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Abstract—Gait monitoring using a 3D printed smart insole embedded with embedded optical fibre Bragg gratings is 

reported in this paper. The smart insole combines 3D printing technology and fiber Bragg gratings (FBGs) sensors 

providing high sensitivity and end-point low cost. Results using pressure points measured by four FBGs are sufficient 

to differentiate foot loads and gait types. 

Index Terms—FBGs 3D printing.  

 

I.  INTRODUCTION 

Changes in gait are often early indicators of chronic diseases such 

as stroke, dementia, Parkinson’s disease, cancer, cardiac disease and 

diabetes. The monitoring and detection of gait can also provide 

sufficient early warning to assist in the prevention and mitigation of 

injuries in both animals and humans [1-4]. Gait diagnostics is also 

important more broadly in identifying normal or pathological walking, 

trotting or running patterns and is used in medical planning, 

healthcare, rehabilitation, physical therapy, competition preparation 

and exercise training. For example, with enough detailed gait analysis 

during rehabilitation training of a patient, animal or human, it is 

possible to quantify the patient's degree of recovery after surgery and 

tailor appropriate treatment [5]. Recently, embedded fibre gratings 

within 3D printed horseshoes demonstrated how photonic fibre 

sensing technology can significantly benefit gait [6,7]. Extraordinary 

insight into the nature of blood circulation in a horse was obtained, 

arising from the compression of the unique vein-filled hooves, 

creating pressure that has to follow the heartbeat of the animal. A 

mismatch between this compressive blood release from the four 

hooves with the heartbeat is, for example, the likely trigger of sudden 

cardiac arrest of horses in competition. In this work, we extend the 

use of this technology to human gait analysis, using fibre gratings 

embedded in 3D printed orthotic insoles placed within a performance 

shoe. 

Commercially available smart insole systems, such as the Pedar 

insole System [8], offer high-resolution gait monitoring. 

Unfortunately, they are used only for clinical research, while more 
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inexpensive sensor insoles that might have wider deployment often 

tend to have poorer resolution and can miss significant information 

[9]. There are also question marks about current electronic sensing 

technology and its reliability over time. Yingxiao Wu et al. [10] 

demonstrated a powered electronic sensor system that lasted over 10.5 

hours, reflecting some of the upper limits of local power supply. By 

contrast, optical fibre sensors are established in niche industries, from 

oil and gas to construction, as long-term alternatives to electronic 

sensors with less maintenance – the main source of power is signal 

generation which can be remote through the optical fibre. Many of 

these are based on passive fibre Bragg gratings (FBGs) which have 

been used in various industries for a variety of sensor applications, 

including temperature and strain measurements. By combining these 

with low cost 3D printing of smart horseshoes or insoles, these 

parameters can be used to characterize load on an insole at different 

places, forming the basis for gait analysis used thus far. 3D printing 

also offers a unique customization that can be better tuned to specific 

individuals given the varying nature of human feet.  

3D printing also offers a unique customization that can be better 

tuned to specific individuals given the varying nature of human feet. 

In fact, 3D printing has proven extremely popular for orthotics 

research allowing customised designs, through laser scanning [11], to 

be fabricated and tested [12-20]. Despite some concerns about 

durability and performance they have proven to be extremely 

effective with the quality of materials and printing improving rapidly. 

The technique is now commercially available [21, 22]. 

In this work, we demonstrate the integration of fibre optic sensors 

and 3D printing to create smart orthotics for human use. Changes in 
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plantar pressure lead to shifts in the fibre Bragg grating spectra within 

the insole and from these shifts the load can be calculated. The sensors 

are implanted at the main point of the foot: two under the forefoot, 

and two under the heel [23,24]. Activities such as standing, walking, 

and going up and down stairs in different postures can be 

characterized by comparing the different shifts in grating spectra. 

From this a range of parameters describing the individual’s gait can 

be determined. 

II. EXPERIMENTAL DETAILS   

The purpose of this exploratory prototype is to verify its feasibility, 

so this experiment is limited to a single right foot insole, with four 

points of high-pressure distribution of the foot [25] being monitored.  

A. FBG fabrication  

FBGs were fabricated in germanium-boron co-doped 

photosensitive silica fibre (GF1:[GeO2] ~ 30 mol%; [B2O3] ~ 12 mol 

%). The FBGs are inscribed using direct writing through a phase mask 

(ArF laser: wavelength  = 193 nm, pulse fluence fpulse ~ 72 mJ/cm2, 

cumulative fluence fcum ~ 86.4 J/cm2; repetition rate RR = 10 Hz; 

pulse duration tw = 15 nm and FBG length L = 10 mm). To reduce 

cabling complexities whilst allowing the gratings to be lain straight, 

two gratings are written into each fibre. Fig. 1(a) shows an image of 

the final insole with grating locations. 

