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Abstract—Privacy protection attracts increasing concerns these
days. People tend to believe that large social platforms will
comply with the agreement to protect their privacy. However,
photos uploaded by people are usually not treated to achieve
privacy protection. For example, Facebook, the world’s largest
social platform, was found leaking photos of millions of users
to commercial organizations for big data analytics. A common
analytical tool used by these commercial organizations is the Deep
Neural Network (DNN). Today’s DNN can accurately identify
people’s appearance, body shape, hobbies and even more sensitive
personal information, such as addresses, phone numbers, emails,
bank cards and so on. To enable people to enjoy sharing
photos without worrying about their privacy, we propose an
algorithm that allows users to selectively protect their privacy
while preserving the contextual information contained in images.
The results show that the proposed algorithm can select and
perturb private objects to be protected among multiple optional
objects so that the DNN can only identify non-private objects in
images.

Index Terms—privacy, object detection, deep learning

I. INTRODUCTION

In such an era of data sharing, many people would like

to share their life photos and videos on social software with

friends or strangers. For example, Every 60 seconds on Face-

book 136,000 photos are uploaded [1]. However, people may

not have noticed that these images and videos contain a large

amount of private information [2], [3], [4] such as the faces,

vehicle license plates, locations, email-addresses, etc. If such

information is used by adversaries, it may have a detrimental

effect on the users [3]. Meanwhile, the newly emerging deep

learning techniques further increases the privacy risks for

online photo sharing. Artificial intelligence (AI) aided by deep

learning methods can automatically collect and detect private

and sensitive information from social networks. For example,

DNNs can automatically search meaningful information in

images and exploit an outcome to perform targeted advertise-

ments [5]. DNNs can even extract user’s private information,

such as fingerprints [6], addresses, family members [7], [8],

etc. This brings more risks to personal privacy, while the

traditional privacy-preserving method seems powerless when

facing the large-scale deep learning tools. Therefore, the

development of image privacy protection methods is in urgent

need, especially when considering AI as the adversary.

Privacy protection for unstructured data such as image is

much more complicated compared with that for structured

data. Traditional image privacy protection research assumes

humans as an adversary. “Blurring”, “pixelation” and “mosaic”

are the most commonly used methods. For example, Viola et

al. [9] used a sliding window detector to identify and blur

the license plates in Google Street View images. Researchers

start to consider the case where AI acts as an adversary very

recently. The fundamental idea is to generate a small but

intentional worst-case disturbance to an original image, which

misleads deep neural networks (DNNs) without causing a

significant difference perceptible to human eyes. The perturbed

image is called an “adversarial example” [10] and the specially

generated noise is named adversarial perturbations (AP). A

few papers have discussed the potential of AP in privacy

protection in different applications including image classifi-

cation [11] and face recognition [12]. In [13], the authors

proposed a novel stealth algorithm, which makes all the objects

invisible to DNNs in an image. These works cannot solve

our problem thoroughly due to several reasons: First, there

is generally multiple private objects in the images, especially

for social network images. Second, the revision of the images

should be as small as possible and limited to the private

information, so as to preserve the utility of the images.

To overcome the above-mentioned problems, we proposed

a framework for image private information protection in this

paper. It consists of three major steps: i) defining the privacy

information in images, ii) identifying the private objects and

their positions in image, and iii) image privacy protection using

adversarial noise. Specifically, for image privacy protection,

we propose to add adversarial perturbations to the sensitive

parts of the images so that the private information can be

hidden while the rest parts of the images are still visible to

AI.

In summary, the contributions of this paper are as follows:

• Developing an image privacy protection framework to

hide private information from AI, while the applied

privacy protection is imperceptible to human eyes.

• Proposing an adversarial perturbation-based image pri-

vacy protection scheme, such that it can hide multiple

private objects in the image while having a minor impact

on the non-private objects.

The rest of the paper is organized as follows. Section II dis-

cusses the system model and formulates the research problem.

In Section III, an AP-based image privacy protection scheme is

proposed. Section IV shows our experimental results. Finally,



the results are concluded in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model used in our

paper and formulate the research problem.

A. System Model

As shown in Fig. 1, our proposed image privacy protection

framework consists of three major parts: object detection,

image privacy definition, image privacy protection.

1) Object Detection: the input image X will first pass the

object detection module.

