

Energy Sensitive Urban Water Planning in Developing Countries: Unlocking the Potential of Distributed Recycled Water Systems to Reduce the Overall Energy Intensity for Urban Water Services

by Reba Paul

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Professor Pierre Mukheibir, UTS Institute for Sustainable Futures (Principal) and Dr. Steven Kenway, Associate Professor, The University of Queensland, Australia (Co-Supervisor).

University of Technology Sydney

Faculty of Institute for Sustainable Futures

May, 2020

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Reba Paul, declare that this thesis is submitted in fulfilment of the requirements for the award of PhD, in the Institute for Sustainable Futures at the University of Technology Sydney.

This thesis is wholly my original work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

I acknowledge that an electronic copy of my thesis must be made available immediately with the University of Technology Sydney (UTS) Library and subject to the General Award Rules of UTS for research purpose and study as per the *Copyright Act 1968*.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature removed prior to publication.

Signature: Date: 6 December 2019

ABSTRACT

Energy is a significant operational expense for most water utilities, particularly in developing countries. The current linear approach to water management will further increase the overall energy intensity (kWh/kL) for water services as rapidly growing cities move towards remote sources of water, desalination or deep groundwater abstraction, all of which are energy intensive. This thesis firstly investigates the potential for distributed recycled water systems (decentralised systems connected to centralised systems) to reduce the overall energy intensity of urban water and wastewater systems in a developing country context.

The literature review revealed that the energy intensity of treatment plants decreases with the increase in capacity. It was found that in most cases, the existing recycled water schemes treat water to a higher level than required for a particular end-use, so the energy intensity could be further reduced if 'fit for purpose' water were produced.

Using Bengaluru as a case study, a water mass balance was prepared under the Urban Metabolism Framework, which demonstrated that in 2016/17, the recycled water in Bengaluru had the potential to replace 90% of the extracted water from the Cauvery River (1323 MLD), which is pumped more than 100km. Using energy density mapping based on primary sourced data and following the water use cycle, the average energy intensity of centralised water and wastewater services across all the service zones was 2.1 kWh/kL and for water supply only was 1.8 kWh/kL.

In the case study, distributed recycled water systems were demonstrated to offer a viable means for reducing the overall energy intensity for water services. The model analysis revealed that for a specific selected zone, the energy intensities varied from 0.83 to 1.64 kWh/kL for potable water supplies, and 0.38 to 1.10 kWh/kL for non-potable water supplies, depending on the size of the plant and the technology used – all of which have lower energy intensities than the energy intensity for the selected zone (2.03 kWh/kL) and also the average energy intensity of the centralised water services. These energy intensities were also found to be lower than the energy intensity for the proposed Indirect Potable Reuse Scheme and the new long distant water transfers.

The second objective was to investigate how the challenges and barriers of distributed recycled water systems could be overcome using the One Water framework. From the case study findings based on semi-structured interviews, an institutional framework has been proposed that provides for both internal (e.g. strong leadership, knowledge, less political interference) and external reforms (e.g. regulators and policy, pricing reform, external engagement and collaboration) in a developing country context.

The findings of this research demonstrates the potential of distributed recycled water systems to reduce the overall energy intensity for urban water services, thereby making urban water service systems potentially more cost efficient, sustainable and resilient.

This Thesis is Dedicated to Love and Hope

Love: To my past loving mother - my ideal Mrs Tarala Bala Paul who passed away in 2015 and my father Mr Harendra Nath Paul, the son of the soil who left this earth in 2012 and my loving eldest golden brother Engineer Dr Tapan Kumar Paul, who passed away in Michigan in 2010 who was a father-like-son in our family. Today, my brother would be so happy that I have done my PhD, which was also his dream, the same as of mine. I came to do my PhD after extensive experience working in various fields (water, energy and environment) in many government and international NGOs to fulfil my dream that I could not do earlier because of my high job responsibilities.

Finally, I dedicate this thesis to my great boss and mentor Engineer Mr Quamrul Islam Sidduqe who was a visionary leader in Bangladesh and who passed away in 2008 from a heart attack in New York on the way back to his country after attending the world water week at Stockholm. He left a great legacy in sustainable development in the country. I was very fortunate working directly under him among a number of whom he built with his own hand. The people surrounding him said to me that I was his right hand.

Hope: This thesis hopes to contribute to building sustainable cities through reducing energy for water services and provide cost-effective urban water services particularly in developing countries, and to especially help the poor people to access water and have good health.

This research provides good evidence for planners and decision makers to consider distributed recycled water systems in their water supply portfolio and to rethink the pros and cons of the expansion of conventional centralised systems. The significant benefits of distributed systems and their potential to reduce the overall energy intensity for urban water services and thereby making urban water service systems more sustainable and cost efficient for increased access to water supplies and helping achieving the SDGs for water supply and sanitation.

Acknowledgements

I am indebted to the University of Technology Sydney (UTS)/Institute for Sustainable Futures (ISF) for providing me with the International Research Scholarships (UTS IRS) for tuition fees and UTS Presidents Scholarship (UTSP) for a living allowance without which I could not carry out my PhD (Sustainable Futures). I also thank ISF for part of my Professional Development Fund as well as for providing a Research Grant to enable my fieldwork in Bengaluru.

Special thanks to Indian Institute of Science (IISc) and Professor Pradeep P Mujumdar, Head of the Department of Civil Engineering and Chairman, Interdisciplinary Centre for Water Research (ICWaR) who hosted me and provided kick-off support to start my fieldwork as well as office space (including computer and internet) and other logistics during my fieldwork, in addition to arranging cheaper accommodation for three months at Centenary Guest House of IISc, which helped me to complete my fieldwork with a good amount of time. I also thank his two office secretaries, Ms Indira Dass and Ms Ramya Shylesh, for helping me complete my registration with IISc, (a premier Institution in India) and Foreign Registration Office (FRO) in Bengaluru, Government of Karnataka. I was required to conduct my fieldwork from there as an International Student and avail other logistics to conduct my field research. I also extend thanks to the Department of Civil Engineering of IISc to organise a presentation for me as a visiting researcher at IISc to its Post Grad students on 'Climate Change and Water-Related Energy: Rethinking our water management,' relating to the problem that my PhD research is investigating.

I thank Mr Tushar Girinath, Chairman, Bengaluru Water Supply and Sewerage Board (BWSSB) who enabled me to collect data from BWSSB through his officials and field staff by instructing the Chief Engineer (CE) Dr P.N. Ravindra, Cauvery (K) division and Dr Stuart White, the Executive Director, ISF to facilitate my data collection with an official letter to BWSSB. I also thank Mr Kemparamaih, Engineerin-Chief and BWSSB for his valuable time to provide me and giving instruction to his officials to help me access data from BWSSB.

My sincere thanks to Dr Ravindra for his time in his extremely busy schedule, and his Personal Secretary Mr Hannumanth Ghanti, for helping me with collecting monthly data for water supply and energy consumption, from Pump House/Electrical Engineering Division at field offices under the Cauvery Division of BWSSB. I also thank other officials and field staff who assisted me while collecting data.

I thank the officials in BWSSB who provided me with water supply, consumption, and Unaccounted for Water (UFW) data in Bengaluru. I thank all staff and field officials particularly BWSSB's Pumping and Borewell Division (Executive Engineer's office) at Malleswaram and Mr L. Kumar Naik, Executive Engineer and his official Asha, Assistant Electrical Engineer who provided me tremendous support to obtain water and energy data for water supply and distribution under nine divisional offices in Bengaluru, which was a very time consuming and painstaking task.

I thank all interviewees for their valuable time to give interviews; and especially Engineer Mr M.N. Thippeswamy who helped me identify some potential interviewees.

I thank Ashoka Trust for Research in Ecology and the Environment (ATREE) for inviting me to a valuable workshop related to my work that was held in Bengaluru during my fieldwork on 'Rethinking Bengaluru's Water, Wastewater and Lakes' which gave me the opportunity to know what experts and civil societies are

thinking about as solutions to Bengaluru's water problems and current research in Bengaluru. I thank Dr Veena Srinivasan, Dr Priyanka Jamwal and Dr Sharachchandra Lele for all their help, providing me with a free venue and helping organise the Focus Group Discussion (FGD) meeting after completion of all interviews.

I thank Professor Jan-O-Lop for his time while visiting Bengaluru and his insights on the solution of Bengaluru's water problems and invited me to attend his technical talk on Rainwater Potential in Bengaluru at Bengaluru Institute of Technology (BIT), which provided me with valuable information on rainwater potential and the groundwater recharge problem in Bengaluru. I also facilitated a collaborative meeting for Professor Jan-O-Lof with Professor Pradeep P. Mujumdar, Head, Department of Civil Engineering, IISc on Ecological Sanitation for which he is an expert, and a further talk by him at IISc when he revisited Bengaluru travelling from Sweden.

