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Preface 

Plants! Why study them?  

The more we learn about the way plants sense and respond to the environment the more 

interesting they become to me. Plants do not exist in isolation and despite appearing 

unchangeable are highly responsive to the conditions in which they grow. The close 

interactions between fungi and bacteria mean that plants are inextricably linked to one 

another. The sharing of nutrients and carbon between plants through mycorrhizal fungi moves 

resources from high to low gradients benefiting individuals, and not always of the same 

species (Arnebrant et al. 1993, Simard et al. 1997). And while the continued movement of 

water to a leafless-stump of Agathis australis to keep it alive does not appear advantageous, 

it is likely beneficial for its congeneric neighbours during water limitation (Bader and Leuzinger 

2019). Plants sense their environment; detect emissions from other plants and prime 

themselves against herbivore attack (Frost et al. 2008). They share among themselves but 

exploit animals, including attracting parasitoid wasps to fend off herbivores (van Poecke and 

Dicke 2002), tricking animals into pollination (Jersáková et al. 2006) and in the extreme cases, 

eating them, a trait so good it evolved multiple times (Albert et al. 1992).  

Despite all the interesting adaptations plants use to survive, plus making up ~ 80% of the 

550 Gt of carbon of biomass on Earth (Bar-On et al. 2018) and providing vast ecosystem 

services (Costanza et al. 1997), plants suffer from being overlooked. The term ‘plant blindness’ 

was coined because plants go unnoticed, are not recognised as important, or less important 

than animals (Wandersee and Schussler 1999). The concern is that conservation funding for 

plants is lower than for animals (Balding and Williams 2016). All the while natural ecosystems 

face enormous pressure due to human activity; thus far resulting in 600 seed plant species 

having gone extinct (Humphreys et al. 2019). Threats to plants are mounting under climate 

pressure. Yet land plants currently draw down 30% of carbon emissions per year (Ciais et al. 

2013) and re-forestation projects have the potential to further drawdown CO2 emissions 

(Bastin et al. 2019). If re-vegetation is to work, the identification of appropriate species, ones 

that can cope with temperature change under climate change, is paramount.  
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List of Figures 

Figures in main text 

Figure 1.1. Plant performance curves defined by temperature. Along a gradient of increasing 

temperature, performance rises to optimal (green area), then declines as temperature 

becomes too hot. When tolerance thresholds (grey dashed line) are crossed (e.g. during a 

heatwave), the plant experiences stress. Performance falls due to loss of membrane stability, 

denatured proteins, and reactive oxygen species (ROS) production (red boxes). The stress 

response (blue boxes) is elicited as the plant attempts to return to homeostasis (a). Following 

priming and/or recovery from stress, the plant will shift from basal tolerance (grey curve) to 

acquired thermal tolerance (orange curves), a shift that includes higher thresholds. Ideally, 

acclimation would mean equal or enhanced performance at new temperatures, but often 

results in reduced performance (b). 

Figure 2.1. Habitat and physiological patterns of thermal tolerance in plants. Basal thermal 

tolerance (a) is a plants inherent ability to withstand temperatures and often relates to habitat 

of origin. Basal thresholds are generally higher in warmer than cooler habitats. Acquired 

thermal tolerance (b) requires physiological changes within the lifetime of a plant and the 

acclimation ability of plants to acquire higher thresholds may be greater at high latitudes. 

Physiological changes (c) to acquire thermal tolerance include more saturated than 

unsaturated fatty acids in membranes, thermally tolerant proteins (e.g., the D1 protein in 

Photosystem II) and high expression of heat shock proteins. Image of “Healthy tomato plant” 

by Davis & Mitra (2019), figshare, https://doi.org/10.6084/m9.figshare.8049962.v1 

Figure 2.2. Arid Australian Solanum species and their distribution (a). Solanum oligacanthum 

(b) is restricted in distribution and grows in relatively wetter microhabitats while Solanum 

orbiculatum (c) has a broad distribution and grows in relatively drier microhabitats. Species 

distribution map was produced using the Atlas of Living Australia (ALA 2018) . 

Figure 2.3. Comparison of starting values of F0 (a) and Fv/Fm (b) of two desert Solanums in 

winter (blue) and summer (orange). There was significant species by season interaction for 

both Fv/Fm and F0 (ANOVA; Fv/Fm: F1,236 = 82.90, p <0.001 and F0: F1,236 = 82.90, p < 0.001). 

