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ABSTRACT

Nonparametric Bayesian Models for Signal Processing

by

Caoyuan Li

An essential component in signal processing is to remove various kinds of noise

from the signal. It is possible to introduce noise during the process of signal stor-

age, transmission and acquisition. Signal quality after denoising affects subsequent

signal analysis profoundly. Low-rank representation is a popular method in signal

processing. It is aimed to capture underlying low-dimensional structures of high

dimensional signal and attracted much attention in the area of the pattern recog-

nition and signal processing. Such successful applications were mainly due to its

effectiveness in exploring low dimensional manifolds embedded in data, which can

be naturally characterized by low rankness of the data matrix.

This thesis conducts research on processing various signals as well as getting

the low-rank representation of the signal via the variational Bayesian inference tech-

niques. This study proposed four different nonparametric Bayesian models for image

denoising, inpainting, video foreground/background separation and bio-medical sig-

nal processing as follows.

(1) A hybrid denoising model based on variational Bayesian inference and Stein’s

unbiased risk estimator (SURE) is presented, which consists of two complementary

steps. In the first step, the variational Bayesian singular value thresholding (SVT)

performs a low-rank approximation of the nonlocal image patch matrix to simul-

taneously remove the noise and estimate the noise variance. In the second step,

the conventional SURE full rank SVT and its divergence formulas for rank-reduced

eigen-triplets is modified to remove the residual artefacts.

(2) A hierarchical kernelized sparse Bayesian matrix factorization (KSBMF)



model is developed to integrate side information. The KSBMF automatically infers

the parameters and latent variables including the reduced rank using the variational

Bayesian inference. Also, the model simultaneously achieves low-rankness through

sparse Bayesian learning and sparsity through an enforced constraint on latent fac-

tor matrices. The KSBMF is further connected with the nonlocal image processing

framework to develop two algorithms for image denoising and inpainting.

(3) A robust kernelized Bayesian matrix factorization (RKBMF) model is pro-

posed to decompose a data set into low rank and sparse components. Moreover,

the model integrates the side information of similarity between frames to improve

information extraction from the video. RKBMF is employed to extract background

and foreground information from a traffic video.

(4) A hierarchical Dirichlet process nonnegative matrix factorization (DPNMF)

model is presented in which the Gaussian mixture model is used to approximate

the complex noise distribution. Moreover, the model is cast in the nonparametric

Bayesian framework by using Dirichlet process mixture to infer the necessary number

of Gaussian components. A mean-field variational inference algorithm is derived for

the proposed nonparametric Bayesian model. The model is tested on synthetic data

sets contaminated by Gaussian, sparse and mixed noise. The proposed model is then

applied to extract muscle synergies from the electromyographic (EMG) signal and

to select discriminative features for motor imagery single-trial electroencephalogram

(EEG) classification.

Dissertation directed by Associate Professor Richard Xu

School of Electrical and Data Engineering
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Chapter 1

Introduction

1.1 Background

A Bayesian nonparametric model is a Bayesian model on an infinite-dimensional

parameter space. The parameter space is generally chosen as the set of all possible

solutions for a given learning problem. Bayesian nonparametric models have re-

cently been applied to a variety of machine learning problems, such as classification,

regression, clustering, source separation, latent variable modeling, image processing

and so on. A Bayesian nonparametric model uses a finite subset of the available

parameter dimensions to explain a finite sample of observations, with the set of

dimensions chosen depending on the sample, such that the effective complexity of

the model adapts to the data [1].

Signal processing is an electrical engineering subfield that focuses on analysing,

modifying and synthesizing signals such as sound, images and biological measure-

ments [2]. Signal processing techniques can be used to improve transmission, storage

efficiency and subjective quality and to also emphasize or detect components of in-

terest in a measured signal [3]. It is an archaic but also active research field, includ-

ing image signal processing, video signal processing, audio signal processing and so

on. In this thesis, four non-parametric probablistic models are proposed to perform

tasks including image denoising, inpainting, video foreground/background separa-

tion and bio-medical signal processing. Varaitional Bayesian inference is utilized to

infer these models efficiently.

The the application of the first nonparametric Bayesian model proposed in this
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thesis is about image denoising. The research about image denoising has been con-

ducted for decades and it is expected that such a fundamental problem has been

solved. For various applications, including astronomy, remote sensing, photography,

robotics or medicine, image denoising has been the foundamental process of other

subsequent image processing methods. The image quality after denoising affects the

subsequent image analysis profoundly. Researchers in various domains have con-

ducted a lot of research in this field. Most of the existing image denoising [4, 5]

algorithms require exact noise parameters as input. However, in the actual applica-

tion scenario, these parameters are often not available, considering they may depend

on sensors operational conditions and the calibration data may not be available [6].

The estimated noise parameter affects the performance of the above-mentioned im-

age denoising algorithms heavily. Some noise may remains in the denoised image

when the noise level is underestimated, whereas overestimating the noise level results

in oversmoothing the output image [7]. For natural images, the quality of denois-

ing results have come close to theoretical limits. State-of-the-art image denoisers

preserve every perceivable detail while removing most of the noise. However, all of

them suffer from artifacts, particularly visible when in the smooth area or around

the edges of objects of an image. The first model is proposed to solve the above

mentioned problems, the variational Bayesian singular value thresholding performs

a low-rank approximation of the nonlocal image patch matrix to simultaneously

remove the noise and estimate the noise parameters. The conventional SURE full

rank SVT and its divergence formulas for rank-reduced eigen-triplets is modified to

further remove the residual artefacts.

Although the above mentioned model achieved satisfying performance, the sim-

ilarity information between the image patches is not fully utilized. The second

model is proposed to integrate the similarity information into the matrix factoriza-

tion based nonparametric Bayesian model. Matrix factorization aims to factorize



3

a given matrix Y into two low-rank latent factor matrices U and V, so that their

product reconstructs the original matrix. Classical factorization methods include

nonnegative matrix factorization (NMF), independent component analysis (ICA),

principal component analysis (PCA) and sparse component analysis (SCA), among

others [8]. Matrix and tensor factorization tools to model data as linear combinations

of basis elements have been widely used in machining learning, image restoration,

compressed sensing, machine vision, recommender systems, brain signal processing,

and speech enhancement. The major idea behind these methods is to extract low-

rank and/or sparse structures or to predict missing values of the high-dimensional

data by inferring the underlying latent factors. A broad reviews of matrix factor-

ization can be found in [9, 10, 11] and its specific applications in image and video

processing [12, 13], audio processing [14]. Although these methods are successful in

many areas, most of them simply ignore side information, or intrinsically, are not

capable of exploiting it.

Recently, there has been an intensive interest in integrating side information, i.e.,

prior knowledge or data attributes for specific data, into the factorization model to

improve information extraction or prediction [15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

More precisely, side information is data that is neither from the input space nor the

output space of a model but include useful information for learning it.

In the second contribution of this study, a hierarchical kernelized sparse Bayesian

matrix factorization model is developed to integrate side information. The KSBMF

automatically infers the parameters and latent variables including the reduced rank

using the variational Bayesian inference. Also, the model simultaneously achieves

low-rankness through sparse Bayesian learning and sparsity through an enforced

constraint on latent factor matrices. The KSBMF is further connected with the

nonlocal image processing framework to develop two algorithms for image denoising

and inpainting. This model is further extended to include the sparse components,
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and is utilized to extract background and foreground information from a traffic

video.

In the previous models, the noise contained in the signal is assumed to be fol-

lowing Gaussian distribution. However, in real world applications, the noise could

be quite complex, Gaussian distribution is insufficient to deal with complex noise in

real scenarios. The fourth model is proposed to fit the complex noise by utilizing

Dirichlet process and integrating nonnegative matrix factorization. In many real-life

applications, negative factors may contradict physical or physiological reality and

lack intuitive meaning. Fortunately, NMF, overcoming the shortcoming of other

methods, provides meaningful components with physical or physiological interpre-

tations under the nonnegative constraint. In other words, NMF yields nonnegative

factors, which can be advantageous from the point of view of interpretability of the

estimated components. Due to the extraordinary effectiveness of NMF in signal

processing and machine learning, substantial research effort has been devoted to

NMF, both theoretical and applied, to solve challenging problems, including: signal

blind separation, hyperspectral unmixing, audio spectra analysis, text mining, im-

age restoration, spectral clustering, and source localization and neural information

extraction in neuroscience [8, 25, 26, 27, 28, 29].

In the last contribution of this thesis, a hierarchical Dirichlet process nonnegative

matrix factorization (DPNMF) model is presented in which the Gaussian mixture

model is used to approximate the complex noise distribution.

1.2 Thesis Organization

This thesis is organised as follows: Chapter 2 provides a comprehensive litera-

ture review about the proposed models, Chapter 3 proposes a unified nonlocal image

denoising framework based on variational Bayesian inference and Stein’s unbiased

risk estimator (BSSVT). In Chapter 4, a generic variational Bayesian model is pre-
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sented for matrix low rank and sparse decomposition with side information. Two

algorithms are further developed based on this VB framework for nonlocal image de-

noising and inpainting. Chapter 5 presents a generative model for robust kernelized

Bayesian matrix factorization (RKBMF) which can integrate side information into

inference. The performance of the model is tested on simulated datasets and then

applied to perform the video background and foreground separation task. Chapter 6

develops a hierarchical Bayesian non-negative matrix factorization model. Gaussian

mixture model (GMM), a universal approximator for any continuous distribution, is

employed to approximate the complex noise components. Chapter 7 concludes the

thesis and gives recommendation for future works.
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Chapter 2

Literature Review

The history and tendency of the development of singular value thresholding based

image denoising methods are introduced in Section 2.1. The matrix factorization

based image processing algorithms are presented in Section 2.2, and the typical non-

negative matrix factorization related approaches for signal processing are shown in

Section 2.3.

2.1 Singular value thresholding approaches

Singular value thresholding (SVT) aims to recover an approximately low-rank

data matrix X from a noisy observation matrix Y by shrinking its singular values

(SV). SVT has been widely applied in signal and image processing, computer vision,

and pattern recognition. It is well known that, if Y = UDV > =
∑min(m,n)

i=1 λiuiv
>
i

is a singular value decomposition (SVD) for Y , the hard thresholding estimator

simply truncates the singular spectrum by setting some of the SV to zero. The level

of the SV truncating can be determined by cross-validation; however, this approach

can be unstable and computationally expensive [30, 31]. Donoho and Gavish [32]

proposed an optimal hard threshold of 4/
√

3/
√
mσ for an m × m square matrix

with known noise variance σ2. Under the framework of nonlocal image denoising,

the representative hard threshold algorithms include [33, 34] and the very recent [35].