I sincerely extend my gratitude and thanks to Mr M.N. Thippeswamy (Retd), Chief Engineer, Wastewater Management, and Corporate Development for his guidance and advice to collect data and connect me with the current Chief Engineer, Mr Satish, Wastewater Management. I also thank him for his continued support when I returned to Sydney to obtain some data that I failed to collect during my fieldwork within the stipulated time and the busy schedule of the officials in BWSSB. I thank Mr V.C. Kumar (Retd.), Addl Chief Engineer of BWSSB who helped me visit several wastewater plants in Bengaluru and get the data on wastewater generation and energy. I extend my sincere thanks to Ms Smitha, Plant Manager, Cubbon Park and her field officials and Mr K.R. Ramkumar, Electrical Engineer and Mr Monoj Pravakar, Operator, IISc. Recycled Water Plant for showing me the two plants and provide necessary data for my research.

I thank Institute for Sustainable Futures (ISF) of University of Technology Sydney (UTS), my faculty, especially Professor Chris Riedy, Director, Dr Jason Prior, Deputy Director, and Dr Dena Fam, who helped me develop my research skills on critical thinking, transdisciplinary research, and research methodology/ontology and for being part of the diverse and vibrant research community of ISF.

I also thank ISF for providing me with such a nice study environment to complete my PhD including providing snacks so that I didn't feel hungry while studying late. I thank various colleagues at ISF such as Admin Staff, Jenny and Toma, for their support whenever it was needed; IT staff Matt (Cramp) for solving software issues, fixing my laptop and changing it after three years, Bruce, Mei for various IT troubleshooting issues; Mathew (Hounsell) for his help in formatting and troubleshooting; finance staff, Firoz, Neo, Rain and Tiana for processing my claims and arranging reimbursement; Dan and Erika (Wagner) for processing various financial and administrative approvals I required for my field work; Suzy for taking care of my accommodation in Brisbane for the IWA Conference and for faculty fitness; and Suzanne (Cronan) for providing sincere support for all HDR related issues such as progress reports, processing leave of absence and any changes required during my candidature. I also extend my sincere thanks to Damien, Murray, Brent, Tim and Simon (Fane) who have encouraged me on this journey and Roel for supporting me for my visit to Wageningen University for participation in a nexus conference.

I thank my lovely friends Jeremy, Ian, Erika, Rupert and Robert, for checking my grammar and providing feedback on my journal articles at various stages. I also thank my two lovely friends (Alois Webb and Noel Webb) who continuously provided me with mental support in trying times, also checking grammar for my thesis for Chapter 4. I also thank my BUET friends here in Australia (Saniya and Ashiq) and my friends abroad (Jyoti, Rita, Pauline, Karen, Sunita) for their friendly support and encouragement to finish my PhD. I thank my peers Katie, Tani, Ian, Verena, Tanja, Jeremy, Erika, Nivek, Simon (Wright), Lily, Jess, Anh,

Bhathiya, Wendy (Wang) Bishal and Ella for their friendly support, encouragement and enjoying lunch sometimes with them. I thank my GAS members especially Nivek, Erika, and Wendy who have always been very helpful. I extend my thanks to ISF staff Maria and Rain, for providing mental support and encouragement. I also thank my house owner Esat (Hassip), Zen Residential Ltd. and my neighbours particularly Shamoli for their friendly support during my study.

I thank Graduate Research School (GRS) of UTS, especially Terry Royce, Lien Pham and Nick Hopwood from FASS, for helping develop my research skills by offering a series of training on various topics. I also thank UTS library for mainstreaming me in UTS various facilities and hands-on training or workshop on conducting research as well as the excellent online Library, to search and access journals for my research. I provide special thanks to Meijun at the UTS library for helping me use Mendeley software for referencing and solving/troubleshooting problems towards the end of my thesis writing. I also thank the UTS Ethics office for their support to obtain ethics approval to conduct my thesis and GRS scholarship section to process my leave of absence for three months that I needed.

I also thank my earlier organisations - Local Government Engineering Department, Global Water Partnership office in Bangladesh, South Asia and WaterAid, Bangladesh Power Development Board, Ministry of Housing and Public Works, BAWIN under WIN/Transparency International and Shubashati NGO) Working in those organisations provided me scope to learn and gather experience in the field of water, energy and environmental problems nationally, regionally and globally which helped my research very efficiently, especially the fieldwork. My special thanks to the Global Water Partnership office at Stockholm, who provided my living expenses as a grant (first receiver and later GWP supported other Masters students with Scholarship) and International Water Centre (IWC) for providing my water leadership scholarship for my Masters on Integrated Water Management with the University of Queensland as this study helped fuel my further interest in the field for which I have done my PhD. I am grateful to Dr Steven Kenway who introduced me to ISF which is very passionate about research on sustainability towards sustainable futures. He helped me apply for my PhD and I succeeded. I was very happy that he agreed to become my co-supervisor for my PhD. I also thank Dr. Torkil Clausen (Former GWP TEC Chair), Amb. Muhammad Zamir (former GWP-SAS RC Member), Engr. Md. Shahidul Hassan (former Chief Engineer, LGED & President, BWP) and Mr. Suresh Prabhu (former Chairperson, GWP-SAS) for their constant encouragement for my higher studies.

I especially thank my two elder sisters (Madhuri and Sandha), who took care of my education in school and college and my eldest brother (Dr Tapan Kumar Paul, who sadly passed away in Michigan, US in 2010) for my study in engineering. I also thank my sister Aroti who has been my everyday friend even over the phone, sharing about life here. I was not born with a silver spoon so without my family support my achievements to date would have been so much more difficult. I also thank my husband Gautam Joshii who also has been a part of this journey.

I thank Ms Sharon Wakem for proof reading this thesis and for staying with me until I was completed.

Finally, my heartfelt thanks and gratitude to my two brilliant and friendly supervisors Professor Pierre Mukheibir (UTS-ISF) and Dr Steven Kenway (Associate Professor and Team Leader, Water-Energy-Carbon Division, Advanced Water Management Centre, Department of Chemical Engineering, University of Queensland) for their constant guidance, constructive and useful feedback, encouragement and inspiration, mental support and uplifting me whenever I was faltering during this long journey. Thank you for being with me in this endeavour. Without you, I could not have done this.

Publications during the Candidature

Peer Reviewed Journal Articles included in this thesis

- Paul, R., Kenway, S. and Mukheibir, P. (2019), How scale and technology influence the energy intensity of water recycling systems-An analytical review, Journal of Cleaner Production, Vol.215, p1457-1480.
- Paul, R., Kenway, S., McIntosh, B., Mukheibir, P. (2018), Urban Metabolism of Bengaluru city: A Water Mass Balance Analysis, Journal of Industrial Ecology, 22(6), 1413–1424.

Article 1 (attached at the end of the thesis) informs Section 2.4, 2.5 and 2.6 in Chapter 2 and Article 2 (attached at the end of the thesis) informs Section 3.5.1 and 3.5.2.1 and 3.5.2.2 in Chapter 3 and Section 5.5 in Chapter 5.

Conference Proceedings

- Paul, R. and Mukheibir, P. 2019, Direct Potable Reuse a more cost effective water supply option than long distant water transfer or Desalination, presented at Next Water 2019 (12-13 Feb 2019), Water Research Australia in Melbourne, Australia.
- Paul, R., Mukheibir, P., Kenway, S. 2018, Water-Energy Nexus in Bengaluru City and Improved Water Services: Building Urban Resilience, ResNexus 2018 (6-7 Nov 2018), The Wageningen University, the Netherlands.
- 3 Paul, R., Mukheibir, P., Kenway, S. 2017, Potential of Distributed Recycled Water System to reduce Energy Intensity of Overall Urban Water and Wastewater system, OzWater 2017 (16-17 May, 2017), Australia Water Association, Sydney, Australia.

Conference paper 1 inform Section 5.3.1, 5.3.2 and 5.3.3 in Chapter 5; Paper 2 inform Section 1.3 in Chapter 1 and part of Section 6.1.2 in Chapter 6 and Paper 3 (article 1).

Unpublished Paper

 Addressing Water-Energy Nexus in Bengaluru City for Improved Water Services: Building Urban Water Resilience submitted to the Journal of Integrative Environmental Science.