Different letters signify significantly different means among groups (p < 0.05). Boxplots show 

mean and interquartiles with whiskers extending to 2.5% and 97.5% confidence intervals. 

Figure 2.4. Seasonal differences in temperature decay curves of membrane stability (a,b), 

minimal fluorescence (F0´) (c,d), effective quantum yield (Fv´/Fm´) (e,f) and recovery of F0 (g,h) 

of two species of Australian Solanums. Values are relative to control. Thresholds (88% (12% 

for F0´) of low temperature asymptote) with 95% CI error bars were found using generalised 

https://doi.org/10.6084/m9.figshare.8049962.v1
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logistic curves using Bayesian Monte Carlo iterative modelling for Solanum oligacanthum 

(blue) and S. orbiculatum (purple) in winter (full circles, solid line) and summer (empty circles, 

dashed line). 

Figure 2.5. Upward adjustment in temperature thresholds of two Australian desert Solanum 

species from winter to spring. Thresholds of Fv´/Fm´ 90, F0´ 90, Recovery of F0 and membranes 

(MSI) are given for S. oligacanthum (top) and S. orbiculatum (bottom). For comparisons 

between seasons (within species), thresholds that were significantly higher in summer than 

winter are denoted with *. For comparisons between species (within seasons), significantly 

different thresholds are denoted with #. Thresholds were found using Bayesian modelling and 

differences were considered significant when curves (Figure 2.4) were different ≥95% of 

20 0000 iterations. Boxplots are described in Figure 2.3. 

Figure 2.6. Seasonal relative expression of Hsp70 (Hsp70 relative to total protein; mean ± 

SE) from leaves of Solanum oligacanthum (blue) and S. orbiculatum (purple) following 

exposure to treatment temperature for 15 min plus 2 h recovery (a). Species were sampled in 

winter and summer. Dashed vertical lines show the temperature thresholds of Fv´/Fm´ 90. 

Example immunoblots of Hsp70 expression in S. oligacanthum from winter and summer 

samples (b). 

Figure 2.7. Seasonal relative expression of chloroplastic sHsp24 (chl-sHsp24 relative to total 

protein; mean ± SE) in detached leaves of Solanum oligacanthum (blue) and S. orbiculatum 

(purple) after 15 mins at treatment temperature plus 2 h recovery. Details same as for Figure 

2.6. 

Figure 2.8. Relationships between chlorophyll a fluorescence and physiological parameters 

of Solanum oligacanthum (a, b) and S. orbiculatum (c, d) following 15 min heat treatment at 

six temperatures in winter (a, c) and summer (b, d). Significant Spearman’s rank correlations 

are indicated by solid red lines. chl-sHsp24 was not detected (n.d.) in any samples in winter. 

For Spearman’s rank correlation coefficients (R2) and p values see Table S2.2. 

Figure 3.1. Distribution (a) and appearance of the two study Solanum species, 

Solanum orbiculatum (b) and Solanum oligacanthum (c). Distribution is displayed in relation 

to the major classes of the Köppen climate classification of Australia (BoM 1990), showing the 

common arid zone distribution of the two species. Within this broader classification, 

S. orbiculatum (purple points) has a wider distribution and is found in ‘drier’ microhabitats, 

while S. oligacanthum (blue points) grows in ‘wetter’ microhabitats. Species distribution map 

was produced using the Atlas of Living Australia (ALA 2018). 
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Figure 3.2. Example of ramping of leaf temperatures (red points) during imposed heat stress 

using IR ceramic lamps in open top chambers (data shown are all measured plants from spring 

and summer). Lamp temperature in the chambers was ramped over the first hour and then 

adjusted manually to maintain leaf temperatures at ~45°C until completion of heat stress at 

180 min. Leaf temperature was monitored with a thermographic camera and infrared 

thermometer. Mean leaf temperature is the average of three leaves per plant. The leaf 

temperature of ambient plants (blue points) outside and adjacent to the chambers was not 

controlled and depended on the environmental conditions on that day. Solid lines show the 

loess smoothing of leaf temperatures. 

Figure 3.3. Mean maximum leaf temperatures (± SD, n = 4) recorded during a seasonal heat 

stress experiment on Solanum oligacanthum and S. orbiculatum in southern arid Australia. 

Plants were placed in one of two chambers for imposed heat stress (red) using IR lamps or 

left in ambient conditions (blue). Different letters indicate significant (P < 0.05) differences 

between the means of treatment responses. 

