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Abstract

Radio networks have been evolving from communication-only wireless connectivity
to a network for services, which will enable new business models and user experi-
ences for emerging industrial applications. Many of these applications, including
automotive, industrial automation, public safety and security tasks, will require in-
formation retrieval relating to mobile devices and objects through radio sensing.
Radio sensing here refers to the process of information extraction for objects of in-
terest in the surrounding environment that is covered by radio signals. We call the
evolutionary mobile network with both communication and radio sensing functions
as a perceptive mobile network. Such joint functions can be promoted as one of the
core components in future 5G/6G standards.

The parametric values regarding moving objects, human movement, and any
change in the environment surrounding the user equipment are embedded with the
wireless signal and this enables the possibility of using the cellular signal for in-
formation extraction. As both wireless communication and radar system exhibit
similar receiver front-end architecture at high frequency, it triggers the concepts of
joint communication and radio sensing (JCAS) operation. In that circumstance, a
unified platform can introduce shared hardware between two functions, which even-
tually implies reduced size, cost and weight. The main purpose of this doctoral
study is to analyse the radio sensing capability of a mobile network and design the
framework for joint operation. The thesis aims to design advanced signals and pro-
tocols that allow communications and sensing to be better implemented jointly and
benefit from each other efficiently. An additional goal is to investigate the existing
sensing parameter estimation processes and their suitability in signal processing for
JCAS operation.

The thesis provides a general framework for the envisioned perceptive mobile net-
works that enable radio sensing using downlink and uplink mobile signaling, by con-
sidering future mobile network architecture and components, practical sophisticated
communication signal format, and complicated signal propagation environment. The
thesis discusses the required modifications and upgrades to existing mobile networks
to facilitate JCAS functionalities. One and multi-dimensional compressive sensing
techniques are successfully employed for estimating the parameters of the sensed
scene, following the state of the art, by applying orthogonal frequency-division mul-
tiplexing (OFDM) based multi-user multiple-input multiple-output (MIMO) signal
model. The simulated results presented here demonstrate reasonable performance
in radio sensing using perceptive mobile networks. The research works shown in this
thesis indicate the feasibility of the perceptive mobile network and provide a way to
proceed.
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Chapter 1

Introduction

Radio network environment is continuously changing due to human movement, mov-

ing objects, noise, interference, and weather effects. In turn, signals can experience

multiple different reflections or paths before being received at the receiver. Due

to this multipath propagation phenomenon, received signals experience frequency

selective fading after getting passed through a channel. Intuitively, as a result, the

received reflected signals at the base station of a mobile network inherently contain

the information about the environment and the surroundings [1]. Effective infor-

mation extraction from such signals can introduce sensing capability of the cellular

network. Sensing here refers to the extraction of information from the communi-

cation signal, pertaining to the objects, users and environment in the propagation

channel. Context awareness learned from channel sensing can facilitate the radio

network functionality. More specifically, embedded sensing allows us to broaden the

view about the radio link through obtaining detailed channel information, for exam-

ple, user tracking data, speed, distance and tracking data of moving objects, angle

of arrival or departure of signals, delay, attenuation from the received radio signal at

the base station. Channel pattern then can be known by such parameters. Indeed,

effective radio resource management deals with accurate beam steering, link adap-

tation and channel allocation according to channel condition and desired quality of

service [2], [3].

Most of the research work found in literature, such as, [4], [5], [6], and [7] demon-
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2 CHAPTER 1. INTRODUCTION

strated the possibilities and implementation of either co-existence of an actual radar

system and wireless communication system or achieving communication in the radar

system. However, our research proposal and aim here is to investigate the possibility

of obtaining sensing functionality within the cellular network by its own radio sig-

nal. Some of the researchers have shown the potential of cellular network for sensing

within its system, for example, [8] and [9] used GSM based radio signals for traffic

monitoring and weather changing observation, respectively. However, these works

are confined to the usage of simple mobile signals. In contrast to these previously

mentioned implementations, our targeted technology is the emerging 5G cellular

network to develop a perceptive mobile network where the same transmitted signal

is used for both communication and sensing. The term, perceptive, means inherently

sensitive to see the surroundings. Perceptive mobile network can achieve immediate

benefits of reduced cost, size, and improved spectral efficiency in smart city, smart

home, smart car and transportation services [1].

1.1 Research Description

My research focus is to learn about the radio channel pattern and tracking of prop-

agation channel entities, for example, human, object, environment around the user

equipment by the usage of received radio signals around the base station. In this

section, I will introduce my research aim, questions or problems, challenges and

objectives.

1.1.1 Research Aim

My research aims to develop innovative technologies that integrate sensing capabil-

ities in detecting, tracking and identifying objects with the communication system.

Our approaches will be able to simultaneously perform communication and sensing

by sharing hardware and signal processing modules and achieve significant benefits

of reduced cost, size, weight, and better spectrum efficiency.
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1.1.2 Research Problems

The idea of combining radar sensing and a communication system on a single plat-

form has long been proposed but a relevant system concept through the usage of

actual mobile network has not been developed until now. Advanced techniques have

been invented both in wireless communication and radar sensing individually for the

past two decades. However, despite the strong potential of wireless signals usage

in radar sensing, a limited intersection study is found in the literature. Moreover,

emerging platforms such as unmanned aerial vehicles, smart city and smart cars are

evolving towards object recognition and pattern matching. In such kinds of technol-

ogy solutions where sensing of the objects is a primary requirement, the possibility

of using the actual radar system is not always effective, whereas covering most of

the urban and rural areas, the mobile network has the potential of becoming a ubiq-

uitous sensor. Most existing and ongoing research works are focusing on millimeter

wave (mmWave) radio and passive sensing systems. In that aspect, there is a neces-

sity of having a further investigation on getting the sensing operation accomplished

by the mobile network itself.

Therefore, there are mainly the following research problems considered in my

research.

• Problem 1. Potential of mobile network for radio sensing.

Mobile signals and mobile devices are almost everywhere today. Mobile net-

work with its long distance signal coverage is capable of connecting everything.

There is a very large amount of information associated with human behaviour,

moving objects and environmental change embedded in these wireless signals.

Effective information extraction techniques can eventually transform the mo-

bile signal and network to act as a sensor system as well. In terms of appli-

cations and accessibility, no other signals and system would be as effective as

the mobile network. However, very limited work has been found in literature

where only simple radio signals are used to do sensing. Research work on

passive radar systems and usage of Wi-Fi and TV signals are not also directly
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related with this as they are constrained to the use of a third device. Hence,

further exploitation is required to use the actual mobile network to do object

tracking and sensing.

• Problem 2. Signal processing techniques and algorithms for sensing

parameter estimation by actual mobile network.

Signal types and processing techniques for parameter extraction are different

for wireless communication and radar sensing system. Typical channel esti-

mation algorithms in communications only estimate composited channels with

limited unknown parameters, and radar systems generally use pulse width chip

modulated transmitted signals. However, as the mobile signals need to be used

as a sensor system, signal formulation and parameter extraction techniques

need to be rearranged in line with the joint system requirements.

• Problem 3. Spectrum congestion in communication and hardware cost

in radar sensing.

Wasteful static spectrum allocations and inefficient utilization of frequency

spectrum in communication system create spectral congestion. On the other

hand, hardware cost, size and maintenance are common issues in a radar sys-

tem. Integrating both systems in a single system to work in a wider bandwidth

can increase spectrum efficiency and bring benefits over equipment cost and

size.

1.1.3 Research Challenges

To solve the research problems, there are several challenges that need to be ad-

dressed.

• Challenge 1. How to design single waveform, sensing protocols and

sensing options in joint systems?

Radar sensing and communication have different requirements for signal mod-

ulation. For example, in multiple input multiple output (MIMO) communica-
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tion systems, typically we use multicarrier modulation where the transmitted

signal enables multiuser random access. Whereas, in MIMO-radar, sensing

signals are chirp modulated and orthogonal. Such conflicting requirements

can make joint design for signal propagation and sensing operation very chal-

lenging.

• Challenge 2. How to set up transceivers and antennas to meet the

requirements for both communications and sensing?

Setting up transceivers and antennas in the joint system to meet the require-

ments for both communications and sensing is challenging. An array with

steerable beamforming and narrow beamwidth is typically required for sens-

ing. However, communications require fixed and accurately pointed beams

to achieve large beamforming gain. Hybrid antenna array architecture may

provide a cost-balanced solution in such cases. Moreover, depending on used

multiplexing scheme, required modification is different to do both communi-

cation and radio sensing by a single system.

• Challenge 3. How to effectively extract spatial parameters from com-

munication signals without compromising communication service?

Mobile radio signal is complex and connects almost everything with diverse

network resources over time, frequency and space. Existing techniques for

passive sensing and radar may not work efficiently in this scenario, as typ-

ical radar systems are optimized for sensing a limited number of objects in

open spaces using narrow beamforming. Existing channel estimation and lo-

calisation algorithms are not directly applicable either. In particular, channel

estimation in communications only requires estimation of composite channels

at quantized discrete grids, and localization focuses predominantly on the line

of sight path. For sensing, detailed channel composition needs to be obtained.

• Challenge 4. How to preserve sensing accuracy in the proposed joint

system under channel with clutter and cluster pattern?
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Complex propagation environment contains a lot of unwanted clutter signals

which are largely different from the conventional radar clutter signal. More-

over, practical multipath signals arrive in clusters. Complex clustered for-

mation of mobile channel and unwanted overhead in signal processing are

obstacles in highly accurate and effective parameter extraction from mobile

signals.

1.1.4 Research Objectives

• Objective 1. To design a unified platform for joint communication and

radio sensing.

This objective aims to address the research challenge 1. We will develop a

single signal model for both communication and sensing, a protocol for signal

transmission and address three different types of sensing schemes with available

waveform options for sensing in the mobile network. Novel design of the radio

sensing scheme and waveform options for sensing provides the platform for

joint communication and radio sensing (JCAS) in the 5G mobile network. We

also develop receiver cost optimization techniques by exploiting beamforming

and introducing spatial redundancy into signal modulation.

• Objective 2. To design a transceiver structure in order to integrate

sensing with mobile network.

This objective aims to address the research challenge 2. We will develop

the transceiver structure that refers to the evolution of JCAS through both

low-cost near-term suboptimal and long-term integrated and optimized solu-

tions. We will discuss the required modifications on the network and hardware

of current mobile networks to support the sensing operation. Moreover, we

will consider an alternative low-cost and flexible solution of using an analog

antenna array for radio sensing at the base station receiver in the recently

proposed perceptive mobile network.



1.2. SCOPE OF THE RESEARCH STAGES 7

• Objective 3. To develop advanced information harvesting techniques

This objective aims to address the research challenge 3 and 4. We will de-

velop efficient algorithms and apply data fusion technology to extract desired

parameters with less complexity from multi-user MIMO (MU-MIMO) orthog-

onal frequency-division multiple access (OFDMA) signals in multipath clus-

tered environments, which are typical in modern mobile networks. In addition,

adaption of existing radar signal processing techniques and clutter suppression

methods will be investigated.

• Objective 4. To build a MATLAB based simulator and demonstrate

applications of the results

This objective aims to address the research challenge 1-4. A MATLAB based

simulator will be developed to demonstrate the system and main functionality

of the integrated system, and showcase its potential and benefits with high

accuracy. I will describe the perceptive mobile networks by referring to, not

exclusively, emerging 5G networks.

1.2 Scope of the Research Stages

In this section, I will introduce my methodological approaches towards solving the

research problems. In a JCAS, the single signal waveform that we have received

can either be used for communication or sensing. This implies major differences

between perceptive mobile networks and existing systems and technologies that

combine radar and mobile communications. Specifically, usage of a single signal

for both functions is different from the cases where the two separated systems share

the same resource blocks in a cooperative way and the integrated system using sep-

arately transmitted signals where communication and radar are integrated on one

platform but their signals use is separated. In this thesis, I will mainly deal with

waveform design, transceiver modelling, and sensing solutions of the perceptive mo-

bile network.
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The signal processing for communication in the joint system will be as in the

conventional orthogonal frequency-division multiplexing (OFDM) system. We can

use either received signal directly or estimated channel for the sensing processing. In

the case of the channel estimation matrix obtained from either pilot or interpolation

in communication, that matrix can be used as a preliminary input for the sensing

block. We will develop essential techniques to address the major challenges and

develop a basic working system that can be validated by a software simulator to

demonstrate the significant potential and benefits of such an integrated solution.

' ' ,j 
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Figure 1.1: Methodological approach

The methodological struc-

ture is illustrated in the

Fig. 1.1 below, where the 4

main research stages are il-

lustrated as Working Pack-

ages (WP; WP1-WP4).

WP1: In the first

step, WP1 focuses on the

theoretical framework de-

sign, such as, joint sys-

tem transceiver design, ap-

proaches to include sensing

as an integrated part of the communication base station and different types and op-

erations of integrated sensing. Any required changes to hardware of current mobile

network are also addressed and analyzed. Particular attention is given to obtain

high efficiency, low power consumption, frequency flexibility, and low implementa-

tion complexity.

WP2: WP2 focuses on the protocol and waveform design, for example, selection

of signal types, modulation and multiplexing techniques, parametric signal model

and formation, joint signal frame structure and seamless operational procedure.

Each of the solutions follows the state of the art technology where design parameters
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selected need to be supported by the literature. Privacy is less an issue because

sensed results are not directly linked to any user devices.

WP3: In WP3, development of digital signal processing techniques and effec-

tive sensing schemes are provided, in order to perform mobile signal based sensing.

First, the generalized on-grid compressive formulation solutions can be addressed,

then the work will be extended to the detailed spatial parametric estimation case,

assuming that extracting information from mobile signals will not affect the commu-

nications functions. These kinds of advanced information harvesting techniques and

tools development need to maintain several designer constraints, such as, multipath

propagation environment, clustered multipath channels, unwanted signal exclusion,

parameter estimation process error, algorithm complexity, hybrid antenna array sig-

nal processing hurdles and so on.

WP4: Then, WP4 will aim at testing the developed solutions with realistic

scenarios and generated or measured data, and demonstrating overall parameter

estimation simulation results. A MATLAB based simulator will be developed to

demonstrate the working principle and major features of the integrated system, and

showcase its potential and benefits. In our research group, a wide database of cellular

channel measurement data is already available and will be used in the context of my

PhD thesis work. In my thesis, I aim at a mixture of analytical and implementation

work.

1.3 Thesis Contributions

Our major contributions in this work are as follows:

• We introduce a unified system platform in Chapter 2 that enables three ways

of sensing from mobile signals to be integrated with mobile communications.

We present the required changes for hardware and system in existing mobile

networks. We also provide signals formulation for the three ways of sensing,

and show that they can be represented by a common expression, which enables
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the application of common sensing algorithms.

• We present two schemes for estimating sensing parameters from sophisticated

communication signals with modulations of OFDMA and MU-MIMO. The

first one, shown in Section 3.1 of Chapter 3, is direct estimation that uses the

received mobile signals directly as inputs to sensing algorithms, assuming that

the transmitted information data symbols are known. The second, shown in

Section 4.1 of Chapter 4, is indirect estimation based on signal stripping. It

simplifies the signal input to sensing algorithms by removing (demodulated)

data symbols and decorrelating users using conventionally estimated channels

in communications. Upon the formulated signal models based on these two

methods, we demonstrate how sensing parameters can be estimated via using

one-dimensional (1D) compressive sensing (CS) algorithms. The proposed 1D

CS algorithms are particularly useful when there is only sufficient measure-

ments in one dimension, which could be typical in current and near-future

systems.

• We provide the low-cost option of using an analog phased antenna array in

Section 3.2 of Chapter 3 dedicated to the receiver for sensing and communi-

cations, and develop sensing parameter estimation algorithms, based on the

same MU-MIMO model.

• We propose an integrated solution built on a unified platform that enables

estimating sensing parameters from 5G new radio (NR) standard signals in

perceptive mobile networks in Section 4.2 of Chapter 4 by applying 1D to 3D

CS algorithms. The communication signals used for sensing are the OFDM-

type demodulation reference signals (DMRS) in the 5G specification. We use

both 5G-compatible channels recommended by 3GPP and our own generated

cluster channel model.

• We propose a low-complexity background subtraction method in Section 5.1

of Chapter 5 for reducing clutter from the input to sensing algorithms. It
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reconstructs clutter using simple recursive computation and allows separation

of signals with largely separated Doppler frequencies. We also provide closed-

form expressions to show how the reconstruction performance and noise are

related to the parameters in the recursion equation. This method is not only

capable of removing clutter but also has the potential of dividing multipath

signals into different groups according to their Doppler shift values.

• We demonstrate how to apply Gaussian mixture model to complicated modern

mobile communication signals with MU-MIMO and OFDMA modulations and

adopt an EM algorithm for clutter estimation and separation in Section 5.1

of Chapter 5. We also show how to perform clutter-free radio sensing from

extracted dynamic signals.

• We propose a cluster based 2D CS algorithm in Section 5.2 of Chapter 5 that

exploits the cluster structure via introducing a prior probability distribution

in multipath channels for more accurate sensing parameter estimation in per-

ceptive mobile networks.

1.4 Organisation of the Thesis

This thesis has six chapters, divided into several sections and subsections for a

detailed illustration of the specific problems. A brief outline of the contents is given

as follows.

In Chapter 2, we introduce the system platform for the perceptive mobile net-

work. The chapter provides a concise review of the literature on technical funda-

mentals of having sensing functionalities obtained from mobile signals of a cellular

network followed by a description of the MU-MIMO system and channel estimation

techniques.

In Chapter 3, we provide mathematical models for the direct sensing problems.

We consider both downlink and uplink sensing, to be consistent with downlink

and uplink communications. The second section of this chapter provides the direct
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sensing solution of receiver cost minimization through analog antenna array.

In Chapter 4, the indirect sensing schemes are presented. In the second section of

this chapter, we provide indirect sensing solution of estimating sensing parameters

from 5G NR standard signals in perceptive mobile networks by applying 1D to 3D

CS algorithms. These CS algorithms are developed from existing ones to make them

capable of estimating all the sensing parameters. We use both 5G-compatible chan-

nels recommended by 3GPP and our own generated cluster channel model which has

a better control for radio propagation for the sensing purpose. We compare these CS

algorithms, and demonstrate their respective advantages and disadvantages, under

various channel conditions and system setup.

Chapter 5 presents the background subtraction method and Gaussian Mixture

model based solution for clutter suppression. In the second section of this chap-

ter, we exploit the cluster property in multipath channels through creating a prior

probability distribution and propose a novel two-dimensional (2D) CS algorithm for

sensing parameter estimation in perceptive mobile networks.

Chapter 6 concludes the thesis with a description of some interesting and chal-

lenging future work suggested by this research.



Chapter 2

Literature Review

2.1 Background

Radio science and engineering has been advancing in wireless communication and

radar sensing in parallel and with limited intersections for over a century. However,

as the technology advances, the gap between wireless communication and radar

sensing in terms of hardware requirements and digital signal processing approaches

has narrowed [5], [10], [11]. Intuitively, sensing functionality adopted from the radar

system can be integrated with the wireless communication system by JCAS. Most

existing research, however, is limited to passive sensing using simple TV signals [12]

or small scale networks such as passive sensing in Wi-Fi [13]. The basic concept

of JCAS may be traced back to 1970s [4], [5], [10], [11]. In the past few years,

JCAS has been studied significantly for simple point-to-point (P2P) communications

such as vehicular networks [14], [15]. An overview of the latest developments in

joint vehicular communications and radar systems can be found in [16]. JCAS has

the potential to integrate radio sensing into large scale mobile or cellular networks

[17–19], creating what we call a perceptive mobile network. Research progression

here is mainly hindered by the significant challenges caused by highly complicated

mobile signals, networks, and signal propagation environment.

Traditional radar is evolving towards more general radio sensing. Radio sensing

here can be widely referred to as retrieving information from received radio signals.

13
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Radio sensing involves more diverse applications covered in internet of things (IoT)

and 5G networks such as object, activity and event recognition [20]. In [21], the

authors briefly described the ubiquitous use of wireless technologies such as Wi-Fi,

Bluetooth, FM radio and mobile cellular networks, as signals of opportunity in the

implementation of IoT. These radio signals transmitted by an already installed in-

frastructure and are not specifically designed for the sensing purpose. In [22], the

authors showed that the Wi-Fi signal can be used for people and behavior recogni-

tion including room occupancy monitoring, activity and gesture recognition, vital

signs monitoring, identity identification and localization in an indoor environment.

Moreover, methods based on other radio, such as RFID and ZigBee, can be used

in activity recognition [23]. These works [20–23] show the strong potential of using

low bandwidth communication signals for radio sensing applications.

According to a recent research conducted in [2], beam steering can be a solution

for direction estimation in JCAS. However, requirements for sensing and communi-

cation are different. Communication requires a stable and accurately pointed beam

whereas sensing needs a time varying directional scanning beam. According to [24],

getting the correct solutions of beam steering and beamwidth adaptation for JCAS

operation are highly dependent on environmental context. Indeed, reflector position,

blockage height, object speed and other environmental context factors are dominant

in getting the correct solutions both for communication and sensing [24].

In literature, few articles, for example, [6], [11], [25] describe the basics of signal

processing in this specific joint processing through the usage of MU-MIMO OFDM

signal as a better candidate. Having mentioned all these existing works, we will base

our work on a system and technology platform that aligns with those being used in

evolving cellular networks. We assume the availability of (massive) antenna array

and broad bandwidth (through for example channel aggregation), and the usage

of MU-MIMO and multicarrier modulation techniques. The intended frequency

band of operation will be the same as for the current cellular network, for example,

LTE/LTE-A or future 5G.
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2.2 Related Work

The JCAS (also referred to as dual-functional radar and communications (DFRC),

or RadCom) technology [1–3], [11], [17–19], [26–30] is receiving increasing interest

thanks to its capability in integrating communication and radar sensing into one

system, using the same transmitted signals and a majority of the hardware and

signal processing modules. One major potential application for the JCAS technology

is in vehicular networks [14, 15], where communication signals can also be used

for sensing the environment for object detection and collision avoidance. Another

potentially significant application is in mobile (also referred to as cellular) networks.

Having the largest broadband coverage and powerful infrastructure, JCAS-enabled

mobile networks can potentially become a ubiquitous radio sensor, while providing

simultaneous communication service.

The co-existence of communication and radar systems has been extensively stud-

ied in the past decade. The research articles [5, 18, 19, 31–36] illustrate that in the

co-existence solutions, wireless communication and radar systems share the same

resources and transmit two different signals overlapped in time and/or frequency

domains. Moreover, the two systems are physically separated or co-located and

perform each one’s functions in a cooperative manner. The communication system

generally controls its transmission power to keep the interference-to-noise ratio low

at a radar. In extreme cases, the communication system can only operate under

certain circumstances, for example, when the radar is not occupying the frequency

or the spatial region of interest. This is because canceling mutual interference is a

challenge in the co-existence of MIMO radar and multi-user communication. In [37],

complicated mitigation methods were proposed for the co-existence solutions to deal

with potential large mutual interference. The authors of [36] proposed a robust

beamforming design to address the co-existence problem of the MIMO radar and

the MU-MIMO communication system. In [32], the cooperative spectrum sharing

technique jointly optimizes radar and communication system performance in the co-

existence of both systems with mutual interference mitigated. In [33], opportunistic
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primary-secondary spectrum sharing is introduced for JCAS with a rotating radar.

The communication device in this solution is allowed to transmit as long as the re-

sulting interference does not exceed the tolerable level of the radar. The work in [35]

investigated a dynamic co-existence approach between a colocated MIMO radar sys-

tem and a wireless communications system by reusing the radar’s spectrum for com-

munication. The co-existence solutions between mobile communication and radar

systems required the implementation of complicated mitigation methods to suppress

potential large mutual interference so that the two individually deployed systems

can operate smoothly without interfering with each other. However, effective in-

terference cancellation typically constrained the mobility of nodes and information

exchange between them.

