝑋𝑘
𝑖 )), the new location value 𝑋𝑘𝑖+1will replace the old location value 𝑋𝑘𝑖 .  

𝑋𝑘
𝑖+1 = 𝑋𝑘

𝑖 + 𝑟𝑎𝑛𝑑3
𝑖 × {

(𝑋𝑗
𝑖 − 𝑋ℎ

𝑖 )           𝑖𝑓 𝑓(𝑋𝑗
𝑖) ≤ 𝑓(𝑋ℎ

𝑖 ) 

(𝑋ℎ
𝑖 − 𝑋𝑗

𝑖)                         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(3.92) 

where 𝑟𝑎𝑛𝑑3𝑖 = [𝑟𝑎𝑛𝑑3,1𝑖 , 𝑟𝑎𝑛𝑑3,2
𝑖 , … , 𝑟𝑎𝑛𝑑3,𝑑

𝑖 ] is a vector of random numbers in the range 

[0, 1] in the ith iteration of the algorithm. 

Initialize the population with 
problem design variables

Calculate the objective function for each 
population with the selected best and worst 

solutions  

YesNo

Modify solution based on the best and worst solutions 

   1 rand rand worst1 2best1 2
i i i i i i i i i iX X c X X c X Xk k k k
       

Keep the previous
solution

Accept the new solution and
 replace the previous solution

Select any two solutions randomly 
andi i

j hX X

   if ?i i
j hf X f X

No

 1
3randi i i i i

k k h jX X X X    1
3randi i i i i

k k j hX X X X   

YesNoKeep the previous
solution

Accept the new solution and 
replace the previous solution

Yes

Yes

No

   1if ?i i
k kf X f X 

   1if ?i i
k kf X f X 

   bestif ?i i
kf X f X

best
i i

kX X

No
maxif ?i i

Yes

Select the best solution and 
end the process   

Fig. 3.8 The optimization process of LJaya-TVAC algorithm. 
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3) LJaya-TVAC algorithm for real-parameter problems 
In order to validate the performance of the LJaya-TVAC algorithm for the real-

parameter test functions, various types of real-parameter test functions are chosen [142]. 

The details of the sixth typical unimodal and multi-modal real-parameter test functions (F) 

that are selected to evaluate the effectiveness of the proposed algorithms are summarized as 

follows: 

 𝐹1: Shifted Rotated High Conditioned Elliptic (uni-modal, non-separable and 

scalable test function): 

𝐹1(𝑥) =∑(106)
𝑗−1
𝑑−1𝑧𝑗

2 

𝑑

𝑗=1

, 𝑧 = (𝑥 − 𝑜) ∗ 𝑀, 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑑]   

𝑜 = [𝑜1, 𝑜2, … , 𝑜𝑑]: the shifted global optimum and M: orthogonal matrix  

with 𝑥𝑖 ∈ [−100, 100] and 𝐹1(𝑜) = 0. 

 𝐹2 : Shifted Schwefel’s Problem 1.2 with Noise in Fitness (uni-modal, non-

separable and scalable test function): 

𝐹2(𝑥) = (∑(∑𝑧𝑡

𝑗

𝑡=1

)

2
𝑑

𝑗=1

) ∗ (1 + 0.4|𝑁(0,1)|), 𝑧 = 𝑥 − 𝑜,    

𝑜 = [𝑜1, 𝑜2, … , 𝑜𝑑]: the shifted global optimum 

with 𝑥𝑖 ∈ [−100, 100] and 𝐹2(𝑜) = 0. 

 𝐹3: Schwefel’s Problem 2.6 with Global Optimum on Bounds (uni-modal, non-

separable and scalable test function): 

𝐹3(𝑥) = max{|𝐴𝑗𝑥 − 𝐵𝑗|} 

 A is a d×d matrix, 𝐴𝑗 is the jth row of A, 𝐵𝑗 = 𝐴𝑗 ∗ 𝑜   
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with 𝑥𝑖 ∈ [−100, 100] and 𝐹3(𝑜) = 0. 

 𝐹4 : Shifted Rosenbrock’s (multi-modal, non-separable and scalable test 

function): 

𝐹4(𝑥) = ∑(100(𝑧𝑗
2 − 𝑧𝑗+1)

2
+ (𝑧𝑗 − 1)

2
)

𝑑−1

𝑗=1

, 𝑧 = 𝑥 − 𝑜 + 1 

with 𝑥𝑖 ∈ [−100, 100] and 𝐹4(𝑜) = 0. 

 𝐹5: Shifted Rotated Ackley’s with Global Optimum on Bounds (multi-modal, 

non-separable and scalable test function): 

𝐹5(𝑥) = −20𝑒𝑥𝑝 (−0.2√
1

𝑑
∑ 𝑧𝑗2
𝑑
𝑗=1 ) − 𝑒𝑥𝑝 (

1

𝑑
∑ cos(2𝜋𝑧𝑗)
𝑑
𝑗=1 ) + 20 + 𝑒, 𝑧 =

𝑥 − 𝑜  

with 𝑥𝑖 ∈ [−32.0, 32.0] and 𝐹5(𝑜) = 0. 

 𝐹6: Shifted Rastrigin’s (multi-modal, separable and scalable test function): 

𝐹6(𝑥) = ∑(𝑧𝑗
2 − 10 cos(2𝜋𝑧𝑗) + 10), 𝑧 = 𝑥 − 𝑜

𝑑−1

𝑗=1

 

with 𝑥𝑖 ∈ [−5.0, 5.0] and 𝐹6(𝑜) = 0. 

The Mean (mean value of the best results) and Std (standard deviation of the best 

results) indexes for the proposed Jaya algorithms of each real-parameter problem over 30 

runs for d=30 and d=100 with imax =d*1000, and the population size N=50 are given in 

Table 3.1. Also, Fig. 3.9 shows the convergence plots of the proposed Jaya algorithms for 

the real-parameter functions. The proposed LJaya-TVAC algorithm obtains better optimal 

results with faster convergence characteristics compared to the original Jaya and Jaya-
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TVAC algorithms. The results show that the proposed LJaya-TVAC method is successfully 

implemented to the real-parameter optimization problems with different dimensions. 

Table 3.1 The best results (Mean±Std) obtained from the Jaya algorithms for real-parameter problems. 

F d Jaya Rank Jaya-TVAC Rank LJaya-TVAC Rank 

F1
30 5.70e+07± 8.64e+06 3 2 1 

100 1.29e+09±1.57e+08 3 2 1 

F2 30 1.26e+04±1.27e+03 3 2 1 

100 3.68e+05± 2.31e+04 3 2 1 

F3 30 3.90e+03±2.45e+03 3 2 1 

100 3.86e+04±3.09e+03 3 2 1 

F4 30 8.19e+07±3.82e+07 3 2 1 

100 5.36e+09±1.03e+09 3 2 1 

F5 30 3 2 1 

100 3 2 1 

F6 30 3 2 1 

100 

20.871±0.083 

21.271±0.027 

200.50±7.166 

896.75±69.301 3 

2.91e+07±2.16e+06 

8.07e+08±1.13e+08 

6.07e+03±5.32e+03 

4.42e+04±2.87e+04 

4.77e+02± 5.83e+02 

1.07e+03±4.65e+03 

2.52e+07± 8.14e+06 

1.89e+09±7.36e+08 

20.818±0.044 

21.065±0.017 

180.59±12.42 

854.71±38.59 2 

1.93e+04±1.42e+04 

1.76e+06±6.78e+05 

9.98e+01± 7.56e+01 

2.43e+04± 1.85e+04 

1.82e+02± 1.90e+02 

9.30e+02± 2.24e+03 

3.29e+00± 3.21e+00 

2.98e+00±1.25e+00 

20.72±0.061 

20.85±0.012 

72.41±5.45 

464.64±26.36 1 

(a) 
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(b) 

 
 

Fig. 3.9 Convergence plots of the proposed Jaya algorithms for the real-parameter function with d=30: (a) 

F2 and (b) F6. 

3.7 Case Study and Results 
The intention of the presented method is to bring together a WPA and CAES producer 

as an HPP to contribute to three electricity markets. 

The offered methodology is applied to the Sotavento (Spain) experimental wind farm, 

with a maximum capacity of 26.54 MW [143]. The stochastic wind power generation is 

modeled using the procedure presented in Section 3.6. In order to train the artificial neural 

network, the wind power historical data of the year 2010 are used. The scenarios related to 

market prices are derived by a three-step process: First, market prices are predicted for 30 

days using an adapted hybrid neural network and a hybrid Jaya algorithm [81, 134], and the 

error probability distribution function (PDF) is estimated for each hour (i.e., 24 PDFs in this 

study). Next, according to the estimated PDFs, immense numbers of scenarios are generated 

by implementing the roulette wheel mechanism. Finally, the scenario reduction technique 
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(the fast forward algorithm) is implemented in order to reduce the number of scenarios by 

eliminating similar scenarios and very low probable scenarios [144].  

The historical data of market prices are also derived based on the Iberian Peninsula 

electricity market [145]. The uncertainties of the problem are modeled through a scenario 

tree with 3000 scenarios (10 × 5 × 6× 10) including ten, five, six and, ten scenarios for DA, 

intraday, balancing market prices and the wind generation, respectively. The simulation 

results are presented for the 12th of March, 2010. Note that if there are not many historical 

data available, some other types of methods, such as robust optimization or information gap 

theory, can be used to solve the optimization problem [146, 147].  

The CAES heat rate for the discharging and simple-cycle mode is considered to be 

0.4185 and 0.837, respectively, in which the simple-cycle mode heat rate has the doubled 

value. The cost of expander and compressor operation and maintenance are similarly 

selected to be 0.87 €/kWh. The air storage level of the cavern is limited between 1 and 15 

MW. The initial air storage level of the cavern and the energy ratio of CAES are 1 MW and 

0.95, respectively. Also, the natural gas price is 3.5 €/GJ. 

The upper bound level of CAES and wind power production for the intraday market are 

similarly considered to be equal to 30 percent of their DA market production level. Also, in 

the CVaR calculation, the confidence level 𝜎 is given to be 0.95. 

The offered methodology is initially applied to the MATLAB software to generate wind 

power and market price scenarios. After reducing the number of scenarios by the scenario 

reduction technique, the scenario data are used as an input to the GAMS software. GAMS 

software is a popular software for solving optimization problems. In GAMS software, we 

can easily and quickly formulate optimization problems using an approach that is very 
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similar to the original algebraic notations. Although it is effortless to learn the GAMS 

programing language,  it is powerful. 

Note that the CPLEX solver is used in the GAMS software to solve the optimization 

problem. All the simulations of the study are performed in less than 120.756 seconds on a 

2.3 GHz Intel® CORETMi5 laptop with 8 GB of RAM.  

In this chapter, five cases are considered to evaluate the applicability and effectiveness 

of the proposed approach as follows. 