Contents

G	GLOSSARY XVI			
1	Снаг	TER 1 - INTRODUCTION 1		
	1.1	LIMITED WATER RESOURCES1		
	1.2	ACCESS TO ADEQUATE WATER SERVICES AND THE SDGS1		
	1.3	WATER – ENERGY NEXUS		
	1.4	THE CHALLENGE OF THE CURRENT PARADIGM TO REDUCE ENERGY		
	1.5	THE AIMS, OBJECTIVES AND RESEARCH QUESTIONS		
	1.6	THESIS STRUCTURE AND CENTRAL ARGUMENTS OF THE THESIS		
2	Снар	rter 2 - Literature Review		
Ρ	art A:	Energy Intensity of Water and Wastewater/Recycled Water Systems14		
P	art A1:	Energy Intensity of Centralised Water and Wastewater Systems14		
	• •	0		
	2.1	CHARACTERISATION OF ENERGY USE BY WATER SERVICE SYSTEMS		
	2.1.	1 Centralised Water and Wastewater Systems		
	2.1.	2 Centralised Recycled Water Systems 16		
	2.1.	3 Decentralised Water and Wastewater/Recycled Water System		
	2.2	REVIEW OF ENERGY INTENSITY OF VARIOUS WATER SERVICE SYSTEMS		
	2.2.	1 Defining EI of Water and Wastewater Systems		
	2.2.	2 Reviewing the EIs of Centralised Water and Wastewater Systems in Developed Countries		
	2.2.	3 Reviewing the EIs of Centralised Water and Wastewater Systems in Developing Countries		
	2.2.	4 El of Groundwater Supply 32		
	2.2.	5 El for Desalination		
	2.3	OPTIONS TO REDUCE ENERGY INTENSITY		
	2.3.	1 Network Operations		
	2.3.	2 Efficient Treatment Technologies		
	2.3.	3 Reuse Options		
P	Part A2: Energy Intensity of Recycled Water Systems and How Scale and Technology and Other Factors Influence Energy Intensity44			

2.	.4	Elo	F TREAT		INOLO	GIES		•••••			42
	2.4.	1	Els of C	onvention	ial Wa	astewate	r Treatmer	nt Techn	ologies		42
	2.4.	2	EI of Techno	Conventio	onal	Tertiary	Treatme	nt and	Advanced	Water	Treatment 46
2.	.5	Elso	OF EXIST	ING CENTR	ALISE		ECENTRALIS	SED REC		TEMS	53
	2.5.	1	Centrali	sed Potab	ole Wa	ater Reus	se – 'Case	1'			56
	2.5.	2	Centrali	sed Non-F	Potab	le Water	Reuse – '(Case 2'.			58
	2.5.	3	Decentr	alised Dire	ect Po	otable Re	euse - 'Cas	se 3'			59
	2.5.	4	Decentr	alised Nor	n-Pot	able Reu	se (NPR)	– 'Case	4'		59
2.	.6	INFL	UENCE O	F SCALE/S	ize, T	ECHNOLO	GIES, AND	REGULA	TIONS		62
	2.6.	1	Influenc	e of Scale	and	Size on I	ΞΙ				62
	2.6.	2	Influenc	e of Vario	us Tr	eatment	Technolog	ies on E	il		66
	2.6.	3	Influenc	e of Regu	lation	is and Cl	naracteristi	cs of Wa	astewater In	fluents	69
Dem	4 D.			and a Di				for vvat	er Service	s – UDD	ortunities
Par Part 2.	t B: ; ; B1: .7	Movi and (Exp THE SYS ⁻	Ing tow Challen Ioring ti Advant TEMS	ards a Di ges ne Opport	tuniti	es for D	stributed	System DIFFEREI	IS	AND W	74 74 /ASTEWATER 72
Part Part 2.	t B: a B1: .7 2.7.	Movi and (Exp The Sys ⁻ 1	Ing tow Challen Ioring ti Advan TEMS	ards a Di ges ne Opport ⁻ AGES ANI sed Water	tuniti D Dis	es for Di SADVANTA	ater Syster	System DIFFEREI	IS	AND W	74 74 /ASTEWATER 72 72
Part Part 2.	t B: B1: 7 2.7. 2.7.	Movi and (Exp THE SYS ⁻¹ 2	Ing tow Challen Ioring tl ADVANT TEMS Centrali	ards a Di iges ne Opport GAGES ANI Sed Water sed Recyc	tuniti D Dis r and cling \$	es for Di SADVANTA Wastewa Systems	ater Syster	System DIFFEREI ms	IS	AND W	74 /ASTEWATER 72 72
Part Part 2.	t B: B1: .7 2.7. 2.7. 2.7.	Movi and (Exp THE SYS ⁻¹ 2 3	Challen Ioring ti ADVANT TEMS Centrali Centrali Decentr	ards a Di iges ne Opport rages Ani sed Water sed Recyc alised Wa	tuniti D Dis r and cling s	es for Di SADVANT/ Wastewa Systems ater/Recy	ater Syster and Water	System DIFFEREI ms Reuse er Syster	NT WATER	AND W	74 /ASTEWATER 72 72 72 75 77
Part Part 2.	t B: a t B1: 7 2.7. 2.7. 2.7. 2.7.	Movi and (Exp THE SYS ⁻ 1 2 3 4	Ing tow Challen Ioring ti ADVANT TEMS Centrali Centrali Decentr Distribu Alternat	ards a Di ges ne Opport AGES ANI sed Water sed Recyc alised Wa ted Waster ive Option	tuniti D Dis r and cling s astewa ewate	es for Di SADVANT/ Wastewa Systems ater/Recycl	ater Syster and Water ycled Water	System DIFFEREI ms Reuse er System System	NT WATER	AND W	74 74 72 72 75 77 oncept and 82
Part 2.	t B: 4 B1: 7 2.7. 2.7. 2.7. 2.7. 2.7.	Movi and (Exp THE SYS ⁻ 1 2 3 4 5	Ing tow Challen Ioring ti ADVANT TEMS Centrali Centrali Decentr Distribu Alternat Advanta	ards a Di ages ne Opport AGES ANI sed Water sed Recyc alised Waster ive Option iges of Dis	tuniti tuniti D Dis r and cling s astewa ewate n	es for Di SADVANT/ Wastewa Systems ater/Recycl	ater Syster and Water vcled Water cled Water	System DIFFEREI ms r Reuse er System System r Systen	IS NT WATER Ins Is: An Eme	AND W	74 74 72 72 75 77 oncept and 82 87
Part 2.	t B: a b c c c c c c c c	Movi and (Exp THE SYS ⁻ 1 2 3 4 5 6	Ing tow Challen Ioring ti ADVANT TEMS Centrali Centrali Decentr Distribu Alternat Advanta Compai System	ards a Di ages ne Opport AGES ANI sed Water sed Recyc alised Wa ted Waster ive Option ages of Dis ison Betw	tuniti tuniti D Dis r and cling \$ astewa ewate n	es for Di SADVANT/ Wastewa Systems ater/Recycl er/Recycl ted Recy Centralise	ater Syster and Water vcled Water cled Water	System DIFFEREI ms Reuse er System System r System	NT WATER	AND W	74 74 72 72 75 75 77 oncept and 82 87 ycled Water 92
Part 2. Part	t B: a B1: 7 2.7. 2.7. 2.7. 2.7. 2.7. 2.7. 2.7. 2.7. 2.7. 2.7. 2.7.	Movi and (Exp THE Sys 1 2 3 4 5 6 Cha	Ing tow Challen Ioring ti ADVANT TEMS Centrali Decentr Distribu Alternat Advanta Compai System	ards a Di ages ne Opport AGES ANI sed Water sed Recyc alised Wa ted Waster ive Option ages of Dis ison Betw and Barri	tuniti tuniti D Dis r and cling \$ astewa ewate stribut veen (iers c	es for Di SADVANT/ Wastewa Systems ater/Recycl ted Recy Centralise of Distrik	ater Syster and Water vcled Water cled Water ed, Decen	System DIFFEREI ms Reuse er System r System tralised	NT WATER IS IS INS IS. An Eme INS IS	AND W	74 74 72 72 72 75 77 oncept and 82 87 ycled Water 92 92 94
Part 2. Part 2.	t B: ; B1: 7 2.7. 2.7. 2.7. 2.7. 2.7. 2.7. 2.7. 8 8	Movi and (Exp THE Sys ⁻¹ 1 2 3 4 5 6 Cha Cha	Ing tow Challen Ioring ti ADVANT TEMS Centrali Centrali Decentr Distribu Alternat Advanta Compai System Illenges	ards a Di ards a Di ges ne Opport AGES ANI sed Water sed Recyc alised Water alised Water alised Water ive Option iges of Dis ison Betw s and Barri AND BARF	tuniti tuniti D Dis r and cling s astewa ewate stribut veen (iers c RIERS	es for Di EADVANT/ Wastewa Systems ater/Recycl ted Recy Centralis of Distrik	ater Syster and Water voled Water cled Water cled Water outed Rec	System DIFFEREI ms Reuse er System System r System tralised ycled W	ISIS INT WATER INSIS INTIS INTIS INTIS INTIS INTIS INTIS INTIS INTIS INTIS INTIS INT.	AND W erging Co uted Recy ms	74 74 72
Part 2. Part 2.	t B: 4 B1: 7 2.7.	Movi and (Exp THE Sys ⁻¹ 1 2 3 4 5 6 5 6 Cha Cha 1	Ing tow Challen Ioring ti ADVANT TEMS Centrali Centrali Decentr Distribu Alternat Advanta System Illenges LLENGES Bold Le	ards a Di ages ne Opport AGES ANI sed Water sed Water sed Recyc alised Wa ted Waste ive Option ges of Dis ison Betw and Barri AND BARF adership	istrib tuniti D Dis r and cling S astewa ewate stribut veen (iers c RIERS	es for Di SADVANT/ Wastewa Systems ater/Recy er/Recycl ted Recy Centralise of Distrik	ater Syster and Water ycled Water ed Water cled Water ed, Decen buted Rec	System DIFFEREI ms Reuse er Syster System r System tralised ycled W	ISIS NT WATER INS I	AND W erging Co uted Recy ms	
Part 2. Part 2.	t B: ; B1: 7 2.7. 2.8.	Movi and (Exp THE Sys ⁻¹ 2 3 4 5 6 Cha Cha 1 2	Ing tow Challen Ioring ti ADVANT TEMS Centrali Decentr Distribu Alternat Advanta Compar System Ilenges LLENGES Bold Le Plannin	ards a Di ages ne Opport AGES ANI sed Water sed Recyc alised Water adership and Barri AND BARF adership and Coll	istribu tuniti D Dis r and cling s astewa ewate astribut veen (iers c RIERS	es for Di SADVANT/ Wastewa Systems ater/Recycl er/Recycl ted Recy Centralise of Distrik of Distrik	ater Syster and Water ycled Water ed Water cled Water cled Water outed Rec	System DIFFEREI ms Reuse r System System r System tralised ycled W	IS NT WATER INS I	AND W erging Co uted Recy ms	

