ATMOSPHERIC DENSITY CURRENTS: IMPACTS ON AVIATION OVER NSW AND ACT

[Shuang Wang] [Master of Science and Master of Engineering]

[Supervisors: Tapan Rai, Lance Leslie, Yuriy Kuleshov]

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Mathematical and Physical Science
University of Technology Sydney
[2019]

i

Statement of Original Authorship

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Shuang Wang declare that this thesis, is submitted in fulfilment of the requirements for the award of PhD, in the School of Mathematical and Physical Sciences at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note:

Signature removed

Signature: prior to publication.

Date: 06-000-2019

Keywords

ACT, Aviation, Canberra, climate, cooler, damaging winds, density current, down burst, microburst, NSW, observations, permutation testing, ranges, Rossby waves, satellite images, sort-lived gusty winds, southerly busters, squall lines, Sydney, thunderstorms, turbulence, warnings, wavelet analysis, wind shear (in alphabetical order)

Abstract

Three main types of density currents (DCs) which have significant impacts for aviation are investigated in detail over New South Wales (NSW) state of Australia and Australian capital Territory (ACT) in the research. The three types of density currents are southerly busters (SBs) along the coastal NSW, thunderstorm downbursts over north-western NSW and easterly DCs over Canberra.

The research take advantage of the recently available Himawari-8 high temporal- and spatial-resolution satellite data, Sydney wind profiler data, Doppler radar data, radiosonde data, half hourly METAR and SPECI aviation from observation data Bureau of Meteorology Climate zone, synoptic weather charts and other observational data. In addition, simply model for density currents, global data assimilation system (GDAS) meteorological model outputs, and the Australian Community Climate and Earth-System Simulator (ACCESS) operational model products are employed in the research.

Based on the impacts on aviation, for SBs and strong SBs (SSBs), when wind directions are between 160 degrees to 210 degrees, SBs are the average winds or gusty wind is >= 14.9 m/s (29 knots or 54 km/h), SSBs are the average winds or gusty winds more than 20.5 m/s (40 knots or 74 km/h). For easterly DCs, when wind directions are between 070 degrees to 150 degrees, the average winds or gusty wind is >= 7 m/s (13 knots or 23 km/h). For thunderstorms downbursts, damaging winds are the average winds or gusty winds more than 20.5 m/s (40 knots or 74 km/h) in any direction.

The results of this research show that the data analyses support the widespread view that the SB is a DC, coastally trapped by the Great Dividing Range. In addition, solitary waves develop ahead of SB in a shallow and stable prefrontal boundary layer.

A simplified density current model is applied to SBs, SSBs and easterly DCs. The model results

have been verified by the observations. The results that are solely model based also suggest

that the solitary waves travel at speeds about 20% faster than the DCs which is consistent with

the high-resolution satellite data and shows the solitary waves moving increasingly ahead of

the leading edge of the DCs.

The damaging winds caused by thunderstorm downbursts are DCs. The characteristics are

presented, and forecast parameters and indices are discussed.

Finally, the climatological trends for SBs and SSBs at Sydney airport are examined statistically

by using permutation testing and wavelet analysis. The results show that there is significant

increase in SBs over last 49 years, however, the SSBs show no significant trend over the same

period.

Atmospheric Density Currents: Impacts on Aviation over NSW and ACT

v

Table of Contents

State	ement of O	riginal Authorship	ii
Key	words		iii
Abst	ract		iv
Tabl	e of Conte	nts	vi
List	of Figures		viii
List	of Tables .		xi
List	of Append	ices	xi
List	of Abbrevi	ations	xii
Ackı	nowledgen	nents	xiii
Cha	pter 1:	Introduction	14
1.1	Backgro	und	14
1.2	Significa	ince	3
1.3	Thesis O	Putline	7
Cha	pter 2:	The Theory of Density Currents	8
2.1	Definition	on of Density Current	8
2.2	Density	Current Speed	9
2.3	The Soli	tary Waves	10
2.4	Density	Current in Thunderstorms	12
Cha	pter 3:	Literature Review	15
3.1	Southerl	y Busters	15
3.2	Thunder	storm downdrafts	16
3.3	Climate.		19
Cha	pter 4:	Research Design	22
4.1	Data and Methodology		
4.2	ICAO locations in NSW		
4.3		nd Limitations	
	pter 5:	Experiments and Results	
5.1	A Trappe	ed Southerly Buster and Associated Solitary Wavestroduction	32