In contrast to hard thresholding, soft thresholding aims to shrink each SV using

the function

λ̂i = λi(1−
τ

λi
)+, (2.1)
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where x+ = max(x, 0) for x ∈ R. Candes et al. [36] provided a closed-form expres-

sion of Stein’s unbiased risk estimate (SURE) to select the threshold τ > 0. Dong et

al. [37] extended the principle of wavelet BayesShrink to determine the soft threshold.

Their spatially adaptive iterative singular value thresholding (SAIST) method esti-

mates the threshold corresponding to each SV based on the locally estimated signal

variance and overall noise variance. To exploit the low-rank structure of the patch

matrix, substantial effort has been expended on rank-penalized methods and con-

vex relaxation or, for computational reasons, penalization of the nuclear norm of the

matrix. Gu et al. [38] assumed that the noise energy is evenly distributed over each

subspace spanned by the eigen-triplets. Specific thresholds are then determined by

the individual SV and noise variance. Although this method is termed the weighted

nuclear norm minimization (WNNM), it lies in the category of SV soft thresholding

methods. Since the algorithms in [37, 38] consider the relative importance of dif-

ferent SVs, the quality of the recovered image is very competitive in terms of the

peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Several

variants of SAIST and WNNM have been developed [39, 40, 41, 42].

Recently, Josse and Sardy [43] defined a two-parameter threshold function

λ̂i = λi(1−
τ η

ληi
)+, (2.2)

which encompasses hard thresholding for η →∞ and soft thresholding when η = 1.

Their Monte Carlo simulation revealed that such a trade-off between soft and hard

thresholding yields the best performance in terms of MSE on both low-rank and

general signal matrices across different signal-to-noise ratio regimes. Following the

same principle, Verbanck et al. [44] suggested a regularized version of PCA (rPCA)

that essentially selects a certain value for the rank and shrinks the corresponding

SVs. Jia et al. [45] defined this problem as rank constrained nuclear norm mini-

mization (RNNM), in which the rank and the extent of thresholding are controlled
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separately. The thresholding function is accordingly denoted as:

λ̂i =


λi(1− τη

ληi
)+ i = 1, . . . , r

0 i = r + 1, . . . ,min(m,n),

(2.3)

where r is the selected rank with r < min(m,n).

These methods not only aim to better approximate the original low-rank struc-

ture of the patch matrix, but also differentiate the importance of each rank compo-

nent. Due to this balance between the reduced rank and threshold, these algorithms

can achieve superior results compared with benchmark methods such as nonlocal

means and BM3D [5].

However, there are a number of issues shared by these existing methods. Firstly,

almost all of the aforementioned methods and their variants require the noise vari-

ance σ2 to be known [32, 33, 34, 35, 36, 37, 45, 39, 40, 41, 42, 43, 44], which is

not realistic in practice. An extra step is therefore required to pre-determine the

noise variance. While the denoising performance of these methods can be substan-

tially degraded when using poor estimates of the noise variance, the numerically

impressive results of a number of approaches including BM3D, SAIST, WNNM,

and RNNM are obtained simply because of the assumption that the exact noise

variance is known [36, 45, 44, 46, 47, 48, 49, 50]. The impact of the error in the

estimation of the noise variance on recovered images has not been examined, which

casts doubt on the actual performance of these approaches. There are also other

free parameters that need to be empirically determined. For example, two extra

constants control the weights in WNNM and the pre-specified order in low-rank

approximation methods [37, 44, 45]. Furthermore, in order to thoroughly remove

the noise, the iterative regularization scheme is frequently adopted in these meth-

ods. The variance of the residual noise for the next iteration is estimated from the

difference between the initial variance and that of the filtered noise at the previous
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iteration. The initial error in the estimation of the noise variance therefore propa-

gates and accumulates at each iteration, ultimately degrading the quality indexes

in real-world applications. Another issue is that these approaches are largely based

on the conventional singular value decomposition (SVD) in the least squares sense.

For high-dimensional parameter spaces, the MSE of a least-squares method is often

larger than that of a Bayesian estimator [51]. It is also highly susceptible to out-

lier values in the data. Finally, low-rank approximation-based algorithms, as well

as BM3D and WNNM, tend to produce a weak noise-like pattern in low contrast

areas of the image when the noise level is moderate or high [37, 52]. This is because

the noise in similar patches is partially correlated, which can lead to the incorrect

estimation of low-rank patterns as the output of these algorithms [46].

To address the many issues identified above, a unified nonlocal image denoising

framework is proposed based on variational Bayesian inference and Stein’s unbiased

risk estimator (BSSVT). This generic nonlocal denoising framework consists of two

complementary steps. In the first step, the variational Bayesian model performs a

low-rank approximation of the noisy patch matrix. This is functionally equivalent

to other low-rank approximation or nuclear norm minimization methods. More im-

portantly, the noise variance is a latent parameter which is automatically inferred,

so does not need to be provided beforehand. The SURE criterion has been em-

ployed in a variety of denoising problems to optimize regularization parameters for

minimizing the estimation risk or MSE [53, 54, 55, 56, 57]. With the noise variance

obtained via the Bayesian model, the second step carries out the SURE-based sin-

gular value thresholding on the rank-reduced eigen-triplets to optimally refine the

SVs. This further attenuates the very weak noise-like pattern in low contrast areas

of the image and reduces artefacts around edges, overcoming the shortcomings of

low-rank approximations [46].

The first part of the proposed method is related to Bayesian approaches for or-



10

thogonal matrix low-rank approximation and for orthogonal nonnegative matrix fac-

torization [51, 58, 59, 60, 61, 62, 63, 64]. Hoff [51] presented a full Bayesian singular

value decomposition model. However, using Gibbs sampling to estimate the param-

eters makes it unsuitable for nonlocal image denoising because of its huge computa-

tional cost. The singular value may also be negative in this model, leading to further

issues. The Bayesian inference on the unknown parameters in [59] was also carried

out using Markov chain Monte Carlo (MCMC), while the variational Bayesian PCA

algorithm in [58] focused on feature extraction and reduction. Variational inference

was employed in [60] to perform SVD; however, this model only considered a prior

of a singular vector and omitted singular values. Although [61, 62, 63, 64] emphasize

orthogonality in their models, the basic framework of these models is nonnegative

matrix decomposition.

As reviewed above, most image denoising approaches are developed based on

the assumption of a known noise variance [32, 33, 34, 35, 36, 37, 45, 39, 40, 41,

42, 43, 44]. This largely restricts them in terms of practical use. Consequently,

the first step of image denoising is often dedicated to estimating the noise variance

using the same available image that needs to be denoised. The most well-known

noise variance estimator is the scaled Median Absolute Deviation (MAD) method in

wavelet denoising [65]. The noise variance is roughly approximated by the median of

the absolute value of the wavelet coefficients at the finest decomposition level, which

is employed in [37] and its variants. Other methods to estimate the noise variance are

mainly based on residual principal components or singular values [66, 67, 68, 69, 70].

It is very common for the noise variance or precision to be estimated via generative

models [51]. However, this has not attracted enough attention to be exploited in

the image processing community. This is the first research to present a variational

Bayesian model to shrink SVs for nonlocal denoising, and in particular, simultaneous

noise removal and noise variance estimation.
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Low-rank approximations tend to produce a very weak noise-like pattern in flat

areas of the image when the noise level is moderate or high [46]. This arises from the

fact that the noise in a group of overlapping similar patches is partially correlated,

which can incorrectly lead to the reconstruction of a low-rank approximation. The

SURE criterion has been well developed to optimally adjust the parameters of a

variety of denoising algorithms for edge-preserving filtering and artefact removal [36,

43, 53, 54, 55]. However, the existing SURE is only applicable to shrinking the full

rank eigen-triplets. In Chapter 3, the proposed BSSVT method modifies the existing

SURE and its divergence formulas to accommodate the rank-reduced eigen-triplets

obtained by Bayesian low-rank approximation.

2.2 Matrix Factorization Approaches

Using machine learning methods to find the low-rank and/or sparse approxi-

mation of a given data matrix is a fundamental problem in many computer vision

applications, for example, background/foreground separation. By casting the prob-

lem into the penalization of the regularization term, a number of efforts have been

devoted to applying convex or non-convex optimization methods to obtain the low

rank and sparse components [71, 72, 73, 74]. For most of these convex or non-convex

methods, one has to manually choose some regularization parameters to properly

control the trade-off between the data fitting error and the matrix rank when noise is

involved. However, due to the lack of noise variance and rank, it is often unrealistic

to determine the optimal regularization parameters.

Bayesian inference under probabilistic frameworks provides another essential

principle to perform matrix factorization. Ding et al. [75] proposed a Bayesian

robust principal component analysis (BRPCA) framework which infers an approx-

imate representation for the noise statistics while simultaneously inferring the low

rank and sparse components. However, this model is relatively complex, and the
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intractable posteriors are inferred by Gibbs sampling. Aicher [76] later improved

the parameter inference in [75] by using the factorized variational Bayesian (VB)

principle. Wang et al. [77] proposed a Bayesian robust matrix factorization model

for image and video analysis. The Gaussian noise model is replaced by a Laplace

mixture in [77] to enhance model robustness. Similarly, a Bayesian formulation of

hierarchical L1 norm low-rank matrix factorization is presented in [78]. In addi-

tion, Zhao et al. [79] presented a generative robust PCA model under the Bayesian

framework with data noise modeled as a mixture of Gaussians (MoG). A common

issue of the above models is that the optimal rank of the low rank component has

to be manually pre-determined, which potentially either over-fits or under-fits the

data. Babacan et al. [80] proposed to employ the automatic relevance determination

principle in sparse Bayesian learning to determine the optimal rank of the low rank

component.