There exist major differences between perceptive mobile networks and existing

systems and technologies that combine radar and mobile communications. In the

perceptive mobile network ideally no spectrum needs to be separately allocated

for communication and sensing, and the spectrum efficiency will be doubled. This

is significantly different to existing spectrum sharing concepts such as cognitive

radio and co-existence of wireless communication and radar system mentioned in [5]

and [19], where two systems share the same resources in either a time-division or

overlay method. Through spectrum sharing techniques, to solve the crisis of crowded

spectrum, practical radar and communication systems may cohabitate at the same

radio frequency bands [26]. For example, in L-band (1-2 GHz), air traffic control

radar (ATR) cohabitates with 5G NR and LTE cellular systems. In mmWave band

(30-300 GHz), automotive radar cohabitates with 5G and WLAN. A survey of the

spectrum-sharing contributions for the co-existence between communications and

radar systems can be found in [26] and [34]. More detailed descriptions on the

radar-communications convergence issue in terms of co-existence, cooperation, and

co-design can be found in [5], [10], [27] and [31].

There are three types of JCAS systems realization, namely: realizing commu-

nication in radar systems; realizing radio sensing in communication systems; and
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joint design from scratch. In the first two categories, the design and research focus is

typically on the additional function, depending on what the base systems are, with

the principle of not affecting the primary functions of the base system. The last

category of JCAS systems focuses on the joint system design that integrates com-

munication and radar on one platform using a common transmitted signal jointly

designed and used for both functions. The joint design is out of bias from any of

the systems as the design starts from scratch to better perform both functions in

one system. Perceptive mobile networks belong to the second class, where commu-

nication is already very well realized and the main challenge is how to achieve radar

sensing functionality based on the cellular network by its own radio signal without

degrading the performance of communications. However, the ideas and techniques

related to the third class may also apply to the design of perceptive mobile net-

works, particularly when we target the future generation of cellular networks. We

now introduce the recent research progress in each of the categories of JCAS.

2.2.1 JCAS by Realizing Communication in Radar Systems

Similar to getting sensing functionality in a communication system, communication

function can be achieved within radar systems. By obtaining communication capa-

bility, as mentioned in [4] and [6], radar sensing network can improve the detection

performance in military applications. In [4], authors implemented a combined radar

and communication system based on a software defined radar platform, in which

the radar pulses are used for communication. Further in [7], the authors specif-

ically showed that the quasi-orthogonal multicarrier linear frequency modulation-

continuous phase modulation waveform radiated by a MIMO radar can be applied

for communications with multiple users. Transmit and receive beamforming design

is given in [38] for full-duplex communication in joint MIMO radar and communi-

cation systems. Different from the perceptive mobile network, the JCAS proposed

in [38] deployed on MIMO radar is to act as a JCAS unit. In [39] fusion of radar

sensing and wireless communications solutions is presented by embedding communi-
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cation signals into the radar transmit waveform. In [40], cooperative transmissions

have shown for radar and communication functions in a DFRC system in which

embedding of communication symbols into the MIMO radar emissions is used for

the JCAS operation. A new signaling scheme for DFRC is proposed in [41], where

frequency-hopped MIMO orthogonal radar waveforms are designed to carry com-

munication symbols to utilize the waveform diversity of radar system for viable

communication. In [42], random step frequency signal is used in designing a radar

and communication integrated system where the carrier frequency of the radar sig-

nal is used for modulating communication information. In [43], the transmit array

of a radar is partitioned into a number of subarrays that are allowed to overlap to

perform spectrum sharing between an overlapped-MIMO radar and a communica-

tions system. Research work in [5] and [44] states that, communication network

establishment can be possible for both static and moving radars used in the military

and aviation domains. Adaptive transmit signals from airborne radar mounted un-

manned vehicles can also be used to simultaneously sense a scene and communicate

sensed data to a receiver at the ground base station. The joint effort is expected

to have low latency and be a secure, long range communication link established by

using the existing radar system. Perceptive mobile network discussed in this thesis

is not referring to this form of JCAS operation.

JCAS-enabled mobile network can also be significantly different from passive

bistatic and multistatic radar systems which use mobile communication signals for

sensing [45–47]. In the JCAS network, receivers know the detailed structure of the

transmitted signal, such as resource allocation for time, frequency and space, and the

transmitted data symbols (either directly known or through demodulation). Such

knowledge on the signal structure is important for coherent detection, which en-

ables accurate estimation for sensing parameters. In a mobile network environment,

without the knowledge of the signal structure, passive sensing lacks the capability of

interference suppression, and cannot separate multi-user signals from different trans-

mitters (signal sources). In addition, most passive radar sensing can only perform
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non-coherent detection with the unknown signal structure, and hence only limited

sensing parameters can be extracted from the received signals with degraded perfor-

mance [45, 46]. Furthermore, as the clock phases between transmitter and receiver

are not synchronized in passive sensing, there is always timing and therefore ranging

ambiguity remains in the sensing results.

2.2.2 JCAS by Realizing Radio Sensing in Communication

Systems

There have been limited JCAS results closely related to modern mobile networks. In

[25], some early work on using the OFDM signal for sensing was reported. Research

work in [48] performed linear interpolation on LTE downlink signal for radar target

distance and velocity estimation. Research work on blockage sensing by radars

deployed on towers in cellular networks found in [49]. In [50], authors implemented

active radar sensing functions into a communication system with OFDM signals

for vehicular applications. The presented radar sensing functions involve Fourier

transform algorithms that estimate the velocity of multiple reflecting objects in

IEEE 802.11.p based JCAS system. In [14], automotive radar sensing functions

are performed using the single carrier (SC) physical frame of IEEE 802.11ad in an

IEEE 802.11ad mmWave vehicle to vehicle (V2V) communication system. In [15],

OFDM communications waveform, found in IEEE 802.11a/g/p, is used to perform

radar functions in vehicular networks. More specifically, a brute-force optimization

algorithm is developed based on received mean-normalized channel energy for radar

range estimation. The processing of delay and Doppler information with the IEEE

802.11p OFDM waveform in vehicular networks is shown in [51] by applying ESPRIT

method.

In [52], sparse array optimization was studied for MIMO JCAS systems. Sparse

transmit array design and transmit beampattern synthesis for JCAS is proposed

in [53] by antenna selection method where the same or different antennas are as-

signed to different functions. In [54], the multiple access performance bound is de-
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rived for a multiple antenna JCAS system. In [55], multicarrier waveform is proposed

for dual-use radar-communications, for which interleaved subcarriers or subsets of

subcarriers are assigned to the radar or the communications tasks. That means each

subsystem is assigned with distinct subsets of subcarriers from the total available

subcarriers. In [56], mutual information for an OFDM JCAS system is studied, and

power allocation for subcarriers is investigated based on maximizing the weighted

sum of the mutual information for radar and communications. In [18], waveform

optimization is studied for minimizing the difference between the generated signal

and the desired sensing waveform under the constraints of signal-to-interference-

and-noise ratio for MU-MIMO (also referred to as spatial division multiple access,

SDMA) downlink communication. A multi-objective function is further applied to

trade off the similarity of the generated waveform to the one desired for communi-

cation and sensing [19]. These studies involve some key signal formats in modern

mobile networks, such as MIMO, MU-MIMO, and OFDM. However, there is very

limited work on how JCAS can actually be realized at a system level in the mobile

network, and how radar sensing can be done based on modern mobile communication

signals, which is a fundamental and challenging problem.

In traditional radar, clutter is typically returned from ground, sea, rain, and

atmospheric turbulence, and generally has distinct features from useful reflections

[57, 58]. Most known algorithms in radar, such as space-time adaptive processing

(STAP) [57], independent component analysis (ICA) [58], and Doppler focusing [59]

are adapted to such scenarios. In contrast, in perceptive mobile networks, clutter

can be originated from the same objects with the ones of interest for sensing. So,

traditional clutter suppression methods for radars may not directly work here.

Recently, a limited number of new clutter suppression techniques that are closely

related to modern mobile networks were reported. In [60], maximum-likelihood

based matched filtering was proposed for clutter estimation in JCAS receivers. The

sample evaluation presented in this work uses a simplistic clutter model; however,

under more complicated clutter models, the clutter cancellation residual will be
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larger and may adversely affect both communications and radar performance.

Moreover, the multipath signals from one cluster have similar sensing parame-

ters values for delay, angle-of-arrival and Doppler frequency, and are typically from

the same scatter(s). Complexity arises when the clusters originated in a propaga-

tion scene may have correlations among other clusters of the same user and across

different users due to the same channel condition. Eventually, these create an accu-

racy problem when getting sensing parameters from delay or angle domain without

acknowledging channel cluster structure knowledge. Moreover, there are common

multipath remains among clusters. There exist research outputs on reconstructing

cluster sparse signals in general, for example, through periodic compressive sup-

port [61], model based CS [62], variational Bayes approach [63], and block Bayesian

method [64]. In [65] a mmWave joint radar and communication system for indoor

scenarios is developed, using estimated radar channel coefficients. However, there is

only very limited work on how cluster sparsity structure can be exploited in JCAS

systems such as perceptive mobile networks that involve OFDMA and MU-MIMO.

Therefore, cluster sparse signal reconstruction for more accurate sensing in percep-

tive mobile networks, employing OFDMA and MU-MIMO is our interest.

2.2.3 JCAS by Integrated Joint Design from Scratch

JCAS technologies can be developed by integrated joint design from scratch with-

out being limited to existing communication or radar systems. In this sense, the

authors, for example in [6, 26, 27], discussed how a JCAS system can be designed

and optimized by considering the essential requirements for both communication

and sensing.

Integrated radar-communication performs simultaneous wireless communication

and remote sensing on a single platform. The joint design allows a single hard-

ware platform to work for both functions. The integrated system uses the same

transmitted signal designed for both functions. A JCAS system using separately

transmitted signals suffers from lower spectrum efficiency due to the partitioning of
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resources [11]. On the other hand, the integrated system using the same transmit-

ted signals may achieve reasonable spectral efficiency without facing the problem

of mutual interference. However, this particular operation of JCAS with the same

signal requires full duplex or equivalent setups. A more thorough discussion can be

found in [5], [10], [26], [27], and [31].

A majority of research on JCAS has demonstrated the feasibility and provided

methodologies for P2P links, such as P2P mmWave links considered in works [66],

[67], [68], [69] and [70]. The mmWave based JCAS can facilitate such joint design

from scratch for many new exciting applications both indoor and outdoor. The

implication of mmWave in joint communication and sensing network is illustrated

in [66]. Beamforming design for dual functional radar-communication systems at

the mmWave band is proposed in [67]. The proposed hybrid beamformers in the

work [67] can give a fully digital communication beamformer, meanwhile formulating

a desired radar beam to point towards targets. Research work in [68] provides

an in-depth signal processing aspects of mmWave-based JCAS with an emphasis

on waveform design for joint radar and communication system. The adaptive SC

mmWave waveform structure designed in [69] serves as the transmitted signal at

the source for both communication and radar systems. Further investigation on

the selection of waveforms for the automotive application of JCAS is analyzed in

[70], providing a comparison between the phase-modulated continuous-wave JCAS

and OFDMA-based JCAS waveforms for V2V applications by analyzing the system

model and enumerating the impact of design parameters.

2.3 Benefits of Joint Communication and Sensing

System

The perceptive mobile network has more advanced infrastructure than Wi-Fi sens-

ing, including larger antenna arrays, larger signal bandwidth, more powerful signal

processing, and distributed and cooperative base-stations. In particular, with mas-
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sive MIMO, the perceptive mobile network equivalently possesses a massive number

of “pixels” for sensing. This enables radio devices to resolve numerous objects at

a time and achieve sensing results with better resolution. Some specific application

examples by JCAS on surveillance and transportation are: (1) real-time city-wide

low-cost traffic monitoring and scheduling, as well as vehicle classification and track-

ing; (2) assisted vehicle automation (3) crowd management in big events and emer-

gency evacuation, or population density and movement mapping; and (4) extensive

on-street and open space surveillance for on-road parking space management, and

pedestrian and animal detection. We can mention some key generalized benefits of

joint communication and sensing system as below:

• Spectrum efficiency: Spectrum efficiency is improved by completely sharing

the spectrum available for wireless communication and radar [11].

• Beamforming: Beamforming performance can be enhanced through use of

sensing information [71], [72].

• Cost/Size: Joint system can allow reduced cost and size in transceiver im-

plementation with an uncompromised simultaneous operation for both sys-

tems [11].

• Smart Applications: Sensing based application can appear in the market

if we can obtain object sensing with the communication. Smart home, smart

car based new application can be developed by the exciting feature of object

sensing and tracking by mobile signal [1], [5], [9].

• Network Overhead: Sensing information may help in reducing huge network

overhead by employing simply a directional beam to the user rather than

having a beam in a wider area to get the same user [24], [71], [73].

Based on the study from several works, such as, [1], [4], [5], [6], [7], [10], [11] and [24]

a tabular information can be given in Table 2.1 on difference and benefits of JCAS

in comparison with individual radar system and communication system.
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Table 2.1: Investigation on Radar, Communication and JCAS

Case Radar Communication Case Joint System

Signal
Modulation

Unmodulated
and orthogonal,
in some cases
linear frequency
modulated

Mix of modu-
lated symbols,
multicarrier
modulation

Coverage
with multi-
ple antenna

Digital beamforming
provides wide dedi-
cated coverage in radar
while in communica-
tion, MIMO enables
enhanced directivity
gain and interference
suppression

Transmission
Power

High Low Powerful
long dis-
tance trans-
mission

Radar has more pow-
erful transmitter, their
transmitted signal can
travel long distance
which enables commu-
nication over wide area

Peak to
average
power ratio
(PAPR)

Small High Antenna
Pattern

Much larger antenna
array with very narrow
beam steering capabil-
ities of radar system
can be useful in com-
munication.

Bandwidth In order to
achieve high
resolution, a
radar sensor
needs large sig-
nal bandwidth

Typical com-
munication
signals band-
width is
usually less
than radar

Signal spec-
trum

Whole frequency range
can be used and in-
creased spectrum effi-
ciency can lead to have
better communication
and tracking.

Signal
Band

X, S, C, Ku ISM, RF
(MHz) range

Digital sig-
nal process-
ing platform

Gap between the hard-
ware requirements for
the radar and com-
munication systems
becomes narrower and
both devices become
similar as the receiver
front-end becomes
more digital

Transmission
Capability
of Modules

Only radar send
signal to get the
response back
after reflected
by object

Full or half
Duplex, both
BS and user
can transmit
and receive

Exchange
of network
data

Detection accuracy
and probability can be
improved by exchang-
ing of network data
between both system
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2.4 Perceptive Mobile Network

We name the joint system as perceptive mobile network [1], [17], [74], [75], [76], where

it involves with radio channel sensing by communication signal itself. A unified

transceiver system, already mentioned in the research work of [1], could easily be

used here, where communication interfaces will be directly used to sense the channel.

Such a kind of sensor system can offer a wide range of radio sensing wherever radio

coverage is available. Mobile network is almost everywhere and that extended range

can be readily usable for obtaining detection and tracking of objects particularly,

in vehicular transport network, in crowd monitoring for events, for weather sensing

and many more.

A generalized transceiver block diagram for joint sensing and communication is

shown in Fig. 2.1. After signal has been received at the antenna array and processed

at the RF section, baseband processing handles both sensing and communication

simultaneously. Sensing parameters can provide feedback in the communication

section to improve the beamforming adaption. Similar kind of common baseband

processing can also be applicable in the case of Wi-Fi and digital TV system.

Phased 
antenna 

array

RF front end 
and ADC

Mobile signal (mmWave, 
MU-MIMO OFDM)

Wi-Fi

TV 

Modulated 
radio signal

Communication block

Signal 
processing 
for sensing

Parameter 
extraction

Communication operation facilitated 
by sensing parameter seamlessly 

Feedback 
parameter 

optimization for 
flexible beam 

adaptation

Figure 2.1: General block diagram of unified sensing and communication system.

In a typical centralized deployment for recently proposed 5G mobile network,

as demonstrated in Fig. 2.2, sensing can be done in the central office where all

Baseband units (BBU) are aggregated in a pool fashion. In the fronthaul, each
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BBU 

BBU

BBU

Mobile Core
RRU

RRU

Fronthaul

Backhaul

UE

Pool

UE: User Equipment
BBU: Base Band Units
RRU: Remote Radio Unit
CRAN: Cloud Radio Access Network

Figure 2.2: CRAN architecture for 5G mobile network

BBU can connect with the remote radio unit (RRU) through optical fibers or wireless

systems. RRUs collectively operate in a co­operative manner to provide MU­MIMO

service to the users. BBU performs signal processing in the digital domain. Packet

based network, such as IP/MPLS is running on the mobile core in order to provide

high bandwidth and low latency with proper redundancy.

Fig. 2.3 indicates cloud radio access network (CRAN) central office section,

where sensing baseband performs information extraction based on signal reception

at RRUs. It is a clear fact that the RRU collects signal and actual sensing pro­

cessing done jointly with the communication at the CRAN central office. We define

downlink and uplink sensing, as sensing performed at a RRU employing downlink

transmitted signals from itself and other cooperative RRUs and uplink signals from

users, respectively [1]. In order to achieve sensing using downlink signals, the trans­

mitter and receiver at a RRU need to be able to operate simultaneously. A simple

solution, as in Fig. 2.3 is to use separated antennas for transmitter and receiver.
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Figure 2.3: Simplified transceiver model for joint communication and sensing

2.5 Framework for a Perceptive Mobile Network

In this section, we develop a framework for integrating radar sensing into the current

communication­only mobile network using JCAS technologies, by synthesizing and

extending earlier work in [1, 76]. This framework includes both a system platform

for unified radar sensing and novel sensing solutions. We set up the perceptive mo­

bile network on a system platform with key components and technologies in modern

mobile networks, such as antenna array, broadband through, for example, channel

aggregation, MU­MIMO and OFDMA. The system platform provides system­level

integration for communication and radar sensing, and unifies three types of sensing

based on the communication signals. The sensing solutions address critical chal­

lenges in estimating sensing parameters including time delay, angle­of­arrival (AoA),

angle­of­departure(AoD), Doppler shift and magnitude of multipath signals. These

challenges are caused by both sophisticated signal formats and massive multipath

signals due to the complicated signal propagation environment.

The first challenge for sensing parameter extraction in perceptive mobile net­

works is due to the sophisticated signal structure. The communication signals, which

are also used for sensing, can be randomly modulated with multiple users’ symbols
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using MU-MIMO and OFDMA technologies and can be fragmented for each user -

discontinuous over time, frequency or space. This will be detailed in Chapter 3. Such

signals structure makes most existing sensing parameter estimation techniques not

directly applicable. For example, active radar sensing technologies mainly deal with

linear FM (LFM) chirp or pulse width modulated transmitted signals [77], [78], [79];

most passive bistatic and multistatic radars consider sources of opportunities with

different carrier frequency and compare the reference signal collected from the source

direction to the measurement signal collected from the target direction [45–47, 80];

and channel estimation techniques developed for modern mobile networks mainly

focus on estimating channel coefficients instead of detailed channel compositions

represented by the sensing parameters. In addition, conventional spectrum analysis

and array signal processing techniques such as MUSIC [6] and ESPRIT [25] require

continuous observations, which are not always available here. Therefore, new sens-

ing techniques need to be developed for estimating sensing parameters from the

complicated and fragmented signals. We will show in both Chapter 3 and Chapter

4 that CS is an excellent candidate technology for this problem, after proper signal

formulation.

The second challenge for sensing parameter estimation comes from the rich mul-

tipath in mobile networks. Most sensing parameter estimation algorithms can only

process signals containing a limited number of multipath signals. Hence we need

a preprocessing method which can divide signals into different groups where each

group has a significantly reduced number of multipath signals. At a minimum, it is

essential to separate and reduce non-information-bearing multipath signals from the

input. Such unwanted multipath is called clutter in the radar literature. Typical

radar systems are optimized for sensing a limited number of objects in open spaces

using narrow beamforming, and clutter has notably different features from useful

reflections returned from ground, sea, rain etc. [6, 81]. Most known algorithms in

radar systems, such as space-time adaptive processing (STAP) [82], independent

component analysis (ICA) [58], and singular value decomposition (SVD) [83] are
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adapted to such scenarios. In the perceptive mobile network, we define clutter as

unwanted multipath signals that contain little new information. The clutter hence

is mainly referring to the multipath signals from permanent or long-period static

objects when both the transmitter and receiver of the sensing devices are static.

Due to the different signal propagation environments, suppression requirements and

applicable sensing algorithms, existing clutter suppression techniques developed for

radar systems, e.g., those in [81, 84, 85], may not directly render the clutter reduc-

tion here. Most of them are also applied after sensing algorithms, and hence cannot

achieve the goal of reducing multipath input to the sensing algorithms. In the first

part of Chapter 5, we propose a background subtraction method based on simple re-

cursive computation with a closed-form expression for performance characterization

and a clutter suppression method based on the Gaussian mixture model (GMM)

and expectation maximization (EM) estimation.

On a second note, in this case, we need to exploit the cluster property in multi-

path channels through creating a prior probability distribution for sensing parameter

estimation in perceptive mobile networks. In particular, a cluster prior probability

density function is introduced in the second part of Chapter 5 in the proposed 2D

cluster Kronecker CS algorithm, and is shown to efficiently detect the coarse loca-

tions of the clusters, leading to more accurate sparse reconstruction performance

when Kronecker CS algorithms are applied. We will also provide solutions related

to this clutter reduction and sensing in cluster channel in Chapter 5.

In this research, we focus on studying system-level integration of sensing function

into mobile communication networks, and investigating how to address the two

critical challenges for sensing parameter estimation as described above. As an initial

piece of work in this new domain, our proposed algorithms here mainly intend

to demonstrate the feasibility and methodology but are yet to be optimized for

complexity and performance.
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2.5.1 System Platform for the Perceptive Mobile Network

Our proposed system platform aligns with the specification of the evolution of mobile

networks, such as 5G. In this section, we describe the system model, the supported

sensing operations and the required modifications to existing mobile communication

infrastructure.

We assume a CRAN architecture using MU-MIMO and OFDMA technologies.

Fig. 2.4 shows the CRAN architecture based system model of the proposed per-

ceptive mobile network. In this model, cooperative RRU, are densely distributed

and synchronized in clock. Signal processing for both cellular communication and

radio sensing based on collected signals from these RRUs is done centrally in CRAN

central, which includes the BBU pool for communication and the sensing processing

unit. We assume that cooperative RRUs are within the signal coverage area of each

other. In the fronthaul, each BBU can connect with the RRUs through optical fibers

or wireless links. All RRUs’ clocks are synchronized, typically via GPS. A typical

communication scenario is as follows: several RRUs work cooperatively to provide

connections to mobile stations (MSs), using MU-MIMO techniques over the same

subcarriers. Although we consider CRAN, our proposed solution could work for a

standalone base-station (BS) too. So hereafter we will use CRAN central and BS

without differentiating between them.

We focus on the case where radio sensing is conducted in the BS, although MS-

side sensing is also possible. Compared to MS, BS has advantages of networked

connection, flexible cooperation, large antenna array, powerful computation capa-

bility, and known and fixed locations.

2.5.2 Three Unified Types of Supported Sensing Operations

There are three types of sensing that can be unified and implemented together in

the mobile network. Referring to the CRAN architecture, a RRU can implement

downlink active and passive sensing during downlink signal transmission, and then

operate on communication and uplink sensing modes during the uplink stage.
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Figure 2.4: Proposed system model.