3.7.1 Case I: Base Case 
In the base case, the WPA and CAES producers are coordinated to participate in three 

electricity markets. In this case, the CAES simple-cycle mode operation is not considered 

by not adding it to the formulation. The offering DA market curves are also not considered 

by not including (3.75), (3.60) and (3.86) in the optimization problems of WPA, CAES, and 

HPP modeling. Moreover, the CVaR is not considered in the base case by letting the risk 

factor 𝜁 = 0.  

 

Fig. 3.10 Optimal hourly power bids for the DA market 
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Fig. 3.11 Hourly expected profit of CAES, WPA and HPP 

Fig. 3.10 depicts the comparison of optimal energy hourly bids in the DA market for 

three different configurations including WPA only, CAES aggregator only, and HPP. It can 

be seen that more capacity of CAES for storage is exploited during the period of off-peak 

when it joins with WPA, and subsequently this stored energy can be released during the 

peak periods. Obviously, more flexibility of production can be offered by having an HPP 

comparing to two independent aggregators to provide energy during specific peak periods. 

Hourly expected profit of operation for three given configurations is compared in Fig. 3.11. 

Noteworthily, WPA can offer higher hourly profit than HPP is some periods (e.g., hours 2 -

7). It can be deduced that the CAES initially attempts to entirely exploit the wind power to 

store energy in its cavern, and then charges the remaining capacity by buying energy from 

the markets. On the contrary, the hourly profit of HPP is superior to WPA in some periods 

(e.g. hours 19 - 24) as the result of simultaneous utilization of WPA and CAES. 
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3.7.2 Case II: Considering Bidding Curve 
CAES aggregator and the WPA are incorporated in this case study to participate in 

different markets regarding bidding curves. None of the financial risk factor and simple-

cycle mode of CAES are considered in this section. It means that the risk factor ζ=0; while 

the formulations related to CAES simple-cycle mode are not modeled in the market 

formulation. However, bidding curves equations (3.75), (3.60) and (3.86) are incorporated 

in the optimization.  

The optimal charging/discharging pattern of CAES aggregator for each scenario of 

participating HPP in the DA market is shown in Fig. 3.12. 

It can be inferred that the opportunity for adoption of different patterns is available for 

CAES to tackle scenarios which model fluctuations of DA market price.   

 

Fig. 3.12 Optimal charging/discharging pattern of CAES. 
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Fig. 3.13 HPP bidding curves for DA market 

 

Fig. 3.14 Expected profit versus CVaR for different values of ζ: efficient frontier 
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Fig. 3.15 Profit comparison for CAES and WPA versus different ζ values 

As illustrations, bidding curves corresponding to some hours (i.e., 4, 7, 10, 14, 15, 17 

and 19) of DA market are shown in Fig. 3.13. It is noticeable in the power curve that HPP 

bids zero at hour 10 for the prices less than €27, while less than zero are bid for all prices at 

hour 4, which means HPP tends to only buy power from the DA market. In fact, the same 

pattern can be seen for hours 4 and 7 though zero-power is offered for the prices more than 

€15. Two pattern types can be seen in the bidding curve related to hour 19. For this specific 

hour, there are buying the power in terms of prices less than €21 and selling for prices more 

than €21. It should be mentioned that HPP tends to sell energy to the market for curves 

corresponding to hours 14, 15, and 17. Straight line for offering curve of hour 17 means that 

the same amount of power is offered to the market by the HPP for all prices.  

3.7.3 Case III: Considering Financial Risk 
The coordination of CAES aggregator and WPA for participation in three mentioned 

markets is considered in this section while financial risk and bidding curves are considered. 
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Modeling of the simple-cycle mode of CAES is not included in this case. Eqs. (3.75), (3.60) 

and (3.86) are involved in the formulation of markets as similar to Case II. Fig. 3.14 depicts 

the efficient frontier that is the expected profit contrasted with the CVaR for different values 

of ζ. The optimal solution achieved for ζ = 0 reaches the maximum expected profit and the 

maximum risk. The expected profit ranges from €3409.7 for ζ = 0 to €3400.3 for ζ = 1, 

respectively. As can be seen from Fig. 3.14, a decrease of 0.2738% in the expected profit 

produces 2.8153% increase in the CVaR. It is worth mentioning that a small amount of the 

expected profit deviation and a large amount of the CVaR specify a risk-averse solution. 

Also, low-risk solutions are those with high CVaR and low expected profits. The patterns of 

profit change for configurations of WPA only and CAES only versus variations of ζ are 

shown in Fig. 3.15. The expected profit of HPP as well as its difference from the combined 

profit of independent WPA and CAES operations as a function of ζ is shown in Fig. 3.16. 

As can be deduced from Fig. 3.15 and Fig. 3.16, there are profit reductions for all 

configurations with the increase in the value of the risk factor ζ. Such decreases can be 

manifested as a reasonable and expectable phenomenon as the result of a decrease in the 

amount of financial risk. However, the HPP extra profit increases along with the growth of ζ 

value. In other words, more profit is attained even when the financial risk is considered in 

the joint operating model. This increase in the HPP extra profit even with the growth of ζ 

value, which demonstrates the robustness of the proposed joint configuration. Please note 

that the HPP extra profit is equal to the profit of the HPP minus the summation of the WPA 

and CAES aggregator profits. It is noteworthy that the minimum and maximum extra profits 

are achieved at the risk factors ζ = 0.2 and ζ = 0.7. Note that the limit for variation of the 

risk factor ζ in Fig. 3.14 to  Fig. 3.16 is [0.1, 1]. 
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Fig. 3.16 HPP profit and its extra profit compared with the summation of independent operations versus 

different ζ values 

 

Fig. 3.17 Hourly power bids of CAES with/without CAES simple-cycle mode 

3.7.4 Case IV: Considering CAES Simple-cycle Mode 
This section investigates the coordination of CAES aggregator and WPA for 

participating in markets while considering the CAES simple-cycle mode, financial risk, and 

bidding curves. As similar to Case III, Eqs. (3.75), (3.60) and (3.86) are incorporated in the 
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problem formulation of markets. Besides, 𝜁 = 0.6 is assigned to the risk factor. Simple-

cycle mode of CAES is also added to the formulation.  

Fig. 3.17 compares the hourly power bids of CAES (with/without simple-cycle mode) 

to the DA market when it works as a producer in the joint operation. It can be seen that 

CAES buys power from the market for fewer hours in the case of the simple-cycle mode. 

There is no need for CAES to charge the reservoir when the simple-cycle mode is 

considered. Furthermore, the CAES can offer power to the market for the first two hours of 

scheduling by utilizing the simple-cycle mode even though the cavern is at its initial 

minimum level (i.e., the cavern is empty at the starting point of scheduling). Simple-cycle 

mode can also assist the system operator in exploiting price strikes in the electricity market 

fully. The HPP has the opportunity to employ the CAES simple-cycle mode for an 

immediate power provision to the energy markets to attain the maximum profit of energy 

price fluctuations. As an illustration, this option is available when the energy price is high 

for a specific period, and no power can be provided by WPA (e.g., lack of wind) and CAES 

(e.g., there is no stored energy in the cavern). 
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Fig. 3.18 Comparison of energy level changes in the CAES cavern with/without CAES simple-cycle 

mode.  

 

Fig. 3.19 Profit and cumulative profit (C-Profit) comparison for CAES only, WPA only and HPP over 

one year. 

Fig. 3.18 compares changes of energy level in the cavern of CAES when it operates 

with/without the simple-cycle mode in the joint configuration. It is shown that the energy 
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level of the cavern does not reach its maximum when using simple-cycle mode, which 

means it is financially more beneficial to sell power in this mode (e.g., hour 6). Also, some 

shifts can be observed in cavern depletion for some hours (e.g., 13 and 14) using the simple-

cycle mode that indicates more flexibility of the proposed approach. 

3.7.5 Case V: a case study over one year 
This subsection investigates the HPP for participating in markets while considering the 

CAES simple-cycle mode, financial risk, and bidding curves for one year. Scenarios for 

wind power and electricity prices are generated based on the historical data of wind speed 

and market prices in the Iberian Peninsula electricity market for the year 2016. Fig. 3.19 

shows the profit and cumulative profit (C-Profit) comparison for CAES only, WPA only 

and HPP over one year. As can be seen in Fig. 3.19, the daily profit of HPP is higher than 

the individual operation of WPA and CAES aggregators. Moreover, the cumulative profit of 

joint configuration is superior to the ones with independent configurations. 

3.8 Summary 
This chapter has proposed a methodology in the form of a three-stage problem for joint 

operation of a CAES aggregator and a WPA which participate in DA, intraday and 

balancing markets. This stochastic mixed-integer linear programming has been solved with 

an available commercial solver of GAMS software.  

Firstly, a two-stage stochastic decision-making model for the participation of CAES 

aggregator has been modeled. Also, a simple-cycle mode has been added into the CAES 

operation to reach a more flexible operation for presented joint configuration in case of an 
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electricity price strike. Secondly, a three-stage stochastic decision-making model is modeled 

for the participation of WPA. Then, a coordinated strategy of an HPP which includes a 

WPA and a CAES aggregator is modeled. The coordinated strategy of the HPP has been 

formulated as a three-stage stochastic optimization problem. To adjust the operation of the 

HPP to the mentioned markets, both bidding curves and bidding quantity have been 

modeled. A mixed-integer linear programming formulation has been obtained for the 

problem which can be easily solved by commercially available software such as GAMS. 

Also, in order to control the financial risks, the CVaR model has been added to the 

optimization problem. By using the join operation, the HPP has achieved more profit even 

when the financial risks are considered.  
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4 Risk-Constrained Demand Response 
and Wind Energy Systems Integration to 
Handle Stochastic Nature and Wind Power 
Outage 

4.1 Motivation 
Recent changes that have happened in the electricity networks increase the potential 

volume of DR that can be provided from industrial, commercial, or residential customers. 

For example, various studies consider the aggregation of DR resources [149-151], provision 

of DR from thermostatically controlled loads [152, 153] and electric vehicles [154, 155] for 

ancillary service provision [156], benefiting renewable energy resources [157, 158] and 

making HPPs [81]. In this regard, different publications have appeared in recent years 

which propose the utilization of DR resources to cope with the volatile characteristics of 

wind-based generation [81, 82]. Ref. [84] determines the optimum value of the DR unit to 

enhance the control of congestion as well as the use of wind-based generation. An offering 

policy for the combination of a flexible load and a WPA with the capability of covering the 

wind power imbalances is proposed in [85]. This join operation is formulated to participate 

in a DA electricity market. Total operating costs of a join aggregator comprising fines 

corresponding to wind energy over/under-commitment are minimized in [86] by proposing 

optimal scheduling based on critical peak pricing. This study is accomplished by utilizing a 

DR unit which employs wind power to suitably trade in the DA market. Ref. [87] presents 

an original offering plan for a WPA to participate in balancing, intraday, and DA electricity 

dict://key.25D62D261B9B6943BE86B7DCF8F9D255/manage
dict://key.25D62D261B9B6943BE86B7DCF8F9D255/value
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markets with the assist of a DR resource that is permitted to participate in the intraday 

market. Furthermore, a new technique is developed in [88] that models the uncertainties of 

the load and wind power for a corrective control of voltage to manage the challenging 

situations in which the power system experiences voltage instability as the result of severe 

contingencies. 