Figure 3.4. Mean (± SD) short-term physiological responses of Solanum oligcanthum (pale 

blue) and Solanum orbiculatum (purple) during a heat stress experiment in southern arid 

Australia. Significant interactions of membrane stability (MSI; a,b), relative expression of 

Hsp70 (c,d) and relative expression of chl-sHsp24 (e) are plotted. The colours of symbols are 

indicative of whether plants were grown in high or low nutrients (dark green and yellow 

respectively) and exposed to ambient (light blue) or heat stress (red) conditions in either spring 

(green) or summer (orange). Different lower-case letters above symbols indicate significant 

differences (p <0.05) among the means of treatments. Note that panels c and g represent 

three-way interactions, d-f show two-way interactions and a and b are main factors. 

Figure 3.5. Responses of growth and allocation of biomass in two species of Solanum subject 

to heat stress (mean ± SD). Solanum oligacanthum and S. orbiculatum were grown in high or 

low nutrients and subjected to heat stress or ambient conditions in either spring or summer. 

Colours are described in Fig. 3.4. Variables are: LMA (a); stem to leaf ratio (b); and relative 

growth rate of leaves (RGRleaf, g day-1). Significant interactions are plotted e and f. Different 

lower-case letters above symbols indicate significant (P < 0.05) differences between the 

means of treatments. Note that panels e and f show two-way interactions and a-d,g are main 

factors. Means of main factors of aboveground biomass can be seen in Table S3.2. 

Figure 3.6. Visible damage and survival of desert Solanum species following heat stress 

treatment (mean ± SD). Colours are explained in Fig. 3.4. Proportion of plants with visible 

damage greater than 10% (a); proportion of surviving plants (b-d). Significant two-way 

interactions are shown in panels a, c and d and three-way interaction in panel b. Different 
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lower-case letters above symbols indicate significant (P < 0.05) differences between the 

means of treatments. Note that panel b represents a three-way interaction and a,c and d show 

two-way interactions. 

Figure 3.7. Fitness and allocation of resources to reproductive structures of desert Solanum 

species in response to nutrient availability and seasonal heat stress (mean ± SD). Colours are 

explained in Fig. 3.4. Number of flowers produced per day following heat stress treatment (a-

c); flower mass to aboveground (AG) biomass (d); Number of fruits produced per day following 

heat stress treatment (e); flower mass to AG biomass (f). Note, panels c and e show main 

factors, two-way interactions are shown in panels a,b,f and a three-way interaction in panel d. 

Different letters indicate significant (P < 0.05) differences between the means of treatments. 

Relative proportional representation of estimated seed output of S. oligacanthum (g) and 

S. orbiculatum (h). Fruit were harvested following heat stress treatment (ambient, A; or heat 

stress, HS) on plants grown in low (LN) or high (HN) nutrients in spring or summer. The mean 

number of seeds plant-1 was calculated using the mean number of seeds fruit-1 x number of 

fruit plant-1 day-1. Note that the panel on the right contains both species, with S. oligacanthum 

represented by the very narrow strip at bottom, which is magnified on the left to show 

S. oligacanthum seed output only. Mean seed output by each species by factor is shown in 

Table S3.2. 

Figure 4.1. Proteins required for the stress response and involved in acquired thermal 

tolerance (blue boxes) of photosynthesis (green box) and membranes. When temperatures 

cross thermal thresholds, stress occurs, including increased reactive oxygen species (ROS) 

production, and damage to proteins and membranes (red boxes). Photo: Annie Spratt. 

Figure 4.2. Species distributions according to occurrences recorded in Atlas of Living Australia 

(ALA 2018). The shrubs Acacia ligulata (red points; a) and Myoporum montanum (green 

points; b) are widely distributed, while the herb or sub-shrub Solanum oligacanthum (blue 

points; c) has a narrow distribution. 

Figure 4.3. Hourly air temperature (°C) in Port Augusta, South Australia. Arrows indicate 

sampling points of protein samples (grey arrows), species thresholds (colours follow Figure 

4.2). Air temperature collected using i-Button placed in the experimental garden. 

Figure 4.4. Seasonal membrane stability (MSI, a) and PSII efficiency (Fv/Fm, b) threshold 

temperatures of three species of desert plants (A. ligulata in red, M. montanum in green and 

S. oligacanthum in blue). Box and whisker plots (in the style of Tukey: interquartiles with 

whiskers extending to lowest and highest datum within 1.5*IQR of lower and upper quartiles 

respectively). Small black diamonds represent the mean. Different letters show groups with 

significantly different means (p <0.05). Lower-case letters above plots indicate tests within a 
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species among seasons and upper-case letters below plots indicate differences within a 

season among species (winter in light blue, spring in light green, summer in orange). 