	2.8.	4 Legislation and Regulations	100
	2.8.	5 Economics and Finance	101
	2.8.	6 Culture, Knowledge and Capacity	102
2	2.9	SUMMARY AND RESEARCH GAP	103
3	Сная	PTER 3 - RESEARCH DESIGN AND METHODS	108
3	3.1		108
3	3.2	RESEARCH DESIGN AND METHODOLOGY	109
	3.2.	1 Case Study Methodology	112
	3.2.	2 Limitations of the Case Study	113
3	3.3	SELECTION OF COUNTRY/CITY	114
3	3.4	SELECTION OF THE STUDY AREA	115
3	3.5	QUANTITATIVE RESEARCH DESIGN FOR THE CASE STUDY	116
	3.5.	1 Theoretical Framework – Urban Metabolism Framework – Sustainability	116
	3.5.	2 Analytical Methods	118
	3.5.	3 Data Sources and Data Collection	124
	3.5.	4 Data Availability	125
	3.5.	5 Data Analysis	126
3	3.6	QUALITATIVE RESEARCH DESIGN FOR THE CASE STUDY	133
	3.6.	1 Theoretical Framework - 'One Water' Framework	133
	3.6.	2 Analysis Methods	134
3	3.7	RIGOR AND VALIDITY OF THE RESEARCH	139
3	3.8	ETHICAL CONSIDERATIONS	141
	3.8.	1 Ethics Consultation	141
	3.8.	2 Managing Potential Risks	141
	3.8.	3 Approval/Clearance to Conduct the Research	143
	3.8.	4 Benefits to Research Participants	143
	3.8.	5 Reflexivity in the Research	144
4	Сная	PTER 4 - CASE STUDY CONTEXT	145
4	4.1	LANDSCAPE OF BENGALURU	146
	4.1.	1 Climate and Rainfall	146
	4.1.	2 Urban Growth in Bengaluru	149

4	.1.3	Demographic Profile in Bengaluru	154
4	.1.4	Water Availability in Bengaluru City	156
4.2	So	CIO-TECHNICAL REGIMES	162
4	.2.1	Water Supply and Wastewater Regime	162
4	.2.2	Current Status of Water Services in Bengaluru	167
4	.2.3	Water Governance Regime	173
4.3	Nic	CHES - DECENTRALISED/DISTRIBUTED SYSTEMS	177
4.4	Su	MMARY	178
5 Сн	APTER	R 5 - ANALYSING THE EI OF WATER SERVICES IN BENGALURU	182
5.1	El	OF CENTRALISED WATER AND WASTEWATER SYSTEM IN BENGALURU	182
5	.1.1	EI for Water Collection, Transport/Conveyance, and Water Treatment	183
5	.1.2	Energy Intensity for Water Distribution	187
5	.1.3	El for Wastewater Collection	189
5	.1.4	EI for Wastewater Treatment and Disposal	190
5	.1.5	Total EI of the whole centralised water and wastewater system	192
5.2	EN	ERGY INTENSITY OF EXISTING RECYCLED WATER SYSTEMS	194
5	.2.1	Distributed Recycled Water Systems/Tertiary Treatment Plants	194
5.3	As	SESSING EI OF CURRENT PROPOSED SCHEMES	201
5	.3.1	Proposed Indirect Potable Reuse Project	201
5	.3.2	EI for DPR (If the proposed IPR would be used as DPR)	203
5	.3.3	Proposed Long Distant Water Transfer from the Saravathi River	204
5.4	Co	NSIDERING HYPOTHETICAL DISTRIBUTED SYSTEMS	207
5	.4.1	Population, Water Demand and Wastewater Generation in KR Puram for Hypothetical Distributed Recycled Water Plants	[.] Planning 209
5.5	RE	CYCLED WATER POTENTIAL IN BENGALURU	215
5.6	Su	MMARY	217
6 Сн	APTER	R 6 - DELIVERING DISTRIBUTED SYSTEMS IN BENGALURU	220
6.1	Ins	TITUTIONAL CHALLENGES AND BARRIERS	220
6	.1.1	Leadership and Vision	222
6	.1.2	Planning and Collaboration	226
6	.1.3	Culture, Capacity and Knowledge	238

	6.1.	4	Regulations and Legislation	244
	6.1.	5	Financing	248
	6.1.	6	Citizen and Stakeholders Engagement	254
	6.2	Ove	RCOMING THE INSTITUTIONAL CHALLENGES AND BARRIERS	255
	6.2.	1	Strong Leadership	256
	6.2.	2	Need for Integrated Planning and Collaboration	260
	6.2.	3	Need for Appropriate Regulations and Legislation	263
	6.2.	4	Changing the Institutional Culture, Building Capacity and Improving 265	Knowledge
	6.2.	5	Innovative Financing and Private Sector Involvement	
	6.2.	6	Effective Engagement of Citizens and Stakeholders	268
	6.2	Sun	IMARY	269
7	Снар	TER	7 – CONCLUSIONS AND RECOMMENDATIONS	272
	7.1	Rev	ISITING THE PROBLEM AND RESEARCH QUESTIONS	272
	7.2	The Urb	POTENTIAL OF DISTRIBUTED RECYCLED WATER SYSTEMS TO REDUCE THE OV AN WATER AND WASTEWATER SYSTEMS	/ERALL EI OF 275
	7.3 Ov sys		RCOMING THE CHALLENGES AND BARRIERS FOR DISTRIBUTED RECYC	LED WATER
	7.4	REC	OMMENDATIONS FOR FUTURE RESEARCH	283
	7.5	Con	ICLUSIONS	283
ο	RFFF	REN	CES	

Appendix 1: Figures and Tables related to Chapter 2 Appendix 2: Figures and other Documents related to Chapter 3 Appendix 3: Figures and Tables related to Chapter 5

Journal Article 1: Paul, R., Kenway, S. and Mukheibir, P. (2019), How scale and technology influence the energy intensity of water recycling systems-An analytical review, Journal of Cleaner Production, Vol.215, p1457-1480.

Journal Articles 2: Paul, R., Kenway, S., McIntosh, B., Mukheibir, P. (2018), Urban Metabolism of Bengaluru city: A Water Mass Balance Analysis, Journal of Industrial Ecology, 22(6), 1413–1424.