There are many existing frameworks for object detection,

among which Faster R-CNN [14] is a widely used framework

that has been cited frequently in this research area. Therefore,

we adopt Faster R-CNN as our object detection module.

As shown in Fig. 2, the Faster R-CNN detects the region

containing objects by three submodules.

• Feature Extractor: a traditional convolutional neural net-

work to perform the feature extraction.

• Region Proposal Network (RPN): RPN finds the object

regions by scans the image using different size anchors

(The area RPN scans) in a slide window fashion. The

outputs of RPN include a series of anchors Aa, as well

as pre-classifier result Pa, i.e.:

Arpn = (Aa|Pa) =

⎛
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where xi, yi, wi, hi represent the up left corner x-

coordinate, y-coordinate and width, height of anchors,

respectively. i is the index of the anchor (i = 1, 2, . . . , α).

Pa = (p1, p2, . . . , pα)
T denotes the probabilities of

anchors being positive.

• Regions of Interest (ROI) Classifier: ROI classifier output

contains the location and size of each proposed region,

and the probability of anchors being a class (e.g. cat, dog,

face):

Aroi =
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where n is the number of anchors that ROI proposed

(n ≤ α). xaj , yaj , waj , haj are the coordinate and size in-

formation of ROI proposed anchors. p11, . . . , pnm (noted

as PROI ) are the probability of n anchors belonging to

m class respectively.

Finally, the output of the object detection module is repre-

sented as:

C(X) =
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where

∀j ∈ (1, n) : cj =

{
argmaxi pni, 1 ≤ i ≤ m

cbg, ∀pni ≤ threshold

It worth noting that Faster-RCNN treats background as a

class, i.e., cbg . threshold is used to deal with the unrecogniz-

able area that may appear. If the probability of all classes is

less than threshold , it is recognized as the background.

2) Image Privacy Definition: In this module, we first define

what object in the image contains individuals’ private infor-

mation. According to the General Data Protection Regulation

(GDPR) [15], anything that can be used as a personal iden-

tifier should be treated as private information. Therefore, we

propose that private objects in images should include:

• Personal identity - license plate, phone number, address,

etc.

• Biometrics - face, calendar data, fingerprints, retinal

scans, photos, etc.

• Electronic records - cookies, IP locations, mobile device

IDs, social network activity records

According to this definition, all classes in the object detection

output are divided into two subsets: Cprivate is the set of

private classes, and Cnon−private includes non-private classes.

3) Image Privacy Protection: a small adversarial perturba-

tion δX targeting on private objects is applied to generate the

privacy-free image Xpr, so that only non-private information

can be detected when passing Xpr through an object detector,

i.e.,

C(Xpr) =

⎛
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where ∀cj ∈ Cprivate : c
pr
j = cbg .

B. Problem Formulation

Based on the above-described framework, our target is to

fool the network by changing the class of the private objects

to bg, while the non-private objects are recognized as their

original classes. Meanwhile, the added noise δX should be

small so that it is imperceptible for humans. Hence, the

problem can be formulated as follows:

argmin
δX

‖δX‖2 (5)

s.t.: ∀cj ∈ Cprivate : c
pr
j = cbg (6)

∀cj ∈ Cnon−private : c
pr
j = cj (7)



Fig. 1. Image privacy protection framework.

Fig. 2. The Faster R-CNN framework.

III. ADVERSARIAL PERTURBATION BASED IMAGE

PRIVACY PROTECTION ALGORITHM

In order to solve the image privacy protection problem, we

proposed an AP-based image privacy protection algorithm in

this section, along with the metrics that can be used to evaluate

the performance of the algorithm.

A. AP-based Image Privacy Protection

Fig. 3 gives the flow chart of our algorithm. The input image

is sent to the object detector along with the generated noise

and then the output objects are divided into three categories

(Background, Non-privacy objects, Privacy objects). Initially,

the added noise is 0 and the object detector will find all objects

in the image. Next, we replace the label of the private objects

with the background and then put it into the loss function to

calculate the gradient. Then the noise is updated according to

the gradient. Finally, a perturbed image is generated, in which

all privacy objects are treated as background by the object

detector.