In the perceptive mobile network, the transmitted signal from base­stations (BSs)

or MSs is used for both communication and sensing. The signal may be optimized

jointly for the two functions, and one example is available from [18]. We define uplink

and downlink sensing, to be consistent with uplink and downlink communications.

In uplink sensing, the used sensing signal is from MSs. In downlink sensing, the

sensing signals are from BSs. The downlink sensing is further classified as Downlink

Active Sensing and Downlink Passive Sensing, for the cases when a RRU collects

the echoes from its own and from other RRUs transmitted signals, respectively.

It is important to note that in a distributed antenna system such as CRAN,

sensing is for the environment surrounding a specific transmitter and receiver, and

hence it is separately done for each node (RRU in CRAN), although some joint

processing is possible.

Downlink Active Sensing

We refer to downlink active sensing as the case that a RRU uses reflected downlink

communication signals from its own transmitted signal for sensing. In this case,
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similar to a mono-static radar, transmitter and receiver are co-located although

they may have two independent antennas separated in space. This will enable a

RRU to sense its surrounding environment.

Downlink Passive Sensing

Passive sensing typically refers to the case when a third receiver outside the commu-

nication system exploits the communication signal for sensing. Here we use downlink

passive sensing for the case where a RRU uses the downlink communication signals

received from other RRUs for sensing. Depending on the distance between RRUs,

reflected signals from other RRUs or the RRU itself may arrive at different time

segment or overlapped. Downlink passive sensing senses the environment among

RRUs.

Uplink Sensing

BS uses the uplink communication signal from MS transmitters for uplink sensing.

Uplink sensing estimates relative, instead of absolute, time delay parameters because

the timing in MS transmitters and RRU receivers is typically not aligned. This tim-

ing ambiguity may be removed by using techniques developed from the triangulation

techniques in localization. Uplink sensing senses MSs and the environment between

MSs and RRUs.

Downlink sensing can potentially lead to more accurate sensing results than

uplink sensing because RRUs exhibit more advanced transmitter capability than

MS and also the transmitted data symbols are centrally known in the downlink. In

addition, the privacy issue is almost not a problem in downlink sensing because the

sensed results are not directly linked to any MSs.

The signals available for sensing can come from several sources, such as the

DMRS and the whole data payload signals in 5G NR. The transmitted signals

can also be optimized jointly for both communication and radar sensing, such as

those proposed in [18, 19, 56]. In this work, we focus on using the always-available
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whole data payload, as DMRS signals are random and may be insufficient for high-

resolution sensing.

Downlink sensing generally has stronger capabilities than uplink sensing in terms

of sensing ranges and resolution in distance, direction and speed. This difference

is largely caused by the difference in transmission power, as well as the number

of transmission nodes and the number of transmission antennas from each node.

There are experimental results on passive radar that use signals from LTE eNodeB

for detecting different types of ground-moving targets, including cars and people at

a range of approximately 150 meter [47]. The simulation results presented in [17]

consider practical transmission power values, also demonstrate that downlink and

uplink sensing can detect objects more than 150 and 50 meters away, respectively.

Other exemplified sensing capabilities shown in [17] include a distance resolution at

a few meters corresponding to the signal bandwidth of 100 MHz, an angle resolution

of about 10 degrees given a uniform linear array of 16 antennas, and a resolution

of 5 m/s moving speed. Based on these sensing capabilities, we can foresee the

following sensing applications of perceptive mobile networks: traffic monitoring and

scheduling, vehicle classification and tracking, on-street and open space surveillance,

parking space management, pedestrian and animal detection and so on. For down-

link sensing, using directional antennas and high transmission power may extend

the sensing range to one kilometer or more, particularly for detecting objects such

as UAVs in the sky.

2.5.3 Signals Usable From 5G for Radio Sensing

Based on the available physical signals in 5G NR, we can categorize the most suitable

candidates for performing radio sensing into three types.

Signals Used for Channel Estimation

The first option will be deterministic signals specific for channel estimations, in-

cluding DMRS [86] for both uplink (PUSCH) and downlink (PDSCH), sounding
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reference signals (SRS) for uplink, and channel state information – reference signals

(CSI-RS) for downlink. Most of them are comb-type pilot signals, circularly shifted

across OFDM symbols, and are orthogonal between different users. Among them,

DMRS signal associated with the shared channel is user-specific and always trans-

mitted with data payload. The number and position of DMRS OFDM symbols shall

be available to the BSs, and they can be adjusted and optimized across the resource

grid including slot and subcarriers (resource blocks). This implies good prospects

for both channel estimation and sensing in different channel conditions, and maybe

further optimized by considering joint optimization for communication and sensing.

With a given subcarrier spacing, the available radio resources in a sub-frame

are treated as a resource grid composed of subcarriers in frequency and OFDM

symbols in time. Accordingly, each resource element in the resource grid occupies one

subcarrier in frequency and one OFDM symbol in time. A resource block consists of

12 consecutive subcarriers in the frequency domain. A single NR carrier in Release-

15 is limited to 3300 active subcarriers as defined in Sections 7.3. and 7.4 of TS

38.211 [87]. On the other hand, signals used for beam management in connected

mode, like SRS and CSI-RS can be either periodic or aperiodic, and hence they can

be optimized for sensing too.

Non-Channel Estimation Signals

We may also exploit deterministic non- channel estimation signals for sensing such as

the synchronization signal and broadcast blocks (SSB). Such signals typically have

regular patterns, and are periodic at an interval of several to tens of milliseconds.

However, they only occupy a limited number of subcarriers, which leads to limited

identification of multipath delay values.

Data Payload Signals

In addition, we can also exploit the data payload signals for sensing. Since these data

signals are random, they are not ideal for sensing. However, they can significantly
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increase the number of available sensing signals, and hence improve the sensing

performance at increased complexity.

We will mainly use DMRS for both uplink and downlink as a primary signal for

sensing in this research. More details of the DMRS signal are provided here.

2.5.4 Required System Modification

We now describe potentially required modifications on hardware and systems, in

order to evolve current communication only mobile networks to perceptive mobile

networks. We focus on fundamental changes that enable the integration of radio

sensing to current mobile networks, and do not consider low-level changes such

as joint waveform optimization [18, 19, 56], joint antenna placement and sparsity

optimization processing and power optimization [52].

Uplink sensing can be implemented without requiring changes to hardware and

system architectures of current mobile systems, in the presence of the timing am-

biguity problem. Alternatively, dedicated (static) MSs that are clock-synchronized

to BSs can be used, which would be the most convenient way for achieving non-

ambiguity sensing in the perceptive mobile networks.

On the other hand, downlink sensing requires changes to hardware, and the ex-

tent of changes depends on the network duplexing mode. Basically, downlink sensing

requires a transceiver to work on the full duplex mode, where receiver and transmit-

ter need to operate at the same time. This causes transmitted signal leakage, which

can easily overwhelm the reflected echoes for downlink sensing without modifying

the current hardware. The full duplex technology, which typically uses antenna

separation, RF suppression and baseband suppression to mitigate the leakage, is a

promising enabling technology in the long term [88]. Although it progresses well,

full duplex MIMO is still challenging to realize in practice due to antenna cross-talk

and coupling.

Two near-term solutions to downlink sensing are as follows:

• Using two sets of spatially well-separated antennas for transmitting and re-
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ceiving. Nevertheless, this requires extra antenna installation space and can

increase the overall cost.

• Deploying RRUs that only work on the receiving mode. They can be con-

figured as working in the sensing mode only or in both communication and

sensing modes.

To implement these near-term solutions, changes to the hardware are required. For

time-division-duplexing (TDD) systems, the change is minor since a TDD transceiver

generally uses a switch to control the connection of antennas to the transmitter or

receiver. For frequency division duplexing (FDD) systems, the receivers may not

be capable of working on downlink frequency bands. From this point of view, it is

more cost-effective to implement downlink sensing in TDD than in FDD systems.

2.6 MU-MIMO OFDM System Model

Higher data rate and substantial gain is the point of interest in communication.

OFDM, a multicarrier modulation technique, is known and suitable especially for

high data rate transmissions in multipath environments. OFDM has been selected in

many wireless communication systems, such as LTE/4G, Wi-Fi/WLAN, WiMAX,

digital TV and many more to follow. Literature work in [89], [90], [91], and [92]

mentioned details of implementation procedure and features of OFDM system in

usage of today’s modern communication platform.

A simplified transceiver block diagram for OFDM signal implementation is pre-

sented in Fig. 2.5. In OFDM, after channel coding and symbol mapping, the signal

is being transmitted by several parallel orthogonal overlapping subcarriers. ODFM

modulation is implemented on several blocks of information symbols by inverse dis-

crete Fourier transform techniques. A guard interval of length equal to channel

delay spread known as cyclic prefix (CP) is added with the information block to

reduce inter-symbol interference. Next, parallel to serial conversion and RF pro-

cessing tasks took place to pass the serial data stream through the channel destined
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to the receiver. At the receiver after signal reception, demodulation through FFT is

performed on parallel data stream. In the end, channel state information obtained

from the channel estimation process is utilized in the receiver to perform accurate

symbol de-mapping and signal decoding.

The continuous time domain OFDM signal at the tth symbol is modeled by,

x(t) =

√
Eb
N

N∑
n=1

X(n)ej2πnf0t, (2.1)

where N is the number of used subcarriers, Eb is the symbol energy of x(t), f0 is

the subcarrier frequency spacing and X(n) is complex symbol on the nth subcarrier.

In OFDM, multiple symbols can be transmitted in parallel. The user who is near

the base transceiver station (BTS) can experience good channel quality and can be

treated with a higher order modulation scheme and those at the poor channel area

can be treated with a lower order modulation scheme. If CP is used, OFDM will

exhibit resistance against inter-symbol interference (ISI) in a multipath propagation

environment.
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Figure 2.5: Multicarrier modulation based OFDM system transceiver model
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Diversity gain and system capacity can be increased by adding an antenna array

with OFDM type communication. Multiple antennas can be implemented at the

transmitter and receiver to get the arrangement of the MIMO system. Three pa-

rameters can define the wireless link, namely, transmission rate, transmission range,

transmission reliability. With the use of MIMO OFDM, improvement can be possi-

ble in these three sections mentioned above.

A typical MIMO channel configuration is shown in Fig. 2.6 where the OFDM

system can take advantage of the spatial diversity that is obtained by spatially

separated antennas. Intuitively, MIMO-OFDM system can effectively deal with

multipath scattering environment to increase the diversity gain and capacity. A

review is provided in [92] about the incorporation of MIMO techniques in OFDM

system. Receiver and transmitter both can have multiple numbers of antennas to

improve the spatial capacity and achieve better reception. A simplified MU-MIMO

system is given in Fig. 2.7 where each BS and user has three antennas.

The general MIMO received signal, at the tth OFDM symbol and nth subcarrier,

yn,t,

yn,t = Hn,t xn,t + zn,t, (2.2)

is characterized by the frequency domain N ×M channel matrix Hn,t, transmitted

signal xn,t, and the Additive White Gaussian Noise (AWGN), zn,t. M and N are

the number of antennas in transmitter and receiver, respectively.

For M transmitting and N receiving antennas, the N ×M frequency domain

channel matrix can then be represented as

H(n) =
L∑
`=1

b`e
−j2πτ`n, (2.3)

where L is the number of total multipaths, b` is the complex amplitude of the lth

path and τ` is the corresponding path delay, while n usually corresponds to the

frequency domain subcarrier.
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It is to be noted that, data rate, spectral efficiency, throughput, system capacity,

transmitter and receiver diversity and spatial diversity can be improved in a MIMO

enabled OFDM system without consuming more frequency resources and transmit

power. Moreover, due to the increased diversity, fading effect in the channel is

reduced significantly.

2.7 Channel Estimation

In JCAS, sensing and communication may share certain functionalities, such as

channel estimation, beamforming, and symbol demodulation discrete Fourier trans-

form (DFT) block. However, the required processing and outcome may be largely

different for them. Existing channel estimation and localisation algorithms are not

directly applicable for producing radio sensing parameter estimation. Channel esti-

mation in communications only requires estimation of composite channels at quan-
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tized discrete grids, and localization focuses specifically on the line of sight path.

However, in radio sensing, detailed channel composition needs to be obtained for

having parameters like delay, signal arrival angle and Doppler frequency.

The general idea on the channel estimation process used in communication sys-

tems can be found in [89], [93], and [94]. Channel estimation refers to the process

by which we can mathematically model or describe the radio channel. Channel

impairments and interference can be reduced by utilization of the channel knowl-

edge obtained from channel estimation. Foundation work on channel estimation

techniques for MIMO system can be found in articles such as, [95], [96], [97]. The

general channel estimator mentioned in Fig. 2.8, works in communication with the

idea of minimizing mean square error and computational complexity.

Fading occurs due to the multipath environment. Several types of scatters re-

main present in the radio channel environment to give rise to different types of

channel effects. Mobile motion and scatter local to user give rise to Doppler spread,

which causes time selective fading. Remote scatterers can be high rise buildings and
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Figure 2.8: Performance evaluation process of channel estimation in communication
system

can cause delay and angle spread. Delay spread causes frequency selective fading.

Scatterers local to base station cause angle spread and which creates space selec-

tive fading. Due to multipath, signal experiences delay and fading which eventually

creates Doppler spread, delay spread and angle spread.

Channel estimation and equalizer modelling have been a key research topic due

to channel variation and non-linearity. Multipath propagation leads to ISI at the

receiver which in turn leads to a high error rate in symbol detection. When the

channel has less time variation, we can use training based channel estimation. How-

ever, if the channel is rapidly changing, we have to train the channel rapidly and this

in fact will impact on transmission. For a varying channel, we can introduce blind

channel estimation. There is one more type which is semi blind and is a method

where both known and unknown symbols are being used while doing estimation.

According to the study from [94], the channel estimation process in communication

can be mainly divided into three categories, namely,

• Pilot assisted,

• Blind method, and

• Decision Directed Channel Estimation (DDCE).

Pilots are non-data symbols used inherently as a reference signal to estimate

channel by both transmitter and receiver. Pilot based method has a disadvantage

of reduction in transmission rate and an accurate estimate while minimizing the
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number of pilots is still challenging. Interpolation method is being used to find

channel estimation while using pilots. Blind channel estimation is not practical due

to its high number of symbol requirements to get the estimated channel. Moreover,

computational complexity and latency are higher in this case. Decision directed

method uses both pilot and previous estimated or detected data symbol for channel

estimation. Decision directed method is well studied and explained by [98], [99] in

their research work. The significant benefit of DDCE is to reduce the dependency

on the number of pilot subcarrier. If the channel is varying slowly, the usage of

previous channel estimate is not creating an error in detection. However, if the

channel is fast moving, the usage of an outdated estimate will create an error in

symbol estimation. There are two conditions which need to be satisfied for getting a

better estimate from DDCE, namely, channel variation needs to be slow and symbol

estimation needs to be error free.

A simplified basic operational procedure of DDCE is given in Fig. 2.9. In

an OFDM based system, after the FFT, we have the frequency domain received

parallel symbol, y(t) to get into the equalizer. The equalizer gives the estimated

symbol, x̃(t) which is then demodulated by the demodulator. This demodulated or

detected symbol, x̂(t) can be used in the DDCE channel estimation process. The

detected symbol will be divided by received symbol, y(t), to get the new channel

transfer factor, Ĥt. The previous channel estimation can be achieved from the used

preamble or pilot. The channel estimation is updated with the help of the update

factor, α from the previous channel estimate H̃t−1, and current channel estimate,

Ĥt in a simple recursive filter approach to get H̃t as,

H̃t = αĤt + (1− α)H̃t−1, (2.4)

However, if there is any error occurring in symbol decision or detection, that

error will propagate to the channel estimator section and degrade its performance.

If the frequency domain symbol is not equally spaced and the channel is fast fading,

then the DDCE technique cannot provide an accurate performance. Error can easily
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Figure 2.9: Basic principle of DDCE

propagate in further symbols in DDCE. Hence, pilot symbols are used in channel

estimation for further improvement. However, the number is fewer than the actual

pilot based estimation techniques. The accrued symbol decisions are re-modulated

and employed as a pilot symbol for channel estimation in the DDCE algorithm.

Further, if the channel experiences fast fading in which the channel delay vari-

ation is faster in comparison with OFDM symbol duration, then more error occurs

in this kind of hard decision directed channel estimation process. However, some

degree of error can be reduced by taking the weighted average of channel estimation

between successive symbols.

In [98], authors implemented DDCE techniques from a transform domain per-

spective. A simplified operational review can be given in Fig. 2.10, where subcarrier

related channel transfer function (CTF), H[t, n] is obtained from received signal and

previous demodulated signal. In order to get CTF, subcarrier related channel im-

pulse response (CIR), b`(n) is obtained in the CIR estimator. Prediction is used to

get updated channel matrix. However, while using this scheme for channel estima-

tion in the sensing block, prediction is not required, as we are mainly interested in

reconstructed channel matrix obtained from estimated symbol in DDCE process.

H[t, n] = H(tTs, n∆f) = δ(n∆f)
L∑
`=1

b`(n)W
(nτ`/T )
N , (2.5)
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where b�(n) is the frequency­variant CIR of the lth path and τ� is the corresponding

path delay, Ts is the total OFDM symbol duration, T is the base band signal sample

duration, ∆f is the sub­channel spacing, while δ(n∆f) usually corresponds to the

pulse shaping filter. W is the information matrix. W, for example, maybe consists

of the eigenvectors from the covariance matrix of the channel.

CIR and information matrix is recursively transformed to frequency domain CTF

and hence also updated channel matrix and in this process, in practice, due to the

oversampling via subcarriers, channel coefficients are correlated in the frequency

domain. If we can utilize this correlation of CIR in subcarriers, channel estimation

accuracy is increased. We can exploit the subcarrier correlation in frequency, time

and spatial domain to increase the channel estimation.

Detector Decoder

CTF 
Estimator CIR Estimator CIR Predictor

Received symbol Demodulated 
symbol

Estimated 
symbol

Received 
symbol

Demodulated 
symbol

Previous 
channel 
estimate

Information 
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Figure 2.10: Block diagram of the detailed operational procedure for DDCE

2.8 Array Signal Processing and Sensing Param-

eter Estimation

Multiple antennas interconnected in space can form an antenna array architecture

and generate a directional radiation pattern. Number of signal sources, their direc­

tion of arrival at the receiver and signal waveform are the point of consideration

in the case of problem solving in array signal processing [100]. Different types of
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implementation of radar algorithm for OFDM type signals for sensing in a mobile

network can be found in [25].

According to [100], the technology related with multiple antennas is referred to as

space-time processing (STP). Users are continuously moving and multipath effect

creates an even more critical problem in STP. Moreover, due to the propagation

range there is always a loss associated with it. Multiple antennas capture more

energy and can be useful to increase signal to noise power ratio (SNR) by combining

those signals. Fading and interference can be reduced by introducing multiple spatial

antennas.

Antenna array signal processing deals with different spatial and temporal es-

timation task. Linear array is the most suitable and fundamental form of array

where the centres of the antenna elements are aligned in a straight line. There can

be other forms of arrays, namely, planar and conformal array. Recently, AoA esti-

mation is playing a key role in modelling and architectural designing of multipath

radio channel for mobile communication [101]. 2-D AoA estimation is a challenging

task while maintaining less complexity and more accuracy. Location and number

of signal generating source determination is the key concern in AoA estimation and

detection techniques. Parallel implementation of AoA is an efficient way in array

signal processing [102]. AoA estimation method can be divided into four categories,

namely, conventional method based on beamforming, sub-space method which uses

Eigenvalue of input matrix, maximum likelihood method based on optimal tech-

niques, and integrated techniques where property restoral techniques are combined

with sub-space techniques [101], [103].

Most recently, CS based AoA estimation is receiving much attention due to its

robustness and accuracy in location determination [104]. Several other articles can

be found in literature, for example, [105], [106], [107], which provide a theoretical

review on CS techniques. In depth overview and applicability of CS can also be

extracted from the research work in [108]. Application of off-grid CS in channel pa-

rameter estimation can be found in [109], [110]. Research articles, such as [104], [111]
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demonstrate the validation of the sensing method, such as usage of CS techniques

for channel parameters estimation like AoA, delay and Doppler shift in a multipath

environment in resolving moving and static objects.

Generally, classical 2D FFT Method is simple and less complex but this pro-

vides low resolution and requires a full set of measurements in time or frequency

domain. Again, in ESPRIT, reasonable resolution requires at least a large segment

of consecutive samples and this is not always available in uplink sensing. On the

other hand, off-grid type compressive methods do not require consecutive samples

but implementation for real time operation imposes high complexity. In the case

of using on-grid CS methods, the number of available observations in the selected

dimension plays an important role for accuracy and resolution. Further details on

the selection of CS algorithms for our problem in the perceptive mobile network are

discussed in Section 3.1.5.

In this thesis, we demonstrate the feasibility by presenting two schemes, direct

sensing that uses block CS and can directly work on the received signals, and indirect

sensing that uses signal stripping to separate signals from different users and remove

their data symbols. Both schemes are shown to work for MU-MIMO OFDMA

signals, which are typical in modern mobile networks.



Chapter 3

Direct Sensing

This chapter presents the feasibility of estimating sensing parameters directly using

the received signal via developing a CS based scheme and provide simulation results

to validate its effectiveness. This chapter will also give an alternative low-cost and

flexible solution of using an analog antenna array for radio sensing at the base station

receiver in the proposed perceptive mobile networks.

3.1 Direct Sensing in Perceptive Mobile Networks

In this section, we formulate the signal models used for estimating sensing param-

eters. We first introduce general system and channel models, and extend them

to downlink and uplink sensing, and then provide a generalized on-grid model by

quantizing the delay. We show that downlink and uplink can be represented by a

common model, which enables common sensing algorithms. We also provide de-

tailed justification for the choice of this on-grid model and the corresponding CS

techniques in Section 3.1.5. We then present a direct sensing scheme for sensing

parameter estimation in Section 3.1.6 based on the formulated models here.

Notations: (·)H , (·)T and (·)c denote the Hermitian transpose, transpose and

conjugate of a matrix/vector, respectively. | · · · | denotes the element-wise ab-

solute value, (A)n,m denotes the (n,m)-th element of the matrix A, (A)·,m and

(A)m,·denotes the m-th column and row of A, respectively, {an} denotes a vector

47
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with elements an, diag{an} denotes a diagonal matrix with diagonal elements an.

3.1.1 General System and Channel Models

We consider a CRAN system with Q RRUs and each RRU has a uniform linear array

(ULA) with M antenna elements and antenna interval of half a wavelength. These

RRUs cooperate and provide links to K users through MU-MIMO and OFDMA

technologies, i.e., each user may occupy and share only part of the total subcarriers

with other users through MU-MIMO. Each user has a ULA ofMT elements. For both

uplink and downlink, we assume that data symbols are first spatially precoded, and

an IFFT is then applied to each spatial stream. The time domain signals are then

assigned to the corresponding RRUs. Let N denote the number of total subcarriers

and B the total bandwidth. Then the subcarrier interval is f0 = B/N and OFDM

symbol period is Ts = N/B + Tp where Tp is the period of cyclic prefix.

Assume a planar wave-front in signal propagation. The array response vector of

a size-M ULA is given by

a(M, θ) = [1, ejπ sin(θ), · · · , ejπ(M−1) sin(θ)]H , (3.1)

where θ is either AoD or AoA.