B. Design of the smart insole 

The size of the insole is designed according to the size of the 

experimenter’s shoes which are a UK size 9. AutoCAD software is 

used to design the insole. To print the insole, a novel, flexible printing 

material is utilised: FlexiFil from Formfutura. Appendix 1 

summarizes its properties. Printing is undertaken on a low cost 

Flashforge 3D printer (Dreamer model). Halfway through printing the 

printing, the optical fibre sensors are added in and then printing is 

continued. The application of a small weight load, w ~ (5.5 ± 0.1) g, 

on the fibre ensures constant tension during printing. The final print 

job introduces compression on the grating, monitored as a decrease in 

Bragg wavelength, B, [26], ensuring that the gratings are firmly fixed 

into place. This compression rises from the fact that the solid state of 

polymers is typically denser than the liquid state. When completed, 

the insole is post annealed at T = 90 ºC for t ~ 12 hours. After splicing 

additional cable, the back end of the insole has a protective casing for 

cabling to be directed upwards (Fig. 1(b)). The next step is to insert 

the insole into the athletic shoes. The completed prototype is shown 

in Fig. 1(b). 

 

Fig.1. (a) Combined insole，and the four points A, B, C, and D in the 

figure correspond to four FBG sensors; (b) Prototype 

C. Experiment and Data collection  

An optical sensing interrogator (a Micron Optics SM130 model) 

was used to track B of each FBG. The combination of high speed and 

repeatability allows a single module to dynamically interrogate 

sensors and measure static sensors with ultra-high resolution. The 

scan frequency is  = 1 khz, and the wavelength range is  = (1510 - 

1590) nm. The interrogator records B of the FBGs before and after 

being implanted in the insole as well as dynamically recording 

wavelength shifts during various gait modes under test.  

Representative actions selected for analysis and recording are: 

⚫ Standing still and standing in different ways. Specifically, the 

center of gravity is placed in the front, rear, left and right 

directions for repeated standing tests. 

⚫ Walking. The most common exercise is walking, an activity 

that often forms the basis from which to measure other complex 

movements. By studying the duty cycle of the waveform, the 

user's walking information can be obtained. 

The experiment test subject was the author (Hao) on a flat surface 

in the room at a constant temperature T = 22.5 oC, and each set of 

experiments was limited to one minute. 

III.  RESULTS 

A.  Specific parameters of FBGs 

Fibre and grating details were provided above. In these experiments 

we observe that the gratings are substantially chirped. When 

optimization of the printing process is achieved, grating chirp can be 

avoided [26]. For this work, however, we can follow the reflection 

peak and monitor gait. The wavelength, B of the four FBGs before 

and after embedding into insole are shown in Table 1: 

Table 1. Comparison of FBG values before and after embedding within 

the insole. 

Sensor 
position 

T (℃) Before (nm) 

~0.002nm 

After (nm) 

~0.002nm 

A 22.5 1546.131 1538.171 

B 22.5 1546.288 1539.155 

C 22.4 1543.720 1547.340 

D 22.4 1542.194 1532.400 
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Consistent with material compression as the polymer solidifies 

after printing, it can be seen from the table that the reflection 

wavelength of FBGs after implantation shifts to shorter wavelengths 

by  > 10 nm, a significant load which corresponds to a physical 

compression of the period ~ 6 nm and a total length contraction 

over the grating of L ~ 60 m (obtained from  ~   L/L).  

Fig. 2(a) and (b) are the spectra of two FBGs on the right side 

before and after implantation of the insole. As can be seen from the 

figure, the reflection wavelengths of both FBGs are reduced, which 

means that they are both compressed during printing. They are also 

chirped suggesting the compressive pressure distribution is not 

uniform along the grating length arising principally from the 

directional load of the weight; that may in part also be due to a non-

uniform thickness and/or stress over the insole during printing. 

 
Fig.2. (a) Spectrum of the two FBGs before implementation of insole: 

(b) Spectrum of two FBGs after embedding within the insole. More than 

10 nm shift to shorter wavelengths is observed as well as spectral 

broadening from non-uniform chirping over  ~ 8 nm for both gratings. 