Although these methods are successful in many areas including video processing,

most of them simply ignore side information, or intrinsically, are not capable of

exploiting it. On the other hand, many studies have indicated that kernelized matrix

factorization to integrate side information, i.e., prior knowledge or data attributes for

specific data, can significantly improve the performance of information extraction or

prediction [18, 16, 81, 82]. However, the inference of kernelized matrix factorization

models using VB is still quite limited. Pork et al. [83] placed Gaussian-Wishart

priors on mean vectors and precision matrices of Gaussian user and item factor

matrices, such that the mean of each prior distribution is regressed on corresponding

side information. They developed a VB algorithm to approximate the posterior

distributions over user and item factor matrices with a Bayesian Cramer-Rao bound.

Very recently, Gönen and Kaski [84, 85] extended the kernelized matrix factorization

with a full VB treatment and with an ability to work with multiple side information

sources expressed as different kernels. However, this model focused specifically on
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binary output matrices for multi-label classification. Moreover, both models in [84,

85], and [83] lack of robustness, which is required to handle the sparse component

or outliers in many real-world applications.

In order to incorporate the document labels into the matrix factorization model

to improve word representations for the text classification task, Yang et al. [15]

constructed two co-occurrence matrices: a word-context matrix and a word-label

matrix. They then defined an objective function which penalised the weighting

function related to the latter matrix. Lan et al. [16] proposed a kernel low-rank de-

composition formulation which represented the entries using the Nyström sampling

method. The convex objective function to integrate the side information in [16] is

based on the Frobenius norm, the same as in [15], to measure the closeness between

two matrices. Narita et al. [17] introduced two regularization approaches using graph

Laplacians induced from the side information of relationships among data, one for

moderately sparse cases and the other for extremely sparse cases. They presented

two kinds of iterative algorithms for approximate solutions: one based on an EM-like

algorithm which is stable but not so scalable, and the other based on gradient based

optimization which is applicable to large scale datasets. The matrix factorization

model for recommendation in social rating networks in [18] incorporates not only

trust but also distrust relationships aiming to improve the quality of recommenda-

tions and mitigate the data sparsity and cold-start issues. The social relationships

are absorbed into the convex optimization problem with a standard gradient de-

scent method to find the latent feature matrices of users and items in an iterative

procedure. Fithian and Mazumder [19] explored a general statistical framework for

low-rank modeling of a matrix with missing data and side information, based on con-

vex optimization with a generalized nuclear norm penalty. An augmented Lagrange

multiplier (ALM) and the alternating direction method of multipliers (ADMM) were

employed to perform a robust principal component analysis with side information
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in [20, 21]. Nguyen and Lee [22] proposed to incorporate prior anatomical informa-

tion into PET reconstruction using a nonlocal regularization method. To accelerate

convergence, they used the complete-data ordered subsets expectation maximiza-

tion (COSEM) algorithm, which is free from a seriously inconvenient user-specific

relaxation schedule required in conventional relaxed ordered-subsets (OS) methods.

In addition, the stochastic gradient decent (SGD) method was utilized in [23] to

learn the latent matrix, where the interactions between user/item and field can be

captured. Huang et al. [24] explored an alternating gradient descent (AGD) method

to perform matrix completion with side information. As for the matrix completion

problem, singular value decomposition is another popular method [86, 87]. While

the aforementioned methods incorporated explicit side information in the low-rank

matrix factorization setting, Shah et al. [81] designed a method to make use of the

implicit information, i.e., via random walks on graphs. They casted the problem as

factoring a nonlinear transform of the (partially) observed matrix and developed a

coordinate descent based algorithm for the same.

Side information can also be presented and utilized in other manners. Choo

el al. [88] proposed a weakly supervised nonnegative matrix factorization (NMF)

that flexibly accommodates diverse forms of prior information via regularization

in clustering applications. Some others assumed to know part entries of the factor

matrices and used a parameterization scheme to take them into account of the NMF

problem. For example, Delmaire et al. [89] presented an informed NMF model in

which some entries of a factor matrix are to be provided or bounded by experts

and update rules were proposed for that purpose. Dorffer et al. [90] further assumed

that the columns of a matrix factor have a sparse decomposition along with a known

dictionary. Besides, the idea of a convex NMF in [91] is similar to [89, 90]. However,

the update rules are derived by the majorization-minimization algorithm. In another

family of sparse representation [91], the kernel matrix is defined based on sample-
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sample similarity, or sample-basis-vector similarity.

For most of these convex or non-convex methods to utilize the side information,

one has to manually choose some regularization parameters to properly control the

tradeoff between the data fitting error and the matrix rank when noise is involved.

However, due to the lack of the noise variance and the rank, it is often unrealistic

to determine the optimal regularization parameters.

Probabilistic frameworks provide another essential principle to perform kernel-

ized matrix factorization. Since the matrix’s inner product in probabilistic PCA

has an interpretation as a Gaussian process (GP) covariance matrix [81], a number

of studies have been devoted to nonlinear probabilistic matrix factorization using

GP latent variable models (LVM). The covariance matrix of GP-LVM was replaced

by a covariance function of GP containing the side information in [92]. Inspired

by this idea, Zhou et al. [82] explicitly proposed the kernelized probabilistic matrix

factorization (KPMF) model, which integrated the side information through ker-

nel matrices over rows and columns, respectively. KPMF models a matrix as the

product of two latent matrices, which are sampled from two different zero-mean

Gaussian processes. The covariance functions of the GPs are derived from the side

information, and encode the covariance structure across rows and across columns,

respectively. Adams et al. [93] extended this framework for incorporating side infor-

mation by coupling together multiple dependent matrix factorization problems via

Gaussian process priors. They replaced scalar latent features with functions that

vary over the space of side information. However, GP does not scale with big data

due to its cubic time complexity. Le et al. [94] addressed these efficiency issues

by proposing local GP kernel functions in the context of modeling road network

topology.

In order to achieve automatic balance between the matrix rank and the fitting er-
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ror, Bayesian methods have been recently employed to learn the KMF model param-

eters. Porteous et al. [95] introduced a nonparametric mixture model for the prior

of the rows and columns of the factored matrices that gives a different regularization

for each latent class. Besides providing a richer prior, the posterior distribution of

mixture assignments inferred by Gibbs sampling reveals the latent classes [95]. This

Bayesian approach outperforms other matrix factorization techniques even when us-

ing fewer dimensions. Instead of using a nonparametric mixture model for the user

and item, Liu et al. [96] proposed two recommendation approaches fusing social

relations and item contents with user ratings. One generates user hyperparameters

separately for every user vector, while another generates both user hyperparame-

ters and item hyperparameters separately. Xu et al. [97] employed a co-clustering

technique to integrate the side information of the user community and item group

into the Bayesian matrix factorization. Each community-group pair corresponds to

a co-cluster, which is characterized by a rating distribution in exponential family

and a topic distribution. Yang and Wang [98] presented a Bayesian hierarchical

kernelized probabilistic matrix factorization for matrix-variate normal data with de-

pendent structures induced by rows and columns. The learned the model explicitly

captures the underlying correlation among the rows and the columns. The param-

eters in these models [95, 96, 97, 98] are all inferred using Gibbs sampling. Zakeri

et al. [99] extended the Markov Chain Monte Carlo (MCMC) method to factorize

a sparsely filled gene-phenotype matrix with genomic and phenotypic side informa-

tion, where the objective is to make non-trivial predictions for genes for which no

previous disease association is known.

In comparison with MCMC sampling methods, variational Bayesian (VB) infer-

ence exhibits much lower computational complexity and has been broadly applied

to infer the posterior in numerous probabilistic models. However, inference of ker-

nelized matrix factorization models using VB is still quite limited. Pork et al. [83]
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placed Gaussian-Wishart priors on mean vectors and precision matrices of Gaus-

sian user and item factor matrices, such that the mean of each prior distribution

is regressed on corresponding side information. They developed a VB algorithm

to approximate the posterior distributions over user and item factor matrices with

a Bayesian Cramér-Rao bound. Very recently, Gonen and Kaski [85] extended the

kernelized matrix factorization with a full VB treatment and with an ability to work

with multiple side information sources expressed as different kernels. However, this

model focused specifically on binary output matrices for multi-label classification.

Besides the issue of rank determination, there are at least two limitations of

the aforementioned KMF approaches. The first issue is low-rankness and sparsity.

In practice, many different data sets, for example, natural images, hyperspectral

images and dynamic PET, have both nonlocal low-rank and global sparse structure

properties [100, 101, 102]. It has been proven that the adoption of suitably combined

constraints of low rankness and sparsity is expected to yield substantially enhanced

estimation results [100, 101, 102]. However, these KMF approaches focus on either

low-rankness or sparsity but fail to emphasize them together. The second issue is

noisy and incomplete data. Most of these KMF approaches focus on either noisy

data or incomplete data but fail to address them collectively. However, the proposed

KSBMF model in Chapter 4 addresses all these issues together.

2.3 Non-Negative Matrix Factorization Methods

Following Lee and Seung’s seminal paper on NMF published in Nature [103] in

1999, these authors later presented two further algorithms based on multiplicative

updates to minimize the cost functions based on the Frobenius norm and generalized

KL-divergence, respectively [104]. In practice, the observed data inevitably contains

noise and outliers. Several extensions of [104] either modifying the cost function or

update rule, or imposing extra constraints, have been proposed to avoid degrading
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the performance. Cichocki et al. [105] extended the generalized KL-divergence to

generalized Alpha-Beta divergences, which were parameterized by the two tuning

parameters α and β. By adjusting these tuning parameters, this generalized family

of αβ-multiplicative NMF algorithms can improve robustness concerning noise and

outliers. Considering the sparseness of the considerable additive noise, imposing

an `1-norm term into the objective function is a popular method to achieve robust

NMF [106]. Kong et al. [107] proposed a robust formulation of NMF based on the

mixed `2,1-norm, which is trained using multiplicative updates. Huang et al. [108]

incorporated a manifold regularization term into the model in [107] to encode the

geometrical information existing in the data. Du et al. [109] proposed a robust NMF

method (CIMNMF) based on the correntropy induced metric, which is much more

insensitive to outliers. A half-quadratic minimization algorithm was developed to

optimize the non-convex loss function iteratively. Recently, Shen et al. [110] explored

a robust NMF which used the hyperbolic tangent (tanh) function as a robust loss

to evaluate the reconstruction error.