Let the AoD and AoA of a multipath be θ` and φ`, ` ∈ [1, L], respectively. For

M1 transmitting and M2 receiving antennas, the M2 ×M1 time-domain baseband

channel impulse response matrix at time t′ can be represented as

H̃(t′) =
L∑
`=1

b`δ(t
′ − τ`)ej2πfD,`t

′
a(M2, φ`)a

T (M1, θ`), (3.2)

where for the `-th multipath, the sensing parameter b` is its amplitude of complex

value accounting for both signal attenuation and initial phase difference, τ` is the

propagation delay, and fD,` is the associated Doppler frequency, and ⊗ denotes the

Kronecker product. Strictly speaking, the amplitude b` is frequency dependent.

For typical cellular systems where the fractional bandwidth (signal bandwidth nor-
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malized to carrier frequency) is small, the variation of b` across the whole band-

width is small and hence we assume it is frequency independent here. For sensing,

{τ`, fD,`, φ`, θ`, b`} are the sensing parameters to be estimated from (3.2). We define

a channel static period when all these parameters remain almost constant, which is

typically a few milliseconds (equivalent to the length of hundreds of OFDM sym-

bols).

Equation (3.2) represents the channel impulse response that can be used for both

communication and sensing. Note that for communications, we generally only need

to know the composited values of the matrix H̃, which are typically obtained by

directly estimating some elements in the channel matrix and obtaining the rest via

interpolation. For radio sensing, however, the system needs to resolve the detailed

channel structure and estimate the sensing parameters. For extended sensing pri-

marily based on machine learning techniques [112], these parameters may not be

explicitly needed, which is beyond the scope of this research.

The received signal is converted to frequency domain for processing. For the t-th

OFDM block, the frequency-domain channel matrix at the n-th subcarrier corre-

sponding to (3.2) is given by

Hn =
L∑
`=1

b`e
−j2πnτ`f0ej2πtfD,`Tsa(M2, φ`)a

T (M1, θ`), (3.3)

where we have approximated the Doppler phase changes over the samples in one

OFDM block as a single value. We will work on several slightly varied versions of

(3.3), but still denote them as Hn to show their connections.

3.1.2 Formulation for Downlink Sensing

As mentioned in Section 2.5.2, sensing is done for the channel environment between

each transmitter and receiver, through the echoes specific to the environment. Hence

for both downlink and uplink sensing, we separately formulate and use the signals

received at each RRU. It is possible to jointly process the signals for sensing, but
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the benefits are not obvious unless the channels are highly correlated. This could

be a significant difference between communication and sensing.

For downlink sensing, each RRU sees reflected downlink signals from itself and

the other Q−1 RRUs. Its received signal at the n-th subcarrier and the t-th OFDM

block can be represented as

yn,t =

Q∑
q=1

Lq∑
`=1

bq,`e
−j2πnτq,`f0ej2πtfD,q,`Ts ·

a(M,φq,`)a
T (M, θq,`)xq,n,t + zn,t, (3.4)

=A(M,φ)CnDtU
T︸ ︷︷ ︸

Hn

xn,t + zn,t, (3.5)

where variables with subscript q are for the q-th RRU, xq,n,t are the transmitted

signals at subcarrier n from the q-th RRU,

A(M,φ) = (A1(M,φ1), · · · ,AQ(M,φQ)), (3.6)

xn,t = (x1,n,t, · · · ,xQ,n,t)T , (3.7)

U = diag{A1(M,θ1),A2(M,θ2), · · · ,AQ(M,θQ)}, (3.8)

and hence U is aMQ×L block diagonal matrix. The `-th column in Aq(M,φq) (or

Aq(M,θq)) is a(M,φq,`) (or a(M, θq,`)), Dt and Cn are diagonal matrices with the

`-th diagonal element being b`e
j2πtfD,`Ts and e−j2πnτ`f0 , respectively, zn,t is the noise

vector. The model in (3.4) has a similar channel structure representation with the

basic one in (3.2), but specifies multipath signals to different RRUs.

According to (3.5), we can see that packing yn,t from multiple RRUs can increase

its length, but the unknown parameters are similarly increased. Hence sensing does

not directly benefit from jointly processing. However, due to channel reciprocity,

parameters for signal propagation between RRUs could be similar. Such a property

can be exploited for joint processing across RRUs.
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3.1.3 Formulation for Uplink Sensing

The received signal in a RRU at the n-th subcarrier and the t-th OFDM block can

be represented as

yn,t =
K∑
k=1

Lk∑
`=1

bk,`e
−j2πnτk,`f0ej2πtfD,k,`Ts ·

a(M,φk,`)a
T (MT , θk,`)xk,n,t + zn,t, (3.9)

Comparing (3.9) with (3.4), we can see that they have similar expressions except

for different symbols and parameter values. Hence, next we will develop a common

on-grid expression for both downlink and uplink sensing.

3.1.4 Generalized Delay-Quantized On-grid Formulation

Let Nu and S be the number and index set of available subcarriers for sensing,

respectively. For downlink sensing, Nu = N . We assume that N � L and N is large

enough such that the quantization error of τ` is small and the delay estimation can be

well approximated as an on-grid estimation problem. Let the delay term e−j2πnτ`f0

be quantized to e−j2πn`/(gN), where g is a small integer and its value depends on the

method used for estimating τ`. The minimal delay quantization is then 1/(gB).

Let K, M and MT denote the total number of users/RRUs, the number of

antennas for sensing, and the number of antennas in each user/RRU for transmitting,

respectively, for either uplink or downlink sensing. We now convert the multipath

signal models in (3.9) and (3.5) to a generalized on-grid (delay only) sparse model, by

representing it using Np � L,Np ≤ gN multipath signals where only L signals are

non-zeros. Referring to (3.5) and (3.9), the generic delay-on-grid model, applicable

to further processing for either downlink sensing or uplink sensing can be represented
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as,

yn,t = A(M,φ)CnDtPUT︸ ︷︷ ︸
Hn

xn,t + zn,t. (3.10)

Note that to show the connection, we used similar symbols here with some of those

in (3.5); however, the definitions are slightly different. Here, at this moment, Cn is

redefined as Cn = diag{e−j2πn/(gN), · · · , e−j2πnNp/(gN)}, re-ordered according to the

quantized delay values; P is a Np×L rectangular permutation matrix that maps the

signals from a user/RRU to its multipath signal, and has only one non-zero element

of value 1 in each column; the other symbols have similar expressions with those

in (3.5), with elements in A(M,φ) and Dt being reordered according to the delay.

More specifically, the columns in A(M,φ) of sizeM×Np and the diagonal elements

in Dt of size Np×Np are now re-ordered and tied to the multipath delay values. U

is an MTK × L block diagonal radiation pattern matrix for MT arrays. xn,t is the

MTK × 1 symbol vector. For the moment, we allow repeated delay values in Cn

to account for multipath signals with the same quantized delay but different AoAs

and/or AoDs.

3.1.5 Selection of Compressive Sensing Algorithms

Recently, there has been significant interest in CS techniques in radar sensing [113],

[114], [115], as well as in JCAS systems [1]. The five sensing parameters in (3.3) can

be estimated either individually or jointly by forming from 1D to 4D CS models. In

this work, we propose to use 1D CS based on the on-grid formulation in (3.10), as

will be detailed in Section 3.1.6 and 4.1, mainly for the following three reasons:

• Although high-dimensional on-grid CS algorithms such as the Tensor tool and

Kronecker CS [116] could offer better performance when there are sufficient

measurements in each dimension, they could face large quantization errors in

the domains of Doppler frequency, AoD and AoA for our problem here, due to

the limited number of measurements associated with short channel coherent
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time and the small number of antennas. Comparatively, the cellular signals

generally have hundreds to thousands of subcarriers, which provide numerous

measurements for the delay. Therefore, quantizing delay only can potentially

lead to smaller errors.

• Off-grid CS algorithms are yet to be extended to high-dimensional problems,

and multi-measurement vector (MMV) and block-CS models. There exist

some CS techniques dealing with off-grid models, such as the perturbation

approach [117] and atomic norms [110]. However, they have high complexity

and also have respective constraints on the parameter estimation range and

the minimum separation of the parameter values.

• Our 1D methodology provides a solid basis for future extension. Generally,

higher-dimensional CS algorithms can achieve better estimation performance,

but they also involve much higher computational complexity. Our 1D method-

ology provides a path for many potential extensions, for example, replacing

the 1D on-grid model with a 1D off-grid model, should off-grid algorithms be

extended to the MMV models.

3.1.6 Direct Estimation of Sensing Parameters

We now propose a scheme based on 1D CS for estimating the spatial parameters

directly using the signal yn,t in (3.10). This scheme works for all the three sensing

methods. We assume that the symbols xn,t are known and N � L. For uplink sens-

ing, this can be achieved by demodulating the symbols as sensing can tolerate more

delay than communication, while for downlink sensing, they are centrally known.

Note that, the range and indices of subcarriers in downlink and uplink sensing could

be different. RRUs can see signals at more subcarriers in downlink sensing than

uplink because in the uplink the total subcarriers could be shared by a different

group of users and channels are specific to each user.
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We first organize the received signal to a form such that from it 1D CS al-

gorithms can be applied to get the estimates for the delay. From the associated

amplitude estimates corresponding to the delay estimates, we then retrieve other

sensing parameters.

Rewrite (3.10) as

yTn,t = xTn,t(c
T
n ⊗ IMTK)VA

T (M,φ). (3.11)

where cn = (e−j2πn/(gN), · · · , e−j2πnNp/(gN))T , IMTK is an MTK × MTK identity

matrix, and V is a MTKNp ×Np block diagonal matrix

V = diag{b`e−j2πtfD,`TsUp`}`=1,··· ,Np , (3.12)

with p` being the `-th column of PT .

We have now separated signals xTn,t(c
T
n ⊗ IMTK) that are known and dependent

on n from other parameters. Then we can stack all row vectors yTn,t, n ∈ S to a

matrix1, and obtain

Yt , (y1,t, · · · ,yn,t, · · · )T = WVAT (M,φ), (3.13)

where W is a Nu ×MTKNp matrix with its n-th row being xTn,t(c
T
n ⊗ IMTK).

Inspecting (3.13), we can see that the estimation problem in (3.13) can be treated

as a MMV block sparse problem [118] with Nu×M observations Yt, sensing matrix

W, and block sparse signalsVAT (M,φ) of L-sparsity. LetV = (VT
1 ,V

T
2 , · · · ,VT

Np
)T

where V` denotes the MTK ×Np block signals, and L out of Np V`s have non-zero

elements. The non-zero rows and their values in VAT (M,φ) can then be solved by

various MMV CS algorithms, such as the fast marginalized block sparse Bayesian

learning algorithm (BSBL-FM) in [118, 119] that is adopted in this work. After

1In uplink sensing, there may be less than N vectors available and they may be dis-continuous
in index.
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applying BSBL-FM in (3.13), it generate estimates for V`A
T (M,φ), ` = 1, · · · , Np.

The indices of the non-zero blocks of estimated VAT (M,φ) are used to extract

the quantized delay values from the corresponding element of sensing matrix W.

The estimated VAT (M,φ) amplitude values can be further used to estimate other

sensing parameters.

The detailed estimation process based on VAT (M,φ) is described for two cases

next. We first consider a simple case when there is only one multipath at each

delay value. In this case, a simple estimation algorithm is available for estimating

all sensing parameters. We then extend the solution to the case when there are

multiple multipath signals at each quantized delay bin. We will show that when

these multipath signals are from different RRUs, the parameters can be similarly

estimated to those in the single multipath case. Otherwise, more complex techniques

need to be applied. The method for separating the two cases is yet to be developed.

Single Multipath for Each Delay

We first consider the noiseless case. Once the L nonzero blocks V`A
T (M,φ) are

obtained by BSBL-FM, we can then get the L delay estimates according to the

indices of the nonzero blocks, from the corresponding element of W.

From (3.12) we can see that only the `-th column in V` has non-zero elements

b`e
−j2πtfD,`TsUp` if b` 6= 0. Therefore,

V`A
T (M,φ) = b`e

−j2πtfD,`TsUp`a
T (M,φ`). (3.14)

Since p` only has a single non-zero element 1, Up` will generate a column vector

corresponding to one column in U. Because U is a block diagonal matrix, only 1

out of K MT × 1 vectors in each column is non-zero.

Now represent V`A
T (M,φ) as K MT ×M sub-matrices (BT

`,1, · · · ,BT
`,K)

T . If

B`,k 6= 0, then this multipath is from the k-th RRU (user). We can also see that

B`,k = b`e
−j2πtfD,`Tsa(MT , θk,`)a

T (M,φk,`). (3.15)
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From B`,k, calculating the cross-correlation between columns and rows, we can ob-

tain AoA or AoD estimates, depending on the order of calculation. Let (B`,k)·,p

and (B`,k)·,q denote the p-th column and q-th row of (B`,k), respectively. We then

have

sin(φk,`) ≈
1

π
∠

(
M−1∑
p=1

((B`,k)·,p)
∗(B`,k)·,p+1

)
,

sin(θk,`) ≈
1

π
∠

(
MT−1∑
q=1

((B`,k)q,·)
∗(B`,k)q+1,·

)
. (3.16)

The Doppler frequency fD,` can be estimated across multiple OFDM blocks, based

on the cross-correlation of B`,k in these blocks: Let B`,k,t denote the B`,k obtained

from the t-th OFDM block signal Yt, and Td be the total OFDM blocks used for

estimating the Doppler frequency, then we get

fD,` ≈
1

2πTs
∠

(
Nd−1∑
t=1

(B`,k,t)(B`,k,t+1)
∗

)
. (3.17)

The absolute value of b` can be estimated as the mean power of all elements in B`,k.

A better estimate is to use the cross-correlation output from estimating AoA. That

is

|b`|2 ≈

∣∣∣∣∣
M−1∑
p=1

((B`,k)·,p)
∗(B`,k)·,p+1

∣∣∣∣∣ . (3.18)

In noisy cases, we can sort the blocks V`A
T (M,φ), ` = 1, · · · , Np according to the

estimates of |b`| and use a threshold to filter out blocks corresponding to multipath

signals. This threshold can be set with reference to the expected received energy for

that delay value, using the path loss model. We can also keep the estimated results

for a subset of Np with larger estimated b`s, and then apply data fusion techniques

over all measurements over a segment of space, time and frequency domains to get

synthesized sensing results.
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Multiple Multipath Signals with the Same Delay

We consider the case where there are two multipath signals with the same delay.

The analysis below can be easily extended to more general scenarios. Let cn =

(cTn,1, c
T
n,2, c

T
n,2)

T , where cn,2 represents the repeated entries. We can accordingly

represent W = (W1,W2,W2) and V = (VT
1 ,V

T
2 ,V

T
3 )

T in (3.13). Then we have

WVAT (M,φ) = (W1,W2)

 V1A
T (M,φ)

(V2 +V3)A
T (M,φ)

 . (3.19)

This shows that we can always use a cn with single entry for each quantized delay,

and multiple signals with different angles will show up in the MMV [120] estimates.

More specifically, if ` ∈ S multipath signals have the same delays but different

AoAs or AoDs, we will then get

V`A
T (M,φ) =

∑
`∈S

b`e
−j2πtfD,`TsUp`a

T (M,φ`). (3.20)

If these multipath signals are from different RRUs (users), multiple B`,ks will

be non-zero. Hence in this case, sensing parameters for these multipath signals can

be estimated using the algorithms similar to those for the single multipath case in

Section 3.1.6.

If multipaths are from the same RRU (user), we will have

B̂`,k =
∑
`∈S

b`e
−j2πtfD,`Tsa(MT , θk,`)a

T (M,φk,`). (3.21)

Obtaining solution from (3.21) is a complicated estimation problem. When the

number of multipaths in which the specific delay value is small, which is a typical

scenario, the AoAs and AoDs can be estimated by applying 2D spectrum analysis

techniques to each B̂`,k, such as by 2D-ESPRIT or 2D-MUSIC algorithms. Across

multiple OFDM blocks, 3D spectrum analysis techniques could be applied to addi-

tionally get the estimate for Doppler shift too.
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3.1.7 Simulation Results for Direct Sensing

We present simulation results here to validate the effectiveness of the proposed

framework and parameter estimation schemes. For solving the MMV problems, we

use the BSBL [118] in direct estimation and Sparse Bayesian Learning (SBL) [121]

in indirect estimation.

We consider a system with 4 RRUs, providing connections to 4 users through

multiuser MIMO. Each RRU has 4 antennas and each MS has 1 antenna. The

carrier frequency is 2.35 GHz and the signal bandwidth is 100 MHz. Unless stated

otherwise, for downlink, all N = 512 subcarriers are used, and for uplink, 128

subcarriers with random indices are shared by four users using MU-MIMO. We

assume radar cross-section factor (RCS) is equal to 1 in the simulation and used the

same value throughout the thesis. That means the presented sensing results indicate

targets with cross sectional area of 1 m2.

The multipath channels are randomly generated in cluster following a complex

Gaussian distribution. We use a pathloss model with pathloss factor 4 for downlink

and 2 for uplink sensing. The transmission power of the RRU and MS is 30 dBm [122]

and 25 dBm [123] respectively. Throughout this work, we assume that the noise

is AWGN with thermal noise power N0 = −174 dBm/Hz [124]. Hence the total

thermal noise in the receiver is −174+10 log(108) = −94 dBm and this will be used

throughout the thesis.

Multipath signals for each RRU/MS are generated randomly in cluster, mimick-

ing reflected/scattered signals from objects. Multipaths in each cluster are generated

following uniform distributions of [10, 15] for the total multipath number, [0, 45] de-

grees for direction span, [0, 45] m for distance, and [0, 600] Hz for Doppler frequency.

Across clusters there are additional offsets in direction ([−75, 75] degrees), distance

([50, 180] m) and moving speed ([−40, 40] m/s), reflecting the different locations of

the transmitter to the sensing receiver. Unless stated otherwise, delays are on grid

with an interval of 10 ns, corresponding to a distance quantization of 3 m. Delays

from the same RRU/MS are kept different. However, they could be the same be-
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tween RRUs/MSs. Random continuous values are used for Doppler shift, AoAs and

AoDs.

Note that in the simulation, the variance of the AWGN noise is determined from

the product of the basic thermal noise power spectral density and the bandwidth.

We can expect that downlink sensing can support a sensing range of more than 150

meters at a ground level and more towards the air, and uplink sensing can support

about 50 meters, given that the transmission power of a base station and mobile

phone is 30 dBm [122] and 25 dBm [123] respectively. This estimation is based

on past work on, e.g., practical experimental results of passive radar using signals

from LTE mobile base stations [47] and the simulation results that use practical

system parameters as presented in [17] and in this thesis. While the transmission

power is fixed, the multipath signals reflected from objects at different distances to

the transceiver will lead to different SNRs for estimating the sensing parameters.

From the pathloss factors and the multipath propagation distances, we can see that

the received SNR for estimating the sensing parameters for a particular multipath

could be as low as 0 dBm for the downlink sensing, while it is much higher (≥ 30

dB) for uplink sensing. For the mentioned simulated sensing range, the SNR value

is that much due to the pathloss factor 4 and 2 for downlink and uplink sensing

respectively.

Based on these parameters, we can work out an approximate (minimum) channel

stable period in which sensing parameters remain unchanged. For example, assume

this period lasts when vehicles/objects move less than 5 cm, and the maximum

relative moving speed is 30 m/s. This period is then 0.05/30 = 0.0017 s, equivalent

to the period of (0.0017/(512/108 × 1.25) ≈ 265 OFDM blocks.

In all the figures below, unless stated otherwise, every plus or circle represents

parameters for one multipath: Pluses and circles are for estimated and actual ones,

respectively. Different colors represent multipath from different RRUs/MSs. In each

figure, 10 implementations are plotted. The sensing parameters are fixed in all 10

implementations, but the data symbols and noise are changed. The AoA estimates
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Figure 3.1: 10 implementation results for AoA-Distance estimation in direct down-
link sensing.

are shown in the form of AoA phase, π sin(φ`), in either degrees or radian.

Figs. 3.1 and 3.2 present typical AoA-Distance results for downlink and uplink

sensing respectively. Note that the depicted distance is the total signal travelling

distance between a transmitter and the receiver, and does not necessarily translate

to the distance of objects to the receiver directly. Complex across-RRU synthesizing

is needed to achieve the translation, particularly for uplink sensing. Both figures

demonstrate that the estimates are quite robust and accurate, when the received

SNR is sufficiently high. Note that there are no matching estimates for some mul-

tipath at distances larger than approximately 145 meters due to the low SNR here.

This is particularly obvious in the downlink sensing case where the adopted pathloss

factor is 4, compared to 2 in the uplink.
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Figure 3.2: 10 implementation results for AoA-Distance estimation for direct uplink
sensing.

3.1.8 Summary

We have developed a direct sensing framework for a perceptive mobile network

where three types of sensing methods can be integrated with communication. A

BSBL scheme is developed for estimating sensing parameters, and its effectiveness

is validated by simulation results.

3.2 Analog Antenna based Radio Sensing

In this section, we consider an analog antenna array at the BS receiver as an al-

ternative low-cost solution for radio sensing in the perceptive mobile networks. We

provide receiver beamforming design, and advanced CS signal processing techniques

for sensing parameter estimation in a MU-MIMO communications system. Simula-

tion results are provided and validate the effectiveness of the proposed solution and

sensing algorithms.
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3.2.1 Problem Statement

The recently proposed perceptive mobile network [1] can provide integrated commu-

nication and radio sensing in one system. On a unified sensing platform, extraction

of sensing parameters using both uplink and downlink signals is proposed. In order

to achieve sensing using downlink signals, the transmitter and receiver at a RRU

need to be able to operate simultaneously. A simple solution is to use separated

antennas for transmitter and receiver. However, to obtain good estimation for sens-

ing parameters, particularly, angle of arrivals of signals, a large number of receiving

antennas, including extra antenna installation space, and RF chains are also re-

quired. In turn, these can significantly increase the cost of the receiver, although

the transmitter can remain almost unchanged.

Here, we investigate the low-cost option of using an analog phased antenna ar-

ray dedicated to the receiver for sensing and communications, and develop sensing

parameter estimation algorithms, based on the same MU-MIMO model in [1].

We propose 1-D CS algorithm for parameter estimation in Section 3.2.4. Nu-

merical results are provided and verify the effectiveness of the proposed scheme.

3.2.2 Problem Formulation

We here focus on estimating spatial parameters including distance, direction, and

speed of objects by extracting the composition of mobile signals.

We consider a typical radio system, similar to [1], where Q RRUs collaboratively

facilitate MU-MIMO service to K users. Each RRU and each user have a linear

antenna array of M elements and MT elements, respectively. We used MIMO-

OFDMA type of modulation for both uplink and downlink as designed in Section

3.1.2 and Section 3.1.3, respectively.

The task for sensing is to estimate these spatial parameters {τ`, fD,`, φ`, θ`, b`}, ` =

1, · · · , L from the received signals. We defined downlink and uplink sensing, as

sensing performed at a RRU employing downlink transmitted signals from itself

and other cooperative RRUs and uplink signals from users, respectively [1], [2].
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Whereas they can have a similar mathematical formation [1]. In turn, intuitively,

from the downlink perspective, processed received signal model at a RRU at the

n-th subcarrier and the t-th OFDM block can be represented as (3.5).

Next we will develop a general on-grid expression for both downlink and uplink

sensing. In formulating the sensing problem next, we will ignore system imperfec-

tions such as carrier frequency offsets and timing offsets between different RRUs,

and between MSs and RRUs.

3.2.3 Generalized Delay-Quantized On-grid Formulation

We assume N � L to reduce the quantization error of τ` and the delay estimation

can be well approximated as an on-grid estimation problem. Let e−j2πnτ`′f0 be quan-

tized to e−j2πn`/(N
′), where N ′ can equal to or be integer multiples of N ; this implies

the minimal resolvable delay as 1/N ′.