4.2 Contributions and Approach 
This chapter offers a methodology for the joint operation of a WPA and a DR 

aggregator (DRA) as an HPP in which the WPA utilizes the DRA as a storage unit. This 

HPP then offers the bids to the DA, intraday, and balancing markets. The uncertainties 

associated with wind power generation, its outages, and the price of energy in three markets 

are modeled through a set of scenarios, which results in a stochastic programming problem. 

The elasticity concept models the relationship between the electricity price and load 

consumption, and a probability distribution function models the outage times of wind 

generator. CVaR which is a well-known risk measure in the power market literature is also 

added to the final problem to control the cost deviations and financial risk. 

4.3 Proposed Methodology 
The structure of such an operation is presented in Fig. 4.1 which demonstrates 

individual offerings of wind generator owners and DR aggregators to the markets and also, 

the HPP offerings on behalf of both of them. This is achieved by formulating the problem as 

a stochastic programming problem which rightly considers the effects of bidding in the 

three electricity markets. The concern here is to compare the individual operation of DRAs 
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and wind generators with their joint operation. In this regard, the comparisons are made 

from the perspective of the optimal offerings to the markets, the profits they earn and the 

risk considerations. 

The offering outline of HPP is explained in this section. Three energy markets are 

considered in the market settlements which run in different time frames. For the DA market, 

the suppliers (customers) offer their bids to the market one day ahead of the actual delivery. 

Therefore, the closure of this market happens many hours before the real-time operation. On 

the other hand, the intraday market provides this opportunity for market participants to 

correct their offers that they previously made in the case that they cannot meet the pledged 

power supplies (demands). Finally, the balancing market runs near the real-time operation to 

cover the imbalances that may happen in the system. The intraday and balancing markets 

are suitable setups for WPAs to modify the offered bids as they cannot precisely predict the 

amount of produced power.   

 

Fig. 4.1 Structure of Hybrid power plant 
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The presented model of HPP including the above three electricity markets is formulated 

as a profit (revenue of HPP minus its total cost) maximization problem. Then, the objective 

function 𝒵𝑂𝑏𝑗𝐻𝑃𝑃  of the underlying optimization problem, Max𝛩𝑐𝑡,𝑠;𝜑𝑠,∀𝑠;𝜃 [𝒵𝑂𝑏𝑗𝐻𝑃𝑃] , can be 

formulated as (4.1).  

[𝒵𝑂𝑏𝑗
𝐻𝑃𝑃] =∑∑𝜋𝑠 [𝜌𝑡,𝑠

𝐷𝐴. 𝑃ℎ𝑡,𝑠
𝐷𝐴 + 𝜌𝑡,𝑠

𝐼𝑁 . 𝑃ℎ𝑡,𝑠
𝐼𝑁 +

1

2
.
1

𝛶. 𝑑0𝑡
. (𝐷𝑡,𝑠

𝑆𝐶)
2
+ 𝜌𝑡,𝑠

𝐷𝐴. 𝜂𝑡,𝑠
+ . 𝜀ℎ𝑡,𝑠

+ − 𝜌𝑡,𝑠
𝐷𝐴. 𝜂𝑡,𝑠

− . 𝜀ℎ𝑡,𝑠
− ]

𝑁𝑠

𝑠=1

𝑁𝑇

𝑡=1

+  𝜁 (𝜃 −
1

(1 − 𝜎)
∑𝜋𝑠𝜑𝑠

𝑁𝑠

𝑠=1

). 
(4.1) 

The first part of this objective function shows the offering strategies of HPP in the three 

markets. The revenues are composed of two parts: wind power generation offerings in the 

markets and DR revenue which is achieved through load shifting. Based on the scenarios, 

the HPP could incur some costs from the balancing market, which are shown as a negative 

term in the objective function (4.1). The terms 𝜌𝑡,𝑠𝐷𝐴. 𝑃𝑡,𝑠𝐷𝐴 and 𝜌𝑡,𝑠𝐼𝑁 . 𝑃ℎ𝑡,𝑠𝐼𝑁 are the revenue from 

DA market and revenue (cost) from the intraday market, respectively; while the terms 

𝜌𝑡,𝑠
𝐷𝐴. 𝜂𝑡,𝑠

+ . 𝜀ℎ𝑡,𝑠
+  and 𝜌𝑡,𝑠𝐷𝐴. 𝜂𝑡,𝑠− . 𝜀ℎ𝑡,𝑠−  indicate the revenue/cost from the positive/negative 

energy deviations in the balancing market. 𝛶 is a factor that defines the relationship between 

elasticity and price. 𝑑0𝑡 is the normal level of demand in period t. 𝐷𝑡,𝑠𝑆𝐶  is the scheduled power 

of the demand side.  The load model is derived based on the elasticity concept which 

illustrates the exponential relationship between the price 𝜌𝑡 and demand 𝐷𝑡  [81]:  

𝐷𝑡 = 𝑘. 𝑒𝜚.𝜌𝑡 (4.2) 

where 𝜚 is a negative number and k is a constant. Similar to the last chapter, the last term in 

(4.1) is related to the modeling of CVaR measure. It is noteworthy that, as shown in Fig. 3.5, 
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(1 − 𝜎)  regulates the area of profit distribution function covering the least profitable 

scenarios. 

Operating and aggregators’ constraints associated with modeling of DRA, WPA are 

detailed in the following. The offer limitation of the HPP to the DA market can be written as 

follows: 

0 ≤ 𝑃ℎ𝑡,𝑠
𝐷𝐴 ≤ 𝑃𝑤𝑀𝑎𝑥 + 𝜙1. 𝑑0𝑡     ∀𝑡, ∀𝑠 (4.3) 

where 𝜙1. 𝑑0𝑡 is the capacity of DRA in which 𝜙1 is a factor that limits the usage range of 

the load in DRA. The minimum value for constraint (4.3) is zero because HPP is regarded 

as a generation company in this study. Eq. (4.4) formulates the scheduling power of HPP, 

including DA and intraday offers: 

𝑃ℎ𝑡,𝑠
𝑆𝐶 = 𝑃ℎ𝑡,𝑠

𝐷𝐴 + 𝑃ℎ𝑡,𝑠
𝐼𝑁     ∀𝑡, ∀𝑠 (4.4) 

The scheduled power of HPP is limited by (4.5): 

0 ≤ 𝑃ℎ𝑡,𝑠
𝑆𝐶 ≤ 𝑃𝑤𝑀𝑎𝑥 + 𝜙1. 𝑑0𝑡     ∀𝑡, ∀𝑠 (4.5) 

The HPP imbalances (i.e., total, negative, and positive) based on the power production 

of WPA and DRA can be written as follows: 

𝜀ℎ𝑡,𝑠 = 𝑃𝑤𝑡,𝑠 + 𝐷𝑡,𝑠 − 𝑃ℎ𝑡,𝑠
𝑆𝐶       ∀𝑡, ∀𝑠 (4.6) 

𝜀ℎ𝑡,𝑠 = 𝜀ℎ𝑡,𝑠
+ − 𝜀ℎ𝑡,𝑠

−      ∀𝑡, ∀𝑠 (4.7) 

0 ≤ 𝜀ℎ𝑡,𝑠
+ ≤ 𝑃𝑤𝑡,𝑠 + 𝐷𝑡,𝑠     ∀𝑡, ∀𝑠 (4.8) 

0 ≤ 𝜀ℎ𝑡,𝑠
− ≤ 𝑃𝑤𝑀𝑎𝑥 + 𝜙1. 𝑑0𝑡     ∀𝑡, ∀𝑠 (4.9) 

where 𝑃𝑤𝑡,𝑠 and 𝐷𝑡,𝑠 are delivered power production of WPA and DRA, respectively. It is 

an assumption in this chapter that the scheduled value of DRA and its active power are 
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equal, which means no uncertainty has been considered for DRA production. The limit of 

intraday offer can be expressed as follows: 

−Λ.𝑃ℎ𝑡,𝑠
𝐷𝐴 ≤ 𝑃ℎ𝑡,𝑠

𝐼𝑁 ≤ Λ. 𝑃ℎ𝑡,𝑠
𝐷𝐴     ∀𝑡, ∀𝑠. (4.10) 

The following constraints are employed to calculate the risk factor: 

−∑[𝜌𝑡,𝑠
𝐷𝐴. 𝑃ℎ𝑡,𝑠

𝐷𝐴 + 𝜌𝑡,𝑠
𝐼𝑁 . 𝑃ℎ𝑡,𝑠

𝐼𝑁 +
1

2
.
1

𝛶. 𝑑0𝑡
. (𝐷𝑡,𝑠

𝑆𝐶)
2
+ 𝜌𝑡,𝑠

𝐷𝐴. 𝜂𝑡,𝑠
+ . 𝜀ℎ𝑡,𝑠

+ − 𝜌𝑡,𝑠
𝐷𝐴. 𝜂𝑡,𝑠

− . 𝜀ℎ𝑡,𝑠
− ]

𝑁𝑇

𝑡=1

+  𝜃 − 𝜑𝑠 ≤ 0     ∀𝑠 (4.11) 

𝜑𝑠 ≥ 0     ∀𝑠. (4.12) 

The constraints related to the modeling of flexible load are mathematically expressed 

by (4.13)-(4.18): 

𝐷𝑡,𝑠
𝑆𝐶 = 𝐷𝑡

𝐷𝐴 + 𝐷𝑡,𝑠
𝐼𝑁     ∀𝑡, ∀𝑠 (4.13) 

𝜙2. 𝑑0𝑡 ≤ 𝐷𝑡
𝐷𝐴 ≤ 𝜙1. 𝑑0𝑡     ∀𝑡, ∀𝑠 (4.14) 

𝜙2. 𝑑0𝑡 ≤ 𝐷𝑡,𝑠
𝑆𝐶 ≤ 𝜙1. 𝑑0𝑡     ∀𝑡, ∀𝑠 (4.15) 

∑𝐷𝑡,𝑠
𝑆𝐶

𝑁𝑇

𝑡=1

≤ 𝜇 .∑𝑑0𝑡

𝑁𝑇

𝑡=1

    ∀𝑠 
(4.16) 

𝐷𝑡,𝑠
𝑆𝐶 = 𝐷𝑡,𝑠,

𝑆𝐶    ∀𝑡, ∀𝑠, ∀𝑠 ,    𝑖𝑓    𝜌𝑡,𝑠
𝐷𝐴 = 𝜌𝑡,𝑠,

𝐷𝐴 (4.17) 