While NMF originated from optimizing a suitable cost function subject to non-

negativity constraints, it is well-known that most popular NMF cost functions can

be interpreted as the maximum likelihood (ML) estimation of statistical models.

For instance, the `2-norm distance measure is related to Gaussian error statistics,

while KL- or IS-divergence can be approximated by alternative error statistics given

by Poisson or Gamma distributed noise kernels. Hence, constrained optimization

of proper cost functions can be achieved within a statistical framework in terms

of maximum likelihood estimation [111]. This results in the development of more

conceptually principled approaches based on Bayesian probabilistic interpretations

of NMF.

To take advantage of conjugate distributions for more straightforward Bayesian

inferences under a nonnegative constraint, a Poisson likelihood or noise function
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accompanied by a Gamma prior for U and V is one of the most popular Bayesian

NMF models [112]. This model and its extensions have resulted in many emerging

real-life applications, e.g., image restoration [112], recommendation systems [113],

audio source separation [114], and speech enhancement [115]. Since an exponential

distribution can be viewed as a special case of the Gamma distribution, Vincent and

Hugo [116] used the former to replace the latter to couple with a Poisson likelihood.

They also applied automatic relevance determination (ARD) to determine the model

order to avoid overfitting. However, the Poisson distribution is formally defined only

for integers, which impairs the statistical interpretation of KL-NMF on uncountable

data such as real-valued signals or images.

Moreover, as pointed out by Chien and Yang [117], some dependency of the

variational lower bound on model parameters was ignored in the original Bayesian

Poisson-Gamma NMF model in [112], so the inferred parameters did not reach the

true optimum of the variational objective. To circumvent these issues, Schachtner

et al. [118] developed a variational Bayesian NMF model with Gaussian likelihood,

and a truncated normal distribution as the prior of factors by truncating all negative

entries and renormalizing the integral to unity. This algorithm is a straightforward

Bayesian generalization of the canonical Lee and Seung methods in the case of a

Euclidean distance measure (`2-norm) for the reconstruction error corresponding to

a Gaussian noise kernel. They later modified the prior of the one-factor matrix by

deliberately adding a delta peak at the origin of the truncated normal distribution

to accommodate both Gaussian and sparse noise [111]. However, this model slightly

over-estimates the number of sources under low noise levels, while in the case of

high noise levels, the method may fail completely [111]. Since both exponential

and Gaussian distributions belong to the exponential family, the truncated normal

can be replaced by exponential distribution to formulate a similar Bayesian NMF

update formula [119, 120]. In order to integrate prior knowledge about the factor
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matrices, suitable prior distributions, like Gaussian processes [121] and Gamma

chain priors [122], have also been incorporated into the models.

Although these NMF models, based on either regularization or Bayesian in-

ference, have gained a certain degree of success in various signal processing and

machine learning applications, a common shortcoming of most of these methods is

that they consider only a single noise kernel or noise distribution. In practice, it is

well known that most observations contain complex signal and noise components.

For example, physiological signals including electroencephalogram (EEG) and elec-

tromyogram (EMG) are weak bioelectric recordings contaminated by white Gaus-

sian noise, motion artefact, cross-talk, power line interference, as well as spurious

background spikes [123, 124]. These existing models are insufficient to identify the

nonnegative factors or extract signal components accurately. To address this issue,

this study aims to develop a hierarchical Bayesian non-negative matrix factorization

model. A Gaussian mixture model (GMM), a universal approximator for any contin-

uous distribution [125], is employed to approximate the complex noise components.

Accompanying the GMM, another issue is how to choose the number of mixture

components, which impacts the generalizability of the model heavily. Insufficient

components result in under-fitting, while an excessive number of components leads

to over-fitting.

The proposed DPNMF model in Chapter 6 is somewhat related to both GMM

and nonparametric Bayesian models. GMM has a long history in fitting observed

data due to its modelling and approximation properties [126, 127]. Penny et al. [128]

proposed to model noise as a mixture of Gaussians (MoG) rather than drawn from

a specific distribution in a general linear model (GLM). However, their model is

for time series regression, and the model order, i.e., the required number of Gaus-

sian components, has to be pre-specified. Although there are some criteria such as

Akaike information criterion (AIC), Bayesian information criterion (BIC), and min-
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imum message length (MML) available to determine the model order, these kind

of model selection approaches can be highly computationally demanding, as they

need to traverse all candidate numbers of components. The Dirichlet process mix-

ture model (DPMM) assumes that the data is generated from an infinite number of

components, model selection and parameter learning are simultaneously performed

within one training round [129]. Recently, Shao et al. [130] presented a Dirichlet pro-

cess mixture of Gaussians to predict chemical processes. Ren et al. [131] introduced

a Dirichlet process mixture of principal components to properly choose the latent

dimension number of the GLM problem in [128]. Lack of conjugacy due to the non-

negativity constraint makes the inference of the proposed model very different from

the conjugate distributions in [130, 131]. The Dirichlet process mixture of Gaus-

sians is employed to model the noise term in the proposed hierarchical model while

GMM and/or DPMM are employed to model the observation itself in [128, 130, 131].

Under the more general framework of nonparametric Bayesian NMF, Porteous et

al. [95] assumed that there are latent classes for the entities of Y and regularization

should be performed per class. To this end, they used a Dirichlet process mixture

to automatically prune the clusters of latent vectors which dominate the posterior

in a collaborative filtering task [95].

Similarly, Xuan et al. [132] proposed a doubly sparse nonparametric NMF frame-

work where dependent Indian buffet processes (dIBP) [133] were used to generate

two stick weights associated with each column pair of factor matrices while still main-

taining their respective marginal distribution specified by IBP. As a consequence,

the generation of two-factor matrices is both nonparametric and sparse. However,

the nonparametric Bayesian approach works on latent vectors in [95, 132] rather

than the noise term in the proposed model.

In Chapter 6, the power of a nonparametric Bayesian technique, i.e., Dirichlet

process mixtures, is utilized to determine the required number of Gaussian compo-
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nents. The model is thus termed Dirichlet process nonnegative matrix factorization

(DPNMF).
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Chapter 3

Image denoising based on nonlocal Bayesian

singular value thresholding and Stein’s unbiased

risk estimator

3.1 Introduction

Singular value thresholding (SVT) or nuclear norm minimization (NNM)-based

nonlocal image denoising methods often rely on the precise estimation of the noise

variance. However, most existing methods either assume the noise variance is known

or require an extra step to estimate it. Under the iterative regularization framework,

the error in the noise variance estimate propagates and accumulates with each it-

eration, ultimately degrading the overall denoising performance. In addition, the

essence of these methods is still least squares estimation, which can cause a very

high Mean Squared Error (MSE) and is inadequate for handling missing data or out-

liers. In order to address these deficiencies, this chapter presents a hybrid denoising

model based on variational Bayesian inference and Stein’s unbiased risk estimator

(SURE), which consists of two complementary steps. In the first step, the varia-

tional Bayesian singular value thresholding performs a low-rank approximation of

the nonlocal image patch matrix to simultaneously remove the noise and estimate

the noise variance. In the second step, the conventional SURE full rank SVT and its

divergence formulas for rank-reduced eigen-triplets is modified to remove the resid-

ual artefacts. The proposed hybrid BSSVT method achieves better performance in

recovering the true image compared with state-of-the-art methods.

The main contributions are summarized as follows: (a) A hybrid nonlocal image
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blind denoising framework is formed which exploits both Bayesian low-rank approx-

imation and Stein’s unbiased risk estimation. (b) A variational Bayesian model is

adopted to approximate the low-rank structure of the patch matrix, which simul-

taneously performs the noise removal and noise variance estimation. This Bayesian

model was first developed in [58], with a focus on general principal component anal-

ysis. In this chapter, its construction is applied and extended for image processing

applications. Since the original model in [58] needs to try out all possible values of

the rank to determine the reduced rank, the huge computational burden makes the

model non-viable for patch-based image restoration tasks. The automatic relevance

determination principle [134] is employed to automatically prune the rank, which

significantly relieves the computational cost. (c) The full-rank Stein’s unbiased risk

estimator and its divergence formulas is modified for use in reduced-rank singular

value thresholding. This modified SSVT algorithm directly maximizes the PSNR by

refining the optimal threshold that minimizes the MSE estimation of rank-reduced

eigen-triplets. (d) The modified SURE model is apolied on the rank-reduced eigen-

triplets to enhance the initial low-rank approximation and to produce a more precise

estimate of the original image.

The experimental results demonstrate that the proposed BSSVT approach has

superior performance in comparison with the state-of-the-art methods in terms of

both PSNR and SSIM.

The rest of this chapter is organized as follows. In Section 3.2, the details of

the Bayesian model is elaborated for low-rank patch recovery in the presence of

noise. The nonlocal Stein’s unbiased risk estimator is also described in this section.

Experimental results, comparison with the state-of-the-art methods and objective

assessments are presented in Section 3.3. Finally, the Section 3.4 discusses and

concludes this chapter.
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3.2 BSSVT model and inference

The proposed BSSVT method consists of two successive and complementary

steps: Bayesian singular value thresholding (BSVT) for low-rank approximation

representation of nonlocal similarities; and the singular value thresholding based

on SURE (SSVT) with respect to the rank-reduced representation. Fig 3.1 shows

a schematic diagram of BSSVT, in which the leftmost component is the graphic

model of the Bayesian SVD and the rightmost component represents the SURE-

based shrinker. The details of these steps are presented below.

3.2.1 Variational Bayesian singular value thresholding

Under the nonlocal framework, an image is divided into small square blocks, i.e.

patches. A patch group matrix is constructed by the vectorization of each patch

and its nonlocal neighbors. The final output image is formed by reassembling the

individually processed patches. The purpose of variational Bayesian singular value

thresholding is to learn this low-rank subspace, while simultaneously providing the

noise variance and eigen-triplets for refinement at the second stage.