LetK andMT denote the total number of users/RRUs and number of antennas in

each user/RRU, respectively, for either uplink or downlink sensing. We now convert

the multipath signal models of both uplink and downlink to a generalized on-grid

(delay only) sparse model, by taking Np � L,Np ≤ N ′ multipath signals where only

L signals are non-zeros. Referring to (3.5), after applying receiver beamforming with

Yn,t, the delay-on-grid received signal model can be represented as

yn,t =gTt A(M,φ)CnDtPUTxn,t + zn,t, (3.22)

where gt is the M × 1 beamforming vector applied to the t-th OFDM block, Cn

redefined as Cn = diag{1, e−j2πn/N ′ , · · · , e−j2πn(Np−1)/N ′}, P is an Np×L rectangular

permutation matrix that maps the signals from a user/RRU to its multipath signal,

U is anMTK×L matrix while xn,t is theMTK×1 symbol vector; the other symbols

have similar expressions with those in (3.5), with the columns in A(M,φ) of size

M×Np and the diagonal elements in Dt of size Np×Np are reordered as well. Here,

we allow repeated delay values in Cn to account for multipath signals with the same
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quantized delay but different AoAs and/or AoDs.

The design of beamforming vectors gt depends on factors such as energy collec-

tion and AoA estimation algorithms. Without any prior knowledge about the AoA,

a simple and efficient way is to take it from equally-spaced columns of an M ×M

DFT matrix

F = {e−j2πmt′/M},m, t′ = 0, · · · ,M − 1. (3.23)

Assume that channel parameters are fixed during T =M/c1 OFDM blocks where c1

is an integer. Then at the phased array we repeatedly apply T M × 1 beamforming

vectors

gt = {e−j2πm(t0+mod(t,T )c1)/M},m = 0, · · · ,M − 1,

where t0 is an initial offset value, and mod(·, ·) is the modulus operator.

3.2.4 Estimation of Spatial Parameters

We now demonstrate a scheme based on 1-D CS for estimating the spatial param-

eters. For uplink sensing, symbols xns can be achieved by demodulating them as

sensing can tolerate more delay than communication. On the contrary, for downlink

sensing, they are centrally known. Note, the range of subcarriers in downlink and

uplink sensing could be different. RRUs can obtain signals at more subcarriers in

downlink sensing than uplink, as the total subcarriers may be shared by a different

group of users.

Single Multipath for Each Delay: Rewrite (3.22) as

yTn,t = xTn,t(c
T
n ⊗ IMTK)VtA

T (M,φ)gt, (3.24)

where ⊗ denotes the Kronecker product, cn = (1, e−j2πn/N
′
, · · · , e−j2π(Np−1)/N ′)T ,

IMTK is an MTK ×MTK identity matrix, and V is a MTKNp ×Np block diagonal
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matrix with p` being the `-th column of PT . Note,

Vt = diag{b`ej2πtfD,`TsUp`}`=1,··· ,Np . (3.25)

We have now separated signals xTn,t(c
T
n ⊗ IMTK) that are known and dependent

on n from others. Let Ss denote the set of available subcarriers for sensing and let

Ns denote its size. Stacking Ns y
T
n,t, n ∈ Ss to a vector generates

yt = WtVtA
T (M,φ)gt, (3.26)

where Wt is an Ns ×MTKNp matrix with its n-th row being xTn,t(c
T
n ⊗ IMTK).

Inspecting (3.26), we can see that the estimation problem can be formulated as

a block sparse problem [118] with Ns × 1 observations yt, sensing matrix Wt, and

block sparse signals VtA
T (M,φ)gt of L-sparsity. Let Vt = (VT

1 ,V
T
2 , · · · ,VT

Np
)T

where V` denotes the MTK ×Np block signals, and L out of Np V`s have non-zero

elements. A block sparse CS algorithm can solve (3.26) and generate estimates for

V`A
T (M,φ)gt, ` = 1, · · · , Np.

We first consider noiseless cases. Once the L nonzero blocks V`A
T (M,φ)gt are

determined, we can then get the L delay estimates according to the indices of the

nonzero blocks, from the corresponding element of sensing matrix W.

In (3.25), only the `-th column in V` has non-zero elements b`e
j2πtfD,`TsUp` if

b` 6= 0. Therefore,

V`A
T (M,φ)gt = b`e

j2πtfD,`TsUp`a
T (M,φ`)gt. (3.27)

Since p` only has a single non-zero element 1, Up` will generate a column vector

corresponding to one column in U. As U is a block diagonal matrix, only 1 out of

K MT × 1 vectors in each column is non-zero.

Now represent V`A
T (M,φ)gt as K MT × 1 sub-vectors (bT`,1,t, · · · ,bT`,K,t)T . If
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b`,k,t 6= 0, then this multipath is from the k-th RRU (user). Hence,

b`,k,t = b`e
j2πtfD,`Tsa(MT , θk,`)a

T (M,φk,`)gt. (3.28)

From b`,k,t, calculating the cross-correlation between rows, we can obtain AoD

estimates. The mean energy of b`,k,t can also be estimated directly via the cross-

correlation output.

When the channel parameters remain fixed over at least 2T OFDM blocks, we

can calculate the cross correlation and use the following equation to estimate Doppler

shift:

fD,` = ∠(
t1+T−1∑
t=t1

(bH`,k,tb`,k,t+T ))/(2πTsT ), (3.29)

where we have exploited the fact that TsTfD,` is practically much smaller than 1

and hence there is no phase ambiguity here.

For the estimation of AoA, we can exploit b`,k,ts across T OFDM symbols. We

can either ignore the phase variation caused by Doppler shift and process the signals

per each transmitter antenna, or apply the estimated AoD and Doppler shift fD,` to

(3.28) to improve signal energy. Consider the latter as an example. For M −T > 1,

b`,k,t can be left-multiplied with ej2πtfD,`TsaH(MT , θk,`) to remove Doppler shift and

AoD terms, and to combine signals from different transmit antennas. Stacking the

resulting signals over the first T blocks into a T × 1 vector, we get

q`,k =MT b`G
Ta(M,φk,`), (3.30)

where G is an M × T matrix with the (mod(t, T ) + 1)-th column being gt. The

signal q`,k can be further averaged over the first and second T blocks.

When T < M , the pseudo-inverse of GT does not exist, and hence a(M,φk,`)

cannot be obtained directly. We propose to use the following approach to estimate

φk,` instead.
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Note that gTt a(M,φk,`) can be computed as

gTt a(M,φk,`)

=
M−1∑
m=0

ej2πm(α−(t0+mod(t,T )c1)/M)

=
T−1∑
t′=0

ej2πt
′(α−t0/M)1− ej2πM(α−t0/M)

1− ej2πT (α−t0/M)︸ ︷︷ ︸
ρt′

·R (3.31)

where α , d sin(φk,`)/λ and R = e−j2πt
′mod(t,T )/T . Note that this is a T-point DFT

of ρt′ , and in ρt′ , only e
j2πt′(α−t0/M) depends on t′.

Hence, we can apply inverse DFT to q`,k in (3.30) and get {ρt′}, t′ = 1, · · · , T ,

and then get the AoA estimation through computing

sin(φk,`) =
λ

2πd
∠(ej2πt0/M

T−1∑
t′=1

ρt′+1ρ
∗
t′), (3.32)

where (·)∗ denotes the conjugate operator. Note that Mtb` in q`,k is absorbed to ρt′

during this calculation and has no impact on the result through the angle operation.

Once all other parameters are estimated in (3.30), b` can then be obtained too.

In noisy cases, we can sort the blocks V`A
T (M,φ)gt, ` = 1, · · · , Np according

to the energy of the block signals and use a threshold to pick up blocks with larger

energy and corresponding to efficient multipath signals. This threshold may be

determined by measuring the mean power across T OFDM blocks when beamforming

completes one cycle of scanning.

The advantage of this 1-D approach is that continuous values of sensing param-

eters except for delay can all be estimated, in principle, at any resolution, if there

is only one multipath in each delay bin. This is in contrast to many high-dimension

CS algorithms which largely depend on quantization and on-grid accuracy.

This observation can be extended to any other on-grid parameter. For example,

if massive MIMO is available and number of receiving antennas is much larger than

the total number of multipath signals, then we can apply 1-D CS to an AoA-on-
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grid model revised from (3.5), and then we can get accurate estimation for all other

parameters including delay.

Multiple Multipath Signals with the Same Delay: Similar to those shown

for MIMO systems in [1] and in Section 3.1.6, if ` ∈ Sd multipath signals have the

same delays but different AoAs or AoDs, we will get

V`A
T (M,φ)gt

=
∑
`∈Sd

b`e
−j2πtfD,`TsUp`a

T (M,φ`)gt (3.33)

If these multipath signals are from different RRUs (users), multiple b`,k,ts will

be non-zero. Hence, these multipath signals can be estimated straightforwardly,

by applying the results from (3.28) to the end of Subsection 3.2.4 to each user

separately. To determine which users’ multipath signals are located in one delay

bin, both the largest power of blocks in one delay bin and average powers across the

delays bins for a particular user may be exploited. Detailed design remains as an

open question. In simulations we use a threshold corresponding to 50% of the mean

signal energy in each delay bin identified containing efficient multipath signals.

A very challenging scenario is when L`,k > 1 multipath signals are from the same

RRU (user). So,

b`,k,t =
∑
`∈Sd

b`e
−j2πtfD,`Tsa(MT , θk,`)a

T (M,φk,`)gt

= ATDAT
Rgt, (3.34)

where AT is an MT × L`,k matrix with columns a(MT , θk,`), AR is an M × L`,k

matrix with columns a(M,φk,`), D is a diagonal matrix with diagonal elements

b`e
−j2πtfD,`Ts , all with ` ∈ Sd.

When the numbers of antennas MT and M are large, it is possible to apply the

CS technique to estimate both AoA and AoD, by working over T OFDM blocks and

ignoring the change of Doppler shift between them. When MT and M are not very
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large but are larger than two times the multipath number, the AoD can be estimated

using spectrum analysis techniques such as ESPRIT or MUSIC using individual b`,k,t

or across T b`,k,ts. However, there seems no efficient spectrum analysis techniques

or other techniques to accurately estimating AoA for the signals in (3.34), when

T < M . A qualitative approach is to determine a coarse AoA according to the

signal energy of b`,k,t and the beamforming scanning direction.

When T ≥ M beamforming scanning over a stable channel period is possible

(phase variation due to Doppler is ignored), we can stack T b`,k,ts into a matrix

and remove gts impact via right multiplying the matrix with the (pseudo) inverse of

the M × T matrix {gt}. Then, we get a standard expression for which conventional

spectrum analysis techniques or 2-D DFT analysis can be applied.

3.2.5 Simulation Results

We present simulation results using the block Bayesian Sparse Learning algorithm

[118] to validate the effectiveness of our parameter estimation scheme.

We consider a system with 4 RRUs, each with an 8-element antenna array,

providing connection to 4 users, each with 2 antennas. The carrier frequency is

2.35 GHz, N = 256, d = λ/2, and B = 100 MHz. The total thermal noise in the

receiver is −97 dBm, the transmission power is 25 dBm and the used pathloss model

is the same as in [2]. Multipath signals for each RRU/MS are formed randomly

in a cluster, mimicking reflected/scattered signals from objects. Each cluster is

generated following uniform distributions of [3, 5] for the total multipath number and

[0, 45] degrees for direction span, [0, 90] m for distance, and [0, 600] Hz for Doppler

frequency. Across clusters there are additional offsets in direction, distance and

Doppler frequency. AoAs, AoDs and Doppler frequencies are randomly generated

within a given range. Delays, from the same RRU/MS are different while they are

the same between RRUs/MSs. On-grid delay interval of 10 ns refers to a distance

resolution of 3 m. Random continuous values are used for Doppler shift, AoAs and

AoDs.
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Figure 3.3: Parameter estimation for downlink sensing shows in (a), (b), while (c) and
(d) refers to uplink sensing. Every star/circle refers to parameters for one multipath;
stars and circles are for estimated and actual ones, respectively. Different colors represent
multipath from different RRUs in (a), (b) and users in (c), (d).

Fig. 3.3 displays the simulation results for parameter estimation with T = 4.

For downlink sensing, in (a), (b), all subcarriers are used. It shows that AoD and

AoA estimates are accurately placed with the actual ones. For uplink sensing, in

(c), (d), 64 randomly selected subcarriers are used by 4 users simultaneously. Esti-

mates for this are with a few mismatched cases, especially the AoA (Figure 3.3(d))

with three circles. It reveals that, downlink sensing exploits centrally available sig-

nals at more subcarriers at static RRUs with larger arrays. However, in uplink,

diverse resource allocation with random multiuser access draws an overall impact

on estimation accuracy.

The depicted distance is the total signal travelling distance between a transmitter

and the receiver, and does not necessarily translate to the distance of objects to

the receiver directly. Complex across-RRU synthesizing is needed to achieve this
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translation, particularly for uplink sensing. Both figures demonstrate that when

SNR is sufficiently high, the estimated results show a very close match with the

actual ones. When the SNR decreases, estimation accuracy for multipath signals

with lower power degrades.

3.2.6 Summary

This research work presents a basic spatial parameter estimation method based

on an analog antenna array for a sensing system unified with communication. A

compressive scheme is developed for estimation, and its effectiveness is validated

by simulation results. Our work here provides a step forward in demonstrating

the feasibility of an analog array in receiver cost minimization for our perceptive

network.





Chapter 4

Indirect Sensing

This chapter presents the indirect sensing schemes combined with CS techniques for

sensing parameter estimation for both downlink and uplink sensing in the perceptive

mobile networks. We propose to reconstruct the channel matrix by demodulated

symbols after the channel estimation process. The reconstructed channel later will

be used in sensing parameter estimation in the sensing algorithm and we called it

indirect sensing.

4.1 Indirect Estimation Using Signal Stripping

We have seen in the previous chapter that due to the MU-MIMO signal, block CS is

applied to estimate the sensing parameters. It has high complexity, and is sensitive

to system imperfections, such as quantization errors in the delay. In this section,

we propose another sensing parameter estimating scheme called signal stripping,

which derives simpler signal models from the received signals, and then estimates

parameters based on these simplified models.

4.1.1 Signal Stripping

The idea of signal stripping is to simplify the signal input to sensing algorithms by

removing the modulated symbols from the signal and separating channels for differ-

ent nodes (MSs for uplink sensing or RRUs for downlink sensing). More specifically,

73
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this approach uses the estimated data symbols and channels to strip signals from

different nodes, and keep as few as a single node’s composited channel matrix (with

estimated elements in the channel matrix) as input to sensing. This method can

significantly reduce the number of sensing parameters to be estimated each time,

reduce the algorithm complexity and improve its performance, should the estimated

composited channel matrix for each node be accurate.

Referring to (3.5) or (3.9), the key is to get an accurate frequency-domain channel

matrix estimate at subcarrier n, at time t for user k

Ĥn,k,t = Hn,k,t +∆n,k,t, (4.1)

where ∆n,k,t is the channel estimation error, and

Hn,k,t =

Lk∑
`=1

bk,t,`e
−j2πnτk,t,`f0ej2πtfD,k,t,`Ts ·

a(M,φk,t,`)a
T (MT , θk,t,`). (4.2)

In this work, we do not provide detailed algorithms for refining the compos-

ited channel estimation, but present a general approach. The impact of channel

estimation error on the performance of sensing will be evaluated in Section 4.1.3.

The composited channel matrix in (4.1) can be efficiently obtained by estimat-

ing and refining the composited channels. Channel matrices in communications are

generally estimated with the assistance of interpolation techniques and hence their

accuracies are insufficient for estimating sensing parameters. The typically required

updating rate for sensing is no more than one kHz, and the period of a communica-

tion packet is in the order of microseconds. Therefore we can exploit demodulated

signals in communication to reconstruct composited channel matrix. In other words,

we can reconstruct data symbols after decoding the whole communication packet,

and then use them to get multiple channel estimates during this period. This process

can be implemented similar to the DDCE scheme in communication systems [99].



4.1. INDIRECT ESTIMATION USING SIGNAL STRIPPING 75

Different to conventional DDCE algorithms, we only need to reconstruct channels

as accurately as possible, but do not need to do channel prediction.

4.1.2 Estimation of Sensing Parameters by Indirect Sensing

When the channel estimates in (4.1) are obtained, we can use them as inputs to

sensing algorithms, and get the estimates for sensing parameters for each user. This

is a typical mathematical model in radar signal processing [125]. Here we only

consider the case when there is only one multipath signal within each quantized

delay bin for each user, and propose a 1D CS based algorithm for sensing parameter

estimation. The algorithm here can also be applied to the case when only the

received signals at pilots such as the DMRS in 5G NR are used for sensing, since

these pilots are typically orthogonal for different MSs.

We use (4.2) as a generalized channel matrix model, and drop the subscripts t

and k in the parameter variables. Referring to Section 3.1.4 we consider a similar

delay-on-grid model where the delays τ`f0 are quantized as q`/N
′ with q` being an

integer and N ′ = gN . Therefore e−j2πnτ`f0 ≈ e−j2πnq`/N
′
. This delay-on-grid model

for reconstructed channel matrix can be written as

Hn = ARDCnA
T
T , (4.3)

where the `-th column in AR (or AT ) is a(M,φ`) (or a(MT , θ`)), D and Cn are

diagonal matrices with the `-th diagonal element being b`e
j2πtfD,`Ts and e−j2πnq`/N

′
,

respectively. The m-th column of Hn can be represented as

hn,m = ARDPmcn, (4.4)

where Pm is a diagonal matrix with diagonal elements being the m-th row of AT ,

and cn is an L× 1 vector with the `-th element e−j2πnq`/N
′
.

We may have a few options to process different columns of Hn. For the least, we

need two columns so that AoD can be estimated. Use Mt = 2 as a simple example.
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Transpose hn,m,m = 1, 2 and stack them into a row vector

(hTn,1, h
T
n,2) = cTnD(P1A

T
R, P2A

T
R). (4.5)

Now stacking similarly formulated row vectors for all usable subcarriers n ∈ S

together, we can obtain

H̃ = WD(P1A
T
R, P2A

T
R)︸ ︷︷ ︸

G

, (4.6)

where the `-th column of the Nu × L matrix W is {e−j2πnq`/N ′}, n ∈ S .

We now convert the multipath signal model in (4.6) to a generalized delay-on-

grid sparse model, by representing it using Np � L,Np ≤ N ′ multipath signals

where only L signals are non-zeros. Without any prior knowledge of the delay, we

can use Np = N ′; otherwise, the range of delays can be reduced. We can then treat

it as a MMV CS problem and use algorithms such as orthogonal matching pursuit

(OMP) or Bayesian CS to get the estimate for W andG. The dictionary is a partial

Nu ×Np DFT matrix F. When Np = N ′, its q-th column is {ej2πnq/N ′}, n ∈ S .

Let g`,p be the (`, p)-th element of G in (4.6). Once the delays and G are

estimated, we can get the estimates for AoA and AoD through

2πd sin(φ`)/λ = ∠
( 1

2M

1∑
k=0

M−1∑
p=1

gH`,p+kMg`,p+1+kM︸ ︷︷ ︸
ε`

)
,

2πd sin(θ`)/λ = ∠
( 1

M

M∑
p=1

gH`,pg`,p+M︸ ︷︷ ︸
ξ`

)
,

respectively. The value of |b`|2 can also be obtained easily during the process of

computing AoA and AoD, being either |ε`|2 or |ξ`|2. The estimates of |b`|2 can be

used to find the effective multipath delay bins in noisy channels, by using a threshold

determined, for example, as a fractional scalar of the maximum power of multipath

signals.
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The computation above can be readily extended to the case when MT > 2.

This process can be repeated over multiple refined channel estimates over the

channel static period. The Doppler shift can then be estimated from the cross-

correlation between two or more Gs that are sufficiently spaced in time, when the

channel still remains stable except for the Doppler phase terms. Let Gt denote the

estimate of G from the t-th refined channel estimates. Using two Gs the estimates

of Doppler phase can be obtained as

2πfD,`Ts =
Ts
T
∠
(
(Gt+T )`,· ((Gt)`,·)

H
)
, (4.7)

where (X)`,· denotes the `-th row of the matrix X and T is the interval of two

symbols used for estimating Doppler shift.

4.1.3 Simulation Results on Indirect Sensing

Instead of implementing the DDCE algorithm to actually refine the channel esti-

mation, we introduce channel estimation error in (4.1) as AWGN to evaluate the

performance for the indirect estimation method. The signal-to-interference ratio

(SIR) between the mean power of the channel coefficients and the reconstruction

error is denoted by η.

Fig. 4.1 shows the results for uplink sensing. It can be seen that the estimates of

delay and AoA are accurate and are robust to the introduced channel reconstruction

error. The estimates of moving speed, through estimating the Doppler frequency

fD,`, have relatively large errors because the actual Doppler phase values are very

small and hence sensitive to both noise and the interval T .

In Fig. 4.2, we present the results for the case when delay is generated as

continuous values (off-grid model) for downlink sensing. The figures show that

delays and AoAs are identified with degraded but still acceptable accuracy, but the

speed estimation varies significantly across different realizations. As a comparison,

we also plot the sensing results for AoA-Distance in Fig. 4.3 by applying the classical
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Figure 4.1: 10 implementation results for indirect uplink sensing with channel SIR
η = 15dB, and symbol sampling interval T = 20Ts.

2D DFT method to the signal in (4.2). For AoA, a 64-point DFT is applied to the 4

signals received at four antennas. The image is cleared by setting 2D-DFT outputs

with power 25 dB lower than the maximum to zeros. Comparing Fig. 4.2 with Fig.

4.3, we can see that the proposed 1D CS method achieves much better resolution

than the classical 2D DFT method.

We further test our indirect uplink sensing scheme using a practical subcarrier

allocation example in 5G NR with the Type B set-up and a total subcarriers of

252. Within each resource block of 12 continuous subcarriers, four subcarriers with

indices 3, 4, 9 and 10 are used. Hence a total of 84 subcarriers. The sampling

period T = 35Ts, and a total of 8 sets of observations are obtained for Doppler

estimation. For comparison, the N-way OMP Tensor (NOMP) method [116], which
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Figure 4.2: 10 implementation results for indirect downlink sensing with η = 15dB,
and T = 20Ts, where delay values are continuous (off-grid). Subcarriers are inter-
leaved.

is a 3D CS algorithm, is also simulated. The simulation results are presented in

Fig. 4.4 and Fig. 4.5 for our scheme and the NOMP scheme, respectively. In

both figures, only estimated multipath channels with power within 10 dB of the

maximum are shown. Comparing these two figures, we can see that the proposed

1D CS method achieves better resolution for distance, AoA and speed for most

multipath channels. This demonstrates the effectiveness of our scheme in the cases

when sufficient measurements are only available in the delay domain.

Comparing the results here and those in Section 3.1.7, it is suggesting that the

indirect methods can achieve better performance than the direct method when the

estimation error in the channel matrix is small enough, as different users’ chan-

nels/signals are efficiently separated.
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Figure 4.3: 10 implementation results for classical 2D DFT results. System setup is
the same as that in Fig. 4.2.

4.1.4 Summary

We have demonstrated that by using signal stripping approaches we can simplify

the signal model used for sensing parameter estimation in the recently proposed

perceptive mobile networks. We also developed methods for estimating all of the

other sensing parameters.