B. Experimental results 

 

 

Fig.3. (a) Forward leaning; (b) Backward leaning; (c) Left leaning: (d) 

Right leaning.  

1) Standing:  

Fig .3(a) is the result of the forward leaning test. The cycling 

response reflects repeated lifting of the foot and placing the center of 

gravity in the front. The four sensors shown in the illustration are the 

four sensors on the forefoot and the heel. From the plotted data the 

gray line and the green line (referring to the sensor placed under the 

forefoot) can be described as cycling square-like waves, and the blue 

line and the orange line (measurements of the FBGs under the heel) 

are almost constant. The pressure fluctuations are mainly 

concentrated on the forefoot. In contrast, the rear heel only slightly 

fluctuates.  

Fig. 3(b) is the result of the backward leaning test. The multiple 

peaks are the result of repeatedly lifting the foot and placing the center 

of gravity again. As can be seen from the figure, the blue and orange 

lines are square waves, while the gray and green lines are almost 

unchanged, which means that the plantar pressure is mainly 

distributed in the heel, and the forefoot only has slight fluctuations. 

Combined with the forward and backward tilt tests, the results reflect 

the force at the sole of the foot which is consistent with the role that 

plays in balancing and standing.  
Fig. 3(c) and (d) show the test results of left leaning and right 

leaning standing respectively. It can be seen from the figure that four 

sensors can reflect the pressure fluctuation of each test. Since the 

distance between the two sides of the sensor is relatively close, the 

difference between the left sensor and the right sensor is not obvious.  

2) Walking:  

 

Fig.4 Walking test. Test the FBGs waveform change when walking 

normally, intercepting the image corresponding to 7 completion steps. 

Fig.4 shows the dynamic test for the walk. A total of seven steps of 

data are recorded in the figure and the image reflects the expected step 

square response wave. The blue and orange lines are always earlier 

than the green and gray lines, demonstrating that the system has 

sufficient response to detect differences in the time of contact with the 

ground between the front and back parts of the foot. Additional quite 

important detail is also observed. The heel is the first part of the foot 

that touches the ground; however, the green and gray lines are the 

final attenuation because the toes are the last part of the foot off the 

ground while walking. This reflects the important role toes play in 

fine tuning balance and enabling smooth walking. By recording the 

time and the duty cycle of the step, it is possible to analyze the pace 

and the time between each step and learn the patient's walking habits, 

(a

) (
(b) 

(a) (b) 

(c) (d)

c)) 
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which is in line with expectations. On this basis, combining the 

technology of embedded FBGs with minimal chirping, we can trace 

the specified FBGs and find the mapping relationship between various 

walking postures and FBG wavelength changes.  

IV. CONCLUSIONS 

A novel route to gait analysis in people has been demonstrated, 

combining fibre Bragg grating technology with 3D printing. Here, we 

use flexible, smart insoles within shoes and obtain consistent expected 

results in a human trial. Future improvements could add additional 

sensors for thermal analysis, which when coupled to wireless 

transmitters in more compact future interrogation systems, would be 

useful for outdoor assessment in the field. For medical and indeed foot 

assessment the technology now exists to implement this immediately.  

Although not explored in detail, the experiment here using only 

four FBGs has shown to provide significant data and insight into 

human foot gait, including fine detail in the dynamic analysis that is 

characteristic of an individual. For example, information about the 

foots role in walking was easily detected. Some dynamic limitations 

arising from the limited interrogator bandwidth can be improved 

using newer interrogator models with higher bandwidths. 

Nevertheless, the information reported here is already sufficient to 

determine differences in potential medical conditions, offering a 

novel diagnostic tool. In terms of relative costs, ongoing research in 

cheaper and more compact interrogators will increase as the potential 

of these applications continues to grow. 

Fibre optic cables offer very compact and light sensing prototypes 

that are proved reliable (> 25 years) within telecommunications. They 

are electromagnetic free and allow many more sensors within the one 

cable, permitting even more sophisticated analysis with additional 

sensors that can be added in. These advantages mean that whilst 

upfront costs are significant at this point in time, fibre optic sensing 

of gait measurement will grow. The benefits of the data gathered 

along with their longer-term operation offer significant advantages 

over current technologies. 
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APPENDIX 

Flexifil (produced by Form Furura): Printing temperature: T = (220 

– 260) oC, diameter:  = 1.75 mm, platform temperature: T = 100 oC, 

annealing temperature: T = 90 oC. 
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