Model Specification

Without loss of generality, assume that the noisy patch matrix is Y = X + E,

where Y ∈ Rn×m is composed of n vectorized similar patches with size
√
m ×√m

from a noisy image and E denotes the noise matrix with i.i.d. entries Ei,j ∼

N (0, ω−1), where N (0, ω−1) denotes a Gaussian distribution with mean 0 and preci-

sion ω. A natural way to represent the low-rank subspace is to truncate the singular

values of the observed matrix Y = UDV > =
∑min(m,n)

i=1 λiuiv
>
i to X̂ = U rDrV

>
r

(for r < min(m,n)), which satisfies U r ∈ Rn×r, V r ∈ Rm×r and U>r U r = Ir,

V >r V r = Ir. Here, Dr = diag(λr) ∈ Rr×r is a diagonal matrix with non-zero sin-

gular values in descending order and r is the rank of the low-rank approximation.
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From the point of view of Bayesian inference, the task is to infer the posterior eigen-

triplets of U r,Dr and V r from their prior distributions and the observed patch

matrix. The likelihood of the noisy patch matrix is denoted as:

p(Y |U r,Dr,V r, ω, r) = N (U rDrV
>
r , ω

−1In ⊗ Im), (3.1)

where In denotes an n × n identity matrix and In ⊗ Im ∈ Rnm×nm denotes the

Kronecker product of matrices In and Im.

Since U r has orthonormal columns, it is constrained to the Stiefel manifold

Sn,r [51]. Therefore, both the prior and posterior distributions of U r have a support

confined to Sn,r. The finite area C(n, r) of Sn,r is given by [58, 59, 60]

C(n, r) =
2rπ(1/2)nr

π(1/4)r(r−1)
∏r

j=1 Γ((1/2)(n− j + 1))
, (3.2)

where Γ(·) is the gamma function. Similarly, V r is constrained to the manifold Sm,r.

The priors on U r and V r are adopted to be the least informative, i.e. uniform on

Sn,r and Sm,r, respectively.

p(U r) = C(n, r)−1χ(Sn,r), (3.3)

p(V r) = C(m, r)−1χ(Sm,r), (3.4)

where χ() denotes the indicator function on the argument set.

In the absence of specific prior knowledge on ω, Jeffreys’ prior is utilized for the

precision parameter so that

p(ω) ∝ ω−1, (3.5)

which corresponds to an improper gamma distribution attained when both shape

and scale parameters approach zero [135]. The above uninformative priors can be

modified in obvious ways if relevant information is available.

The prior knowledge of Dr can be expressed by an upper bound on the norm of

λr:
r∑
i=1

λ2
i ≤ 1, (3.6)
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together with the descending order constraint, so that λr is confined to the space

Lr = {λr|λ1 > λ2 > · · · > λr > 0,
r∑
i=1

λ2
i ≤ 1}, (3.7)

which is a segment of the unit hyperball Hr. The volume of Lr is:

Vr = hr
1

2r(r!)
=

πr/2

Γ(r/2 + 1)2r(r!)
. (3.8)

where hr is the volume of Hr. The prior distribution on λr is then chosen to be

uniform on Lr [58, 135]:

p(λr) = U(Lr) = V−1
r χ(Lr). (3.9)

Y

X

E

U r

λr

V r

ω

SURE X̂

BSVT SSVT

1

Figure 3.1 : Schematic diagram of BSSVT to denoise a patch matrix using variational

Bayesian inference and SURE criterion

The resulting probabilistic graphical model is shown in the leftmost part of

Fig 3.1. For notational simplicity, all unknown parameters are collectively denoted
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by Z = {U r,λr,V r, ω}. Therefore, the joint distribution of the parameters and

data is given by

p(Y ,Z|r) = p(Y |U r,λr,V r, ω, r)p(U r)p(λr)p(V r)p(ω). (3.10)

Model Learning via variational Bayesian Inference

Full Bayesian inference using the above joint distribution is computationally in-

tractable since the marginal distribution p(Y) is not available analytically. In com-

parison with MCMC sampling methods, variational Bayesian (VB) inference [136]

exhibits much lower computational complexity, so that variational Bayesian infer-

ence is utilized to infer the posterior distribution of Eq. (3.10) [137, 138, 139].

In particular, a distribution q(Z) is constructed to approximate the true posterior

distribution p(Z|Y ) by minimizing the Kullback-Leibler (KL) divergence:

KL(q(Z) ‖ p(Z|Y )) = −
∫
q(Z) log

p(Z|Y )

q(Z)
dZ ≥ 0. (3.11)

The KL divergence is equal to 0 iff p(Z|Y ) is identical to q(Z) [140].

Based on the mean field approximation, the proposed posterior approximation

can be factorized as

q(Z) = q(U r|Y , r)q(λr|Y , r)q(V r|Y , r)q(ω|Y , r). (3.12)

Applying the VB theorem to Eq. (3.10), the following approximate posterior

distributions can be obtained:

q(U r|Y , r) ∼ vMF (FU ), (3.13)

q(V r|Y , r) ∼ vMF (F V ), (3.14)

q(λr|Y , r) ∼ tN (µ, σ2Ir;Lr), (3.15)

q(ω|Y , r) ∼ Gamma(α, β). (3.16)
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Here, vMF (·) denotes the von Mises-Fisher distribution [141], tN (µ, σ2Ir;Lr) is

the truncated normal distribution with support Lr and Gamma(α, β) denotes the

gamma distribution with shape α and rate β. The analytical forms of the above

distributions are provided in the Appendix.

The parameters of Eqs. (3.13)-(3.16) are given by

FU = ω̂Y V̂ rD̂r, (3.17)

F V = ω̂Y >Û rD̂r, (3.18)

µ = diag(V̂ r

>
Y >Û r), (3.19)

σ2 = ω̂−1, (3.20)

α =
nm

2
, (3.21)

β =
1

2
(λ̂>
r λr + tr(Y Y > − 2Y V̂ rD̂rÛ r

>
)), (3.22)

where ω̂ denotes the expectation of ω with respect to q(ω) and similarly for the

other variables.

The VB algorithm requires iteration of Eqs. (3.17)-(3.22) until convergence,

which in turn requires iterative evaluation of the moments of the distributions (3.13)-

(3.16):

Û r = UFU
G(n,DFU

)V >FU
, (3.23)

V̂ r = UFV
G(m,DFV

)V >FV
, (3.24)

λ̂r = µ+ σζ(µ, σ), (3.25)

λ̂>r λr = rσ2 + µ>l̂r − σρ(µ, σ), (3.26)

ω̂ =
α

β
, (3.27)

where UFU
, DFU

, V FU
, UFV

, DFV
and V FV

are the SVD parameters of FU

and F V respectively and the definition of the functions ζ(·, ·), ρ(·, ·) and G(·, ·) are

provided in the Appendix.
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If Û r and V̂ r are formed from scaled singular vectors of the noisy patch matrix

Y , so that

Û r = U ;rKU , (3.28)

V̂ r = V ;rKV , (3.29)

where U ;r and V ;r denote the first r columns of the matrices U and V respectively,

KU = diag(kU ) ∈ Rr×r and KV = diag(kV ) ∈ Rr×r are the proportionality con-

stants, then Eqs. (3.17)-(3.22) and (3.23)-(3.27) can be greatly simplified and each

iteration using these equations satisfies (3.28) and (3.29). Detailed derivations of

these equations are given in [58]. For the above inference, it is assumed that the

rank r was known. One popular method to determine the rank r is to infer the

posterior p(r|Y ) [51, 58]. This method requires trying out all possible values of the

rank, i.e. from order 1 to n − 1 for each patch group matrix, resulting in a huge

computational burden in patch-based image processing. Here, the automatic rele-

vance determination principle in Bayesian sparse learning is resorted to determine

the rank r [134]. A relatively large value is initialized for r, e.g. r = n− 1. During

iterations, most of the values of kU and kV are driven to very small values, which

forces the posterior means of most rows of U and V as well as most SVs to approach

zero. The rank is therefore effectively reduced by removing those items from the

model. The inferential framework of BSVT is outlined in Algorithm 1.

3.2.2 SURE-based singular value thresholding

As noted above, if the image is reconstructed using the low-rank approximation

directly, it tends to produce a very weak noise-like pattern in flat areas and around

edges, particularly in the case of moderate or high noise levels [46]. SURE is an

unbiased statistical estimate of the MSE between an original unknown data source

and a processed version of its noisy observation. This estimate depends only on the

observed data and does not require any prior assumption on the noise-free source.
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Algorithm 1 Variational Bayesian singular value thresholding

Require: Noisy patch matrix Y of size n×m

1: Perform SVD on Y : Y = UDV >, D = diag(λY )

2: Initialize: k
(0)
U = k

(0)
V = 1r,1, which is a r × 1 matrix with all entries equal to 1,

λ̂r
(0)

= λY ;r, ŵ
(0) = mn/

∑n
i=r+1 λ

2
Y ,i, t = 1.

3: repeat evaluate the following equations:

k
(t)
U = G(n, ŵ(t−1)λY ;r ◦ k(t−1)

V ◦ λ̂r
(t−1)

), (3.30)

k
(t)
V = G(m, ŵ(t−1)λY ;r ◦ k(t−1)

U ◦ λ̂r
(t−1)

), (3.31)

µ(t) = k
(t−1)
V ◦ λY ;r ◦ k(t−1)

U , (3.32)

σ(t) = (ŵ(t−1))−1/2, (3.33)

λ̂r
(t)

= µ(t−1) + σ(t−1)ζ(µ(t−1), σ(t−1)), (3.34)

λ̂>r λr
(t)

=(µ(t−1))>λ̂r
(t−1)

+ r(σ(t−1))2 − σ(t−1)ρ(µ(t−1), σ(t−1))>1r,1, (3.35)

ŵ(t) =mn[λ>Y λY + l̂>r lr
(t−1)

− 2(k
(t−1)
V ◦ λ̂r

(t−1) ◦ k(t−1)
U )>λY ;r]

−1. (3.36)

4: Set t = t+ 1

5: until convergence is reached with reduced r

6: Set U r = U ;rkU ;r, Dr = D;r, V r = V ;rkV ;r

Ensure: U r, Dr, V r
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Various studies have demonstrated that SURE is particularly powerful for tuning the

regularization parameters for high-quality edge-preserving image filtering [56, 57].

In order to suppress artefacts in smooth areas and around edges, SURE is employed

to refine the singular values Dr (r < min(m,n)) with respect to minimizing the

estimation risk or the MSE between the actual data X and the approximation X̂.