𝐷𝑡,𝑠
𝐼𝑁 = 𝐷𝑡,𝑠,

𝐼𝑁    ∀𝑡, ∀𝑠, ∀𝑠 ,     𝑖𝑓       𝜌𝑡,𝑠
𝐷𝐴 = 𝜌𝑡,𝑠,

𝐷𝐴 (4.18) 

Eqs. (4.17) and (4.18) define the non-anticipativity of decisions in the market of 

intraday. The lower bounds of constraints (4.14)-(4.15) are changed from zero to 𝜙2. 𝑑0𝑡 

(𝜙2 < 0) because the DRA can exploit wind power units and escalate its load in the joint 

operation. Eq. (4.16) models the flexibility of load where 𝜇  is a factor that limits the 
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maximum range of the total loads in 𝑁𝑇 hours. In order to propose non-decreasing curves of 

offering to the DA market, two constraints are defined as follows: 

(𝑃ℎ𝑡,𝑠
𝐷𝐴 − 𝑃ℎ𝑡,𝑠,

𝐷𝐴). (𝜌𝑡,𝑠
𝐷𝐴 − 𝜌𝑡,𝑠,

𝐷𝐴) ≥ 0     ∀𝑡, ∀𝑠, ∀𝑠 , (4.19) 

𝑃ℎ𝑡,𝑠
𝐷𝐴 = 𝑃ℎ𝑡,𝑠,

𝐷𝐴     ∀𝑡, ∀𝑠, ∀𝑠 ,    𝑖𝑓    𝜌𝑡,𝑠
𝐷𝐴 = 𝜌𝑡,𝑠,

𝐷𝐴 (4.20) 

4.4 Case Study and Results 
 

4.4.1 Assumptions and data 
 

The proposed approach aims to coordinate a WPA and a DRA while tackling the 

uncertainties associated with the production of WPA, electricity prices in electricity markets, 

and outage of wind power. To this end, three different structures as depicted in Fig. 4.1 is 

simulated including DRA only, WPA only, and HPP. Uncertainties of markets’ price and 

wind power are generated and modeled with some scenarios utilizing a joint block of a 

hybrid Jaya algorithm and an adapted virtual neural network. Statistical analysis is used to 

generate scenarios regarding severe outages of the wind units. 

The proposed technique is applied on a real wind farm in the Sotavento of Spain with a 

capacity of 17.56 MW [99]. The chaotic feature of wind power is generated by the 

procedure proposed in [81]. Historical data of the year 2010 is utilized for training the 

artificial neural network. Based on the procedure presented in [144], a three-step 

formulation is employed in this study for modeling market prices. The historical data of 

market prices and demand are based on the electricity market of the Iberian Peninsula [159]. 

A scenario-tree based approach is applied for uncertainty modeling of the problem which 
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contains 3000 scenarios (6×10×5×10) with six, ten, five and, ten scenarios for wind 

generation, and prices in DA, intraday and balancing markets, respectively. Fig. 3.6 shows 

the flowchart of the stochastic modeling process. Randomly generated values are used for 

outage times of the wind power. Table 4.1 details the probability distribution for the outage 

times of wind power.  

The outage times shown in this table are added to the previously generated stochastic 

profile of wind generation. The data for March 12, 2010, is used for obtaining simulation 

results. It is assumed that 0.067% of the total electricity loads of the Spanish grid are united 

to take part as a DRA in the market. 

The scenario generation/reduction procedure of the proposed method is primarily 

executed in MATLAB software and then the results are imported into the GAMS software 

through a GAMS/MATLAB interface to solve the given optimization problem. Note that 

CPLEX is used as the solver of the GAMS software. The execution time of simulations is 

120.756 seconds on a 2.3 GHz Intel® CORETM i5 laptop with 8 GB of RAM. 

 
Fig. 4.2 Optimal hourly power bids for the DA market 
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Table 4.1 Distribution of outage time probability for WPA 

Parameters 
Probability Distribution Characteristics 

St. Dev. Mean Max. Min. 

TStart 1 13.5 16 11 

TStop 1 20 23 17 

4.4.2 Numerical Studies 
In this chapter, four studies are done to evaluate the applicability and effectiveness of 

the proposed approach as follows:   

1) Comparison of power bids 
In this section, the effect of the joint operation of DR and wind producers on their 

power offerings will be discussed. Hourly power bids to the DA market for scenario #5 are 

depicted in Fig. 4.2 regarding different configurations: WPA only, HPP operation, and DRA 

only, while the generation system experiences a wind outage condition. As can be seen, 

DRA with the assist of WPA can store more energy in the joint operation during the hours 

of off-peak, while this stored energy is released to the market during the peak hours. 

Moreover, the strategy for joint operation obtains €96.171 extra profits compared to two 

other independent operation strategies. 

Fig. 4.3 shows the optimal variations in the behavior of demand response provider for 

each scenario in the joint operation for the DA market. It can be seen from this figure that 

the DR provider has different responses corresponding to different DA market scenarios. 
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Fig. 4.3 Optimal variations in the behavior of demand response provider for each scenario in the joint 

operation. 

Optimal power bids of independent HPP and WPA are shown in Fig. 4.4 and Fig. 4.5 

for scenario #5 under two conditions of normal operation and wind outage. Obviously, 

independent WPA provides no offer during the periods of wind power outage including 

hours 9-12 and hours 14-23. 

 
Fig. 4.4 HPP optimal power bids in the DA market under normal operation and wind outage 
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Fig. 4.5 Optimal power bids of independent WPA in the DA market under normal operation and wind 

outage. 

However, the HPP offers slightly less power to the DA market when the occurrence of 

the wind outage compared to the normal condition. The optimal bids of DRA in the DA 

market under both conditions of independent and joint operation are shown in Fig. 4.6. As 

can be illustrated, near the full capacity of the DRA can be utilized in some hours when it 

cooperates with the WPA. 

2) Comparison of profits  
Fig. 4.7 shows the hourly comparison of the expected net profit for three given 

configurations while considering wind outage. Based on this figure, especially around 7 a.m. 

till 3 p.m., the hourly profits are increased significantly. However, for about three hours (3 

p.m. till 6 p.m.), HPP incurs some losses due to the offering policies that it takes for 

maximizing the profit. On the other hand, the behavior of HPP and DRA during peak hours 

is quite interesting. As anticipated, the DR offers most of the load shifting in this period as 

usually, the highest electricity price happens in this time frame, and the highest profit can be 

earned. Consequently, HPP also earns great profit in this period as it possesses the DR. 
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Fig. 4.6 Optimal power bids of DRA in the DA market under independent operation and joint operation. 

  
Fig. 4.7 Hourly comparison of expected net profit under three configurations: DRA only, WPA only, and 

HPP 
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Fig. 4.8 Hourly expected net profit of independent WPA under two different conditions of normal 

operation and wind outage. 

 

 

Fig. 4.9 Expected net profit of HPP under two different conditions of normal operation and wind outage. 



Hybrid Power Plant Bidding Strategy for Electricity Market Participation 

113 
 

 
Fig. 4.10 Extra profit comparison of HPP for a set of 𝜁 values under two conditions of wind outage and 

normal operation. 

Furthermore, Fig. 4.8 and Fig. 4.9 show the hourly expected profit of the independent 

WPA and HPP under two conditions of normal operation and wind outage. Comparison of 

these figures also demonstrates the benefits of joint operation as the wind outage has less 

effect on the expected profits of HPP than the individual utilization of wind generator. Note 

that this expected profit of wind producer in the outage period is not zero in all outage hours 

(see Table 4.1), because the expected profit is based on all probable scenarios. 

3) Effect of the risk 
As mentioned earlier, risk consideration is a crucial matter that affects the final decision 

of all participants in electricity markets. Maximization of the expected value of profit does 

not necessarily mean that scenarios with low profits or even negative ones will not occur. 

Those scenarios can have a non-negligible probability of occurrence. To limit the effect of 

those undesired scenarios, a risk measure is usually added to the final formulation. In the 

CVaR risk measure, the weight of the risk on the final problem is determined by the risk 

factor 𝜁.  
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Fig. 4.10 shows the extra profits of HPP under two conditions of wind outage and 

normal operation for different values of the risk factor 𝜁. As illustrated from this figure, the 

extra profits of HPP are declined with the increasing 𝜁.  

It should be mentioned that an increase in risk factor 𝜁 causes the extra profit to be 

decreased under both normal operation and wind outage conditions. As can be seen, the 

maximum extra profit (i.e., 124.056 Euros) is attained under the normal condition at the risk 

factor 𝜁  = 0.1, while its minimum value (i.e. 74.986 Euros) is reached at 𝜁  = 1 under the 

condition of wind outage. 

 

Fig. 4.11 Profit and cumulative profit (C-Profit) comparison for DRA only, WPA only and HPP for one 

year 

 

Fig. 4.12 Profit and cumulative profit (C-Profit) for an extra profit of HPP over one year 
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4) Case study over one year 
This case study analyses the HPP for contributing to the three markets over one year. 

Scenarios for wind power and electricity prices are produced based on the historical data of 

wind speed and the Iberian Peninsula electricity market for the year 2016. Fig. 4.11 

compares the profit and cumulative profit (C-Profit) for the three configurations including 

DRA only, WPA only and HPP for one year. As can be seen in Fig. 4.11, the daily profit of 

HPP is higher than the individual operation of WPA and DRA. Moreover, the cumulative 

profit of HPP is superior to the ones with independent configurations.  

Fig. 4.12 also investigates the profit and C-Profit for the extra profit of HPP over one 

year. As seen, the maximum amount of extra profit happens at the end of the year when the 

price of electricity is too high. The total amount of extra profit of HPP for this year is 

106850 Euros. 

4.5 Summary 
This chapter coordinates a WPA and a DRA to form an HPP which participates in 

different types of electricity markets comprising DA, intraday, and balancing markets. The 

price of energy in electricity markets, wind production, and its outage are considered as 

uncertain parameters.  

Firstly, a two-stage stochastic programming model has been formulated for a DRA. The 

relationship between the electricity price and load consumption is modeled by the elasticity 

concept. Then, using the WPA model obtained in Section 3.3 and DRA model of this 

chapter, a joint operation of a WPA and a DRA is formulated as an HPP in which the WPA 
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utilizes the DRA as a storage unit. Also, a random procedure has been utilized to generate 

the uncertainty of wind outage which is added to the normal operation of wind producer.  

Three-stage stochastic programming has been formulated to clear the DA market in this 

first stage, while the intraday market and balancing market are cleared afterward in the next 

two stages. The uncertainties associated with wind power generation, its outages, and the 

price energy in three markets have been modeled through a set of scenarios. CVaR 

technique has been applied to the formulation of problems to tackle the financial risk of the 

market operation. The results demonstrated the superiorities of joint operation as an HPP 

compared to the independent participation of wind and DR producers in the markets.  