List of Figures

Figure 1.1:	Water-Energy Nexus	2
Figure 1.2:	Current Cities and Future Cities	6
Figure 2.1:	'Water Use Cycle' of a Centralised Water and Wastewater System	14
Figure 2.2:	'Water Use Cycle' of Centralised Recycled Water System	17
Figure 2.3:	'Water Use Cycle' of a Decentralised/Distributed Wastewater/Recycled Water Syste	m.17
Figure 2.4 :	Energy Intensity of Centralised Water and Wastewater Systems in 16 Cities/Regions	in
-	Developed Countries	21
Figure 2.5:	Energy Cost of 95 Utilities in 9 Developing Countries	28
Figure 2.6:	Energy Consumption in kWh for Water Supply and Wastewater Systems in 2007-20	08 in
	some Cities in Developing Countries	30
Figure 2.7:	Energy Consumption in kWh/person/annum for Water Supply and Wastewater Syste	ms
	in 2007-2008 in 19 South Asian Cities in Developing Countries (2007/08)	31
Figure 2.8:	Centralised Wastewater Treatment and Reuse	44
Figure 2.9:	Water Use Cycle (System Boundary) of Various Water Recycling Systems	53
Figure 2.10:	Four Different "Cases" to Review the Energy Intensity of Water Recycling Systems	54
Figure 2.11:	Energy Intensity of Centralised and Decentralised Recycled Water Plants around the	
	World available from Literature	61
Figure 2.12:	Variation of Energy Intensity with Size of Recycled Water Plant with Particular	
	Technology using Data of Centralised Systems	64
Figure 2.13:	Energy Intensity of Different Treatment Technology or Trains to Produce 'fit for	
	purpose' recycled water	68
Figure 2.14:	Wastewater Treatment Requirement against various uses	71
Figure 2.15:	Different Types/Quality Recycled Water Use for Various End Uses around the Work	d76
Figure 2.16:	Centralised Water Recycling Systems (DPR, IPR, and NPR)	77
Figure 2.17:	Decentralised Water Recycling Systems	80
Figure 2.18:	Distributed (Satellite) Systems	84
Figure 2.19:	Scaling up to Centralisation	85
Figure 2.20:	Distributed Recycled Water Systems as defined in this study	86
Figure 2.21:	Distributed Recycled Water Systems as One Step Further of the 'Fourth Generation	
	Water Infrastructure'	87
Figure 2.22:	Networks of Exchange of 'Distributed Recycled Water Systems' to Transfer Recycle	ed
	Water as Required Within and Across the Systems Operating at Different Scales	88
Figure 2.23:	Use of Whole Urban Water Cycle using Centralised and Decentralised/Distributed W	Vater
	and Wastewater Systems	89
Figure 2.24:	Drivers of 'Distributed Recycled Water Systems'/'One Water' Management	92
Figure 2.25:	Future Triangle of Distributed Recycled Water Systems under this study	95
Figure 2.26:	Institutional Challenges of 'One Water' or 'Distributed Recycled Water Systems'	98
Figure 3.1:	Research Design/Conceptual Framework - Big Picture	108
Figure 3.2:	Systems Classification for this research	111
Figure 3.3:	Case Study Area (BWSSB's Service area)	115
Figure 3.4:	Urban Metabolism Framework	117
Figure 3.5:	Method used for Water Mass Balance	120
Figure 3.6:	Detailed Water Mass Balance Equation	120
Figure 3.7:	Water Use Cycle (embedded energy)	121
Figure 3.8:	Energy Intensity of Distributed Recycled Water Systems (a system modelling)	123
Figure 3.9:	Institutional Challenges in the 'One Water' approach	134
Figure 3.10:	The Transdisciplinary Interviewees Interviewed (with their other expertise)	135
Figure 4.1:	Multi-Level Framework in my research	145
Figure 4.2:	Monthly Mean Rainfall over 1961-2008 (about 50 years) in Bengaluru	148
Figure 4.3:	Mud Fort Built-in 1537 Build by Kempegowda	149

Figure 4.4:	Spatial Extension of Bengaluru City due to Urbanisation	150
Figure 4.5:	Bengaluru City Expansion within Bengaluru Metropolitan Region (BMR)	151
Figure 4.6:	Changes in Land Uses over Time in Bengaluru	152
Figure 4.7:	Bengaluru City Map of 1924 with a Population of about 0.25 million showin Lakes a	nd
	other Administrative Features	152
Figure 4.8:	Land Uses in Bengaluru showing various Utility Areas	153
Figure 4.9:	Decadal Population Growth	155
Figure 4.10:	Changes in Population and Areas in Bengaluru City from 1537 to 2001	155
Figure 4.11:	Lakes Clusters in Bengaluru City	158
Figure 4.12:	Flood Map in Bengaluru in 2011	159
Figure 4.13:	Groundwater Zones in Bengaluru City (DGM)	160
Figure 4.14:	a) Surface Water Supply in Bengaluru City showing the Cauvery River and Abandon	ed
	Arkavathi River and various Reservoirs b) Distance between the Cauvery River and	
	Arkavathi River from Bengaluru City	163
Figure 4.15:	BWSSB Service Area/BBMP Area	165
Figure 4.16:	Exiting and Planned Centralised STPs in BWSSB's Service Area (BBMP area)	166
Figure 4.17:	Groundwater showing Potable and Non-potable water	170
Figure 4.18:	Groundwater Table Drawdown in Bengaluru	171
Figure 4.19:	Water Supply, Stakeholders, Wastewater Stream and Reuse	173
Figure 4.20:	Transition to Water supply and Wastewater Management from 1537 to 2012 in	
	Bengaluru with Urban Development	180
Figure 5.1:	Pump head, water discharge and pump power at various pumping stations of various	stage
	of Cauvery Water Supply Schemes	. 184
Figure 5.2:	Energy Density Map for Water Distribution in Bengaluru city	. 188
Figure 5.3:	Energy Density Map for Wastewater Collection in Bengaluru	189
Figure 5.4:	Energy Density Map for Wastewater Treatment and Disposal in Bengaluru	192
Figure 5.5:	EI of Various Steps of 'water use cycle' in Bengaluru and that for the Whole Water a	nd
	Wastewater System	193
Figure 5.6:	Flow Diagram for Proposed IPR in Bengaluru City	202
Figure 5.7:	Future Plan to Transfer Water in Bengaluru from Lingamaki Reservoir showing the	
	Distance	205
Figure 5.8:	Elevation of various Reservoirs to bring water to Bengaluru	206
Figure 5.9:	Energy Density Map of Water and Wastewater System in Bengaluru	208
Figure 5.10:	Energy Density Map of Water Supply in Bengaluru	208
Figure 5.11:	KR Puram ULB in Bengaluru in East Division/Zone	209
Figure 5.12:	Nine (9) Wards in KR Puram Suburb	210
Figure 5.13:	Proposed Distributed Recycled Water Systems in KR Puram Suburb based on the Wa	ard's
	Water Demand by 2031 and Wastewater Generation (a) and considering Larger Plant	s
	combining Neighbouring Wards (b)	211
Figure 5.14:	Water Mass Balance (Inputs and outputs of Water) in Bengaluru City	216
Figure 6.1:	'One Water' Framework for Institutional Reform	221
Figure 6.2:	Organisational Structure of BWSSB	223
Figure 6.3:	Urban Water Cycle (Hydrological Cycle)	226
Figure 6.4:	System Thinking of 'One Water' or Integrated Water Management	227
Figure 6.5:	Conceptual Water-Energy Nexus Map of Bengaluru city showing the Implications on	ı
	Society, Economy and Environment	231
Figure 6.6:	Current Citizen and Stakeholders Engagement in Bengaluru City to Provide Water	
	Services	255
Figure 6.7:	Continuum of Cooperation	260
Figure 6.8:	Collaborative and Integrated Planning Concept	262
Figure 6.9:	Preliminary Institutional Framework for Bengaluru City to Implement Distributed	
	Recycled Water Systems	269
Figure 7.1 :	The Key Elements of the Institutional Framework for Developing Countries	281