This can be performed by selecting a parameter τ to shrink the singular values Dr:

MSE(τ) = E
∥∥∥X − SVTτ (X̂)

∥∥∥2

F
= E

∥∥X − SVTτ (U rDrV
>
r )
∥∥2

F
, (3.37)

where ‖·‖F denotes the Frobenius norm.

Similar to the case for full-rank SVD, the expectation in Eq. (3.37) depends on

the trueX which is not available. Determination of τ based on minimizing MSE thus

cannot be achieved directly. However, it is feasible to construct an unbiased estimate

of the MSE, namely, Steins Unbiased Risk Estimator. Assuming m > n > r, the

unbiased risk estimator can be derived for the rank reduced eigen-triplets:

SUREs(SVTτ (U rDrV
>
r ))

= −mnσ2
s +

min(m,r)∑
i=1

min(τ 2, λ2
i ) + 2σ2

sdivs(SVTτ (U rDrV
>
r )).

(3.38)

In comparison with full-rank SURE [36, 142], please note that σ2
s here is the

residual noise variance of the rank-reduced X and min(m,n) degrades to min(m, r).

Considering the soft threshold function of f(λi) in Eq. (2.1), the divergence for

rank-reduced eigen-triplets is modified to:

divs(SVTτ (U rDrV r))

= 2

min(m,r)∑
i6=j,i,j=1

λi(λi − τ)+

λ2
i − λ2

j

+ (|m− r|)
min(m,r)∑
i=1

(1− τ

λi
)+ +

min(m,r)∑
i=1

Iλi>τ ,
(3.39)

where I denotes the indicator function.

Assume that X̂ = X+Es, and σs can be estimated from the difference between
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the noisy observation Y and the estimation X̂

∆ = Y − X̂ = (X +E)− (X +Es) = E −Es. (3.40)

The expectation of Eq. (3.40) is denoted as

〈∆2〉 = 〈E2〉+ 〈E2
s〉 − 2〈E ·Es〉 = σ2 + σ2

s − 2〈E ·Es〉, (3.41)

where 〈·〉 is the expectation operator.

Since Es can be viewed as the smoothed version of noise E, it is clear that

〈E ·Es〉 = 〈(Es+∆)·Es〉 = 〈∆·Es〉+〈E2
s〉. It is well known that the high-frequency

component ∆ is much smaller than Es, which results in 〈E · Es〉 ≈ 〈E2
s〉 = σ2

s .

Therefore, Eq. (3.41) can be written as

〈∆2〉 = σ2 + σ2
s − 2σ2

s = σ2 − σ2
s , (3.42)

where σ2 is the noise variance in the observation Y which has been estimated using

BSVT in the first step. Eq. (3.42) is thus equivalent to

σ2
s = σ2 − 〈∆2〉 = σ2 − 1

mn

∥∥∥Y − X̂∥∥∥2

F
. (3.43)

Considering that Es contains not only the noise residual but also the estimation

error of the noiseless image, a scaling factor γ controlling the depth of filtering is

required. That is

σs = γ

√
(σ2 − 1

mn

∥∥∥Y − X̂∥∥∥2

F
). (3.44)

It is recommended to set γ around 0.55 to 0.65 to produce satisfactory results

for natural image denoising [143, 144].

The outline of the SSVT method is presented in Algorithm 2.

3.2.3 The hybrid BSSVT algorithm

For the complete image BSSVT denoising method, patches with similar spatial

structure are clustered to form a patch matrix. BSVT and SSVT are then applied
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Algorithm 2 SURE-based singular value thresholding

Require: Rank-reduced eigen-triplets U r, Dr, V r, and interval [τmin, τmax]

1: for τ from τmin to τmax do

2: Compute divs(SVTτ (U rDrV
>
r )) using Eq. (3.39)

3: Compute SUREs(SVTτ )(U rDrV
>
r ) using Eq. (3.38)

4: end for

5: Find the τ0 with minimal SUREs

Ensure: X̂ =
∑r

i=1(λi − τ0)+uiv
>
i

in succession on each patch matrix. The denoised patches are aggregated to re-

construct the whole noise-free image. In practice, iterative regularization is often

adopted by mapping the filtered noise back to the denoised image, which has been

demonstrated to be effective in improving the denoising performance [38]. This

scheme is implemented as

Y (k+1) = X̂
(k)

+ δ(Y − X̂(k)
), (3.45)

where k denotes algorithm iteration and 0 < δ < 1 is a relaxation parameter. As

reviewed in the Introduction, most existing approaches require an extra step to up-

date the estimation of the noise variance due to the feedback of filtered noise, where

the original noise variance propagates in each iteration. BSVT performs the low-

rank approximation and infers the noise variance from Y (k+1) itself without needing

any prior knowledge of the original observation Y as well as the estimators from

Y (1) to Y (k). The complete procedure for the image BSSVT denoising algorithm is

summarized in Algorithm 3.

Algorithm 1 proceeds by iteratively estimating one variable while holding the

others fixed. By the properties of the variational Bayesian method, the algorithm is

guaranteed to converge to a local minimum of the variational bound [145]. Employ-

ing Algorithm 2 with a low threshold τ fails to remove noise, while a high threshold
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removes noise but also induces both spatial blurring and contrast loss. Due to the

convex behavior of SURE/MSE, the searching scheme in Algorithm 2 can guaran-

tee to obtain the optimal SURE threshold [146]. Therefore the BSSVT algorithm

converges to a local minimum after a number of successive approximation itera-

tions, resulting in an ideal balance offering strong noise reduction while maintaining

important image features.

Algorithm 3 Image denoising by BSSVT

Require: Noisy image y

1: Initialize: x̂(0) = y, y(0) = y;

2: for k = 1 : K do

3: Iterative regularization using Eq. (3.45)

4: for each patch yi in y(k) do

5: Cluster similar patch to matrix Y i

6: Apply Algorithm 1 on Y i to obtain U r, Dr and V r

7: Apply Algorithm 2 on U r, Dr and V r to estimate X̂ i

8: end for

9: Aggregate X̂ i to form the denoised image x̂(k)

10: end for

Ensure: clean image x̂(K)

3.3 Experiments

3.3.1 Parameter settings and performance evaluation

The performance of BSSVT is evaluated on twelve benchmark grayscale images,

shown in Fig 3.2. The sizes of the first 10 images are 256 × 256 with the size of

Baboon and Barbara being 512 × 512. Noisy images are produced by adding zero

mean white Gaussian noise with standard deviation σ = 20, 50, 70 and 100. The
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Figure 3.2 : The 12 test images used in image denoising experiments.

setting of patch size and the number of similar patches recommended in previous

studies [38, 5] is adopted here: the former is set to 6 × 6, 7 × 7, 8 × 8 and 9 × 9,

and the latter is set to 70, 90, 120 and 140 for σ = 20, 50, 70 and 100 respectively.

Throughout this chapter, the scaling factor γ is fixed as 0.55.

The performance of BSSVT in terms of PSNR and SSIM [67] are evaluated.

Given a ground truth grayscale image X, the PSNR of the recovered image X̂ is

estimated by:

PSNR(X, X̂) = 10 · log10(
2552∥∥∥X − X̂∥∥∥2

2

). (3.46)

Assuming an image patch G from X as well as the patch H from the corresponding

recovery X̂, the SSIM index between G and H is defined by:

SSIM(G,H) =
2(µGµH + C1)(2νGH + C2)

(µ2
G + µ2

H + C1)(ν2
G + ν2

H + C2)
, (3.47)

where µG and νH are the average intensity and standard deviation of G and H ,

respectively. νGH denotes the cross correlation between G and H , and the small

constants C1 and C2 are used to avoid numerical instability. The SSIM of the entire

image is estimated by averaging the local SSIM indices using a sliding window [147].

Distorted images can have roughly the same mean squared error values with

respect to the original image, but very different quality. SSIM gives a much better
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indication of image quality for measuring the similarity between two images, which

integrates luminance, contrast, and structure comparisons into its mathematical

representation.
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Figure 3.3 : Columns from left to right depict the comparison of the noise estimation

results for the Baboon, Cameraman and Barbara images, respectively. Rows from

top to bottom describe the comparison of noise estimation results for low (5 ≤ σ ≤

15), moderate (45 ≤ σ ≤ 55) and severe (90 ≤ σ ≤ 100) levels of noise, respectively.

The results of BSVT, MAD and SVK are represented by the circles, squares and

diamonds, respectively. The truth is illustrated by the solid black line.

3.3.2 Effect on noise variance estimation

The effectiveness of the proposed variational Bayesian model to estimate the

noise variance in the BSVT step is demonstrated below. Three patch group matrices

are chosen, i.e. one with structure from Baboon, one with texture from Cameraman,

and one with both structure and texture from Barbara. Fig 3.3 shows the average

noise variance of 20 noisy samples for each of these three representative patch group
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matrices. Two other popular methods based on the wavelet MAD and the scale

variance of kurtosis (SVK) are also plotted for comparison [65, 70].

It is apparent that the variational Bayesian model accurately tracks the actual

noise variance in the cases of low, moderate and severe noise contamination for each

image. The difference between the true noise variance (in black) and that estimated

by BSVT (in red) is almost unrecognizable in most cases. MAD has been broadly

applied to assess different kinds of image denoising algorithms. However, it can

be rather problematic when MAD is applied to images containing a considerable

component at the HH1 level in the wavelet domain [148]. Therefore, using the noisy

version of these coefficients at this level to estimate the noise variance can result in

considerable errors. The error according to MAD in the simulation is the largest

across the three images and three noise level intervals. This result is consistent with

the findings in [66]. Similar to MAD, the performance of SVK varies significantly

across the images and noise levels. Although it is better than MAD, it is much worse

than the Bayesian model, particularly for the Cameraman image. Recall that the

major purpose of the first step in BSSVT is to remove noise through the Bayesian

low-rank approximation. The precise noise variance obtained in this step is a by-

product of this procedure, although it is required in the second step of BSSVT as

well as in other denoising methods.