The key part of the algorithm is to trick the classification

loss (Lcls) so as to mislead the object detector recognizing

the privacy objects to background. We define our new loss

function as shown in Eq. (8) to mislead the classifier so that

it will reckon all private objects as background:

Lcls =
1

na

∑
i

En(pi, p
∗
i ) + λ ‖X−Xpr‖2 , (8)

where pi = [pi1, . . . , pim] is the probability of the content

of an anchor being recognized as each class. p∗i is one-hot

encoded (p∗i = [0, 0, . . . , 1, . . . , 0, 0]), in which 1 appears in

the position where we set the class as the correct class. p∗i will

be generated according to ground truth label if the object is

non-private, while it will be changed to the background if the

object is private. na is the number of anchors in the image

so that the entropy will be averaged over all anchors. Next,

we can use Lcls to generate the perturbation, using the fast

gradient sign method (FGSM) [10].

Using the targeted FGSM, the perturbation can be calculated

in the direction of the gradient:

δX = −εsign(∇XLcls) = −εsign(
Lcls

∂X
), (9)

where ε is the step parameter that scales the noise. Therefore,

the generated image will be:

Xpr = X+ δX = X− εsign(
Lcls

∂X
) (10)

In practice, one step FGSM is usually not enough, so we

can use an iterative version as shown in Alg. 1.

B. Evaluation Metrics

In order to measure the performance of our proposed meth-

ods, we introduce the following metrics from three different

aspects:

1) Distortion metrics: Two distortion metrics are used to

measure the amount of noises added to the original image.

• L2 computes the Euclidean distance between original and

perturbed examples, i.e., L2 =‖Xpr −X‖2 =‖δX‖2
• Average Lp Distortion ALDp [16]: ALDp =

‖Xpr−X‖p

‖X‖p
.

We use ALD∞ to measure the maximum change in all

dimensions of adversarial perturbations in the simulation.



Fig. 3. Diagram of AP-based image privacy protection algorithm.

Algorithm 1: AP-based image privacy protection algo-

rithm.

1 Parameters: Noise scalar ε.
2 Iteration number N .

3 Input: The original image X.

4 Output: The released privacy-preserving image Xpr.

5 Initialization: Overall noise δX = 0, Xpr
0 = X.

6 for 1 ≤ n ≤ N do
7 δXn−1 = −εsign(∇XLcls);
8 δX = δXn−1 + δX;

9 Xpr
n = δXn−1 +Xpr

n−1;

10 end
11 Xpr = Xpr

n .

2) Structural Similarity (SSIM): SSIM is a method used to

measure the similarity between two digital images. Compared

with the traditional image quality measurement methods, such

as peak signal-to-noise ratio (PSNR) and mean squared error

(MSE), SSIM can better match the human judgment of image

quality [17][18]. It can be used to quantify the extent that the

perturbation is invisible to human eyes.

3) Private Information Hiding Ratio: R = r̄p+λr̄a, where

r̄p and r̄a are the average hiding ratio or keeping ratio of

privacy objects and non-privacy objects respectively, λ is set

to 0.5 for better illustration. It is used to measure whether our

method can hide the proper objects in images.

IV. EXPERIMENT AND DISCUSSIONS

In this section, we show our experimental results.

A. Experiment Settings

In our experiment, we use the images from the data set

provided by Tribhuvanesh et al. [3]. The data set is origi-

nated from the VISPR data set. The authors selected images

containing private information and pixel-annotated using 24

privacy attributes. In our experiment, we choose faces and

license plates as privacy items. Hence, we filtered the images

with these two annotations from the data set. And filter some

non-private data from the original data set. Then, we added

more street view images containing faces and license plates

into the training data set for better performance.

Here we use Faster R-CNN as the object detector, Faster

R-CNN requires that the input image shape is square (1024 ∗

1024 is the suggested size). The original data set contains a

large number of large size images (e.g. 7000x6000), so we

make standardization on our training data set before training

for better training performance. The model was trained on one

GPU card GeForce GTX 2080Ti.

B. The Experiment Results

Fig. 4 shows an example of our proposed algorithm. The left

column shows the detection result of the original image, the

next two columns are the detection result after the proposed

privacy treatment and the added perturbation, respectively. As

can be seen in the figure, without privacy protection, all objects

in the images can be detected by a standard Faster R-CNN.

After adding the adversarial noise, the detector cannot detect

the privacy objects, including faces and car plates while the

non-sensitive features (e.g. traffic lights) can still be detected.