List of Tables

Table 2.1:	Energy Intensity of Centralised Water and Wastewater Systems in 16 Cities/Regions	in 22
T-1-1- 2 2.	Developed Countries	22
Table 2.2: $T_{-1} = 2.2$	Assilable EL of True Cities in Developing Countries	23
Table 2.3:	Available Els of Two Clues in Developing Countries	27
Table 2.4 $T_{-1} = 2.5$	Unit Cast of Variance Water Sugalar Options	30
Table 2.5: $T \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$	Unit Cost of Various water Supply Options	40
Table 2.6:	Unit Cost of Water Management Options in California	41
Table 2.7:	Specific El of Conventional Wastewater Treatment Technology or a Combination of Technologies	45
Table 2.8:	Specific Els of Advanced Water Treatment Technology or a Combination of	
	Technologies or Trains	50
Table 2.9:	Els of Various Treatment Trains using Conventional Tertiary and Advanced Water	
	Treatment and their End Uses	
Table 2.10:	Energy Intensity of Potable and Non-potable Water Reuse with various Scale or Size	of
1.0010 20101	Ccentralised Water Recycling Systems	65
Table 2.11 ·	Comparison Between Centralised Decentralised and Distributed Recycled Water Sys	tems
10010 2.111 .	Comparison Detween Centransed, Decentransed and Distributed Recycled Water Sys	93
Table 3.1.	Various Steps of Quantitative Analysis under the Case Study in Bengaluru	129
Table 4.1	Mean Annual Rainfall in Bengaluru from 2009 to 2017	.12)
Table 4.1.	Monthly and Seasonal Rainfall in mm(1961-2008)	148
Table 4.2.	The Land Use and Changes over Time	153
Table 4.3.	Frieting and Under Construction Source/Westowater Treatment Plants (WWTDs/ST	· 155
1 able 4.4.	in Bengaluru	165
Table 4.5.	Water Supply Schemes Evolution historically in Bengalury City	160
Table 4.6:	Access to Water and Costs in Ascending Socioeconomic Order in BWSSB's Services	. 107
1 4010 4.0.	Area	, 176
Table 4.7 ·	Summary of Bengaluru Water Data	181
Table 5.1.	FL for Water Collection and Treatment	18/
Table 5.1.	Water Treatment at TK Halli and Treatment Technologies	185
Table 5.2.	Estimation of Energy Use (kWh/day) for Water Treatment Unit Processes at Various	. 165
1 able 5.5.	Stages of CWSS at TK Halli in Bengaluru	186
Table 5.4:	Estimated Energy Use for Water Treatment in Various Phases of Water Spply Schem	es
	and Lighting including HVAC and Computers from Table 5.3	. 186
Table 5.5:	Estimated Total Energy Use for Water Treatment and Lighting including HVAC and	
	computers from Table 5.4	. 187
Table 5.6:	EI for Centralised Water Supply and Wastewater System	. 193
Table 5.7:	Energy Consumption/Use by Various Water Use Cycle in Bengaluru Centralised Wat	ter
	and Wastewater System	. 194
Table 5.8:	Els of Various Steps of 'Water Use Cycle' and the Whole System of Cubbon Park	
	Tertiary Treatment Plant of 1.5 MLD.	. 196
Table 5.9:	Els of Various Steps of 'Water Use Cycle' and the Whole System of IISc Campus	
	0.5 MLD MBR Plant for Water Reuse	197
Table 5 10.	FL of Lalbagh Tertiary Treatment Plant	198
Table 5 11.	EI of Yelahanka and Vrishabhavathi Valley Tertiary Treatment Plants	199
Table 5 12.	Energy Use Estimation for Vrishabhavathi Valley Tertiary Plant	100
Table 5 13.	Influent Sewage Characteristics and Effluent Standard in Rangaluru after Secondary	, , ,
1 auto 3.13.	Treatment	200
Table 5 14.	Water Quality of Recycled Water Plants	200
Table 5 15.	FL of Various Stars of 'Water Use Cycle' of the Droposed IDD Diant	200
1 auto 3.13:	Er or various steps or water use Cycle of the Proposed IPK Plant	203

Table 5.16:	EI of DPR (If the proposed IPR would be used as DPR)	
Table 5.17:	The EIs of Various Divisions/Zones for Water Supply and Wastewater Treatmen	it and
	Disposal (Column 8) and those for Water Supply	207
Table 5.18:	Population and Water Demand, including Wastewater Generation at KR Puram b	oy 2031
		211
Table 5.19:	Average EIs for Proposed Nine (9) Distributed Recycled Water Systems/Plants i	n KR
	Puram Suburb under Selected Technologies & using the whole of 'Water Use Cy	ycle'213
Table 5.20:	Average EIs for Proposed Four (4) Distributed Recycled Water Systems/Plants (using
	larger RWSs) in KR Puram Suburb under Selected Technologies and using the v	whole of
	'Water Use Cycle'	
Table 5.21:	EI of Various Water Supply Options in Bengaluru	
Table 6.1:	Various Types of Urban Local Bodies	
Table 6.2:	The Core and Overlapping Functions of Parastatal or State Government Owned	
	Organisations	
Table 6.3:	Organisational Landscape in Bengaluru and Their Responsibilities	
Table 6.4:	Financial Stakeholders of BWSSB	
Table 7.1:	Comparison of EI of 'Water Use Cycle' of Centralised Water and Wastewater S	ystem
	Between Developed Cities/Countries and Bengaluru (Developing City)	

Glossary

- Advanced Oxidation is one of the processes that can be used as a safety barrier in the water purification process. Hydrogen peroxide, ultraviolet (UV) light and other processes are used in combination to form a powerful oxidant that provides further disinfection of the water and breaks down the remaining chemicals and microorganisms and provides further disinfection of the water.
- Advanced oxidation: Oxidation processes relying on hydroxyl radical oxidation to destroy recalcitrant contaminants.
- Advanced treatment: Additional treatment provided to remove suspended and dissolved substances that persist through conventional secondary treatment. Often this term is used to mean additional treatment after tertiary treatment for the purpose of further removing contaminants of concern to public health. In many cases, this includes membrane filtration, reverse osmosis (RO), and advanced oxidation/disinfection with ultraviolet light (UV) and hydrogen peroxide (H2O2).
- Augmentation: The process of adding recycled water to an existing raw water supply (such as a reservoir, lake, river, wetland, and/or groundwater basin) after receiving advanced treatment. This water could eventually be used for drinking water after further treatment.
- **Beneficial use**: The application of water necessary to accomplish the purpose of the appropriation, without waste. Some common types of beneficial use are agriculture, municipal, wildlife, recreation, and mining.
- **Biological Oxygen Demand (BOD):** A measure of the amount of oxygen consumed in the biological processes that break down organic matter in water. Used as an indicator of the amount of organic material in the waste stream. The greater the BOD, the greater the degree of pollution. Usually expressed in milligrams per litre.
- Biosolids is the nutrient-rich organic material (by-product) made from the stabilized
- **Centralised Water and Wastewater System:** A network of pipes, pumps, and storage and treatment facilities designed to deliver potable water to homes, schools, businesses, and other users in a city or town and to remove and treat waste materials.
- Climate: Meteorological conditions, including temperature, precipitation, condensation, and wind.
- **Demand Management:** Obtaining the benefits of water more efficiently, resulting in reduced demand for water. Sometimes called "end-use efficiency".
- **Direct Potable Reuse (DPR)** water is distributed directly into a potable water supply distribution system downstream of a water treatment plant or into the source water supply immediately upstream of the water treatment plant. It needs monitoring to be safe for augmenting drinking water supplies. The source water for advanced treatment is often clean water from a wastewater treatment or resource recovery plant. Purification processes can involve a multistage process such as microfiltration, reverse osmosis and advanced oxidation, as well as Soil Aquifer Treatment. Any of these options are capable of producing water quality that has been verified through monitoring to be safe for augmenting drinking water supplies.

- **Discharge** is the release of effluent, which meets regulatory standards, and designated by a regulatory permit to be safely discharged into the environment without causing harm.
- Disinfection: Water treatment which destroys or inactivates potentially harmful bacteria.
- **Distributed recycled water systems:** A number of Decentralised (usually mid-scale) systems connected with existing sewerage to network which can share resources among them and final effluent is carried to centralised wastewater plant for safe disposal.
- **Decentralised Wastewater/ Recycled water systems:** Stand-alone systems to treat wastewater for safe disposal or reuse of the treated water.
- **Domestic Wastewater/Sewage** is used water from washing our food, dishes, clothes and bodies, and for toilet flushing. The used water that goes down the drain or is flushed down the toilet is called sewage. Because a considerable amount of water is used to carry away only a quite small quantity of waste, domestic sewage is mostly water. It is referred to as "wastewater" in most places.
- **Drought:** A long period of below-average precipitation.
- **Dual Media Filtration** is a filtration method that uses two different types of filter media, usually sand and finely granulated anthracite.
- Ecosystem: A community of plants and animals and the physical environment in which they live.
- **Effluent:** The water leaving a wastewater treatment plant. If the effluent has been treated to a sufficiently high standard, it may be used for recycled water applications.
- Energy Intensity: Energy use or consumption per unit volume of water or wastewater processes
- **Evaporation**: The process of changing a liquid to a gas (vapour); for example, when water turns into steam or water vapour.
- **Evapotranspiration (ET)**: Process by which water is evaporated from soil surface and water is transpired by plants growing on that surface.
- **Filtration:** A process that separates small particles from water by using a porous barrier to trap the particles while allowing the water to pass.
- Granular Activated Carbon is used to remove chemicals that are dissolved in the used water.
- **Greywater** is the term used to describe water segregated from a domestic wastewater collection system and reused on site. This water can come from a variety of sources such as showers, bathtubs, washing machines, and bathroom sinks. It contains some soap and detergent, but is clean enough for non-potable uses. Water from toilets or wash water from diapers is not considered to be greywater. Kitchen sink water is not considered greywater in many states. Many buildings or individual dwellings have systems that capture, treat and distribute greywater for irrigation or other non-potable uses.
- **Ground water:** Water found below the surface of the Earth. Ground water, as opposed to surface water, is water that does not run off, and is not taken up by plants, but soaks down into an aquifer; a supply of fresh water under the earth's surface which forms a natural reservoir.
- **Groundwater Recharge** occurs naturally as part of the water cycle and/or is enhanced by using constructed facilities to add water into a groundwater basin.
- **Imported Water:** Water that has originated from one hydrologic region and is transferred to another hydrologic region.