Figure 4.5. Species comparison of total and photosynthetic proteins within the leaf proteome 

of Acacia ligulata, Myoporum montanum and Solanum oligacanthum. Amounts (mg m-2) of 

total protein (a) and total Rubisco (c) and the make-up (percentage of total protein) of 

photosynthetic protein (b) and Rubisco (d) are shown. Each protein group was analysed 

separately, and different letters signify significant differences (p <0.05) among means. 

Boxplots explained in Figure 4.4. 

Figure 4.6. Principal Component Analysis (PCA) of the leaf proteomes of three desert plants. 

These first two axes (PC1 and PC2) explain 77.3% of the variance. Species are shown as 

coloured symbols (Acacia ligulata (red), Myoporum montanum (green) and Solanum 

oligacanthum (blue)) and symbol shapes represent season (winter (diamond), spring (square) 

and summer (circle)). Variables are proteins (blue numbers) grouped at two levels of hierarchy 

according MapMan BINs (see Table S4.3 for protein function). Green lines show the strength 

of the influence of a protein on the principal component. 

Figure 4.7. The proportion of the top three most influential proteins in each functional protein 

group contributing to dissimilarities amongst seasons in Australian arid zone plants using 

SIMPER analysis. Average dissimilarities between seasons are given in the left hand coumn 

but see Table S4.4. for complete SIMPER output. Functional protein groups are: 

photosynthesis (a), lipid metabolism (b), Redox homeostasis (c) and external stiumli response 

(d).  

Figure 5.1. Visual damage and membrane stability index (MSI) of Myoporum montanum 

leaves. Heat stress treatment was applied to whole plants by submerging in temperature baths 

for 15 min. Temperatures used were above and below the T50 (PSII threshold) of ~48°C, plus 

a control and an extreme high temperature. For MSI, a leaf was detached and electrical 

conductivity measured 300 min after heat stress. Photos were taken the day after treatment. 

Tukey boxplots show the mean and variance of three replicate experiments. 

Figures in supplementary  

Figure S2.1. Leaf mass per area (LMA; g m-2) of Solanum oligacanthum and S. orbiculatum 

in winter and summer. Different letters signify significant differences (p < 0.05) among groups. 

Figure S2.2. Dot blots showing the reactivity of antibody raised against consensus region III 

of chloroplastic small heat shock protein Hsp21. Each column represents a serum tested (pre-

bleed: before rabbit was given peptide; first-bleed: after rabbit was injected with peptide; and 
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kill bleed: after a booster of peptide) and each row represents a different dilution of primary 

antibody (1:500, 1:1000 and 1:2000). Each dot blot was loaded with 1 µl of synthetic peptide, 

membranes were blocked, then incubated with appropriate dilution of sera, washed, incubated 

with secondary antibody, and imaged. 

Figure S2.3. Trial for optimal dilution of anti-chl-sHSP21 in Solanum orbiculatum. Each 

immunoblot was loaded with a protein standard ladder (L) and two samples under different 

heat stress treatments: sample 1 was heated at 50°C for 3 h; sample 2 was heated for 3 h at 

50°C following natural priming. Intensities of bands within an immunoblot differ due to unequal 

loading. 

Figure S2.4. Immunoblot for test of reactivity of pre-immune and kill bleed serum used at the 

optimal dilution of 1:5000. There was no reaction of proteins with pre-immune serum (left), 

whereas chl-sHsp24 is detected on the immunoblot incubated with kill serum (right). Protein 

extracted from leaf of Solanum orbiculatum heated for 3 h at 50°C following natural priming 

was loaded in a 2-fold serial dilution 60 to 7.5 µg. 

Figure S2.5. Optimisation of total protein loading amount for detection of Hsp70. Mean 

standard curve (error bars show SE, n = 2) of Hsp70 intensity versus total protein loading (a) 

and example membrane probed with Hsp70 antibody (b). 

Figure S2.6. Total protein standard curve. Standard curve of mean (± SE; n = 2) total protein 

loading intensity, produced using 2-fold serial dilution starting at 80 ug of leaf protein sample 

(S. orbiculatum primed and heated for 3 h) (a). Example image of membrane stained with 

Amido black (b). Total protein intensity in each lane was estimated by selecting a narrow strip 

as shown in example red rectangle. 