 

 

 

 

 



Hybrid Power Plant Bidding Strategy for Electricity Market Participation 

117 
 

5 Hybrid Power Plant Bidding Strategy 
for Voltage Stability Improvement, 
Electricity Market Profit Maximization, 
and Congestion Management  

5.1 Motivation and Contributions 
Due to the stochastic, unstable, and nondispatchable nature of wind generations, it is 

usually very difficult for these kinds of producers to participate in electricity markets and 

compete with other producers such as conventional power plants. For this reason, it is 

important to offer a new strategy for WPAs to help them overcome these difficulties. 

The network constraints can also affect the scheduling of the generators and storage 

units like WPA and CAES. Depending on the objective function that the decision-maker 

aims to optimize, the power scheduling of the mentioned aggregators can be different. For 

example, if the objective function is to optimize the electricity market profit, the aggregators 

would follow the price of electricity markets, but if the objective function is to minimize the 

congestion management, the scheduling would be different to change the power flow 

through the network. 

A few studies provide offering strategies for different types of aggregators, considering 

network constraints. For example, Ref. [88] presents a novel method considering the 

uncertainty related to the amount of wind power generation and load for corrective voltage 

control to cope with the states in which the power systems experience voltage instability due 

to severe contingencies. A probabilistic optimal power flow approach is formulated in [160] 
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for an HPP that is comprised of plug-in electric vehicles, photovoltaic and wind energy 

sources. In that study, the Monte Carlo simulation is used to generate the PDF of the 

stochastic powers. A new fuzzy algorithm is used to solve the security-constrained optimal 

power flow problem in [161] with wind and thermal power generators, where wind power 

uncertainties are modeled using Weibull probability function.  

In this chapter, a CAES aggregator equipped with a simple cycle mode operation 

having the ability to work as a gas turbine is coordinated with a WPA as an HPP to 

participate in the DA electricity market considering network constraints. In the proposed 

approach, the WPA uses the CAES to tackle its stochastic input and uncertainties related to 

different electricity market prices, and CAES can also use WPA to manage its 

charging/discharging and simple cycle modes more economically. Three objective functions 

are considered including electricity market maximization, congestion management, and 

voltage stability improvement. The problem is formulated as a multi-objective mixed 

integer nonlinear programming problem which is solved using an artificial algorithm. Multi-

objective Pareto front solutions are used to optimize all three objective functions 

simultaneously. The best compromise solution is also suggested using the fuzzy method. 

The proposed method is tested on a realistic case study based on a wind farm and electricity 

market located in Spain, and IEEE 57-bus test system is used to analyze the network 

constraints effects. The contributions of the chapter are briefly specified as follows: 

 An HPP including a CAES aggregator and a WPA is modeled considering 

network constraints.  
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 Three objective functions are considered, including electricity market 

maximization, congestion management, and voltage stability improvement. 

 In order to properly model the WPA, pitch control for wind power curtailment is 

added to wind generator modeling.  

 The proposed approach is tested on a real case study based on a wind farm and 

electricity market located in Spain, and the IEEE 57-bus test system is used to 

analyze the effects of network constraint on the HPP scheduling for different 

objective functions. 

5.2 Problem Formulation 
Three objective functions are considered in this chapter, including profit maximization, 

voltage stability, and congestion management. The first objective function is profit 

maximization, which is equal to the revenue of the HPP minus its total cost.  

Max𝛩ℎ𝑡,𝑠[𝒵1] 

𝒵1 =∑∑𝜋𝑠[𝜌𝑡,𝑠
𝐷𝐴. 𝑃ℎ𝑡,𝑠

𝐷𝐴 − 𝑂𝐶𝑡,𝑠]

𝑁𝑇

𝑡=1

𝑁𝑠

𝑠=1

  
(5.1) 

where 𝛩ℎ𝑡,𝑠 = {𝑃ℎ𝑡,𝑠
𝐷𝐴, 𝑈𝑤𝑡,𝑠

𝐷𝐴, 𝑃𝑤𝑡,𝑠
𝐷𝐴, 𝑃𝑐𝑡,𝑠

𝐷𝐴, 𝑃𝑐𝑡,𝑠
𝐷𝐴,𝐷𝑖𝑠, 𝑃𝑐𝑡,𝑠

𝐷𝐴,𝑆𝑖𝑚, 𝑃𝑐𝑡,𝑠
𝐷𝐴,𝐶ℎ𝑎, 𝑈𝑐𝑡,𝑠

𝐷𝐴,𝐷𝑖𝑠, ℶ𝑡  

𝑈𝑐𝑡,𝑠
𝐷𝐴,𝑆𝑖𝑚, 𝑈𝑐𝑡,𝑠

𝐷𝐴,𝐶ℎ𝑎, 𝐸𝑐𝑡,𝑠
𝐷𝐴  }, ∀𝑡, ∀𝑠  are the variables related to the HPP optimization 

problem. 𝑠 is an index of scenario and 𝑁𝛺 is the total number of scenarios. 𝑡 and 𝑁𝑇 are the 

index of the time period and the total number of periods, respectively. 𝜋𝑠 is the probability 

of occurrence of each scenario. 𝜌𝑡,𝑠𝐷𝐴 is the DA market price. 𝑃ℎ𝑡,𝑠𝐷𝐴 is DA offer of the HPP. 
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𝑂𝐶𝑡,𝑠 is the operational cost of CAES, which is calculated based on the amount of power in 

charging/discharging and simple cycle modes; see (5.16).  

The objective function defined in (5.1) is subject to some combined constraints related 

to the WPA, commercial CAES provider, and the conventional power plants aggregators, 

and some other constraints specifically related to each of them.   

The offer limitation of the HPP in the DA market can be written as follows: 

𝑃ℎ𝑡,𝑠
𝐷𝐴 = 𝑃𝑤𝑡,𝑠

𝐷𝐴 + 𝑃𝑐𝑡,𝑠
𝐷𝐴    ∀𝑡, ∀𝑠 (5.2) 

where 𝑃𝑤𝑡,𝑠𝐷𝐴 and 𝑃𝑐𝑡,𝑠𝐷𝐴 are the amount of wind and CAES powers offered to the DA market 

limited to the following constraints: 

0 ≤ 𝑃𝑤𝑡,𝑠
𝐷𝐴 ≤ 𝑃𝑤𝑀𝑎𝑥      ∀𝑡, ∀𝑠 (5.3) 

−𝑃𝑐𝐶𝑜𝑚
𝑀𝑎𝑥 ≤ 𝑃𝑐𝑡,𝑠

𝐷𝐴 ≤ 𝑃𝑐𝐸𝑥𝑝
𝑀𝑎𝑥       ∀𝑡, ∀𝑠 (5.4) 

here 𝑃𝑤𝑀𝑎𝑥  is the WPA capacity. 𝑃𝑐𝐸𝑥𝑝𝑀𝑎𝑥  and 𝑃𝑐𝐶𝑜𝑚𝑀𝑎𝑥  are the maximum expanding and 

compressing capacity of CAES, respectively. Note that 𝑃𝑐𝑡,𝑠𝐷𝐴  in (5.4) can get negative 

values, which means the HPP is considered to have the permission of both buying and 

selling in the DA market.  

In order to properly model the WPA, the pitch angle control is added to wind generators 

using Eq. (5.5) to curtail the wind power level. Eq. (5.5) refers to how wind power PDF is 

modified after curtailment [162].  

𝜋̅𝑤𝑡,ℎ
𝐷𝐴 =

{
 
 

 
 
𝜋𝑤𝑡,ℎ

𝐷𝐴                    𝑖𝑓       𝑔𝑡,ℎ
𝐷𝐴 < 𝑔𝑡,ℶ𝑡

𝐷𝐴

∑𝜋𝑤𝑡,𝑗
𝐷𝐴

𝑗≥ℶ𝑡

           𝑖𝑓       𝑔𝑡,ℎ
𝐷𝐴 = 𝑔𝑡,ℶ𝑡

𝐷𝐴

0                            𝑖𝑓        𝑔𝑡,ℎ
𝐷𝐴 > 𝑔𝑡,ℶ𝑡

𝐷𝐴

 

(5.5) 
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where 𝑔𝑡,ℎ𝐷𝐴  is the discrete realization of wind power, 𝑔𝑡,ℶ𝑡
𝐷𝐴  is the maximum hourly caps 

further than which all the wind power will be dropped, and h and ℶ𝑡 are wind power discrete 

levels and the wind curtailment decision variable, respectively. ℶ𝑡 values are between 1 and 

7 in this chapter. 𝜋̅𝑤𝑡,ℎ𝐷𝐴 is the probability of wind power equal to 𝑔𝑡,ℎ𝐷𝐴 when the wind is 

curtailed. 𝜋𝑤𝑡,ℎ𝐷𝐴 is the probability of wind power equal to 𝑔𝑡,ℎ𝐷𝐴.  

In order to demonstrate the process, examples of two wind power PDFs are presented in 

Fig. 5.1. The wind power is distributed in 7 levels with their associated probabilities as 

shown in Fig. 5.1(a), while the wind power is curtailed on its 5th level as shown in Fig. 

5.1(b), and the probabilities of level 6 and 7 are added to level 5. 

 

Fig. 5.1 (a) Initial wind power PDF; (b) the curtailed wind power PDF  

 

 



Hybrid Power Plant Bidding Strategy for Electricity Market Participation 

122 
 

Moreover, there are some constraints related to 𝑃𝑐𝑡,𝑠𝐷𝐴 as follows: 

𝑃𝑐𝑡,𝑠
𝐷𝐴 = 𝑃𝑐𝑡,𝑠

𝐷𝐴,𝐷𝑖𝑠 + 𝑃𝑐𝑡,𝑠
𝐷𝐴,𝑆𝑖𝑚 − 𝑃𝑐𝑡,𝑠

𝐷𝐴,𝐶ℎ𝑎      ∀𝑡, ∀𝑠 (5.6) 

where 𝑃𝑐𝑡,𝑠
𝐷𝐴,𝐷𝑖𝑠 , 𝑃𝑐𝑡,𝑠

𝐷𝐴,𝑆𝑖𝑚  and 𝑃𝑐𝑡,𝑠
𝐷𝐴,𝐶ℎ𝑎 are the amount of discharging, simple cycle and 

charging powers of CAES for the DA market. The limitations of CAES power in different 

modes of operation are as follows: 

0 ≤ 𝑃𝑐𝑡,𝑠
𝐷𝐴,𝐷𝑖𝑠 ≤ 𝑃𝑐𝐸𝑥𝑝

𝑀𝑎𝑥 . 𝑈𝑐𝑡,𝑠
𝐷𝐴,𝐷𝑖𝑠      ∀𝑡, ∀𝑠 (5.7) 

0 ≤ 𝑃𝑐𝑡,𝑠
𝐷𝐴,𝑆𝑖𝑚 ≤ 𝑃𝑐𝐸𝑥𝑝

𝑀𝑎𝑥 . 𝑈𝑐𝑡,𝑠
𝐷𝐴,𝑆𝑖𝑚      ∀𝑡, ∀𝑠 (5.8) 

0 ≤ 𝑃𝑐𝑡,𝑠
𝐷𝐴,𝐶ℎ𝑎 ≤ 𝑃𝐶𝑜𝑚

𝑀𝑎𝑥 . 𝑈𝑐𝑡,𝑠
𝐷𝐴,𝐶ℎ𝑎     ∀𝑡, ∀𝜔 (5.9) 

where 𝑈𝑐𝑡,𝑠
𝐷𝐴,𝐷𝑖𝑠 , 𝑈𝑐𝑡,𝑠

𝐷𝐴,𝑆𝑖𝑚  and 𝑈𝑐𝑡,𝑠
𝐷𝐴,𝐶ℎ𝑎  are the binary variables that show the operating 

status of the CAES (i.e. discharging, simple cycle or charging modes). Note that the CAES 

can only operate in one of the mentioned modes at each of the periods and scenarios. This 

concept can be mathematically formulated as the following constraint: 

𝑈𝑐𝑡,𝑠
𝐷𝐴,𝐷𝑖𝑠 +𝑈𝑐𝑡,𝑠

𝐷𝐴,𝑆𝑖𝑚 + 𝑈𝑐𝑡,𝑠
𝐷𝐴,𝐶ℎ𝑎 ≤ 1  ∀𝑡, ∀𝑠 (5.10) 

In this chapter, it is assumed that there is no uncertainty in the case of CAES power 

production. 