- **Indirect Potable Reuse (IPR)** water is blended with other environmental systems such as a river, reservoir, or groundwater basin, before the water is reused.
- **Industrial Wastewater and Commercial Wastewater/Sewage** is the liquid waste generated by industries, small businesses and commercial enterprises and can be discharged to a sewer upon approval of a regulating authority. Some industrial wastewater may require pre-treatment before it can be discharged into the sewer system, while other industrial and commercial wastewaters are explicitly excluded. Controlling the release of harmful chemicals into the wastewater collection system is known as Source Control.
- **Infiltration**: Water moving into the ground from a surface supply such as precipitation or irrigation.
- Irrigation: Diverting or moving water from its natural course in order to use it for crops or landscapes.
- **Microfiltration:** A physical separation process where tiny, hollow, straw-like membranes separate particles from water. It is used as a pre-treatment for reverse osmosis.
- Milligram Per Litre (mg/L): A measurement describing the amount of a substance (such as a mineral, chemical, or contaminant) in a litre of water. One milligram per litre is equal to one part per million.
- Million Gallons Per Day (MGD): A measure of flow. This term is used to describe the volumes of water treated and discharged from a treatment plant in a day.
- **Multi-barrier Processes** are purification processes that consist of several barriers to ensure sufficient reduction and/or elimination of the various substances that need to be controlled. As in all processes, monitoring is important in order to check that the processes are working properly and efficiently. Membrane filtration, reverse osmosis, advanced oxidation, riverbank filtration, Soil Aquifer Treatment, and constructed wetlands all may be parts of a multi-barrier purification process. Not all of these processes are needed in all situations.
- Nano filtration (NF): A filtration process that utilizes membranes that is used most often with low total dissolved solids water such as surface water and fresh groundwater, with the purpose of softening (polyvalent cation removal) and removal of disinfection byproduct precursors such as natural organic matter and synthetic organic matter. It is commonly used in conjunction with desalination.
- Nephelometric Turbidity Unit (NTU): A unit of measure related to the individual particles suspended in water.
- **Non-potable Reuse** refers to reclaimed water that is not used for drinking, but is safe to use for irrigation, industrial uses, or other non-drinking water purposes.
- Non-Potable Reuse (NPR): Includes all recycled water applications except those related to drinking water.
- Non-Potable: Water not suitable for drinking.
- **Ozonation**: The process of applying ozone (0_3) for the disinfection of water. Ozone (O_3) is a strong oxidant.
- **Planned Potable Reuse** is publicly acknowledged as an intentional project to reclaim water for drinking water. It is sometimes further defined as either **direct or indirect potable reuse**. It commonly involves a more formal public process and public consultation program than is observed with de-facto or unacknowledged reuse.

- **Potable Reuse** (PR) refers to recycled water you can drink. The reclaimed water is purified sufficiently to meet or exceed federal and state drinking water standards and is safe for human consumption.
- Potable water: Water that is considered safe for domestic human consumption; drinkable water.
- **Potable:** Water that does not contain pollution, contamination, objectionable minerals or infective agents and is considered safe for domestic consumption; drinkable.
- **Primary Treatment:** The first process in wastewater treatment where suspended solids are removed.
- Raw Water: Untreated water.
- **Recycled Water:** Water that is used more than one time before it passes back into the natural water cycle. Wastewater that has been treated to a level that allows for its reuse for a beneficial purpose..
- **Reservoir:** A body of water used to collect and store water, or a tank or cistern used to store potable water.
- **Retrofit:** The process for constructing and separating new potable and recycled/reclaimed pipelines that allows recycled water to be used for nondrinking purposes. A retrofit system separates recycled water from drinking water pipelines.
- **Reuse:** To use again; recycle; to intercept, either directly or by exchange, water that would otherwise return to the natural hydrologic (water) system, for subsequent beneficial use. Water reuse often refers to potable reuse applications.
- **Reverse osmosis**: A water treatment method used to remove dissolved inorganic chemicals and suspended particulate matter from a water supply. Water, under pressure, is forced through a semi-permeable membrane that removes molecules larger than the pores of the membrane. This treatment method is commonly used in desalination, a process that takes salt out of seawater or recycled water treatment.
- **Secondary Treatment:** Treatment of wastewater to a non-potable level so that it may be discharged into the natural hydrologic system. Generally used to remove biochemical oxygen demand, further remove solids, and reduce, eliminate, or render pathogens inactive. Under this process, dissolved and suspended biological matter is removed to a non-potable level so that the water may be disinfected and discharged into a stream or river, or used for irrigation at controlled locations.
- **Sewage Sludge** refers to the residual, semi-solid material that is produced as part of primary and secondary treatment. Sewage sludge is further treated by aerobic or anaerobic digestion and dewatered at a wastewater treatment plant or resource recovery facility to produce Biosolids and other byproducts such as methane gas and struvite recovery.
- Soil Aquifer Treatment (SAT): The process of water being purified by percolating through soil and into an underground aquifer.
- Standalone: Standing separate without any connection with other systems or network.
- Surface water: Water on the surface of the ground (lakes, rivers, ponds, floodwater, oceans, etc.); precipitation which does not soak into the ground or return to the atmosphere by evaporation or transpiration.
- Tertiary Treatment or Advanced Water Treatment refers to processes that purify water for uses such as irrigation or for water blended with other environmental systems such as a

river, reservoir, or groundwater basin prior to reuse. It can also include treatment processes to remove nitrogen and phosphorus in order to allow discharge into a highly sensitive or fragile ecosystem (estuaries, low-flow rivers, coral reefs, etc.).

- **Tertiary Treatment:** Treatment of wastewater to a level beyond Secondary Treatment but below Potable. Generally to remove specific pollutants such as nitrogen, phosphorus, colour, and odour.
- **Total Dissolved Solids (TDS):** A measure of the residual minerals dissolved in water that remain after evaporation of a solution. Usually expressed in milligrams per litre.
- **Total Suspended Solids (TSS):** A measure of the suspended solids in wastewater, effluent, or water bodies, determined by tests for "total suspended non-filterable solids." Usually expressed in milligrams per litre.
- **Treated water**: Water that has been filtered and/or disinfected; sometimes used interchangeably with "potable" water.
- Turbidity: A measure of suspended solids in water; cloudiness. Usually expressed as NTUs.
- **Ultrafiltration (UF):** A membrane filtration process that falls between reverse osmosis (RO) and microfiltration (MF) in terms of the size of particles removed.
- **Ultraviolet Treatment (UV):** The use of ultraviolet light for disinfection or as part of an advanced oxidation process. This usually renders the pathogens inactive (changes the DNA so that the pathogens cannot replicate).
- **Ultrafiltration (UV):** The use of ultraviolet light for disinfection or as part of an advanced oxidation process. This usually renders the pathogens inactive (changes the DNA so that the pathogens cannot replicate).
- **Wastewater:** Water that has been previously used by a municipality, industry, or agriculture and has suffered a loss of quality as a result of use. There are different types of wastewater: domestic, commercial, and industrial.
- Water Cycle: The movement of water as it evaporates from rivers, lakes, or oceans, returns to the earth as precipitation, and either flows into rivers and evaporates again or percolated through the soil to join with groundwater or surface water. Also known as the hydrologic cycle.
- Water Use Cycle: The 'water use cycle' of a water and wastewater water system is defined as the all flow processes from water sourcing/collection to water distribution and then wastewater collection, treatment and disposal/any recycling and in the case of a recycled water systems it starts with wastewater collection, conveyance if any and then treatment, reuse and also disposal of the final effluent.