4.2. JOINT COMMUNICATION ANDRADAR SENSING IN 5GMOBILE NETWORK81

110 120 130 140 150
Distance (m)

-3

-2.5

-2

-1.5

Eq
ui

va
le

nt
 A

oA
 (R

ad
ia

n)

110 120 130 140 150
Distance (m)

8

10

12

14

16

18

20

22

24

Sp
ee

d 
(m

/s
)

Figure 4.4: Sensing parameter estimation using the proposed 1D CS method for
indirect uplink sensing, with η = 15dB. “Equivalent AOA” equals to π sin(θ), and
speed is relative to the static BS. All parameters have continuous values (off-grid
model).

4.2 Joint Communication and Radar Sensing in

5G Mobile Network

In the perceptive mobile network with 5G CRAN, with a conceptual plot provided

in Fig. 4.6, sensing parameters can be extracted from 5G communication signals

via indirect sensing methods. Although existing studies demonstrate the feasibility

and potential of JCAS, most of them consider general signal formats, such as simple

single carrier and multicarrier modulation [6], and is limited to P2P links such as

mmWave radio for vehicular networks [14]. There is only very limited work directly

using modern mobile communication signals and networks in JCAS systems, involv-

ing OFDMA and MU-MIMO technologies. We will show that CS is an excellent

candidate technology for this problem, after proper signal formulation.
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Figure 4.5: Sensing parameter estimation using the N-way OMP (3D CS) algorithm.
Dictionaries for AoA and Doppler estimation are interpolated to size 16 and 256,
respectively. Other configurations are similar to those in Fig. 4.4.

In this work, referring to the 5G NR standard, we study 1D to 3D CS algo-

rithms for estimating sensing parameters in perceptive mobile networks. These CS

algorithms are developed from existing ones to make them capable of estimating

all the sensing parameters. We consider both downlink and uplink sensing, to be

consistent with downlink and uplink communications. The communication signals

used for sensing are the OFDM-type DMRS in the 5G specification [86]. We use

both 5G-compatible channels recommended by 3GPP and our own generated cluster

channel model which has a better control for radio propagation for sensing purposes.

We compare these CS algorithms, and demonstrate their respective advantages and

disadvantages, under various channel conditions and system setup.

This rest of the work is divided into three parts. The first part provides 5G

usable signal and channel description. The second part describes various sensing



4.2. JOINT COMMUNICATION ANDRADAR SENSING IN 5GMOBILE NETWORK83

Figure 4.6: Proposed perceptive mobile network with 5G CRAN.

parameter estimation algorithms including 1D, 2D, and 3D in detail. In the third

part, we discuss simulation results and outline a comparative study from these results

obtained from 5G reference signals.

4.2.1 5G Signal and Channel Models

We consider 5G­compatible signals with OFDMA and SDMA (or MU­MIMO) mod­

ulations. In a typical setup, there are 4 SDMA users, each with a single antenna,

and a BS with a 16 antenna uniform linear array. The signal bandwidth is assumed

to be 100 MHz. DMRS [86] is used as a primary signal for sensing. Propaga­

tion channels are generated based on clustered channel models of two forms. The

first one is developed by us and named Cluster-Chl [74], and the second one is the

QuaDRiGa channel model [87], [126], [127], recommended by 3GPP for modelling

communication channels in LTE and 5G systems.
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DMRS Signal Generation

DMRS signal is generated according to the Gold sequence as defined in [86] of 3GPP

TS 38.211, both for Physical Downlink Shared Channel-PDSCH and Physical Uplink

Shared Channel-PUSCH. The generated physical resource-block (PRB) indicates

DMRS to a 3-D grid comprising a 14-symbol slot for the full carriers across the

DMRS layers or ports. The values and indices of DMRS signals are both known to

the BS, and are used as prior information when doing sensing from received signals.

Here, interleaved DMRS subcarriers of PDSCH are used in downlink sensing, while

groups of non-interleaved DMRS subcarriers of PUSCH are used in uplink sensing.

Channel Modelling

For radio sensing, the system needs to interpret detailed channel structure and

estimate the sensing parameters. The propagation channels are generated based

on clustered channel models following the 3GPP channel models for LTE and 5G

systems [86]. Random continuous values are used for delay, Doppler shift, AoAs

and AoDs as actual sensing parameters. The multipaths of the channels are gener-

ated in clusters, indicating reflections coming from scattering obstacles. We gener-

ate approximate scatters for simulating sensing by using both the Cluster-Chl and

QuaDRiGa models.

Consider a narrowband antenna array model [1, 76]. The array response vector

of a size-M array with θ of either AoD or AoA is,

a(M, θ) = [1, ejπ sin(θ), · · · , ejπ(M−1) sin(θ)]H , (4.8)

For M1 transmitting and M2 receiving antennas, the M2 × M1 time-domain

baseband channel impulse response (CIR) matrix at time t′ can be represented as

H̃(t′) =
L∑
`=1

b`δ(t
′ − τ`)ej2πfD,`t

′
a(M2, φ`)a

T (M1, θ`), (4.9)

where for the `-th out of a total of L multipath signals, θ` and φ` denote the AoD
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and AoA, respectively, b`, τ` and fD,` are the amplitude, propagation delay, and

Doppler frequency, respectively.

Cluster-Chl Channel Model

In Cluster-Chl, we can have a flexible and accurate control on all the channel

parameters including AoA, AoD, Doppler shift, delay, and amplitude, and then

verify with sensing results. The multipath channels of Cluster-Chl are randomly

generated in clusters following a complex Gaussian distribution to generate sensing

parameters for moving objects around the mobile network node, which mimics the

ray tracing model and are extensions of the Saleh-Valenzuela (S-V) model [128].

For the channels used in this work, we generate 3 clusters with delay centered

at 29, 39 and 49 µs, corresponding to a distance of 87, 117 and 147 meters, with

AoA center randomly generated between -120 to 120 degrees, and moving speed

randomly generated between 0 to 40m/s. In each of the clusters, as in [1], multipath

signals for each RRU/MS are generated randomly by mimicking reflected/scattered

signals from objects. In each cluster, the multipath is generated following a uniform

distribution of [5, 10] for the total number, [0, 28] degrees for direction span, [0, 0.05]

µs for delay (corresponding to [0, 15] m for distance). We use a pathloss model with

pathloss factor 40 for downlink and 20 for uplink sensing. The transmission power

of the RRU and MS is 30 dBm and 25 dBm respectively.

QuaDRiGa Channel Simulator

QuaDRiGa is a spatial geometry based 3D MIMO channel generator [87], orig-

inated from the WINNER series models and supports rich cluster multipath sce-

narios specified by the 3GPP-3D cluster-based models mentioned in TR 36.873 and

TR36.901 [87]. We generate QuaDRiGa channels equivalent to moving scatters by

simulating moving transmitters and receivers from an open source simulator for sens-

ing demonstration. Non-line of sight channels are simulated. One problem with the

QuaDRiGa model is that scatters can not be accurately placed and configured. The

other problem is that the Doppler frequencies for each multipath are not explicitly

provided and hence we cannot verify the accuracy of estimates.
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4.2.2 Sensing Parameter Estimation with DMRS

We develop and test 1D, 2D and 3D CS algorithms for sensing parameter estimation

using the received signals. These algorithms are extended from the 1D-CS algorithms

[121], 2D Kronecker CS [129], and 3D N-way Tensor tool [116]. The extensions

formulation and processing are realized here through extracting sensing parameters

from 5G received signals. We test these algorithms utilizing Cluster-Chl in downlink

sensing and QuaDRiGa model in uplink sensing. We also compare our 1D to 3D

results with the cases when the occupied PRB is small in uplink and with the results

from 2D DFT.

Signal Model for Sensing

The received radar signal data is based on 3D observation samples, comprising of

those from multiple receiving antennas, multiple DMRS subcarriers and multiple

DMRS signals over time. The modulated data symbols can be removed from the

received DMRS signals by applying equalization, which will be a simple one-tap

multiplication if no two users are sharing the same subcarrier. In this work, we

consider the case that each subcarrier is used by only one user in DMRS signals.

We present the proposed scheme by referring to uplink sensing in this case. However,

it can be similarly applied to downlink sensing. We will provide simulation results

for both uplink and downlink sensing.

After the equalization, the processed received signal at the n-th subcarrier and

the t-th DMRS signal can be represented as

Yn,t =
L∑
`=1

b`e
−j2πnτ`f0ej2πtfD,`Ts ·

a(M2, φ`)a
T (M1, θ`) + zn,t, (4.10)

=ArxCnDtA
T
tx + zn,t, (4.11)

where the `-th column in Arx and AT
tx are a(M2, φ`) and aT (M1, θ`), respectively; if

there is no two multipaths having the same delay values, Dt and Cn are diagonal
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matrices with the `-th diagonal element being b`e
j2πtfD,`Ts and e−j2πnτ`f0 , respec-

tively; otherwise, there will be non-zero values in other entries; and Zn,t is the noise

matrix. When each user has only one transmitting antenna, AT
tx becomes an all-one

column vector, and Yn,t and Zn,t become column vectors too. The task for sensing

parameter estimation is to estimate {τ`, fD,`, φ`, θ`, b`}, ` ∈ [1, L] from the received

signals. In this work, we only consider the estimation of the first three parameters.

Estimation of Sensing Parameters

Since the signals are relatively independent in the three domains of delay, AoA and

Doppler, they can be formulated in a high-dimension (3D here) vector Kronecker

product form. Therefore, we can apply 1D to 3D CS techniques to estimate these

sensing parameters. In a typical system, we can get a sufficient number of observa-

tions for the delay (linked to number of subcarriers), intermediate AoA observations

(linked to number of antennas) and a limited number of samples in the Doppler

domain (linked to DMRS signals over a portion of channel coherent period). The

Doppler frequency is typically very small in a perceptive mobile network and the

accumulated phase shift usable is also small due to the limited period of channel

coherent time [17], [76]. This makes it inaccurate for estimating Doppler using CS

algorithms. Next, we briefly review each of the three sensing algorithms based on

received signal in (4.11).

1D Compressive Sensing

We assume that there is only one multipath signal within each quantized delay

bin for each cluster in the 1D CS based algorithm. By stacking the signals in (4.11)

from all available subcarriers to one matrix, we can get

Yt =WDtA
T
rx︸ ︷︷ ︸

Gt

+Zt, (4.12)

where the `-th column of W is {e−j2πnτq,`f0}. We can then treat (4.12) as an on-grid

MMV CS problem and use algorithms such as 1D sparse Bayesian CS to get the
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estimate for Gt. The dictionary Ψ1 is a partial DFT delay matrix, approximating

W. Once the delays and Gt are estimated, we can get the AoA estimates through

calculating the cross-correlation between columns from Gt on the indices obtained

from given threshold as below,

φ` ≈
1

π
∠

(
M−1∑
p=1

((Gt)·,p)
∗(Gt)·,p+1

)
, (4.13)

where (Gt)·,p denote the p-th column Gt.

The Doppler frequency fD,` can be estimated across multiple DMRS signals,

based on the cross-correlation of (Gt)`,·, where (Gt)`,· denotes the `-th row of Gt.

Assume the interval between every two estimates of Gt and Gt+1 is uniform and be

Ts for any t, which can be relaxed easily. Let Nd be the total OFDM blocks used

for estimating the Doppler frequency. Then,

fD,` ≈
1

2πTs
∠

(
Nd−1∑
t=1

((Gt)`,·)((Gt+1)`,·)
∗

)
. (4.14)

The main advantage of the 1D algorithm is that it can estimate all the parameters

when each multipath is well separated in delay. Its complexity is also relatively low.

It is mostly suitable for systems with a large number of subcarriers, but with a small

number of antennas for AoA estimation and packets for Doppler estimation.

2D Kronecker Compressive Sensing

2D Kronecker CS can obtain direct estimation for any two parameters out of

delay, AoA and Doppler. Since we can have sufficient measurements in the delay

and AoA domain, the 2D CS algorithm can provide good estimates for both delay

and AoA directly from Yt of (4.12) using each DMRS signal of 2D observations.

We construct two dictionaries for delay and AoA, Ψ1 and Ψ2, being two partial

overcomplete DFT matrices, approximating W and Arx, respectively. Interpolated

overcomplete dictionaries are used to improve resolution, given that the SNR is

sufficiently large, at an increased computational complexity. We can then obtain

estimates D̂t for the expanded matrix for Dt that corresponds to the two over-
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complete dictionaries, using any 2D Kronecker CS algorithm, such as the 2D-OMP

algorithm [129].

Note that 2D CS algorithm here can identify any pair of {delay, AoA} with

at least one different values. So D̂t will not be a diagonal matrix anymore if one

variable in the pair has two identical quantized values.

After getting the estimate D̂t, we use a threshold to filter out very small estimates

which are likely caused by noise. The threshold value is relative to the maximum

amplitude of multipaths and explicitly determined to pick up ”effective” estimates

with significant power. We can then get the delay and AoA estimates according to

the indices of the non-zero values in D̂t, corresponding to respective columns in the

two dictionaries.

The Doppler shift is estimated via calculating the angle of the cross-correlation

values between the non-zero values of D̂t obtained over two DMRS signals. This

can be represented as

fD,q,` ≈
1

2πTs
∠
(
D̂tD̂

∗
t+1

)
`,`
. (4.15)

Averaging can be taken over the correlation obtained from multiple DMRSs before

computing the angle, to improve the accuracy of the estimates.

2D CS algorithm can achieve improved estimation accuracy when there are mul-

tipath with repeated values in any one domain, at the cost of increased complexity.

3D Tensor Compressive Sensing

The Tensor-OMP CS algorithm directly estimates parameters in a 3D domain,

combining measurements Yt over multiple DMRS signals. Three dictionaries, Ψ1,

Ψ2, and Doppler dictionary matrix, Ψ3, are utilized. Since the accumulated Doppler

shift is small over the coherent time period, we have to use a portion of highly

overcomplete DFT matrix as Ψ3.

Absolute values of the estimated sparse coefficients provides the amplitude values

of multipaths. After applying a threshold, each of indices in the three dimensions

corresponding to non-zero estimates provides estimated values for delay, AoA and
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Doppler shift.

Generally, high-order CS formulation using Tensor tools such as 3D Tensor CS

provides the strongest estimation performance in resolving multipath with repeated

parameter values. However, it involves much higher computational complexity than

2D and 1D, using three dictionaries Ψ1, Ψ2, and Ψ3, in direct estimation of param-

eters in 3D domain from Yt. In addition, as the Doppler shift value is small, 3D

will not work as well as 1D and 2D.

4.2.3 Simulation Results of Indirect Sensing with DMRS

Next, we present simulation results for 1D to 3D CS using channels with continuous-

value (off-grid) sensing parameters. We also show the results that are obtained by

directly applying 2D-FFT over delay-AoA and delay-Doppler domains for compari-

son, when all subcarriers are used. Of course, most of the time, not all subcarriers

are available for sensing. Estimated values (typically shown in blue star) are placed

with actual ones (shown in red circle) to verify the accuracy of estimation. Fig.

4.7 shows an exemplified CIR for QuaDRiGa channels consisting of rich multipaths

with 4 to 5 clusters.

Downlink Sensing

In downlink sensing, we use DMRS subcarrier configuration type-1 slot wise, with

every alternating subcarriers as interleaved selection from a total of 252 subcarriers.

Sub-interval is 2 for type-1, so, in total 126 subcarrier indices (for example of layer

4) are used as DMRS subcarriers.

The simulation results for downlink sensing with Cluster-Chl model are presented

in Fig. 4.8 for 1D to 3D. For 1-D CS, AoA-Distance and Speed-Distance results

indicate that the estimated points are well matched with three clusters with few

extra points due to residuals in threshold setting. Off-grid estimation causes some

missed detection. In 2D CS, AoA-Distance and Speed-Distance results give few

mismatched points for both AoA and speed. In 2D, there is an important observation
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Figure 4.7: CIR for QuaGRiGa channel.

that interleaved subcarriers in this case actually cause ambiguity in estimation.

3D estimation results are not as good as for 1D and 2D CS algorithms as in 3D

estimation the interleaved subcarriers cause near-singular matrix.

The ambiguity is caused by non-consecutive, but regularly spaced samples, for

example, usage of comb/interleaved subcarriers [130]. In this case, the actual value

can be one of the multiple integral times of a basic estimate. The simplest way is to

break such regularly spaced samples; for example, we can randomly select samples

from the total available ones such that the indices of these samples are not regular.

This of course reduces the samples used for estimation and may degrade the esti-

mation performance particularly when the number of samples is small. Therefore,

while using DMRS, alternative methods can be based on exploiting other informa-

tion to assist the selection of the right estimate, for example, the magnitude, or

an integration of coarse and fine estimation methods. This is in fact part of our

future work to solve ambiguity problems that may be present in all domains, but

particularly for delay.
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Uplink Sensing

In uplink sensing, only partial DMRS subcarriers are used. The details of obtained

results from the non-line-of-sight (NLOS) QuaDRiGa channel model are given here.

We use DMRS subcarrier configuration type-2 non-slot wise here, which indicates

several groups of subcarriers are selected from a total of 252 subcarriers. Sub-

interval is 3 for type-2, so, in total 84 subcarrier indices (of layer 4) are used as

DMRS subcarriers. We use QuaDRiGa model where clusters are generated with

continuous delay and AoA values for multipaths. Since the QuaDRiGa is unable

to provide actual Doppler shifts, the estimates given here in all uplink sensing for

speed is relative only.

Fig. 4.9 provides simulation results for uplink sensing with QuaDRiGa NLOS

for 1D to 3D. In 1-D CS, AoA-distance results for the estimated points match fairly

well with several clusters with few extra points due to residual in threshold setting

and off-grid error.

2D CS AOA-distance results indicate that, estimated values are in closer vicin-

ity with actual clustered multipath values (AoA) in comparison with 1D. Indeed,

a higher dimensional sensing algorithm like the 2D kron CS eventually provides

a better performance when there is enough measurements because it can directly

identify two parameters only if one is different between any multipath channels. In

both figures for 3D NOMP, only estimated multipath channels with power within

-15 dB of the maximum are shown. In 3D, estimated values for AoA are coarser,

but remain within the close neighbouring of actual values.

Sensing Using Small Number of PRB

Mainly in the uplink direction, allocated PRB could be limited by configuration.

Therefore, we can only get a small amount of observations for the delay estimation,

which could be even less than the number of multipath. We test sensing with such

limited number of resources for QuaDRiGa NLOS channel here. Assume that only

28 DMRS subcarriers (7 PRB) are used in simulations for uplink sensing. Fig. 4.10
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presents uplink sensing for small PRB with QuaDRiGa NLOS for 1D to 3D. In 1D

CS, the resolution ambiguity problem remains in the delay domain. However, the

shape is still well maintained. Reasonable estimation accuracy is found in AoA by

2D. Coarse estimation in both AoA and speed is obtained by 3D. The introduction

of further approaches for increasing this accuracy in radio sensing from limited

observations, especially in a clustered multipath environment is an open research

problem and can be solved, for example, by designing better dictionaries and using

filtering.

2D FFT Results for Uplink Sensing

2D-DFT simulation results are presented in Fig. 4.11 for QuaDRiGa channels. It

can be observed that 2D-DFT provides reliable coarse estimates for uplink sensing,

but the resolution is very low in comparison with all results of 1D to 3D in Fig.

4.9. It is noted that here the results are obtained by using all subcarriers. Such a

2D-FFT method only works when either all or interleaved subcarriers are available.

4.2.4 Summary

We presented three preliminary sensing algorithms using 1D, 2D and 3D CS algo-

rithms, and provided simulation results, using channels generated from both our

own cluster model and 5G QuaDRiGa channel model. These results indicate that

reasonable sensing performance can be achieved, and demonstrate the respective

advantages and disadvantages of these algorithms. Our work also disclosed some

interesting research problems to work on as future works, such as the ambiguity

problem due to interleaved subcarriers and reduced resolution in 3D CS algorithms.



80 100 120 140 160
Distance (m)

-200

-150

-100

-50

0

50

100

Eq
uiv

ale
nt 

Ao
A (

de
gre

es
)

1D CS

80 100 120 140 160
Distance (m)

0

5

10

15

20

25

30

35

Sp
ee

d (
m/

s)

1D CS

100 150 200 250 300
Distance (m)

-150

-100

-50

0

50

100

150

Eq
uiv

ale
nt 

Ao
A (

de
gre

es
)

2D Kron-CS

0 200 400 600
Distance (m)

0

5

10

15

20

25

30

35

Sp
ee

d (
m/

s)

2D Kron-CS

50 100 150 200
Distance (m)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Eq
uiv

ale
nt 

Ao
A (

Ra
dia

n)

Tensor 3D N-way

100 150 200
Distance (m)

0

5

10

15

20

25

30

35

40

Sp
ee

d (
m/

s)

Tensor 3D N-way

-12

-10

-8

-6

-4

-2

0

Figure 4.8: Observations in Cluster-Chl for downlink sensing.
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Figure 4.9: Observations in uplink sensing: QuaDRiGa NLOS channel.
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Figure 4.10: Uplink sensing with small PRB in 5G QuaDRiGa NLOS.
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Chapter 5

Radio Sensing in Cluster Channel

with Clutter Estimation

5.1 Clutter in Perceptive Mobile Network

The mitigation of static multipaths or commonly known as clutter from received

signals is one of the key concerns while performing mobile signal based JCAS. In

the recently proposed perceptive mobile networks based on JCAS techniques [17],

the single transmitted signals are used for both mobile communications and sensing.

In a typical environment, BSs receive many multipath signals that are originated

from permanent or long-period static objects. These signals are useful for commu-

nications, but are generally not of interest for sensing and are known as clutter in

the traditional radar literature. Clutter is better to be removed before sensing in

perceptive mobile networks as it can significantly increase the number of sensing

parameters to be estimated and cause sensing algorithms failure [60].

In [76], differential signal based clutter elimination is mentioned to sense moving

objects by the perceptive mobile network. Differential receiver implemented by dif-

ferential filter with adaptive length can be used to find the clutter reduced signal.

Differential signal can be taken by only getting the difference between two channel

estimation values. However, the OFDM symbol separation over which the differen-

99
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Figure 5.1: Dynamic and static multipaths in JCAS

tiation is taking place needs to be large enough in order to get a sufficient amount

of signal amplitude from the subtracted signal output. However, we may miss the

parameters containing information of slow moving objects in the environment.

Alternatively, as another solution, background subtraction method, mentioned

in [131], [132], can be applied to overcome the problem of differential approach. In

order to realize the background subtraction method here to reduce the clutter signal,

the average of the all the previous estimated channel values can be subtracted from

the instantaneous current estimated channel value. Current estimated channel value

contains both dynamic and static multipath components. In the averaged term,

only static multipath component values remain. As a result, after this background

estimation process, sensing stage can only handle varying multipath components.

Fig. 5.1 shows both types of multipaths appearing in a JCAS system.

More specifically, in the process of averaging all of the previous time estimated

channel values, all dynamic multipaths will cancel out each other. The cancellation

of dynamic terms happens due to Doppler frequency changing during the averaging

process. The Doppler frequency changes due to object movement. The changing

Doppler induces phase shift. The phase shift term is how related to object movement.

For instance, in static multipath, Doppler frequency is zero and then no phase shift

changes occur. If the object is moving, then the Doppler frequency is a non zero

value where the phase shift value changes with time depending on the behaviour of
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object motion. Such multipath with non- zero Doppler frequency is called dynamic

or varying multipath. In radio sensing, we are focusing in particular in parameter

estimation from those multipaths.

Therefore, dynamic channel component of current OFDM symbol can be ex-

pressed as,

∆Hn,t = Ht(Dynamic+Static)︸ ︷︷ ︸
Instantaneous value

− 1

m

m−1∑
i=0

Ht−i = Ht −Haverage (5.1)

where, Ht can be from equation (4.1).