		Observations and Analysis		
		Satellite Imagery		
	5.1.5	Radiosonde Data	48	
	5.1.6	Current Theory: Application to SBs	50	
	5.1.7	Discussion and Conclusions	53	
5.2	A Sho	ort-lived Gusty Wind Event Associated with a Squallline	56	
		Introduction		
		Synoptic Overview		
	5.2.3	Six Airports Observations	60	
	5.2.4	Satellite Imagery	65	
		Radiosonde Data		
		Trajectories for Air Parcels		
	5.2.7	Discussion and Conclusions	70	
5.3	Easter	ly Density Current Events over NSW and ACT	71	
	5.3.1	Introduction	71	
	5.3.2	Data and Methodology	73	
	5.3.3	Observation and Analysis	75	
		Density Current Theory Application to Easterly Change		
		2018/2019 summer season analysis of easterly wind changes		
	5.3.6	Discussion and Conclusions	83	
5.4	Analy	sis of Two Strong Southerly Busters	83	
	5.4.1	Introduction	83	
	5.4.2	Station observations	84	
		Synoptic Overview		
		Satellite Imagery		
		Sydney Airport Wind Profiler Data		
		Discussion of observations from January 30th to 31st from along the NSW.		
		Radar Images		
		Density Current Theory: Application to two SSBs.		
		Discussion and Conclusions		
5.5	Other	Density Currents	118	
Chap	oter 6:	Climate Analysis for Southerly Busters	.121	
Chap	oter 7:	Conclusions	126	
Bibliography1				
Appendices				

List of Figures

Figure 1: Photo taken from a SB
Figure 2: A SB detected by satellite
Figure 3: Idealized depiction of an aircraft taking off facing into a microburst5
Figure 4: Sydney Airport has three runways:
Figure 5: Schematic of a downburst development
Figure 6: ICAO ID of Airports in New South Wales
Figure 7: Topography of New South Wales
Figure 8: Observations of wind change from 0000UTC to 2330UTC on October 6, 2015 at Nowra (YSNW)
Figure 9: As in Figure 8, except at Sydney (YSSY) from 0900UTC to 2400UTC on October 6, 2015.
Figure 10: Observations of wind, visibility and cloud change from 0900UTC to 2400UTC on October 6, 2015 at YSSY
Figure 11: Synoptic weather charts October 6 to October 7
Figure 12: Schematic representation deduced from wind temperature data, of the frontal structure in a vertical cross Section parallel to the coast
Figure 13: Schematic of the cloud signatures of a Southerly Buster that can be detected using several sources of satellite imagery
Figure 14: Himawari-8 satellite visible image at 2140UTC on October 6. 2015 over the New South Wales coast
Figure 15: ASCAT winds at 2325UTC on October 6, 2015
Figure 16: The Himawari-8 satellite visible images from 2020UTC to 2320UTC on October 6, 2015
Figure 17: Radiosonde profile on October 6, 2015
Figure 18: Map of North-western of NSW, Australia
Figure 19: Synoptic weather charts for Australia at 0000 UTC (1000 AEDT) on December 13, 2018
Figure 20: Observations of Bourke Airport (YBKE) from 0000UTC to 0600UTC on December 13, 201860
Figure 21: Observations of Walgett Airport (YWLG) from 0000UTC to 0600UTC on December 13, 2018
Figure 22: Observations of Coonamble Airport (YCNM) from 0000UTC to 0600UTC on December 13, 2018.
Figure 23: Observations of Narrabri Airport (YNBR) from 0000UTC to 0600UTC on December 13, 2018