3.3.3 Effect of SURE on eigen-triplets thresholding

The second step of BSSVT employs SURE to optimally tune the rank-reduced

eigen-triplets in terms of minimizing the estimation risk or MSE. Here the effec-

tiveness of SURE for rank-reduced eigen-triplets thresholding is evaluated. Fig 3.4

shows the SURE and MSE for the rank-reduced SVs as a function of the threshold τ

for the representative patch group matrices used in Fig 3.3 with σ = 20 for Baboon,

50 for Cameraman, and 100 for Barbara, respectively. For each case, with increasing
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Figure 3.4 : SURE and MSE as a function of threshold value for Baboon (σ = 20),

Cameraman (σ = 50) and Barbara (σ = 100). Columns from left to right correspond

to noise level σ = 20, 50 and 100.

threshold τ , the estimated risk and MSE first have a relatively high plateau, and

then descend to reach the minimum. They increase dramatically from this point

with increasing τ . Due to the error of the estimated variance, there is a minor offset

between SURE and the actual MSE. However, it was found that the sensitivity of

SURE to the estimated values of variance is small, and the locations of the minima

of the MSE and SURE are almost the same. These findings are consistent with

the results in [146, 149] of SURE for the full rank matrix with estimated variance.

These plots thus indicate that SURE can converge to a minimum and approximate

the true patch with minimal estimation risk.

3.3.4 Numerical Results

There have been a large number of nonlocal algorithms developed in the past

decade. BM3D [5] is the benchmark algorithm in image nonlocal denoising. WNNM [38]

is always ranked as one of the most competitive methods in comparative studies

while RNNM [45] shares similar principles to BSSVT in aiming to balance between
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Table 3.1 : Denoising results (PSNR) by competing methods on the 12 test images.

The best results are in bold.

σ 20 50

schemes BM3D WNNM RNNM BSSVT BM3D WNNM RNNM BSSVT

Bike 28.24 28.70 27.99 28.74 22.42 22.50 22.47 22.83

Cameraman 30.36 30.68 30.08 30.43 24.99 25.16 24.93 25.49

Einstein 31.29 31.47 30.97 31.48 27.11 27.19 26.65 27.35

Flower 29.99 30.42 29.73 30.37 25.12 25.33 24.87 25.65

Hat 31.55 32.05 31.35 31.86 27.14 27.23 26.55 27.59

House 33.88 34.14 33.64 34.12 29.39 29.87 28.65 29.41

Monarch 30.52 31.34 29.25 31.42 25.46 25.56 25.37 25.97

Parrot 29.88 30.03 29.68 29.66 24.76 24.69 24.72 25.08

Peppers 31.28 31.59 31.07 31.62 26.16 26.23 25.87 26.40

Starfish 29.45 30.20 29.59 30.23 24.29 24.41 24.32 24.67

Baboon 25.58 25.67 25.49 25.59 21.83 22.15 22.13 22.51

Barbara 31.23 31.68 31.35 31.58 26.24 26.72 26.61 26.73

Average 30.27 30.66 30.02 30.59 25.41 25.59 25.26 25.81

σ 70 100

schemes BM3D WNNM RNNM BSSVT BM3D WNNM RNNM BSSVT

Bike 20.46 20.08 20.36 20.87 18.38 17.83 18.25 18.63

Cameraman 22.56 22.72 22.59 23.30 19.86 20.25 20.08 20.90

Einstein 25.23 24.97 24.39 25.56 22.63 21.79 21.99 22.68

Flower 23.20 23.47 22.99 23.77 20.59 21.60 21.15 22.32

Hat 25.46 25.23 24.73 25.80 22.90 22.59 22.34 23.24

House 26.98 27.15 26.63 27.58 23.71 23.27 22.88 24.15

Monarch 22.99 23.40 23.14 23.90 19.85 20.82 20.35 21.31

Parrot 22.15 22.39 22.29 22.87 19.17 19.70 19.61 20.45

Peppers 23.97 23.63 23.55 24.21 21.52 20.82 21.12 21.63

Starfish 22.35 21.83 22.19 22.53 20.00 19.05 20.01 20.41

Baboon 20.58 20.87 20.32 21.09 19.17 19.39 19.46 20.22

Barbara 24.56 24.89 24.74 25.25 23.34 23.18 23.06 23.98

Average 23.37 23.39 23.16 23.89 20.93 20.87 20.86 21.66
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Table 3.2 : Denoising results (SSIM) by competing methods on the 12 test images.

The Best results are in bold.

σ 20 50

schemes BM3D WNNM RNNM BSSVT BM3D WNNM RNNM BSSVT

Bike 0.887 0.893 0.895 0.896 0.688 0.687 0.705 0.711

Cameraman 0.872 0.877 0.854 0.875 0.747 0.755 0.685 0.760

Einstein 0.801 0.807 0.806 0.802 0.696 0.699 0.648 0.701

Flower 0.874 0.885 0.885 0.880 0.716 0.724 0.687 0.732

Hat 0.876 0.883 0.856 0.884 0.767 0.776 0.666 0.780

House 0.869 0.871 0.863 0.864 0.812 0.826 0.734 0.828

Monarch 0.923 0.930 0.912 0.922 0.824 0.829 0.792 0.831

Parrot 0.867 0.868 0.857 0.871 0.757 0.750 0.697 0.758

Peppers 0.890 0.894 0.878 0.891 0.786 0.788 0.735 0.790

Starfish 0.870 0.885 0.872 0.887 0.725 0.720 0.713 0.737

Baboon 0.722 0.730 0.728 0.726 0.469 0.508 0.485 0.513

Barbara 0.909 0.915 0.910 0.912 0.762 0.785 0.784 0.785

Average 0.863 0.870 0.860 0.868 0.729 0.737 0.694 0.744

σ 70 100

schemes BM3D WNNM RNNM BSSVT BM3D WNNM RNNM BSSVT

Bike 0.588 0.553 0.598 0.613 0.468 0.399 0.475 0.495

Cameraman 0.677 0.679 0.583 0.695 0.592 0.617 0.488 0.620

Einstein 0.646 0.637 0.563 0.653 0.592 0.569 0.468 0.591

Flower 0.623 0.640 0.584 0.647 0.505 0.552 0.465 0.558

Hat 0.732 0.738 0.589 0.743 0.689 0.683 0.489 0.689

House 0.778 0.795 0.648 0.791 0.729 0.726 0.649 0.726

Monarch 0.758 0.766 0.699 0.770 0.649 0.684 0.589 0.695

Parrot 0.685 0.693 0.617 0.702 0.599 0.624 0.524 0.632

Peppers 0.739 0.730 0.652 0.735 0.673 0.657 0.562 0.681

Starfish 0.652 0.623 0.619 0.669 0.556 0.484 0.513 0.565

Baboon 0.440 0.467 0.460 0.470 0.406 0.448 0.428 0.452

Barbara 0.685 0.701 0.694 0.708 0.658 0.683 0.669 0.685

Average 0.667 0.669 0.609 0.683 0.593 0.584 0.527 0.616
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soft and hard thresholding. The performance of BSSVT with BM3D, WNNM and

RNNM is compared. BSSVT and RNNM are implemented in MATLAB, while

BM3D and WNNM are tested using the executables and source codes provided by

the authors. Because the exact noise variance is not available in real applications, the

algorithms of BM3D, WNNM and RNNM are fed with the noise variance estimated

using SVK [70]. This is fair and reasonable and represents their implementation in

practice. The PSNR and SSIM are estimated over 20 realizations for each scheme

with σ = 20, 50, 70 and 100 dB. The PSNR and SSIM values are displayed in Ta-

bles 3.1 and 3.2 respectively, where the best results are bolded. It is apparent that

for low noise levels, the performance of BSSVT is, in general, equivalent to WNNM.

This is reasonable because less iterations are required to estimate the noise variance.

With the increase of the noise level, BSSVT algorithm performs increasingly better

than the other algorithms. In particular, compared with WNNM, the improvement

in the PSNR values is greater than 0.6 dB for all images at σ = 100. As for RNNM,

BSSVT outperforms it in almost every case. This may be due to its sensitivity to

the error of the noise variance and the fact that the low-rank parameter r was set

empirically. In addition, BSSVT outperforms BM3D in all cases in terms of PSNR.

The SSIM result of BSSVT is also highly competitive against the other methods.

Figs. 3.5 and 3.6 show the comparison between the visual quality of the denois-

ing results on the four methods. Fig 3.5 illustrates the comparison the Peppers

picture under a noise level of σ = 50. BSSVT restores the edges with fewer arte-

facts. However, BM3D and RNNM suffer from artefacts in smooth areas and around

edges. In Fig 3.6, the performance of all these algorithms on the Monarch image

are compared under a noise level of σ = 100 , where BSSVT achieves a visually

satisfactory result with the least artefacts. In such extreme noise contamination, it

is evident that the other three methods are less able to preserve the edge structures

and smooth features of the image. Overall, both quantitative assessment and visual
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(a) Original (b) Noisy (c) BM3D (d) WNNM (e) RNNM (f) BSSVT

Figure 3.5 : Comparison of denoising results on the Peppers image contaminated

by Gaussian white noise with σ = 50. (a) Original image, (b) noisy image

(PSNR=14.12 dB), (c) BM3D (PSNR=26.16 dB), (d) WNNM (PSNR= 26.23 dB),

(e) RMMM (PSNR= 25.87 dB), and (f) BSSVT (PSNR= 26.40 dB)

(a) Original (b) Noisy (c) BM3D (d) WNNM (e) RNNM (f) BSSVT

Figure 3.6 : Comparison of denoising results on the Monarch image contaminated

by the Gaussian white noise with σ = 100. (a) Original image, (b) noisy image

(PSNR= 8.10 dB), (c) BM3D (PSNR=19.85 dB), (d) WNNM (PSNR= 20.82 dB),

(e) RMMM (PSNR= 20.35 dB), and (f) BSSVT (PSNR= 21.31 dB)
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inspection demonstrate that BSSVT yields better performance in comparison to the

state-of-the-art methods.

(a) BSVT+BM3D (b) BSVT+WNNM (c) BSVT+BM3D (d) BSVT+WNNM

Figure 3.7 : The effect of BSVT-BM3D and BSVT-WNNM to denoise image

Monarch contaminated by the Gaussian white noise with σ = 50 (a, b) and σ = 100

(c, d). (a) BSVT-BM3D (PSNR=20.90 dB), (b) BSVT-WNNM (PSNR=20.97 dB),

(c) BSVT-BM3D (PSNR=17.81 dB), (d) BSVT-WNNM (PSNR=17.85 dB).