The energy level of the CAES (i.e. also called state-transition equation) is defined as 

follows: 

𝐸𝑐𝑡,𝑠
𝐷𝐴 = 𝐸𝑐𝑡−1,𝑠

𝐷𝐴 + 𝐸𝑟(𝑃𝑐𝑡,𝑠
𝐷𝐴,𝐶ℎ𝑎 − 𝑃𝑐𝑡,𝑠

𝐷𝐴,𝐷𝑖𝑠)    ∀𝑡 > 1, ∀𝑠 (5.11) 

𝐸𝑐1,𝑠
𝐷𝐴 = 𝐸𝑐𝐼𝑁𝑇    ∀𝑠 (5.12) 

𝐸𝑐𝑀𝑖𝑛 ≤ 𝐸𝑐𝑡,𝑠
𝐷𝐴 ≤ 𝐸𝑐𝑀𝑎𝑥      ∀𝑡, ∀𝑠 (5.13) 
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where 𝐸𝑟 is the energy rate ratio that converts the value of power to the energy. 𝐸𝑐𝑀𝑖𝑛 and 

𝐸𝑐𝑀𝑎𝑥 are the minimum and maximum amount of energy level that can be scheduled for the 

CAES, respectively. 

In order to propose non-decreasing curves to the DA market and applying them to the 

unpredictable conditions related to the decisions made in this market, the following 

constraints can be defined: 

(𝑃ℎ𝑡,𝑠
𝐷𝐴 − 𝑃ℎ𝑡,𝑠,

𝐷𝐴). (𝜌𝑡,𝑠
𝐷𝐴 − 𝜌𝑡,𝑠,

𝐷𝐴) ≥ 0     ∀𝑡, ∀𝑠, ∀𝑠 , (5.14) 

𝑃ℎ𝑡,𝑠
𝐷A = 𝑃ℎ𝑡,𝑠,

𝐷A     ∀𝑡, ∀𝑠, ∀𝑠 , ∶  𝜌𝑡,𝑠
𝐷𝐴 = 𝜌𝑡,𝑠,

𝐷𝐴 (5.15) 

Finally, the equation related to the operational cost of CAES can be written as follows: 

𝑂𝐶𝑡,𝑠 = 𝑃𝑐𝑡,𝑠
𝐷𝐴,𝐷𝑖𝑠(𝐻𝑐𝐷𝑖𝑠. 𝑁𝐺 + 𝑉𝑐𝐸𝑥𝑝) + 𝑃𝑐𝑡,𝑠

𝐷𝐴,𝑆𝑖𝑚(𝐻𝑐𝑆𝑖𝑚. 𝑁𝐺 + 𝑉𝑐𝐸𝑥𝑝 + 𝑉𝑐𝐶𝑜𝑚)

+ 𝑃𝑐𝑡,𝑠
𝐷𝐴,𝐶ℎ𝑎𝑉𝑐𝐶𝑜𝑚    ∀𝑡, ∀𝑠 (5.16) 

where 𝐻𝑐𝐷𝑖𝑠  and 𝐻𝑐𝑆𝑖𝑚  are the heat rate in the discharging and simple cycle modes, 

respectively. 𝑉𝑐𝐸𝑥𝑝  and 𝑉𝑐𝐶𝑜𝑚  are the variable operation and maintenance cost for the 

expander and compressor of the CAES. 𝑁𝐺 refers to the natural gas price. 

The second objective function considered in this chapter is voltage stability 

improvement. The static voltage stability margin can be dignified through the minimal Ϗ 

index as formulated in (5.17) [163, 164]: 

Ϗ̅𝑗 = |1 − ∑ Ͷ𝑗𝑖
𝑉𝑖
𝑉𝑗

𝑖𝜖𝑩𝐺

|        𝑗ϵ𝑩𝐿 

(5.17) 

where 𝑩𝐿 and 𝑩𝐺  are sets of load buses and generator buses, respectively. The matrix (Ͷ) in 

(5.17) can be calculated by (5.18): 
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 [Ͷ] = −[𝑌𝐿𝐿]
−1[𝑌𝐿𝐺] (5.18) 

 

where [𝑌𝐿𝐿]  and [𝑌𝐿𝐺]  are the submatrices of the admittance matrix 𝑌𝑏𝑢𝑠 = [
𝑌𝐿𝐿 𝑌𝐿𝐺
𝑌𝐺𝐿 𝑌𝐺𝐺

] 

partitioned in accordance with the load buses (𝑩𝐿) and generator buses (𝑩𝐺).  

In stable conditions, Ϗ𝑗  indices are required to be between 0 and 1. Therefore, an 

overall indicator Ϗ̅ that defines the stability of the whole system can be transcribed as the 

maximum of the Ϗ𝑗 indices. The minimum of this overall indicator can be defined as an 

objective function as shown in (5.19): 

Min𝛩ℎ𝑡,𝑠[𝒵2] 

𝒵2 = Ϗ̅ = max(Ϗ𝑗)       𝑗 ∈ 𝑩𝐿 (5.19) 

The third objective function considered in this chapter is congestion management. For 

the sake of simplicity, it is assumed that the maximum amount of power of each network 

line is the same. In order to consider congestion management in the problem, we try to 

minimize the maximum power through the lines of the network. Also, the penalty factor is 

implemented to eliminate the solutions which lead to over congestion through the network. 

The powers through the lines of the network can be written as in (5.20).  

𝑷𝑙𝑖𝑛𝑒 = [𝑃1 𝑃2 𝑃3 … 𝑃𝑁𝑙𝑖𝑛𝑒],      (5.20) 

where 𝑁𝑙𝑖𝑛𝑒  is the total number of lines in the network. The penalty factor to reject the 

solutions which lead to over congestion through the network can be formulated using (5.21) 

and (5.22): 

𝐵𝑃𝑙 = {
0      𝑃𝑙 ≤ 𝑃𝑙

𝑚𝑎𝑥  

1      𝑃𝑙 > 𝑃𝑙
𝑚𝑎𝑥       , ∀𝑙𝜖[1, 2, … ,𝑁𝑙𝑖𝑛𝑒] (5.21) 
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𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝓂 × ∑ 𝐵𝑃𝑙

𝑁𝑙𝑖𝑛𝑒

𝑙=1

 

(5.22) 

where 𝑃𝑙𝑚𝑎𝑥 is the maximum volume of power that can be passed from end to end of the 

line l, and 𝓂 is a large number (for instance, 10100). As mentioned, the maximum amount 

of power of all lines is presumed to be equal. Therefore, the third objective function, which 

is to minimize the maximum power through the lines of the network, can be written as in 

(5.23). Note that if the maximum amount of power in lines is different, the normalized value 

of power passing through the line can be considered in the formulation. 

Min𝛩ℎ𝑡,𝑠[𝒵3] 

𝒵3 = max(𝑷𝑙𝑖𝑛𝑒) + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 (5.23) 

5.2.1 Equality constraints 
The optimal power flow equality constraints, including active and reactive powers, can be 

written as the following equations: 

𝑃𝑔𝑖 − 𝑃𝑑𝑖 =∑𝑉𝑖𝑉𝑗(𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗)

𝑛𝑏

𝑗=1

 
(5.24) 

𝑄𝑔𝑖 − 𝑄𝑑𝑖 =∑𝑉𝑖𝑉𝑗(𝐺𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗 − 𝐵𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗)

𝑛𝑏

𝑗=1

 
(5.25) 

where 𝐺𝑖𝑗  and 𝐵𝑖𝑗  are the real and imaginary parts of the network admittance matrix 

element 𝑌𝑖𝑗, respectively, so that 𝑌𝑖𝑗 = 𝐺𝑖𝑗 + 𝑗𝐵𝑖𝑗. 𝑃𝑔𝑖 and 𝑃𝑑𝑖 are the real power generation 

and consumption of the ith bus. 𝑄𝑔𝑖  and 𝑄𝑑𝑖  are the reactive power generation and 

consumption of the ith bus. 𝜃𝑖𝑗 is the voltage angle difference between bus i and bus j.   
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5.2.2 Inequality constraints:  
The optimal power flow inequality constraints include active and reactive power generation 

of each generator (Eqs. (5.26) and (5.27)), the active power passing through the lines (Eq. 

(5.28)), and the voltage profile of each load bus (Eq. (5.29)).    

𝑃𝑔𝑖 𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖 𝑚𝑎𝑥            𝑖 ∈ 𝑩𝐺 (5.26) 

𝑄𝑔𝑖 𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖 𝑚𝑎𝑥           𝑖 ∈ 𝑩𝐺 (5.27) 

|𝑃𝑖𝑗| ≤ 𝑃𝑖𝑗 𝑚𝑎𝑥 (5.28) 

𝑉𝑖 𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖 𝑚𝑎𝑥         𝑖 ∈ 𝑩𝐿  (5.29) 

where the subscript max and min indicate, respectively, the maximum and minimum values. 

Note that Matpower M-file package is used to solve the optimal power flow. Equality and 

inequality constraints are completely satisfied in the process of solving optimal power flow 

with Matpower. 

5.2.3 Multi-objective Strategy and Optimization Tool 
In this section, the multi-objective technique and its concept are introduced. Fig. 5.2 

shows the concept of multi-objective Pareto solutions for two objective functions. As shown 

in Fig. 5.2, all populations are arranged with the best values of the objective functions, and 

the dominated solutions are identified and removed.  



