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ABSTRACT

LONG-TERM PERSON RE-IDENTIFICATION IN THE WILD

by

Peng Zhang

Person re-identification (re-ID) has been attracting extensive research interest

because of its non-fungible position in applications such as surveillance security,

criminal investigation and forensic reasoning. Existing works assume that pedestri-

ans keep their clothes unchanged while passing across disjoint cameras in a short

period. It narrows person re-ID to a short-term problem and incurs solutions using

appearance-based similarity measurement. However, this assumption is not always

true in practice. For example, pedestrians are high likely to re-appear after a long-

time period, such as several days. This emerging problem is termed as long-term

person re-ID (LT-reID).

Regarding different types of sensors deployed, LT-reID is divided into two sub-

tasks: person re-ID after a long-time gap (LTG-reID) and cross-camera-modality

person re-ID (CCM-reID). LTG-reID utilizes only RGB cameras, while CCM-reID

employs different types of sensors. Besides challenges in classical person re-ID,

CCM-reID faces additional data distribution discrepancy caused by modality differ-

ence, and LTG-reID suffers severe within-person appearance inconsistency caused

by clothing changes. These variations seriously degrade the performance of existing

re-ID methods.

To address the aforementioned problems, this thesis investigates LT-reID from

four aspects: motion pattern mining, view bias mitigation, cross-modality match-

ing and hybrid representation learning. Motion pattern mining aims to address

LTG-reID by crafting true motion information. To this point, a fine motion encod-

ing method is proposed, which extracts motion patterns hierarchically by encod-



ing trajectory-aligned descriptors with Fisher vectors in a spatial-aligned pyramid.

View bias mitigation targets on narrowing discrepancy caused by viewpoint differ-

ence. This thesis proposes two solutions: VN-GAN normalizes gaits from various

views into a unified one, and VT-GAN achieves view transformation between gaits

from any two views. Cross-modality matching aims to learn modality-invariant rep-

resentations. To this end, this thesis proposes to asymmetrically project heteroge-

neous features across modalities onto a modality-agnostic space and simultaneously

reconstruct the projected data using a shared dictionary on the space. Hybrid rep-

resentation learning explores both subtle identity properties and motion patterns.

Regarding that, a two-stream network is proposed: the space-time stream performs

on image sequences to learn identity-related patterns, e.g., body geometric struc-

ture and movement, and skeleton motion stream operates on normalized 3D skeleton

sequences to learn motion patterns.

Moreover, two datasets particular for LTG-reID are presented: Motion-reID is

collected by two real-world surveillance cameras, and CVID-reID involves tracklets

clipped from street-shot videos of celebrities on the Internet. Both datasets include

abundant within-person cloth variations, highly dynamic background and diverse

camera viewpoints, which promote the development of LT-reID research.



Abbreviation

CCM-reID - cross camera modality person re-identification

CLT-reID -contemporary long-term person re-identification

CMC - cumulative matching characteristic

CNN -convolutional neural network

CST-reID - conventional short-term person re-identification

CVGLT-reID - cross-view gait-based long-term person re-ID

DT -dense trajectory

FITD - fine motion encoding

GAN - generative adversarial network

GCN - graph convolutional network

GEI - gait energy image

GMM - Gaussian mixture model

LT-reID - log-term person re-ID

LTG-reID -person re-ID after long-time gap

mAP - mean average precision

PCA - principle component analysis

re-ID - re-identification

SILTP - Scale Invariant Ternary Pattern

SOTA - state-of-the-art

TCMDL - top-push constrained modality-adaptive dictionary learning

TSI - Target subject of interest

VN-GAN - variational normalizing generative adversarial network

VT-GAN - view transformation generative adversarial network
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