The averaging process can be set up by having a moving smoothing averaging

filter with an adaptive window. Window can be taken in the form of a few OFDM

symbols. If we decide the window length, then we automatically fix that the av-

eraging will be within that window length. We may not need to move over every

symbols for tracking moving channel. The Doppler phase compensation will also be

exactly updated for that time period.

Clutter echoes remain stable for long duration, and as a result, while averaging es-

timated channel values for the previous m OFDM samples, Haverage, indicates strong

energy value. Haverage, only contain static multipath values of previous m samples.

Hence, ∆Hn,t provides dynamic multipath components at t OFDM symbols. This

∆Hn,t can be taken as an input to the sensing block to reduce the computational

complexity. Our next target is to get such improvement in this perceptive mobile

network framework development.

5.1.1 Recursive Moving Average based Clutter Reduction

As discussed in Section 5.1, we treat echoes with near-zero Doppler frequencies

as clutter. Relatively, we call other echoes with non-zero Doppler frequencies as

dynamic multipath.

We propose a low-complexity and efficient Background Subtraction solution for

clutter reduction, which is inspired from the background subtraction method in
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image processing [133]. The basic idea is to construct an estimate for clutter by

averaging over a long period, and then subtract it from the input to the sensing

algorithms. This requires static sensing parameters for clutter, and signals that are

unmodulated or modulated with the same data. Hence it is suitable for the indirect

sensing scheme, and can also be applied to the direct sensing scheme, but only when

the received signals corresponding to the training signals in each frame are used.

In the following, we will present the solution by referring to the indirect sensing

method.

The proposed processing will be applied to the channel matrix at each subcarrier

for each user. From the refined channel matrix estimates, we pick up estimates at

an interval of Th seconds, and denote them as

· · · ,H(i− 1),H(i),H(i+ 1), · · · , (5.2)

where the expression of H(i) is similar to (4.3), but H(i1) and H(i2), i1 6= i2 may

have different sensing parameters.

We define a recursive equation for estimating the clutter matrix as H̄

H̄(i) = αH̄(i− 1) + (1− α)H(i), (5.3)

where α is the learning rate (forgetting factor) and the initial one H̄(1) can be either

0 or computed as the average of several initial H(i)s.

There is a major difference for background subtraction between radio sensing

and image processing. In image processing, the image difference corresponds to pixel

variation. However, in radio sensing, both Doppler shifts and variation in sensing

parameters cause a difference in two channel matrices. This makes the choice of Th

critical in radio sensing.

Consider a Doppler frequency fD. Its corresponding phase shift at iTh is given

by exp(j2πfDThi). When this multipath’s other parameters remain unchanged, ap-

plying the recursive equation (5.3) to the whole channel is equivalent to the Doppler
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Figure 5.2: Exemplified values of ρ(p), with Th = 20Ts, max{p} = 30 at approxi-
mately 2.8 ms. Curves from top to bottom correspond to Doppler frequencies from
0 to 400 Hz at an interval of 50 Hz.

phase only. Let ρ(i) and exp(j2πfDThi) replace H̄(i) and H(i) in (5.3), respectively.

Starting from i = 1, after p recursions we can get

ρ(p) = ej2πfDTh
(1− α)(1− αpej2πfDThp)

1− αej2πfDTh
. (5.4)

For example, in (5.4), when fD = 0, ρ(p) = 1−αp. To make ρ(p) approach to 1 with

α = 0.99 for fD = 0, p = 500 is approximately needed.

For typical applications in perceptive mobile networks, the maximum fD is about

400 Hz, and the channel stable period is in the order of a few milliseconds. Due to

the small Doppler frequency value, the Doppler phases typically change slowly over

the channel stable period, unless the vehicle moving speed is very large. This makes

averaging at small Th useless in terms of reducing “interfering” dynamic multipath

signals from the clutter estimation. An example is shown in Fig. 5.2, which indicates

that much larger Th must be used to get a clear clutter estimate.

Since the slowly changing Doppler phases over the channel stable period generally
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Figure 5.3: Power ratio of the clutter to “interfering signals” after applying the
recursive averaging, in the presence of approximately 10 non-clutter interfering sig-
nals over each period of 270Ts (assumed to be the channel stable period). Red
dashed curves for Th = 240Ts, blue solid curves for Th = 120Ts, and black curves for
Th = 60Ts.

do not cause cancellation for dynamic multipath signals, we want to minimize the

number of samples obtained from each channel stable period. However, smaller

sampling rate causes slower collection of the clutter signals. Hence a trade-off is

needed here, and the reasonable value is found to be 1 or 2 samples per medium

channel stable period. A more optimal value may be determined through statistical

analysis over a distribution of the Doppler frequency and the channel stable period.

On the other hand, the learning rate α also has an important impact on the averaging

operation. These effects are demonstrated in Fig. 5.3. We can see that the power

ratio becomes almost stable after 0.5 and 2 seconds of recursive averaging operation

for α = 0.99 and 0.999 respectively. The stabilization of this power ratio is the

convergence in clutter estimation. Larger α achieves better performance.

The clutter estimate is always updated every Th seconds using (5.3). Once a

stable estimate is obtained, it is subtracted from the current and future refined
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channel estimates during the interval Th.

For noisy channel estimates, we can work out the distribution parameters of the

combined noise output after the recursion. Assuming the noise in different channel

estimates is uncorrelated and each follows the same Gaussian distribution with mean

zero and variance σ2. Then the output noise matrix will still have zero mean, and

covariance matrix σ2
cI, with

σ2
c = σ2(1− α−1)2

p∑
i=1

(α2)i

= σ2(1− α)21− α2p

1− α2
, (5.5)

It can be seen that when p is large, σ2
c approaches to σ2(1 − α)2/(1 − α2). When

α = 0.99, it becomes 0.005σ2. Hence noise is suppressed in the recursive operation.

Our simulation shows that it converges approximately at p = 150.

Therefore when subtracting the clutter from the current channel estimate, the

noise is almost not increased. This is an advantage of the background subtraction

method. In addition, the clutter channel matrix output from the recursive algorithm

also allows us to efficiently estimate the clutter. Comparing two estimates obtained

at different times, we can also efficiently identify the changes in static objects in the

radio image.

Note that by adjusting the parameters in the recursion equation, we can actu-

ally obtain signals with different Doppler frequencies. Hence this method can be

extended for separating multipath signals with different Doppler frequencies into

different groups.

5.1.2 Effect of Clutter Suppression by Recursive Moving

Average

We only present the simulation results for the background subtraction method here,

as for the differential method, in the simple form, it is almost a repeat of the simu-

lation in Section 4.1.3 with increased number of multipath and noise. The clutter
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Figure 5.4: Difference between the reconstructed and the true clutter signals, nor-
malized to the power of the true clutter. Learning rates α for curves from left to
right are 0.9,0.94,0.97,0.99 and 0.995, respectively.

signals are generated similarly to other multipath signals, with Doppler frequencies

set to be zero. Simulation settings and system parameter values described in 3.1.7

are applicable here for simulation.

In Fig. 5.4, we plot the normalized difference between the output from the

recursive reconstruction algorithm and the actual clutter. We use one sampled

channel estimate within each channel stable period of 2 ms. The figure indicates

that α > 0.99 is a good option that balance the difference and convergence time.

The curve for α = 0.99 is also consistent with the analytical one in Fig. 5.3.

In Fig. 5.5, we show three random implementations with different values of p

used in estimating the clutter. From the top figure we can see both missed estima-

tion for the current dynamic multipath and the estimate for the clutter and some

residual dynamic multipath, which still have a strong presence in the subtracted

signal. The middle one shows improved performance, and the bottom one achieves

excellent estimation with clutter completely removed. This figure demonstrates the

effectiveness of the proposed background subtraction algorithm.
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Figure 5.5: Estimated and true sensing parameters AoA and distance obtained using
the indirect method after clutter suppression. From top to bottom, p = 25, 50, 150,
respectively. Channel estimation η = 15 dB.

5.1.3 Gaussian-Mixture-Model based Clutter Mitigation

Suppression of undesired non-information bearing multipaths from received signals

is a key process for sensing parameter estimation in perceptive mobile network,

which is proposed as a cellular network with integrated radar sensing. This section

proposes a clutter suppression method based on the GMM and EM estimation. We

then apply a 1D CS based sensing algorithm to extract useful channel information

after removing the estimated clutter. Simulation results are provided and validate

the effectiveness of the proposed scheme.

In [17], and Section 5.1.1, we proposed a recursive method based on background

subtraction. This method is simple and effective, but its performance highly depends

on the assumption of unchanged signal phases across packets which may not always
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be met in practice.

In this section, we propose a novel clutter estimation and suppression method,

calledGMM-EM-CE, based on GMM and EM for perceptive mobile networks. GMM

has been widely used for analyzing and separating moving objects from the back-

ground in image and video analysis [133] and speech processing [134]. It has also

been applied recently to extract static channel state information from channel mea-

surement in [135], using estimated signal parameters. Different to GMM in video

analysis where background and foreground cover each other, clutter and multipath

of interest in perceptive mobile networks are additive and can coexist. Different

to [135], we apply GMM directly to the received signals rather than to the esti-

mated channel parameters. For the first time, we demonstrate how to apply GMM

to complicated modern mobile communication signals with MU-MIMO and OFDMA

modulations and adopt an EM algorithm for clutter estimation and separation. We

also show how to perform clutter-free radio sensing from extracted dynamic signals.

We consider 5G-compatible DMRS [86] for sensing, which are comb-type training

signals at non-equally-spaced interleaved subcarriers. The values and indices of

interleaved DMRS subcarriers of received signals are known to the BS when doing

sensing from the received signals.

After removing the DMRS signals, the estimated frequency-domain channel ma-

trix Ĥ at the n-th subcarrier in the t-th OFDM block between the k−th transmitter

and the BS receiver is given by (4.1). The channel estimation error is approximated

as AWGN. The SIR between the mean power of the channel coefficients and AWGN

is denoted by Υ.

The true channel matrix Hn,k,t can be represented as (4.2). In this case, we

consider clutter as propagation paths with near-zero Doppler-frequencies. Now,

Hn,k,t can be written as,

Hn,k,t = Hdy
n,k,t +Hst

n,k,t, (5.6)

where Hst
n,k,t and Hdy

n,k,t refer to (static) clutter matrix and dynamic channel matrix,
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respectively. Both Hst
n,k,t and Hdy

n,k,t have a size of M ×MT .

Note, the total number of multipaths L = L1 + L2, where L1 is the number of

paths from moving scatters and L2 is the number of paths from static scatters.

Our clutter reduction method focuses on separating Hst
n,k,t from Hn,k,t. Once the

clutter Hst
n,k,t is estimated, it can be removed from Hn,k,t to reduce the unknown

parameters to be estimated and improve the accuracy of target sensing parameter

estimation.

5.1.4 Proposed GMM-EM-CE Method

Fig. 5.6 highlights the major processes in the GMM-EM-CE method. Firstly, es-

timated channel matrix is obtained from the received signal and then GMM-EM

is used to estimate the clutter. The clutter estimate is then subtracted from the

channel estimate to obtain the dynamic channel, and 1D CS technique is finally

applied to accomplish radio sensing.

Signal Modelling Using GMM

Wireless channels can be modeled and estimated by a mixture of Gaussian distri-

butions since each density represents multipaths in the channel [136]. Static and

dynamic paths can be represented by Gaussian distributions with very different pa-

rameters over the time domain. This is because over a short time period, Hst
n,k,t

changes little and Hdy
n,k,t could vary significantly. It is also quite common that static

paths typically have larger mean power than dynamic ones. Hence, their distri-

butions at least have very different variance values: static paths have near zero

variances, which is much smaller than those of the dynamic ones. Therefore, by

learning the mean values of the distribution, static paths can be identified and sep-

arated via comparing the variance. GMM on the repeated prior received channel

distribution of (4.1) for each user can provide the approximate distribution of the

static multipaths with the EM principle.

We define ρ as a measure of clutter to dynamic signal ratio for all users K at
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Figure 5.6: Processes of the proposed GMM-EM-CE method.

the t-th OFDM block, which is given by

ρ =
1

NMK

N∑ M∑ K∑∣∣∣∣∣Hst
n,k,t

Hdy
n,k,t

∣∣∣∣∣ . (5.7)

The GMM consists of L multivariate Gaussian distributions known as mixture

components [135]. The probability density function (PDF) of multipath channel is

obtained based on the estimated channel data, Ĥn,k,t in (4.1). The PDF for GMM

for the estimated channel is expressed as,

P (Θth) =
L∑
l=1

ωl.η(Θth |µl,Σl). (5.8)

where η(Θth |µl,Σl), each component of the multivariate Gaussian mixture l = 1, .., L

has its mean value µl, covariance matrix Σl and non-negative mixing weight ωl. Here

the value of Θth in (5.8) is taken the same as Ĥn,k,t in (4.1) for over a time th and

d is the dimension of Ĥn,k,t.
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Assuming moving scatters move a short distance over the period of th and the

individual Gaussian distribution η(Θth |µl,Σl) is given by

η(Θth |µl,Σl) =
1

(2π)
d
2 |Σl|

1
2

e−
1
2

(Ĥn,k,t−µl)T Σ−1
l (Ĥn,k,t−µl). (5.9)

The Expectation Maximization Algorithm

Here, we estimate ωl, µl,Σl to maximize the log-likelihood function
∑Ns

i=1 P ((Θth)i),

where (Θth) denotes the set of samples and (Θth)i denotes its i− th element. Note,

Ns is the number of samples taken within the period of th. EM starts from some

initial estimate of ωl, µl,Σl and then proceeds to iteratively updating them until

convergence is detected. The detailed operations in each EM iteration are described

next.

In the expectation step, we estimate the probability matrix of (Θth)i generated

by the lth Gaussian mixture component from dividing the weighted probabilities by

the sum of weighted probabilities as

Ω(i, l) =
ωl.η((Θth)i|µl,Σl)∑L
j=1 ωj.η((Θth)i|µj,Σj)

. (5.10)

We take initial mean µl as a randomly selected data point from the set (Θth). We

use the overall covariance of the dataset (Θth) as the initial variance Σl and assign

unit prior probability as initial mixing weight ωl. EM algorithm is then used to

derive the parameters of the GMM.

In the maximization step, we estimate the updated ωl, µl,Σl. The updating

equations are given by

µl =
1

Nl

Ns∑
i=1

Ω(i, l)(Θth)i. (5.11a)

Σl =
1

Nl

Ns∑
i=1

Ω(i, l)((Θth)i − µl)((Θth)i − µl)T . (5.11b)

ωl =
Nl

Ns

. (5.11c)
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where Nl =
∑Ns

i=1 Ω(i, l). The final {ωl, µl,Σl} are obtained when the results either

converge or the maximal number of iterations Nm is reached. Then we obtain the

clutter estimate as Ĥst
n,k,t from the finalized values of {ωl, µl,Σl}. That means, clutter

estimation is actually the estimate of the mean with covariance matrix near zero.

Clutter Free Sensing Parameter Estimation

Now, we get the clutter free channel estimate, Ĥdy
n,k,t, as

Ĥdy
n,k,t = Ĥn,k,t − Ĥst

n,k,t, (5.12)

Referring to (4.2), we consider delay-on-grid signal model where the delays τ`f0 are

quantized as q`/N
′ with q` being an integer and N ′ = gN . Therefore e−j2πnτ`f0 ≈

e−j2πnq`/N
′
. Then, the dynamic channel matrix part of (5.6) can be written as,

Hdy
n,k,t =

L1∑
`=1

b`e
−j2πnq`/N ′ej2πtfD,`Ts ·

a(M,φ`)a
T (MT , θ`) = ARDCnA

T
T , (5.13)

where the `-th column in AR (or AT ) is a(M,φ`) (or a(MT , θ`)), D and Cn are

diagonal matrices with the `-th diagonal element as b`e
j2πtfD,`Ts and e−j2πnq`/N

′
,

respectively.

By stacking similarly formulated row vectors for all usable subcarriers together,

we obtain

Ĥdy
n,k,t = WDAT

RA
T
T︸ ︷︷ ︸

G

, (5.14)

where the `-th column of the Nu × L matrix W is {e−j2πnq`/N ′}.

Now, we do sensing parameter estimation for each user using Ĥdy
n,k,t of (5.14)

by the same developed indirect method in our earlier work in [17] by extending 1D

CS algorithms [121]. Here we consider only one multipath signal stays within each
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quantized delay bin for each user.

Ψ1 with NA number of columns is used as dictionary for delay, being a partial

overcomplete DFT matrix, approximating W. After treating (5.14) as an on-grid

MMV CS problem, we get the estimate forG. Once the delays andG are estimated,

we get the AoA estimates through calculating the cross-correlation between columns

from G on the indices obtained from a given threshold as below,

φ̂` ≈
1

π
∠
(M−1∑
p=1

((G)·,p)
∗(G)·,p+1︸ ︷︷ ︸

ε`

)
, (5.15)

where (G)·,p denote the p-th column of G.

The value of |b`|2 can also be obtained easily during the process of computing

AoA, being |ε`|2. The estimates of |b`|2 can be used to find the effective multipath

delay bins in noisy channels from the MMV CS estimation output by using a thresh-

old of γ ·max(abs(ε`)) determined, e.g., as a fractional scalar of the maximum power

of multipath signals.

5.1.5 Simulation Results for GMM-EM-CE

We consider a system setup with 4 SDMA users, each with a single antenna, and a

BS with a 4 antenna uniform linear array. The signal bandwidth is assumed to be

100MHz and the carrier frequency is 2.35 GHz. Propagation channels are generated

based on clustered channel model following a complex Gaussian distribution, which

mimics the ray tracing model. Multipaths in each cluster are generated following

uniform distributions of [5, 10] for the total multipath number. Random continuous

values are generated within a given range as actual values for AoAs, AoDs, Doppler

shift, delay, and amplitude. We use a pathloss model with pathloss factor 40 for

downlink and 20 for uplink sensing. The transmission power of the RRU and MS is

30 dBm and 25 dBm respectively.
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Figure 5.7: CDF of RMSE at different Υ values.

Performance Evaluation of GMM-EM-CE

GMM-EM is applied to obtain the clutter channel estimation, Ĥdy
n,k.t. Then we

calculate root mean square error (RMSE) of clutter estimation as

RMSE =

√√√√ 1

(Ψ ∗NMK)

Ψ∑
j=1

∣∣∣Ĥst
n,k,t −Hst

n,k,t

∣∣∣2. (5.16)

We take histogram-based PDF from the correct window of 40 bins while Ψ = 20.

Then, interpolated cumulative distribution functions (CDF) are derived from the

PDFs of RMSE to present clutter estimation results.

Fig. 5.7 provides CDF results for RMSE of clutter estimation obtained at differ-

ent values of SIR, Υ with Nm = 10. The figure shows that the RMSE is quite small

at a high probability and it also decreases with Υ increases.
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Figure 5.8: Clutter estimation RMSE values vs Υ at high and low values of ρ for GMM-
EM-CE and RMA method.

Comparison of GMM-EM-CE and Recursive Averaging

Next we compare GMM-EM-CE with the simple recursive moving average (RMA)

method [17], which estimates the clutter via averaging over channels at different

measurements using a forgetting factor.

Fig. 5.8 provides clutter estimation RMSE results vs Υ values obtained at high

and low ranges of ρ for both GMM-EM-CE and RMA. The RMSE of clutter estima-

tion with GMM-EM-CE is obtained at Nm = 10. Whereas, the RMSE of RMA is

obtained with the forgetting factor of 0.95 over both r = 10 and 150 iterations. For

both cases of ρ = 1 and 100, the GMM-EM-CE method with Nm = 10 outperforms

RMA with both r = 10 and 150 iterations, achieving significant lower RMSE for

clutter estimation.
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Radio Sensing Results

Fig. 5.9 demonstrates the results of AoA estimation in the uplink sensing, for the

cases with (in the top plot) GMM-EM-CE and with (in the bottom plot) RMA.

A total of Nu = 128 interleaved subcarriers are used. The estimates with clutter

reduction by GMM-EM-CE with Nm = 10 are shown to be much more accurate

compared to those by RMA with the same 10 iterations. Moreover, different from

the bottom plot, the top plot results show no presence of residual clutter in AoA

estimation. Note that, with the increment of iterations r and simulation complexity,

the RMA method can also provide more accurate AoA estimation with complete

clutter removal as seen in our earlier work in [17]. Hence, GMM-EM-CE indicates

its usefulness by providing more accurate results at much lower complexity and

iterations in comparison with the RMA method.

5.1.6 Summary

We showed the background subtraction method for clutter suppression and pro-

vided indirect CS results. After that, we presented Gaussian mixture model based

clutter estimation algorithms for joint communication and sensing and provided

1D CS based cluster channel parameter estimation results using estimated dynamic

channels. These results indicate that reasonable radio sensing performance can be

achieved with clutter free channel estimation.

5.2 Radio Sensing with Cluster Multipath Chan-

nels

In earlier proposed JCAS solutions, as shown in Fig. 2.4, for example, in [1], and

in [76], we cast the radio sensing problem as a block sparse/sparse reconstruction

problem. In practice, multipath signals always arrive in clusters [128], and paths

from one cluster typically come from the same scatter(s) and have close parameter

values.
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Figure 5.9: Uplink sensing at γ = 0.25, Υ = 12 dB, ρ = 1, after clutter suppression by
(top) GMM-EM-CE with Nm = 10 at th = 30 ms and by (bottom) RMA with r = 10.
The estimated values for AoA are shown in star and the actual AoAs are shown in circle.
Different colours correspond to different users.

As explained earlier in Chapter 2, there exist research outputs on reconstructing

cluster sparse signals in general, for example, through periodic compressive support

[61], model based CS [62], variational Bayes approach [63], and block Bayesian

method [64]. In [65] a millimetre-Wave joint radar and communication system for

indoor scenarios is developed, using estimated radar channel coefficients. However,

there is only very limited work on how cluster sparsity can be exploited in JCAS

systems such as perceptive mobile networks that involve OFDMA and MU-MIMO.

Due to the complicated signal structure in perceptive mobile networks, significant

modification and adaptation are needed for exploiting existing cluster sparse signal

reconstruction algorithms.

In this section we exploit the cluster property in multipath channels and propose
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a novel 2D CS algorithm for sensing parameter estimation in perceptive mobile net-

works. In particular, we introduce a method for characterizing the prior probability

density function and propose a 2D cluster Kronecker (kron) CS algorithm. Referring

to the 5G NR standard, we use the OFDM-type DMRS in the 5G specification [87]

for sensing. We consider both downlink and uplink sensing, where downlink and

uplink communication signals are used for sensing, respectively.

The rest of the work is as follows. In Section 5.2.1, we introduce 5G usable

signal and clustered channel description. In Section 5.2.2, we present the proposed

algorithm based on a 2D kron-OMP method. In Section 5.2.3, we provide simulation

results.

5.2.1 Signal and Cluster Channel Models

Referring to the 5G NR standard signals with OFDMA and SDMA (or MU-MIMO)

modulations and channel described in Section 4.2.1, we use the OFDM-type DMRS

5G usable signals and Cluster-Chl channel [74] for sensing using the proposed algo-

rithm based on 2D kron-OMP techniques. We consider both downlink and uplink

sensing, where downlink and uplink communication signals are used for sensing,

respectively.

5.2.2 Proposed Cluster based 2D Kron-OMP Algorithm

Since the signals are relatively independent in the three domains of delay, AoA and

Doppler, they can be formulated as a 3D cluster sparse signal. Then, we can apply

cluster based greedy method equipped with cluster prior probability to estimate

these sensing parameters. In a typical system, we can get a sufficient number of

observations for the delay (linked to the number of subcarriers), AoA (linked to the

number of antennas) and a limited number of samples in the Doppler domain (linked

to DMRS signals over a portion of channel coherent period). Next, we present the

proposed cluster-based sensing algorithm referring to the received signal in (4.11).
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2D Cluster Kron-OMP Algorithm

We assume that there is only one multipath signal within each quantized delay bin.