The adversarial perturbation in the images are generated in

range Rp (Rp ∈ (−2, 2)). In order to display the noise

in image, we normalize the Rp to RP (RP ∈ (0, 255)).
Observing the relative location of objects in the original image,

the noise dots concentrate on the regions contain objects. By

adding adversarial perturbation in such a small range (e.g.Rp),

human eyes can hardly recognize the difference. But the object

detector has been successfully fooled.

Now we compare the performance of our proposed algo-

rithm with Blur and Mosaic. As shown in Fig. 5, the Blur

and Mosaic’s “thickness” has been carefully adjusted to just

hide the sensitive information. But human eyes can easily

notice those changes. Our method, while deceiving the detector

from the private objects, greatly preserves the non-private

information in the original image, so that naked eyes can

hardly see the difference.

Next, we measure the effectiveness of our approach using

the metrics mentioned in Section III.B. Table I shows the

performance comparison measured by distortion metrics (L2
and ALDp). The adversarial noise (AD Noise) are generated

in range Rp (Rp ∈ (2, 2)). Blur and Mosaic noise thickness

has been modified to barely hide the sensitive information from

Object Detector. Compare with Blur, our method is 73.5% and

79.2% lower in the L2 and ALDp average scores, respectively.

Also, our method is superior to Mosaic in both L2 and ALDp,

i.e., our algorithm is 81.4% lower in L2 and 85.2% lower in

ALDp.

Table II presents the results measured by the SSIM metric.



Fig. 4. Illustration of AP-based image privacy protect algorithm.

Fig. 5. The detection results after privacy protection: (a) Image without Protection; (b) Blur; (c) Mosaic; (d) AP-based.

TABLE I
L2 AND ALDp SCORE COMPARED WITH CLASSICAL METHODS

Original Blur Mosaic AD Noise

L2

1 0 4111 4153 765
2 0 2008 3730 776
3 0 3426 6168 778
4 0 1980 2386 731

Average 0 2881.2 4109.2 762.5

ALDp

(10−2)

1 0 5.55 6.27 0.97
2 0 2.29 4.82 0.68
3 0 4.59 6.67 0.69
4 0 2.19 2.81 0.70

Average 0 3.655 5.143 0.76

A higher score means a smaller distortion of the image.

The performance of our method has increased by 192.5%
compared to blur, which is an increase of 474.8% compared

to Mosaic.

TABLE II
THE SSIM SCORE COMPARED WITH CLASSICAL METHODS

Original Blur Mosaic AD Noise
1 1 0.548 0.286 0.998
2 1 0.536 0.243 0.995
3 1 0.442 0.121 0.997
4 1 0.472 0.191 0.998
5 1 0.634 0.182 0.998
6 1 0.478 0.235 0.996

Average 1 0.518 0.210 0.997

From the above results, we can see that our method gains



Fig. 6. The hide/keep ratio; (a) Fixed iteration number N = 1; (b) Fixed ε = 0.4; (c) Fixed ε = 0.2

performance improvement in balancing privacy protection and

information preservation, compared with classical methods. Fi-

nally, we measure the privacy protection efficiency by running

the test data set with different iteration numbers (N ) and noise

scalar (ε). The adversarial noise thickness is related to the

iteration numbers (N ) and noise scalar (ε). The noise range

Rp is related to N × ε. So, we use noise range as an index

to measure our adversarial noise thickness. As can be seen in

Fig. 6, the private information hiding rate is proportional to the

noise thickness, while the non-sensitive objects keeping ratio

slightly decreases with the increase of thickness. Fig. 6.(a)

gives the change in hiding ratio with an increase of ε. It shows

that a very small amount of noise thickness: Rp ∈ (−3, 3) (out

of 255) is enough to achieve an over 90% high hiding ratio.

Fig. 6.(b) and Fig. 6.(c) show that under the same thickness

(Rp), a smaller ε achieves a relatively higher hiding ratio, but

it needs more iterations.

V. CONCLUSION AND DISCUSSION

The recent advancement of artificial intelligence exacerbates

the privacy concern, especially for images that contain a vari-

ety of personal information. In order to solve this problem, we

proposed an image privacy protection framework against AI,

using an AP-based privacy protection algorithm. Our results

show that private objects in images can be well protected

while non-private information is preserved by adding a small

amount of noise. Therefore it can protect image privacy while

preserving the image utility. Moreover, the noise added can

hardly be detected by naked eyes, which lens more practical

value of the proposed algorithm in real-life employment.
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