Figure 24: Observations of Moree Airport (YMOR) from 0000UTC to 0600UTC on December 13, 201863
Figure 25: Observations of Gunnedah Airport (YGDH) from 0000UTC to 0600UTC on December 13, 2018
Figure 26: Weather observations of wind gusts from 0000UTC to 0600UTC on December 13, at six airports
Figure 27 Himawari-8 Satellite Visible Images on December 13, 2018 over NSW. 65
Figure 28: Radiosonde profile at 0531UTC on December 13, 2018 at Moree Airport (YMOR)
Figure 29: 24 hours forward trajectories for air parcels beginning 00 UTC 13/12/2018 and ending 00 UTC 14/12/2018
Figure 30: 24 hours forward trajectories for air parcels beginning 00 UTC 13/12/2018 and ending 00 UTC 14/12/2018
Figure 31: Canberra Airport Runways (From Google Map)71
Figure 32: Map of South-eastern Australia
Figure 33: Observations from 0000UTC to 1800UTC on December 18th, 2018 at Canberra Airport (YSCB)
Figure 34: Synoptic weather charts from 0000UTC to 1800UTC December 18, 2018 at Canberra Airport
Figure 35: Topography of New South Wales Pacific Ocean coast with the Great Dividing Range west of Sydney in metres (m)84
Figure 36: Observations from 0025UTC to 2355UTC on November 20, 1973 at Sydney (YSSY)
Figure 37: As Figure 36, except from 0005 to 2330UTC on January 31, 2019 at Sydney Airport
Figure 38: Synoptic weather charts for 0200UTC November 20(a) and November 21 (b), 1973
Figure 39: Synoptic weather charts from 1800UTC January 30 to 1200UTC January 31, 2019
Figure 40: Himawari-8 satellite visible image at 0700UTC on January 31, 2019 over New South Wales coast
Figure 41: Model cross Section for potential temperatures (°C) and winds below 800hPa (elevation in feet in the right) at 0700UTC on January 31, 2019 along the NSW coast96
Figure 42: Himawari-8 satellite RGB night microphysical image for low cloud and fog at 1200UTC on January 2019
Figure 43: Sydney Wind Profiler from 0600UTC to 0900UTC on January 31, 2019.
Figure 44 Observations of wind change from January 30 th to 31 st from along the NSW coast from Gabo Island to Port Macquarie

Figure 45: 0.5-degree elevation reflectivity, radar scans from Terry Hill radar for three locations in Sydney region
Figure 46: 0.5-degree elevation reflectivity and velocity radar scans from Kurnell radar at 0640 UTC SSB at Sydney Airport
Figure 47: 0.5-degree elevation reflectivity and velocity radar scans from Terry Hills radar at 0640 UTC SSB at Sydney Airport
Figure 48: 0.5-degree elevation reflectivity and velocity radar scans from Wollongong radar at 0640 UTC SSB at Sydney Airport
Figure 49: Himawari-8 satellite image at 2330UTC on 26th, January 2019119
Figure 50: Number of SBs and SSBs trend over Warm Season from 1970/1971 to 2018/2019 at Sydney Airport
Figure 51: Difference in SSB Count (1995-2018 minus 1970-1994)123
Figure 52: Difference in SB Count (1995-2018 minus 1970-1994)124
Figure 53: Wavelets for SSB (1970-1994 and 1995-2018)124
Figure 54: Wavelets for SB (1970-1994 and 1995-2018)