Figure S2.7. Example immunoblot of heat-treated total leaf proteins probed for CLIC1. The 

protein detected is ~28 kDa in size. To illustrate the differences in expression of Hsp70 and 

CLIC1 they are both shown taken from the same image, hence Hsp70 is oversaturated. 

Figure S3.1. Timeline of seasonal heat stress experiment. Plants were grown from cuttings 

and allocated to nutrient treatments (green points); a sub-set of plants were harvested prior to 

the heat stress treatments (pre-harvest; blue points); heat stress treatments were imposed on 

four consecutive days (red points) in Austral spring (October) and summer (February). After 

the heat stress treatments, plants were left to grow, and a sub-sample was destructively 

harvested for biomass and fitness (post-harvest; black points). Non-destructive sampling for 

visible damage, survival and numbers of flowers and fruit of all remaining plants were counted 

(dark blue points). 
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Figure S3.2. Nitrogen status of Solanum oligacanthum (left) and Solanum orbiculatum (right). 

Total leaf protein concentration (mean ± SD, n = 15) in plants following application of fertiliser 

(green points) or growth in sand and potting mix alone (yellow points). Nutrient status was 

influenced by species and time in a three-way interaction (ANOVA F1,112 = 7.31, p = 0.007). 

Different letters indicate significant (P < 0.05) differences between the means of treatments.  

Figure S3.3. Maximum quantum yield (Fv/Fm) of Solanum plants pre- and post-heat stress. 

Solanum oligacanthum (top panels) and Solanum orbiculatum (bottom) plants were grown in 

high or low nutrients. In spring (left panels) or summer (right) plants were water stressed 

before exposure to heat stress (red) or ambient conditions (blue). Fv/Fm was measured pre-
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Figure S3.4. Ambient air temperature and VPD at Australian Arid Lands Botanic Gardens, 

Port Augusta, South Australia. Data for the five days preceding, four days during (shaded 

area) and five days following heat stresses in spring (a) and summer (b). 
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Figure S3.6. Example immunoblots of HSP expression in Solanums. Hsp70 (a) and chlp-
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Figure S3.7. Resprouting Solanum oligacanthum following heat stress. 
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Abstract  

Understanding how plants cope with extreme temperatures is key to determining species 

distribution under climate change. Plants possess an inherent ability to withstand high 

temperatures and acquire greater thermal tolerance seasonally. The membranes and 

photosynthetic apparatus in leaves are particularly susceptible to heat damage and likely to 

respond to different environmental cues. The question arises as to how these two systems 

differ in acquiring thermal tolerance and what roles proteins have in raising thresholds. As part 

of the stress response and to aid in thermal tolerance, heat shock proteins (HSP) are 

upregulated, but there are associated resource costs, of particular concern for natural 

populations. In extreme environments, like deserts, the additional stressors of water and 

nutrient limitation may affect how plants allocate resources to growth, reproduction and 

survival. My thesis is important in linking ecology, plant physiology and molecular biology over 

seasonal time scales in wild Australian desert plant species in situ in desert conditions. I 

estimated temperature thresholds of photosystem II (PSII, using chlorophyll a fluorescence) 

membrane stability (via electrolyte leakage) and fitness (via reproductive output) in response 

to heat stress across seasons. To determine how relative protein expression changes with 

conditions, I also quantified the complete proteome using shotgun proteomics with tandem 

mass spectrometry. Overall, species acquired higher thresholds of PSII and membranes and 

HSP expression was dependent upon season, with little sHSP detected in winter. Cost of 

three-hour heat stress was reduced in plants with access to additional nutrients, but 

unexpectedly, heat stress in spring was found to be less costly than in summer, likely due to 

more severe summer conditions making recovery hard.  I show that changes to the proteome 

are complex, but consistent patterns emerged, with lipid metabolism, ROS homeostasis and 

HSPs meeting expectations of higher expression during summer. Also, regardless of species 

or heat-stress treatment, small HSPs were detected in greatest amounts in summer, 

emphasising the importance of small-HSPs for acquired thermal tolerance in desert species. 

Importantly, species differences were highlighted throughout the research. Across broad 

climatic zones, species have many modes for achieving the same outcome and microhabitat 

likely has an effect on driving adaptation. My work underscores the temporal dynamics of plant 

thermal tolerance in non-crop species in the environment and how this is achieved through 

proteome changes. However, my findings suggest that for species from harsh microhabitats, 

increasing heat stress in summer may have particularly severe consequences. 
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