List of Acronyms

Α	
ABIDE	Agenda for Bengaluru Infrastructure and Development Task Force
ADB	Asian Development Bank
AECOM	American Multi-National Engineering Company
AGWR	Australian Guidelines for Water Recycling
ANU	Australian National University
AOP	Advanced Oxidation Process
ARC	Australian Research Council
ASE	Alliance to Save Energy
ASP	Activated Sludge Process
ATREE	Ashoka Trust for Research in Environment and Ecology
ATSE	Australian Academy of Technology and Engineering
AWT	Advanced Water Technology
В	
BAC	Biological Activated Carbon
BBC	British Broadcast
BBMP	Bruhat Bengaluru Mahanagara Palike
BDA	Bengaluru Development Authority
BESCOM	Bengaluru Electricity Supply Company Limited
BEL	Bharat Electronics Limited
BHEL	Bharat Heavy Electronics Limited
BIOME	BIOME Environmental Solutions Pvt. Limited
BMA	Bengaluru Metropolitan Area
BMRDA	Bengaluru Metropolitan Regional Development Authority
BMP	Bengaluru Metropolitan Police
BMR	Bengaluru Metropolitan Region
BNR	Biological Nitrogen Removal
BORDA	Bremen Overseas Research and Development Association
BUA	Bengaluru Urban Agglomeration
BWSSB	Bengaluru Water Supply and Sewerage Authority
С	
CAPEX	Capital Expenditure
CAS	Conventional Activated Sludge
CBF	Coal Bed Filtration
CDD	Consortium for DEWATS Dissemination Society
CDP	Comprehensive Development Plan
CEC	California Economic Commission
CGWB	Central Groundwater Board
CHEEO	Central Public Health and Environmental Engineering Organisation
CII	Confederation of Indian Industries
CKDN	Climate and Knowledge and Development Network
CLAR	Clarification
Cla	Chlorine
CMC	City Municipal Council
COD	Chemical Oxygen Demand
CSA	California Sustainability Alliance
CSBH	California State Board of Health
CSIRO	Commonwealth Scientific and Industrial Research Organisation
CWSS	Cauvery Water Supply Scheme
CWT	Conventional Water Treatment Technology
D	
DAF	Dissolved Air Flotation
DAT	Dissouved All Flotation
	District Columbia
	Department For International Development
DLLI	

DGIS	Director General for International Cooperation
DM	Demineralisation
DMA	Directorate of Municipal Administration, Karnataka
DPR	Direct Potable Reuse
DOE	Department of Environment, USA
DOIS	Department of Industry and Science
DWR	Department of Water Resources
DRDO	Defence Research and Development Organisation
E	Defence Resource and Development organisation
EA	Extended Aeration
EDM	Energy Density Man
EI	Energy Intensity
ENV	Environment
FP	Equivalent Population
EPA	Environmental Protection Agency
EPRI	Electric Power Research Institute USA
ELIKI	Electric Supply Company Limited
ESCL	Effluent Quality Dequirement
EQK	Endent Quality Requirement
ESMAF	Energy Sector Management Assistant Program
FAO	Food and Agriculture Organization
FLOC	
FLOC	
FGD	Focus Group Discussion
G	
GDP	Gross Domestic Product
GHG	Green House Gas
GJ	Giga Joules
GL	Giga Litres
GOI	Government of India
GWA	Global Water Alliance
GWP	Global Water Partnership
GWR	Groundwater Recharge
GWRS	Groundwater Replenishment System
H	
HDR	Human Resources Development
HH	Households
HAL	Hindustan Aeronautics Limited
H ₂ O ₂	Hydrogen Per Oxide
HQ	Head Quarter
HUDCO	Housing and Urban Development Corporation
HVAC	Heating, Ventilation and Air Conditioning
Ι	
IBM	International Business Machine Corporation
IBNET	International Benchmarking Network
ICLEI	International Centre for Local Environmental Initiatives
IDB	International Development Bank
IEA	International Energy Agency
IEUA	Inland Empire Utilities Agency
IIM	Indian Institute of Management
IIHS	Indian Institute for Human Settlements
IIIT	Indian Institute of Information Technology (IIIT)
IISc	Indian Institute of Science
IMD	Indian Meterological Department

INA	Info Not Available
ISEC	Institute for Social and Economic Change
ISRO	Indian Space Research Organisation
IPART	Independent Pricing and Regulatory Tribunal
IPR	Indirect Potable Reuse
IPRWTS	Internally Plumbed Rainwater Tank Systems
IRENA	International Renewable Energy Agency
IT	Information Technology
IUWM	Integrated Urban Water Management
IWA	International Water Association
IWCM	Integrated Water Cycle Management
IWRM	Integrated Water Resources Management
IWP	Institute for Water Policy
IWP	India Water Partnership
J	
JICA	Japan International Cooperation Agency
JBIC	Japan Bank for International Corporation
JNCASR	Jawaharlal Nehru Centre for Advanced Scientific Research
Jnnrum	Jaharalal Nehru National Urban Renewal Mission
K	
KERC	Karnataka Electricity Regulatory Corporation
KPCL	Karnataka Power Company Limited
KIADB	Karnataka Industrial Development Board
KPTCL	Karnataka Power Transmission Corporation Limited
KPWD	Karnataka Public Works Department
KSPCB	Karnataka State Pollution Control Board
KSWP	Karnataka State Water Policy
KUIDFC	Karnataka Urban Infrastructure Development and Finance Corporation
KUWSDB	Karnataka Urban Water Supply and Drainage Board
KWRD	Karnataka Water Resources Department
L	
LAC	Latin America and Caribbean
LCA	Life Cycle Analysis
LDA	Lake Development Authority, Karnataka
LIC	Life Insurance Corporation
	Lee Kuan Yew School of Public Policy
LVMAC	Living Victoria Ministerial Advisory Council
M	
MBK	Memorane Bioreactor
MDG	Millennium Development Goals
MDF	Migna Eliteration
MF	Micro-Filtration
MFLI	Memorane Filtration
MIS	Management Information System
MLP M-UD	Multi-Level Perspective
MOUD	Ministry of Urban Development
MOWK	Ministry of water Resources
IN NAT	National Association Laboratorias
NAL	National Aerospace Laboratories
NAK	Notional Annual Kannan
NRR	National Adauctifics
NDRI	National Defence Research Laboratory
NE	Nano Filtration
NGO	Non Government Organisation
NH3	
NIAS	National Institute of Advanced Studies
INIAS	Inational Institute of Advanced Studies

NPR	Non Potable Reuse
NRC	National Research Council
NTV	National Television
NYSERDA	New York State Energy Resources and Development Agency
NSW	New South Wales
0	
03	Ozone
OCWD	Orange County Water Department
OD	Oxygen Ditches
OECD	Organisations for Economic Cooperation and Development
O&M	Operation and Maintenance
OPEX	Operational Expenditure
Р	
PUB	Public Utility Board
PS	Power Station
PSU	Public Support Undertakings
R	
RO	Reverse Osmosis
RWA	Residents Welfare Association
S	
SANDRP	South Asia Network for Dams, Rivers and People
SANDEC	Sanitation in Developing Countries (new name -Department of Sanitation.
	Water and Solid Waste for Development)
SBR	Sequential Batch Reactor
SCADA	Supervisory Control and Data Acquisition
SDG	Sustainable Development Goals
SEO	South East Oueensland
SMBR	Submerged Membrane Bioreactor
STP	Sewage Treatment Plant
SUWM	Sustainable Urban Water Management
SUEZ	French Based Utilities Company
Т	
TC	Total Carbon
TERI	Tata Environment Research Institute
TIFR	Tata Institute for Fundamental Research
TMC	Town Municipal Council
TOC	Total Organic Carbon
TOX	Total Oxygen
TSS	Total Suspended Solids
U	
UAE	United Arab Emirates
UASB	Unflow Anaerobic Sludge Blanket
UF	Ultra Filtration
UFW	Unaccounted For Water
UK	United Kingdom
ULBs	Urban Local Bodies
UN	United Nation
UNECE	United Nations Economic Commission for Europe
UN-DPAC	United Nation
UNESCO	United Nation Educational Scientific and Cultural Organisation
LINEP	United Nation Environment Programme
USAID	United States Agency for International Development
USDOF	United States Department of Environment
UNWWDR	United Nation World Water Development Report
W	
WEDA	Water Environment Partnership in Asia
WHO	World Health Organisation
WICA	Water Industry Compatition Act
WICA	

WIN	Water Integrity Network
WEFTEC	Water Environment Federation Technical Exhibition Conference
WERF	Water Environment Research Foundation
WRF	Water Research Foundation
WRRF	Water Reuse Research Foundation
WSP	Waste Stabilisation Pond
WSUD	Water Sensitive Urban Design
WTP	Water Treatment Plant
WWTP	Wastewater Treatment Plants
Ζ	
ZLD	Zero Liquid Discharge

Measurements and Acronyms

Р	Power
V	Volume
Е	Energy
EI	Energy Intensity
GL	Giga litres
GWh	Giga Watt Hour
HT	High Tension
ft	foot
kg	Kilogram
kL	Kilolitres
km	Kilometre
KW	Kilowatt
L	Litres
lpcd	Litres per capita per day
LT	Low Tension
m	meter
mm	Millimeter
MG	Million Gallons
MJ	Mega Joules
MLD	Million Litres per Day
ML	Million/Mega Litres
MW	Megawatt
MWh	Megawatt Hour
Sq km	Square kilometre

1 TMC = 28.32 GL

1 km = 1000 m

- kWh = 1000 watt hours
- 1 MWh = 1000 kWh
- 1 GWh = 1000 MWh
- 1 HP = 0.746 kWh

1kWh =3.6 mega Joules

- 1 L water = 1 kg
- $g \; = 9.81 \; m/s^2$
- 1 MG = 3.785 ML
- 1 ft = 30.48 cm
- 1 m = 100 cm
- 1 mm = 0.1 cm