Let Mr and MT denote the number of antennas for receiving in BS and in each

user for transmitting, respectively. Let Ss denote the set of available subcarriers

for sensing and let Ns denote its size. Referring to (4.11), we can stack signals

Yn,t, n ∈ S from all available subcarriers to a matrix and obtain

Yt =WDtAtx︸ ︷︷ ︸
Gt

AT
rx + Zt, (5.17)

where W is a Ns×L matrix with its `-th column being {e−j2πnτq,`f0}. Note that Ns

is typically smaller than N and the indices of subcarriers are often dis-continuous.

We construct two dictionaries for AoA and delay, Ψ1 and Ψ2, being two partial

overcomplete DFT matrices, approximating Arx and W, respectively. Let NA and

ND be the number of codes, i.e., the number of columns, in Ψ1 and Ψ2. In practical

applications, the non-zero entries of the sparse signals appear in clusters over each

column of the matrix Gt in Yt. We can then treat (5.17) as an on-grid 2D cluster

sparse CS problem with a Mr × Ns observation matrix Yt, two dictionaries Ψ1

and Ψ2, and block sparse signals Gt of k- sparsity that appears in clusters. Such

a problem can be solved by using, for example, the 2D block sparse Bayesian CS

in [64] and 2D kron-OMP in [129]. However, no prior information on the cluster

structure is properly applied in these solutions.

Our proposed novel 2D cluster kron-OMP algorithm incorporates a cluster prior

∆ to the sparse probability of each entry in the support set, ξ. Such an incorporation

exploits both cluster structure and sparsity in the solution than conventional 2D

kron-OMP algorithms.

For producing the cluster prior ∆, at each iteration, inspired from the neigh-

borhood model [137], we can compute the cluster pattern through measuring the

changes in the values of ξ. We first compute the absolute sum of the differences in
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the support set ξ via

∆(ξ) =
k∑
i=1

| ξi − ξi−1| . (5.18)

The cluster prior for the support learning vector ξ is dependent on the term

e−α(∆(ξ)) for α > 0. We model the behavior of the function e−α(∆(ξ)) via the Gamma

distribution,

(∆|β, α) ∼ Γ(β, α), (5.19)

where β and α are the shape and rate parameters of the Gamma distribution,

respectively. We also assume that β = 1 and as a result,

(∆|β, α) ∝ e−α∆. (5.20)

The conditional joint probability density function of Yt and ∆ can be written as

P (Yt,∆|α,Ψ1,Ψ2,Gt, ξ) ∼

P (Yt|Ψ1,Ψ2,Gt, ξ, α,∆)P (∆|β, α). (5.21)

With the constructed prior probabilities, we can then extend conventional 2D

kron-OMP algorithms to incorporate such prior information. The proposed 2D

cluster kron-OMP algorithm is detailed in Algorithm 1.

Initially at iteration i = 0, the residual value R(0) is set as Yt and the initial

non-zero index locations are set as J0 = ∅. As the iteration progresses, we find

the updated indices J at step 4 by max
∣∣Ξi
∣∣, corresponding to the case where the

dictionary Ψ has maximum correlation with the residual R(i). After computing ∆

in step 5, the support set ξ is updated at step 6 with the extracted index locations

J by utilizing the joint probability density function in (5.21). The prior on the

parameter α in (5.19) is assumed to have Gamma distribution, α|η, θ ∼ Γ(η, θ), and
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Algorithm 1 2D Cluster Kron-OMP Algorithm

Input: Estimation of Gt.
Input: Observation matrix Yt ∈ RMr×Ns , combined dictionary Ψ = (Ψ1 ∈
RMr×NA ,Ψ2 ∈ RNs×ND),
iteration control threshold ρ, sparsity k, initial cluster sparse estimate Ĝt = ∅,
initial index J0 = ∅
Output: Reconstructed signal Ĝt after k iteration, non-zero positions J , resid-
ual R(k)

1: Initialization R(0) = Yt

2: while i ≤ k do
3: Compute Ξ = Ψ ∗R(i)

4: Compute index J so that max |Ξi|
{finding the atom and indices J in cases where
Ψ is with maximum correlation with residual}

5: Compute ∆
6: Update ξ with extracted J now at with probability proportional to

max
∣∣∣e((c2/2(σ)2∗Ξi)−α∆)

∣∣∣
and update the support ξ as ξi = ξi−1 ∪ J

7: Update α from Γ(η, θ +∆)
8: Compute Ω = pinv(Ψ2

∗⊗Ψ1)Yt

9: Update R(i) = Yt −Ψ1diag(Ω)Ψ2
′

10: If R(i) < ρ, i = i+ 1
11: Compute Ĝt = sptensor(Ji,Ω,Mr)

we experimentally set η = ε and θ = 1, where ε denotes the length of the support

learning vector ξ. With the progression of measurements, at step 7, the posterior

density on α is updated. This posterior distribution can be described as,

P (α|η, θ,∆) ∼ Γ(η, θ +∆), (5.22)

where P (α|η, θ,∆) denotes the conditional posterior density on α given the related

parameters. We estimate this via E[α|η, θ,∆] = η/(θ + ∆). Then, we compute Ω

as the multiplication product of Yt and Moore-Penrose pseudoinverse of kronecker

product of Ψ1 and Ψ2 in step 8. Finally the estimate Ĝt is computed as a sparse

matrix of size NA×ND derived from open MATLAB sparse tensor (sptensor) toolbox

[138] with Ji and Ω forMr. The algorithm usually stops when the iteration i reaches

the desired sparsity level of k for Ĝt.



122CHAPTER 5. RADIO SENSING IN CLUSTER CHANNELWITH CLUTTER ESTIMATION

Estimation of Sensing Parameters

The proposed 2D cluster kron-OMP algorithm can obtain direct estimation for any

two parameters out of delay, AoA and Doppler. Since we can have sufficient mea-

surements in the delay and AoA domain, the algorithm can provide good estimates

for both delay and AoA directly from Yt of (5.17) using each DMRS signal of 2D

observations. Note, in step 6 of Algorithm 1, c = 1/(1 + σ2), where σ2 is the ther-

mal noise variance. We can obtain efficient estimates Ĝt and non-zero indexes J for

the expanded matrix of Gt that corresponds to Ψ, using the prior cluster structure

knowledge.

Note that the proposed algorithm can identify any pair of {delay, AoA} with

at least one different value. So Ĝt will not be a diagonal matrix anymore if one

variable in the pair has two identical quantized values.

After getting the estimate Ĝt, we can then get the delay and AoA estimates

according to the J indices of the non-zero values in Ĝt, corresponding to respective

columns in the two dictionaries.

The Doppler shift is estimated via calculating the angle of the cross-correlation

values between the non-zero values of Ĝt obtained at J indices over two DMRS

signals. Assume the interval between every two estimates of Gt and Gt+1 is uniform

and be Ts for any t, which can be relaxed easily. This can be represented as

fD,q,` ≈
1

2πTs
∠
(
ĜtĜ

∗
t+1

)
`,`
. (5.23)

Averaging can be taken over the correlation obtained from multiple DMRSs before

computing the angle, to improve the accuracy of the estimates.

5.2.3 Simulation Results for 2D Cluster Kron-OMP Algo-

rithm

We present simulation results for direct estimation over delay-AoA and delay-Doppler

domains using quantized and continuous-value sensing parameters. In the simula-
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Figure 5.10: CIR for cluster channel.

tion, we consider a system with 4 SDMA users, each with a single antenna, and a

BS with a 16 antenna uniform linear array. Estimated values (typically shown in

blue star) are placed with actual ones (shown in red circle) to verify the accuracy.

Fig. 5.10 shows an exemplified CIR for 3-cluster multipath channels consisting

of rich multipaths. Propagation paths in each cluster have close parameter values

particularly in the distance (delay) domain, and different clusters are distinguished

by different colors.

Downlink Sensing

In downlink sensing, we use DMRS subcarrier configuration type-1 slot-wise, with

every alternating subcarriers selected from a total of N = 252 subcarriers. So, in

total Ns = 126 DMRS subcarriers are used. Total 8 OFDM packets are used for

estimating the Doppler frequency.

The simulation results are presented in Fig. 5.11 for the case when the pro-

posed 2D cluster kron-OMP algorithm is applied to delay-AoA and delay-Doppler
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domains, respectively. For quantized on-grid parameters, as shown in the top two

sub-figures, we can obtain nearly perfect estimation of delay, AoA and Doppler. For

continuous off-grid parameters, as shown in the bottom two sub-figures, performance

degradation can be observed with reduced accuracy and missed estimates. However,

the estimates preserve the cluster structure, and convey correct information for de-

termining the location and moving speed of the scatters.

Uplink sensing

For uplink sensing, the allocated subcarriers are limited by configuration. The

results in this case can particularly show the usefulness of the proposed algorithm.

In the simulation, clusters are generated with continuous delay and AoA values.

We take configuration of type-2 with non-slot-wise subcarrier, where only Ns = 28

DMRS subcarriers (7 PRB) of layer 4 are used.

Fig. 5.12 provides the simulation results for the proposed algorithm. Both AoA-

Distance and Speed-Distance results for the estimated points are well matched with

all clusters. However there are a few missed estimates for speed.

For comparison, we present the simulation results in Fig. 5.13 for the conven-

tional 2D kron-OMP method [129] that does not consider cluster prior so that we

can directly compare the actual accuracy of estimates obtained in Fig. 5.12. There

are some major problems with this method, compared to the proposed one. Firstly,

we note that there exists the estimation accuracy problem and hence missed es-

timation occurs in cluster channels, which is overcome by the cluster prior in the

proposed algorithm. Secondly, we have to use a threshold of Th = −15 dB to pick up

“effective” estimates with significant power. Comparatively, in the proposed algo-

rithm, the indices are generated automatically without using any explicit threshold.

Thirdly, even when we relax the accuracy requirement of the estimates and observe

the zoomed box section of estimates, we see that the estimates are hardly following

the cluster pattern of the actual ones in Fig. 5.13.

Moreover, we do Monte-Carlo trials for both our proposed 2D cluster kron-OMP
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and conventional 2D kron-OMP for same non-quantized channel parameters with

Ns = 28 DMRS subcarriers. Uplink sensing simulated for Niter trails each time and

we compute the RMSE for AoA estimates at each Niter as,

RMSEAoA =

√√√√ 1

(NiterL)

Niter∑
j=1

L∑
`=1

∣∣∣φ̂`,j − φ`,j∣∣∣2. (5.24)

AoA estimation performance is evaluated versus all Niter iterations considered

in top figure and versus number of clusters in channels with Niter = 100 in bottom

figure of Fig. 5.14 respectively. The proposed 2D cluster kron-OMP algorithm

achieves the best performance for all iterations in comparison with its cluster-less

peer 2D kron-OMP. In addition, as we increase the number of clusters in Cluster-

Chl, we can also observe relatively better estimation in the proposed algorithm.

5.2.4 Comparative Study on Computational Complexity

Existing algorithms have respective shortcomings for sensing parameter estimation

in perceptive mobile networks, as compared with the simulation results obtained

from the proposed methods. Generally, the classical 2D DFT method is simple and

less complex but this provides low resolution in comparison with all the results of

proposed 1D-3D CS and requires a full set of measurements in time or frequency

domain. Again, in ESPRIT and MUSIC, the reasonable resolution requires at least

a large segment of consecutive samples and this is not always available in uplink

sensing. In contrast, off-grid type compressive methods do not require consecutive

samples but implementation for real time operation imposes high complexity. More-

over, off-grid CS contain respective constraints on the parameter estimation range

and the minimum separation of the parameter values [17]. We rather establish the

received signals to an arrangement such that from it any of the methods in 1D-3D

CS algorithms can be functional to acquire the estimates for the sensing param-
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eters from the linked sparse reconstructed estimates corresponding to the utilized

dictionaries.

Normally, higher-dimensional CS algorithms achieve better estimation perfor-

mance with the price of much higher computational complexity. The sensing prob-

lem becomes more critical when the number of measurements is limited because of

the short channel coherent time and a small number of antennas in the perceptive

mobile network. In the case of using on-grid CS methods, the number of available

observations in the selected dimension plays an important role in dominating the

estimation accuracy and resolution. The lack of sufficient measurements in each

dimension could likely create large quantization errors even using high-dimensional

on-grid CS algorithms such as the Tensor tool and Kronecker CS in the domains

of Doppler frequency, AoD and AoA. Fortunately, the cellular signals usually have

hundreds to thousands of subcarriers, which provide numerous measurements for

the delay. Therefore, quantizing the only delay can hypothetically lead to reduced

errors. In particular in the 2D cluster kron-OMP, the cluster prior probability den-

sity function that introduced with the CS reconstruction algorithm, efficiently detect

the coarse locations of the clusters, leading to more accurate sparse reconstruction

performance when 2D Kron CS algorithms are applied.

5.2.5 Summary

We have proposed a 2D cluster Kronecker OMP algorithm for sensing parameter

estimation in perceptive mobile networks, which can exploit the cluster structure

in multipath channels. By introducing a cluster prior, our algorithm can efficiently

detect the coarse locations of the clusters, leading to more accurate sparse recon-

struction performance when block CS algorithms are applied. Simulation results

demonstrate better parameter estimation accuracy, for both on-grid and off-grid

channel models, compared to the scheme without using prior knowledge.
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Figure 5.11: Two random realizations of downlink sensing using the proposed 2D clus-
ter kron-OMP algorithm for quantized (top sub-figures) and non-quantized (bottom sub-
figures) channel parameters.
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Figure 5.12: A random realization of uplink sensing using the proposed 2D cluster kron-
OMP algorithm for non-quantized channel parameters.
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Figure 5.13: Uplink sensing using 2D kron-OMP for non-quantized channel parameters
with Ns = 28 DMRS subcarriers (7 PRB). Black zoomed in boxes are for showing certain
missed estimates incapability of preserving cluster pattern.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis has developed a framework for a perceptive mobile network that inte-

grates radio communication and sensing into one system, transforming the current

communication-only mobile network. The proposed framework presents a unified

platform that enables both uplink and downlink sensing, using the uplink and

downlink communication signals, respectively. There have been many studies on

joint communication and radio sensing systems, as we have referenced in Chapter 2.

However, the perceptive mobile network is the one that systematically studies how

to apply JCAS to the large-scale cellular networks, by specifically considering the

system architecture, signal and propagation models in cellular networks.

In Chapter 2, we compared our work to known works on existing JCAS systems,

passive radar sensing and radar and communication coexisting systems. This thesis

also presents the required system modifications to enable the integration of these

systems. It is one of the major contributions of this thesis as discussed in the Intro-

duction chapter. One major issue for the integration here is how to deal with the

transmission signal leakage to the receiver for sensing, while communication systems

do not naturally have the capability of suppressing such leakage signals. Hence we

first state that such a problem does not exist in uplink sensing and therefore no sig-

nificant changes are needed in uplink sensing. However, downlink sensing requires
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hardware changes for JCAS operation. The full duplex technology is presented as

one potential solution to enabling JCAS on the current communication-only plat-

form. Due to its immaturity, we also presented two near-term alternative solutions

in Chapter 2. After that the thesis formulated the mathematical model for sensing.

We proposed both the direct and indirect schemes based on compressive sensing for

estimating the sensing parameters.

In this thesis, the multipath is randomly generated following a cluster channel

model with complex Gaussian distribution. The sensing algorithms are tested in the

presence of AWGN for direct method in Chapter 3, and both AWGN and channel

reconstruction error for the indirect method in Chapter 4. We further introduced

the background subtraction method and the Gaussian mixture model for clutter

suppression in Chapter 5. Our scheme is shown to work efficiently and is particularly

suitable for the cases when sufficient measurements are only available in one domain.

This thesis illustrates three preliminary sensing algorithms using 1D, 2D and

3D compressive sensing algorithms, and provides simulation results, using channels

generated from both our own cluster model and 5G QuaDRiGa channel model.

These results indicate that reasonable sensing performance can be achieved, and

demonstrate respective advantages and disadvantages of these algorithms. This

thesis work also disclosed some interesting research problems to work on as future

works, such as the ambiguity problem due to interleaved subcarriers and reduced

resolution in 3D CS algorithms.

This thesis also proposes a 2D cluster Kronecker OMP algorithm for sensing

parameter estimation in perceptive mobile networks, which can exploit the clus-

ter structure in multipath channels. By introducing a cluster prior, our algorithm

can efficiently detect the coarse locations of the clusters, leading to more accurate

sparse reconstruction performance when block CS algorithms are applied. Simula-

tion results demonstrate that our proposed algorithm can achieve better parameter

estimation accuracy, for both on-grid and off-grid channel models, compared to the

scheme without using prior knowledge.
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The perceptive mobile network can potentially facilitate many new sensing ap-

plications in smart city, smart home and smart transportation, while providing

communication services. Although there are significant challenges ahead to make

the perceptive mobile network fully operational, this work here is a solid first step,

demonstrating the feasibility and way forward.

6.2 Future Work

We have demonstrated in Chapter 3, Chapter 4 and Chapter 5 that using available

compressive sensing techniques to DMRS signals, we can achieve acceptable sensing

results with either a direct or indirect scheme in cluster channel with reduced clutter.

However, there remain problems to be solved, and the sensing accuracy is expected

to be further improved too. Some of these problems are:

• How to solve the ambiguity problem that may be present in all domains, but

particularly for the delay?

We discussed this issue in Section 4.2.3 and provide a few suggestions, such

as, selection of the right estimate, for example, the magnitude, or integration

of coarse and fine estimation methods for reducing the ambiguity in solutions.

• How to do sensing based on limited observations for uplink sensing when a

user is only allocated with a small number of resource blocks?

The uplink (DMRS) signals for one user may only occupy a very limited num-

ber of subcarriers. Therefore, we can only get a small number of observations

for the delay estimation, which could be even less than the number of mul-

tipaths. In this case, it will be insufficient to estimate each multipath, and

the output can contain large errors. We are looking at potential solutions for

this problem, for example, by designing better dictionaries and using filtering

techniques.

• Whether we can construct a better sensing dictionary to achieve a good balance
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between interpreting physics and quantization error in on-grid compressing

sensing? Will it be feasible to use off-grid sensing and how?

Most of the existing techniques, including our results presented in Chapter 3,

4 and 5, use the DFT dictionary or its variants for sensing. DFT dictionary is

particularly suitable for the time-delay-line type of channel models, but they

become less efficient for cluster channels, since each column in the dictionary

can only represent one multipath. When the number of multipaths is large,

which is typical for cluster multipath, this dictionary becomes ineffective. On

the other hand, the cluster structure of multipath may be better modelled

by other dictionaries such as the wavelet. We are currently investigating such

cases which can allow us to represent the cluster multipath with lower sparsity.

Moreover, theoretical analysis of the performances of the developed sensing

techniques can also be a future research direction, for example, the Cramer-

Rao lower bound derivation for the estimated sensing parameters.



Appendix A

DMRS Signals

A.1 Generation of DMRS Signals

The DMRS signal sequence χ(n) is generated as,

χ(n) =
1√
2
(1− 2 ∗ c ∗ (2 ∗ n)) + j

1√
2
(1− 2 ∗ c ∗ (2 ∗ n+ 1)). (A.1)

Pseudo random sequence c(i) is based on Gold sequence and c(i) sequence generator

initialized with,

cinit = (217(Nslot
symb ∗ η

µ
s.f + `+ 1)(2 ∗NηSCID

ID + 1) + 2 ∗NηSCID

ID + ηSCID)mod 231.

(A.2)

Here, ` is the OFDM symbol number within the slot, µ is subcarrier numerology,

ηµs.f is the slot number within a frame, then ηSCID is given by the DMRS sequence

initialization field, and Nslot
symb gives the number of symbols per slot, and finally

NηSCID

ID is given by the DMRS configuration.

The generation of DMRS is defined relative to a three-dimensional resource ele-

ment (RE) grid representing a 14-symbol slot for the full carrier (in the PDSCH or

PUSCH numerology) across the layers/DMRS ports of the PDSCH. Each column

of DMRS RE represents the grid locations for a separate layer/port (the third di-

mension of the grid). The complex values of DMRS sequence are also returned in
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matrix, mainly the DMRS signal. DMRS signal values and indices both are known

to the BS, and we can use these indices as a prior when obtaining sensing results

from received signals.

In terms of frequency domain DMRS density, there are two different RRC pre-

scribed configuration types. Configuration type 1 defines 6 subcarriers per PRB

per antenna port, comprising alternating subcarriers. Configuration type 2 defines

4 subcarriers per PRB per antenna ports, consisting of 2 groups of 2 neighbouring

subcarriers. Different shifts are applied to the sets of subcarriers used, dependent on

the associated antenna port or code division multiplexing (CDM) group. For type

1, there are 2 possible CDM groups/shifts across up to 8 possible antenna ports

(p=1000...1007), and, for type 2, there are 3 possible CDM groups/shifts across

12 ports (p=1000...1011). Please refer TS 38.211 Section 7.4.1.1 [87] for the full

configuration details.

In terms of time-domain DMRS symbol positions, the PDSCH mapping type can

be either slot-wise (type A) or non-slot-wise (type B). The mapping type specifies

the relative locations of the associated DMRS. For slot-wise mapping type A, the

first DMRS symbol is signalled by a field in the master information block (MIB) to

be either 2 or 3. For the non-slot-wise mapping type B, the first DMRS symbol is

always the first symbol of the PDSCH time allocation.

Fig. A.1 shows an example of DMRS subcarrier allocation with its indices.

We showed indices for 1 RE for up to four layers. Both slot-wise and non-slot wise

subcarrier indices for type 2 (grouped subcarrier) and type 1 (alternating subcarrier)

can be seen in this figure.

A.2 DMRS Resources within One PRB

There are 12 subcarriers in one PRB and 14 OFDM symbol in one slot. NR DMRS

supports massive MU-MIMO; it can be beamformed and supports up to 12 orthogo-

nal layers. At the end, generated DMRS sequence is passed through resource mapper

to finally obtain OFDM signal at the antenna ports for multiple users.
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Figure A.1: DMRS subcarrier indices within one PRB

According to 3GPP specifications, UE’s are configured with two DMRS config-

uration in the front loaded case of PDSCH/PUSCH. In short, two types of DMRS

configuration settings according to 3GPP are utilized for our sensing scheme. Con-

figuration 1 supports up to 8 ports (single user-MIMO) and Fig. A.2 provides

DMRS allocation in 1 PRB where one symbol defines 6 subcarriers (6 RE) per PRB

per antenna port with subinterval=2, comprising alternating interleaved subcarriers.

Slot-wise mapping type A provides position of DMRS symbol on 3rd symbol in slot.

On the other hand, configuration 2 supports up to 12 ports (MU-MIMO) and Fig.

A.3 shows DMRS allocation in 1 PRB where one symbol defines 4 subcarriers per

PRB per antenna port, consisting of 2 groups of 2 neighbouring grouped subcarriers.

We used Type B DMRS subcarriers in the uplink sensing simulation. Non-slot wise

mapping type provides position of DMRS symbol on 1st symbol in slot. In one

PRB, we have 4-grouped subcarrier with subinterval value of 3.

Fig. A.4 indicates all 252 DMRS subcarriers generated from Type-B, where first

symbol contains all the grouped subcarriers.



Figure A.2: DMRS subcarrier allocation within one PRB (alternating subcarriers)

Figure A.3: DMRS subcarrier allocation within one PRB (grouped subcarriers)
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Figure A.4: DMRS subcarrier allocation within one PRB (252 Subcarriers)
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