List of Tables

Table 1: The outputs of ACCESS NWP system for 3 stations when the damaging winds occurred on December 13, 201825
Table 2: Details of the wind changes at YSNW and YSSY39
Table 3: The Nowra (YSNW) radiosonde data on 1700UTC October 6, 201549
Table 4: Details of the low level structure of the inversion at Nowra (YSNW)53
Table 5: Southerly Buster of 31 January 201955
Table 6: Observations of Easterly Change at Canberra Airport on December 18, 201877
Table 7: Observations of winds directions (in degrees) from 0000 UTC to 0530 UTC on December 18, 2018 at six stations
Table 8: Observations of temperatures (in °C) from 0400 UTC to 1030 UTC on December 18, 2018 at seven stations80
Table 9: Details of the density currents for the easterly change in Canberra on December 18 th , 201882
Table 10: All the easterly changes at Canberra Airport in 2018/2019 summer season.83
Table 11: Information in details on the two SSBs on November 20, 1973 and January 31, 2019
Table 12: Locations and Aviation IDs
Table 13: Observations of wind change from January 30 th to 31 st 104
Table 14: Details of the density currents for the two SSB
Table 15: Two Periods SBs and SSBs (25 years for each period)122
List of Appendices
Appendix 1: ICAO ID of Airports mention in the Thesis
Appendix 2: The Observation of SSB at Sydney Airport on January 31, 2019133
Appendix 3: Days of SBs and SSBs at Sydney Airport over last 49 years134
Appendix 4: Details of SSBs for the 49 year period (1971-2019)135
Appendix 5: Details of SBs for the 49 year period (1971-2019):138

List of Abbreviations

ACCESS	Australian Community Climate and Earth-System Simulator
AEDT	Australian Eastern Daylight Time
AP	Airport
ATC	Air Traffic Control
AWS	Automatic Weather Station
CAPE	Convective Available Potential Energy
CAVOK	Sky and visibility OK
CDT	Coastal Trapped Disturbance
DC	Density Current
DMAPE	Downdraught Maximum Available Potential Energy (DMAPE)
GDR	Great Dividing Range
GDAS	Global Data Assimilation System
GPATS	Global Position and Tracking Systems
HAM	Highest Alternate Minina
ICAO	International Civil Aviation Organization.
MCS	Mesoscale Convective System
METAR	Routine weather report issued at hourly or half-hourly intervals.
NSW	New South Wales
NWP	Numerical Weather Prediction systems
QNH	A Q code indicating the atmospheric pressure adjusted to mean sea level. It is a pressure setting used by pilots, air traffic control (ATC).
SB	Southerly Buster
SC	Southerly Change
SIGMET	Significant Meteorological Information AIM 7-1-6
SPECI	Special weather report issued when there is significant deterioration or improvement in airport weather conditions
SSB	Strong Southerly Buster
TAF	Terminal Aerodrome Forecast
TTF	The Trend Forecast
UTC	Coordinated Universal Time

Acknowledgements

I thank the Australian Bureau of Meteorology for providing the data used and the work experience in this study. The study also was partially funded by the Australian Technology Network's Industry Doctoral Training Centre (IDTC). The PhD study was carried out at the School of Mathematical and Physical Sciences at the University of Technology Sydney, after originally starting at RMIT.

Firstly, I would like to express my sincere gratitude to my advisors' panel: Prof. Tapan Rai, Lance Leslie, Yuriy Kuleshov for the continuous support of my PhD study and related research, for their patience, motivation, and immense knowledge. Their guidance helped me in completing the research and writing of this thesis. I could not have imagined having better advisors and mentors for my PhD study. Particularly, I express my gratitude to Prof. Lance Leslie who always enlightens my interests on the research topic with his passion for research. Besides my advisors, I would like to thank the rest of my thesis committee: Prof. Kefei Zhang Prof. Tim Langtry, Prof. Murray Cameron, A/Prof. Yakov Zinder, Dr. Milton Speer, Dr. Yan Ding, Dr. John Gear, Dr. Suqin Wu, Dr. Sally Cheng and PhD student Joshua Hartigan for their insightful comments and encouragement, but also for the hard questions which encouraged me to widen my research interests.

Also, I thank my colleagues in the Regional Forecasting Centre of Bureau of Meteorology for their stimulating discussions, for the sleepless nights we were working together and for enlightening me the first glance of research.

Last but not least, I would like to thank my family: my husband, my son and my parents for
supporting me spiritually throughout writing this thesis and my life in general.