Hybrid Power Plant Bidding Strategy for Electricity Market Participation 

127 
 

 

Fig. 5.2 Pareto-optimal front concept for two objective functions 

The values of the objective functions are usually quite different. For example, in this 

study, the profit maximization objective function values are about 1 million, and voltage 

stability objective function values are between 0 and 1. Hence, solutions are derived in 

sequence based on the range of the objective functions. In other words, the solutions with 

the biggest range objective function (congestion management) are calculated first, and the 

solutions with the smallest range objective function (negative market profit) are lastly 

calculated. The reason that the negative value of the market profit is considered is that this 

objective function is needed to be maximized on the contrary to the other objective 

functions (congestion management and VSI). Note that for calculating the objective 

function in each iteration, the optimal power flow is performed using Matpower.  

After finding the multi-objective Pareto solutions, the operator might want to select the 

best compromise solution [165]. Thus, the fuzzy method is used to find this solution. In the 

fuzzy method, firstly, a normalization method is defined to equalize the range for the three 

objective functions and put them between 0 and 1. This procedure is formulated as in (5.30). 
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𝑁𝑜𝑟𝑚𝑍𝑘,𝑠 = {

1                           
𝑍𝑘
𝑚𝑎𝑥 − 𝑍𝑘,𝑠

𝑍𝑘
𝑚𝑎𝑥 − 𝑍𝑘

𝑚𝑖𝑛

0                            

      

𝑍𝑘,𝑠 ≤ 𝑍𝑘
𝑚𝑖𝑛

 𝑍𝑘
𝑚𝑖𝑛 < 𝑍𝑘,𝑠 < 𝑍𝑘

𝑚𝑎𝑥

𝑍𝑘,𝑠 ≥ 𝑍𝑘
𝑚𝑎𝑥

        

(5.30) 

where 𝑍𝑘𝑚𝑎𝑥  and 𝑍𝑘𝑚𝑖𝑛  are the value of kth objective function which is completely 

unsatisfactory and satisfactory to the decision-maker, respectively.  𝑍𝑘,𝑠 and 𝑁𝑜𝑟𝑚𝑍𝑘,𝑠  are  

the sth non-dominated solution of kth objective function and its normalized value which has 

the values between 0 and 1, respectively. 

The membership function can be determined for each individual as follows: 

𝜛𝑠 =
∑ 𝜔𝑘
𝑁𝑍
𝑘=1 × 𝑁𝑜𝑟𝑚𝑍𝑘,𝑠

∑ ∑ 𝜔𝑘
𝑁𝑍
𝑘=1 ×𝑁𝑜𝑟𝑚𝑍𝑘,𝑖

𝑁𝑠
𝑖=1

        
(5.31) 

where 𝑁𝑠  and 𝑁𝑍  are the number of non-dominated solutions and objective functions, 

respectively. 𝜛𝑠  is the membership function of sth non-dominated solution. 𝜔𝑘  is the 

weighting factor of kth objective function. For calculating the best compromise solution, in 

this chapter, the weighting factor for each objective function is assumed to be the same 

which is equal to 0.33. This means all the objection functions have the same importance for 

the decision-maker. The solution with the maximum membership 𝜛𝑠 is the best compromise 

solution [165]. The procedure is also shown as a flowchart in Fig. 5.3. 
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Fig. 5.3 The optimization framework 

 An enhanced Jaya algorithm called LJaya-TVAC algorithm, which is based on time-

varying acceleration coefficients and learning phase introduced in Teaching-Learning-Based 

Optimization (TLBO), is used in this chapter to solve the optimization problem. Jaya is a 

powerful algorithm based on the conception that the new solution moves in the direction of 

the previously found best solution and escapes from the worst one. Jaya algorithm only 

needs the common control parameters and has no algorithm-specific control parameters. 

However, for higher convergence rate, variable coefficients and the learning phase in TLBO 
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is added to the Java algorithm. The detail about the Java and LJaya-TVAC algorithm is 

available in [21, 26]. 

5.3 Results 
The 57-bus test system is used in this chapter to test the proposed approach which 

consists of 7 generator units at buses 1, 2, 3, 6, 8, 9 and 12. The data related to the 57-bus 

test system can be found in [166]. The network in which the HPP including WPA and 

CAES aggregator is tested is shown in Fig. 5.4. In this figure, the red and blue circles 

indicate the CAES and wind power plants, respectively. The proposed methodology aims to 

coordinate a CAES aggregator with a WPA as an HPP to participate in the DA electricity 

market. The CAES is equipped with a simple cycle mode operation. The wind power and 

DA market price uncertainties are modeled using the scenario generation and reduction 

method which are explained as follows: 𝑁1, and 𝑁2 scenarios are generated for wind power 

generation, and DA market price, respectively. These uncertainty sources are independent 

uncertainty parameters, Also, the symmetric scenario tree is implemented to construct 𝑁𝑆 =

𝑁1 × 𝑁2 scenarios based on the wind power and DA market price scenarios. The presented 

procedure is applied to the Sotavento wind farm [28] located in Spain. The artificial neural 

network is trained by the wind power real data records of the year 2010. The scenarios 

related to market prices are obtained by the following procedure: Firstly, the prediction of 

DA market price for 30 days is derived by an adapted hybrid neural network and an 

improved Jaya algorithm [21, 29]. Secondly, the estimation of the error probability 

distribution function (PDF) is calculated for each hour. Finally, based on this estimation, a 

large number of scenarios are produced by applying the roulette wheel mechanism. Also, 



Hybrid Power Plant Bidding Strategy for Electricity Market Participation 

131 
 

the scenario reduction method is employed to diminish the number of scenarios by 

removing the similar scenarios in addition to very low probable scenarios using the fast 

forward algorithm [30]. 

The proposed method is applied on six aggregated wind farms with 7 MW capacity for 

each. The stochastic wind power generation is modeled using the procedure presented in 

Section 3.6. Each of the 6 CAESs shown in Fig. 5.4 has a maximum capacity of 15 MW. 

The required heat rate of CAES for discharging mode is considered to be 0.4185, and twice 

this amount is considered for the simple cycle mode. The natural gas price is 3.5 €/GJ. The 

variable operation and maintenance cost of expander and compressor are equally considered 

to be 0.87 €/kWh. The minimum and maximum levels of air storage in the cavern are 1 and 

15 MW, respectively. Also, the initial level of air stored in the cavern is considered to be 1 

MW. The energy ratio of CAES is 0.95. In order to solve power flow in transmission 

networks, the MatPower package, which is a set of M-files, is used. The MatPower package 

is a power system simulation tool that is very simple to understand and use, and it is 

developed to provide the best possible performance.  
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Fig. 5.4 Diagram illustration of system configurations. 

Fig. 5.5 demonstrates the non-dominated and best compromise solutions for the pitch 

angle control and charging and discharging levels of CAESs and WPs that are optimally 

achieved by JAVA algorithm for three objective functions including congestion 

management, voltage stability enhancement, and market profit maximization. Also, As 

shown in the figure, the best compromise solution is designated by a bigger blue star. This 

solution is obtained using the fuzzy method, which is explained in more detail in Section 

5.2.3. In the solution that is best for congestion management, the amount of market profit, 

which includes WPA and CAES aggregator, voltage stability index and congestion are 

74750, 0.99950752 and 174.6096, respectively. In the solution that has the maximum 

market profit, the amount market profit, voltage stability index and congestion are 79787, 

0.99950659 and 178.0979, respectively. Also, in the solution that the voltage stability has 
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the minimum value, which is the best one, the amount of market profit, voltage stability 

index and congestion are 77322, 0.99950648 and 177.7645, respectively. For the best 

compromise solution, the amount of market profit, voltage stability index, and congestion 

are 77223, 0.99950720 and 175.8644, respectively. These values are compared in Table 5.1. 

In order to clearly see the objective functions’ values, Fig. 5.5 is also shown in two 

dimensions in Fig. 5.6 to Fig. 5.8.  

 

Fig. 5.5 Three-dimensional Pareto front of non-dominated and best compromise solutions of the pitch 

angle control and charging and discharging levels of CAESs and WPs for market profit, voltage stability 

index, and congestion. 

 

Fig. 5.6 Two-dimensional Pareto front for voltage stability index and congestion. 
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Fig. 5.7 Two-dimensional Pareto front for market profit and congestion. 

 

Fig. 5.8 Two-dimensional Pareto front for market profit and voltage stability index. 
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Table 5.1 Congestion management index, voltage stability index, and market profit value for the best 

solutions for each and the best compromise solution 

 Market profit Voltage stability index Congestion management index 

Best compromise solution 74750 0.99950752 174.6096 

Maximum market profit 79787 0.99950659 178.0979 

Best voltage stability index 77322 0.99950648 177.7645 

Best congestion management 77223 0.99950720 175.8644 

 
 

The obtained optimal schemes of CAES caverns’ charging/discharging for all installed 

CAESs are shown in Fig. 5.9 to Fig. 5.12. The objective function to be optimized for Fig. 

5.9 is the minimum congestion. The negative values of this figure signify the charging of 

the cavern, whereas the positive values indicate the discharging. Fig. 5.10 shows the optimal 

CAES caverns’ charging and discharging of the 6 installed CAESs for the minimum VSI as 

the objective function. In order to have a better stability boundary, the demand load needs to 

be locally served [167]. The maximization of electricity market profit is the objective 

function for Fig. 5.11. The variation of charging and discharging of the cavern is mostly 

associated with the variation of the hourly electricity prices. Fig. 5.12 shows the optimal 

CAES caverns’ charging and discharging for the best compromise solution. As mentioned 

before, all the objective functions are equally optimized using a fuzzy method to achieve the 

best compromise solution. Finally, Fig. 5.13 shows the aggregated value of all CAESs, 
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which is the optimal power bids of CAES aggregator in the DA market for different 

objective functions, and best compromise solution. 

 

Fig. 5.9 CAESs charging and discharging for minimum congestion solution. 

 

Fig. 5.10 CAESs charging and discharging for minimum VSI. 
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Fig. 5.11 CAESs charging and discharging for maximum profit. 

 

Fig. 5.12 CAESs charging and discharging for the best compromise solution. 
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Fig. 5.13 Optimal power bids of CAES aggregator in the DA market for different objective functions 

(Congestion management, VSI, Profit maximization,) and best compromise solution. 

Fig. 5.14 also shows the optimal power bids of the HPP in the DA market for 

different objective functions and the best compromise solution. As seen from the figure, 

for the best solution for market profit, the HPP prefers to sell the electricity in peak 

hours which are more expensive.  

 

Fig. 5.14 Optimal power bids of CAES aggregator and WPA in the DA market for different objective 

functions (Congestion management, VSI, Profit maximization,) and best compromise solution. 
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Fig. 5.15 shows the network voltage stability profile during the 24-hour time horizon. 

According to this figure, the worst voltage stability happens at hour #5. Furthermore, the 

bus-VSI profile at hour #5 and the worst bus-VSI are shown in Fig. 5.16. The worst bus-

VSI happens at bus 26 (bus 31 considered as the generator bus) with the value of 

0.99950734 p.u. 

 

Fig. 5.15 VSI during the 24-hour time horizon. 

 

Fig. 5.16 The bus-VSI profile at hour #5. 
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The hourly wind curtailment levels for four solutions including the best solution for 

congestion management, the best solution for VSI, the best solution for electricity market 

profit and the best compromise solution are shown in Table 5.2 to Tanle 5.5. The wind 

curtailment level for each wind power generator at each hour is obtained from the results of 

the optimization problem. The total wind curtailment level of the best solution for 

congestion management is the smallest among the other mentioned solutions with the value 

of 573. The total wind curtailment level of the best solution for profit maximization is 589. 

The total wind curtailment level of the best solution for VSI is 585. Also, the total wind 

curtailment level of the best compromise solution is the largest among the other mentioned 

solutions with the value of 594. It can be seen from the results that even though the wind 

power is totally free, there are intervals in which WPAs are not permitted to inject the entire 

obtainable wind powers to the network and sell to the electricity markets. The reason is that 

for satisfying objective functions other than market profit maximization such as congestion 

management, the wind power generation needs to be curtailed for some hours in which 

some wind generators produce more than enough such that some lines are to be congested.  
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Table 5.2 Wind curtailment level of the best solution for congestion management objective function. 

Hour WP 1 WP 2 WP 3 WP 4 WP 5 WP 6 WP 7 
1 7 1 1 1 1 7 7 
2 1 1 1 1 7 7 1 
3 1 7 1 7 1 7 1 
4 7 1 7 1 7 7 7 
5 7 6 1 1 1 1 7 
6 7 7 7 7 1 7 7 
7 1 7 7 1 3 1 1 
8 7 1 7 1 1 3 7 
9 1 7 1 1 7 1 1 

10 1 7 7 1 1 5 1 
11 7 7 1 7 7 7 7 
12 1 1 7 7 7 7 1 
13 7 2 7 2 1 6 7 
14 1 1 7 1 7 7 1 
15 7 1 7 1 7 4 7 
16 1 7 7 1 1 1 1 
17 6 1 7 7 1 1 6 
18 1 7 2 1 1 7 1 
19 1 1 7 1 1 4 1 
20 7 7 7 1 7 7 7 
21 1 7 1 7 7 7 1 
22 1 7 7 1 7 7 1 
23 1 1 7 7 1 1 1 
24 1 1 1 2 7 7 1 
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Table 5.3 Wind curtailment level of the best solution of VSI objective function. 

Hour WP 1 WP 2 WP 3 WP 4 WP 5 WP 6 WP 7 

1 2 4 5 4 2 5 2 
2 1 2 6 3 7 3 1 
3 4 3 7 4 6 2 4 
4 6 5 6 7 6 6 6 
5 3 5 3 7 3 7 3 
6 2 1 6 7 2 2 2 
7 5 7 4 1 2 6 5 
8 1 5 2 6 7 2 1 
9 5 1 5 1 4 7 5 

10 1 3 1 1 1 2 1 
11 3 7 2 2 2 5 3 
12 3 7 1 4 3 5 3 
13 6 2 4 7 2 7 6 
14 2 1 2 3 2 6 2 
15 5 7 3 6 6 4 5 
16 5 3 4 4 6 1 5 
17 2 5 6 2 5 3 2 
18 3 3 5 5 5 2 3 
19 7 6 3 4 6 5 7 
20 5 6 7 7 2 3 5 
21 7 5 2 4 1 6 7 
22 3 2 7 4 3 7 3 
23 5 4 3 2 1 6 5 
24 2 6 3 5 7 7 2 
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Table 5.4 Wind curtailment level of the best solution of profit maximization objective function. 

Hour WP 1 WP 2 WP 3 WP 4 WP 5 WP 6 WP 7 

1 7 2 3 2 1 6 7 
2 5 2 6 4 4 3 5 
3 2 4 6 4 4 2 2 
4 6 2 5 1 3 1 6 
5 5 3 3 6 3 4 5 
6 6 4 7 4 5 5 6 
7 5 2 4 2 6 5 5 
8 7 6 4 2 7 7 7 
9 3 2 3 7 3 1 3 

10 3 4 5 1 6 4 3 
11 2 3 7 7 5 4 2 
12 5 6 3 3 3 5 5 
13 2 5 4 6 7 6 2 
14 4 3 2 6 2 4 4 
15 4 5 5 1 7 2 4 
16 6 6 7 4 7 7 6 
17 6 6 6 2 4 1 6 
18 2 7 2 1 3 1 2 
19 5 1 3 3 7 3 5 
20 1 2 3 7 5 1 1 
21 3 3 6 6 1 5 3 
22 1 7 5 3 6 7 1 
23 5 5 5 1 5 3 5 
24 3 6 2 4 6 5 3 

 

 

 

 

 

 

 

 

 

 



Hybrid Power Plant Bidding Strategy for Electricity Market Participation 

144 
 

Table 5.5 Wind curtailment level of the best compromise solution. 

Hour WP 1 WP 2 WP 3 WP 4 WP 5 WP 6 WP 7 

1 7 4 4 1 1 1 7 
2 6 2 1 1 7 7 6 
3 2 7 7 6 1 7 2 
4 1 2 5 4 7 5 1 
5 5 5 1 3 1 5 5 
6 7 7 6 5 1 6 7 
7 1 7 7 3 7 1 1 
8 6 1 7 6 7 7 6 
9 4 1 1 1 6 2 4 

10 1 5 6 1 1 4 1 
11 4 4 1 7 2 7 4 
12 7 7 7 7 3 2 7 
13 5 5 1 7 3 1 5 
14 1 1 7 3 7 3 1 
15 3 6 5 1 1 2 3 
16 1 7 7 5 6 7 1 
17 6 3 2 1 4 5 6 
18 5 5 7 1 1 4 5 
19 1 6 5 1 3 1 1 
20 5 7 7 1 7 7 5 
21 1 6 3 5 4 5 1 
22 2 7 7 1 7 4 2 
23 1 6 7 7 5 2 1 
24 2 7 3 1 5 7 2 

5.4 Summary 
This chapter has modeled an HPP considering network WPA. The wind generators are 

equipped with pitch angle control ability to adjust the wind power curtailment level. In 

order to analyze the effects of the network constraints, two additional objective functions 

including congestion management and voltage stability improvement have been considered, 

and multi-objective Pareto front solutions have been used to optimize all the objective 

functions simultaneously. The results show that these two additional technical objectives 

conflict with the profit maximization in the electricity market. This method is used in the 
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time that the market player gets benefit or incentive from the network owner by bringing 

congestion management and voltage stability indices to a specific point. 

In this chapter, two different technical objectives from the perspective of the power grid 

were considered. The problem can also be solved in future work based on other objectives 

such as power losses and voltage profile of the network. 
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6 Conclusions and Suggestions for 
Further Work 

In this chapter, an overall review of the contributions and the important possible areas 

for further research are reviewed and briefly summarised. 

6.1 Summary and Conclusions 
A literature review of existing HPP and its operating systems was presented in Chapter 

2. In this chapter, different types of HPP, including technical and commercial ones, have 

been investigated. Several kinds of electricity markets, including pool and future markets, 

have been introduced and discussed in detail. HPP components which include flexible loads, 

energy production and storage units have been presented. Furthermore, the fundamentals of 

stochastic programming and risk management have been briefly reviewed. 

The contributions of Chapter 3 have included: 1) the development of a two-stage 

stochastic decision-making model for the participation of CAES aggregator equipped with a 

simple-cycle mode operation which gives it the ability to work as a gas turbine in both DA 

and intraday markets. 2) the development of an optimal offering strategy model for the joint 

operation of a WPA and a CAES aggregator as an HPP to maximize their expected profit 

and also to mitigate wind power uncertainties. 3) the implementation and analysis of the 

proposed framework on three different electricity markets in a realistic case study. 4) 

offering a robust risk constrained HPP model to overcome the financial risks of electricity 

markets. 
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Chapter 4 has proposed an approach for the joint operation of a WPA and a DRA as an 

HPP in which the WPA has utilized the DRA as a storage facility. The HPP has participated 

in the DA, intraday, and balancing markets. The uncertainties of wind generator production, 

their outage, and market prices of three markets have been considered. In order to find the 

best offering strategy, the stochastic programming method has been used, and then the 

CVaR has been added to control the financial risk. 

Chapter 5 has modeled an HPP considering network constraints. The HPP also has 

included a CAES aggregator with a WPA. The wind generators are equipped with pitch 

angle control ability to adjust the wind power curtailment level. In order to analyze the 

effects of the network constraints, two additional objective functions including congestion 

management and voltage stability improvement have been considered, and multi-objective 

Pareto front solutions have been used to optimize all the objective functions simultaneously.  

Overall, this thesis has investigated three major technical studies in the form of an HPP. 

The first two technical chapters (Chapters 3 and 4) only focused on the financial aspect of 

an HPP, while the last technical chapter (Chapter 5) considered the technical aspect and 

power quality in the electricity network. In Chapters 3 and 5, the HPP includes a WPA and 

CAES aggregator, while in Chapter 4, the HPP is comprised of a WPA and DRA. 

6.2 Future work 
In this thesis, several models for implementation of HPPs were developed, and their 

participation in power markets and their effects on power networks were explored. The 

current research can be extended in several ways, mainly: 

dict://key.25D62D261B9B6943BE86B7DCF8F9D255/control
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- Future power grids will be equipped with various technologies, for example, the 

various kinds of renewable generations. Therefore, HPPs can involve a more diverse 

set of participants. A future research direction can be studying a comprehensive 

model that includes PV, wind generation, DGs, different kinds of storage systems, 

electric vehicles, and DR at the same time.   

- In Chapters 3 and 4, the pool market including DA, intraday, and balancing markets 

were considered. The participation of HPP in other markets such as future, reserve, 

and regulation markets and bi-lateral contracts for DRA is an interesting topic which 

can be investigated in future studies.  

- In Chapters 3 to 4, stochastic programming was used for modeling the uncertainties 

which require several years of historical data for generating scenarios. When there 

are not enough historical data available, some other types of methods such as robust 

optimization or information gap theory can be used to model the optimization 

problem. 

- Other novel or improved models of wind generation, CAES, and DR can be used. 

For example, a more realistic and accurate DR model can be utilized by considering 

the elasticity of customers or clustering the customers based on their real data into 

several groups.  

- In Chapter 5, two different technical objectives from the perspective of the power 

grid were considered. The problem can also be solved based on other objectives such 

as power losses and voltage profile of the network. Similar to the study in Chapter 5, 
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sometimes these technical objectives might conflict with the profit maximization in 

the electricity market.   
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