The combination of BSVT with SSVT leads to superior performance compared

with the state-of-the-art methods. A natural question to ask is whether such a com-

bination can extend to BSVT together with other methods to take advantage of the

estimated noise variance. The performance of BSVT-BM3D and BSVT-WNNM are

further tested. It was found that both BSVT-BM3D and BSVT-WNNM generate

over-smoothed images with performance scores lower than BSSVT. Fig 3.7 shows a

typical example of denoised Monarch images using BSVT followed by BM3D and

WNNM for the image contaminated by noise with σ = 50 and σ = 100, respectively.

Many previous studies have indicated that BM3D and WNNM, as well as some other

low-rank approximation-based methods, tend to over-smooth images [37, 46, 52].

The consecutive use of BSVT followed by BM3D or WNNM can remove the noise

artefacts. However, this also smears out details, which results in over-smoothed im-

ages with relatively low PSNR. In the second step of the proposed method, SSVT,

complementary to BSVT, directly maximizes the PSNR by refining the optimal
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threshold that minimizes the MSE estimation of rank-reduced eigen-triplets, avoid-

ing over-smoothing the image.

In terms of computational efficiency, a desktop with a recent 2.2 GHz CPU is

employed to execute the code in Matlab 2017b (Mathworks, Massachusetts, US).

BSSVT requires around 20 minutes to denoise an image for varying noise levels,

while the times for BM3D, WNNM, and RNNM vary from one minute to around

ten minutes. Although BSSVT is relatively slow in its current form, the computa-

tional efficiency can be significantly improved via parallel computing techniques and

optimization of the search interval.

3.4 Discussion and conclusion

In this chapter, a hybrid nonlocal variational Bayesian image denoising frame-

work is proposed. The proposed BSSVT approach is closely related to nuclear norm

minimization. It can be interpreted as performing a weighted nuclear norm factor-

ization or low-rank approximation using variational Bayesian inference. The noise

variance is a crucial factor that impacts on the denoising quality. Most existing

nonlocal image denoising methods either resort to an extra step to pre-determine

the noise variance or simply assume the true value is known. However, the error

in the noise variance accumulates in any iterative regularization scheme which can

further worsen the denoising quality. In contrast to these existing methods, BSSVT

simultaneously removes noise and infers the latent parameters including the noise

variance and the rank. It adaptively adjusts the noise variance without incurring

error propagation between iterations. This is the primary reason that the proposed

method outperforms these competitive algorithms in this chapter. BSSVT further

refines the rank-reduced SVs based on the SURE criterion in the second step to im-

prove edge-preservation and artefact removal. SURE has an explicit mathematical

mechanism to approximate the true image by minimizing the risk or MSE, there-
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fore maximizing PSNR. This provides another indispensable element of BSSVT to

enhance the denoised image quality. Since BSVT, the first step of BSSVT, can accu-

rately approximate the noise variance, it can also be separately applied to improve

other image denoising of segmentation methods.

In this work, only Gaussian noise was considered in the model. Both Bayesian

inference and the SURE criterion are able to handle non-Gaussian noise [113, 150,

151, 149].
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Chapter 4

Kernelized Sparse Bayesian Matrix Factorization

4.1 Introduction

Extracting low-rank and/or sparse structures using matrix factorization tech-

niques has been extensively studied in the machine learning community. Kernelized

matrix factorization (KMF) is a powerful tool to incorporate side information into

the low-rank approximation model, which has been applied to solve the problems of

data mining, recommender systems, image restoration, and machine vision. How-

ever, most existing KMF models rely on specifying the rows and columns of the

data matrix through a Gaussian process prior and have to manually tune the rank.

There are also computational issues of existing models based on regularization or

the Markov chain Monte Carlo. In this chapter, a hierarchical kernelized sparse

Bayesian matrix factorization (KSBMF) model is developed to integrate side in-

formation. The KSBMF automatically infers the parameters and latent variables

including the reduced rank using the variational Bayesian inference. Also, the model

simultaneously achieves low-rankness through sparse Bayesian learning and sparsity

through an enforced constraint on latent factor matrices. This chapter further con-

nect the KSBMF with the nonlocal image processing framework to develop two

algorithms for image denoising and inpainting. Experimental results demonstrate

that KSBMF outperforms state-of-the-art approaches for these image restoration

tasks under various levels of corruption.

The contributions are at two levels. From the perspective of machine learning,

a generative model is presented for kernelized sparse Bayesian matrix factorization
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(KSBMF). In most real-world applications, the actual rank r needed for modelling

the data is initially unknown. If r used is lower than the underlying rank of the

data, the model cannot model the data sufficiently well. Conversely, if r is too large,

overfitting occurs. Many previous studies have indicated both cases result in inferior

quality of the recovered data [152, 116]. To determine the appropriate rank, a com-

mon approach is to try different values of r by performing multiple runs and then

choose the one that yields the best performance. In comparison with existing kernel-

ized matrix factorization methods particularly the two VB realizations [83, 85], the

proposed formulation implicitly estimates the rank of the matrix without requiring

the prior knowledge on the rank of the matrix, which frees the user from extensive

parameter-tuning and groundless attempts. In addition, KSBMF simultaneously

achieves low-rankness through sparse Bayesian learning and sparsity through an

enforced constraint on latent factor matrices. Furthermore, this generic model is

applicable to either recovering low rank items from noisy measurements or perform-

ing matrix completion. Moreover, the proposed model adopts different graphical

model and priors as in [83]. Another significant difference between KSBMF and [85]

is that the variance of a number of latent variables in [85] is set as constant, which is

feasible for binary matrices with the purpose of multi-label classification. However,

this is unacceptable in the case of denoising or inpainting an image with an unknown

noise variance. The variance of each latent factor matrix is explicitly assigned as a

latent variable with a specified prior in the proposed model. In regard to the specific

contribution in image processing, a large number of algorithms have been developed

to exploit the nonlocal low-rank and global sparse properties for enhanced image

recovery [153]. However, the side information of similarity between patches has

never been taken into account in the image restoration model. A kernel function

based on the similarity between each pair of patches is devised. Two algorithms

are further presented which incorporate the patch similarity-based kernel into the
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generic KSBMF model for enhanced image denoising and inpainting.

The rest of this chapter is organized as follows. Section 4.2 elaborates on the

model specification and inference of kernelized sparse Bayesian matrix factoriza-

tion. Section 4.4 presents the kernel function to integrate the side information of

similarity between patches for the specific application of image restoration. Algo-

rithms for image denoising and inpainting based on KSBMF are then described.

Experimental results including comparison with state-of-the-art methods and ob-

jective assessments are presented in Section 4.4. Finally, Section 4.5 concludes this

chapter.

4.2 KSBMF model and inference

4.2.1 Model specification of KSBMF

Considering the observation data as an M ×N matrix Y either with or without

missing entries, the problem is to recover the actual low-rank matrix X from Y =

X + E. A common sparsity profile is enforced on the underlying factors and thus

cast it to the problem of sparse representation of factor matrices U and V, that is:

Y = X + E = UV> + E, (4.1)

where Y ∈ RM×N , U ∈ RM×r, V ∈ RN×r, E ∈ RM×N , and r � min(M,N) for

sparsity.

Fig 4.1 shows the graphical model of the proposed hierarchical kernelized sparse

Bayesian matrix factorization with latent variables and their corresponding priors.

In order to impose sparsity into the low rank approximation model, Gaussian priors

are assigned to the columns of U and V with precisions (inverse variances) γj,

namely,

p(U|γ) =
r∏
j=1

N (u·j|0, γ−1
j IM), (4.2)
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Figure 4.1 : Directed graphical representation of KSBMF model.

p(V|γ) =
r∏
j=1

N (v·j|0, γ−1
j IN), (4.3)

where IJ ∈ RJ×J denotes an identity matrix. Therefore, the columns of U and V

possess the same sparsity since they are enforced by the same precision γj. With

such a constraint, most of the precision γj will be iteratively updated to very large

values. The corresponding columns of U and V are removed since they make little

contribution to the approximation X, and hence the sparsity of latent factors U and

V and low-rank of X are jointly satisfied. This sparse Bayesian learning formulation

has been applied in compressive sensing and robust PCA [80, 134, 154].

To achieve the joint sparsity of U and V, the conjugate Gamma hyper-prior is

assigned to the precision γj:

p(γj) = Gamma(a,
1

b
) ∝ γa−1

j exp(−bγj), (4.4)

where very small values are assigned to the parameters a and b to achieve a diffuse

hyper-prior. U couple with the kernel matrix KU result in a latent matrix G, and

assume that each entry of G follows Gaussian prior with precision σg, that is,

p(G|U,KU, σg) =
r∏
j=1

N (g·j|KU
> · u·j, σ−1

g IM). (4.5)
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Similarly, the prior of H is defined over the latent variable V, kernel function

KV, and precision σh:

p(H|V,KV, σh) =
r∏
j=1

N (h·j|KV
> · v·j, σ−1

h IN). (4.6)

Here, the precisions σg and σh of the Gaussian distribution obey the Jeffreys

prior:

p(σg) = σ−1
g , (4.7)

p(σh) = σ−1
h . (4.8)

In Eq. (4.1), the noise E is assumed obeys a Gaussian distribution with zero

mean and unknown precision β. Hence, E is modeled as:

p(E|β) =
M∏
i=1

N∏
j=1

N (emn|0, β−1), (4.9)

p(β) = β−1, (4.10)

where β also adopts the noninformative Jeffreys prior. Given the priors defined

above, the conditional distribution for the observation model is as follows:

p(Y|G,H, β) = N (Y|GH>, β−1IMN). (4.11)

With the conditional probability and all priors in hand, the joint distribution is

given by:

p(Y,U,V,G,H, σg, σh,γ, β) = p(Y|G,H, β)p(G|U,KU, σg)p(H|V,KV, σh)

· p(U|γ)p(V|γ)p(σg)p(σh)p(γ)p(β).

(4.12)

4.2.2 Model inference of KSBMF

Full Bayesian inference using the above joint distribution is computationally

intractable since the marginal distribution p(Y) is not available analytically. Vari-

ational Bayesian inference [136] is utilized to deal with this problem. Suppose Z
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represent the vector of all latent variables such that Z = (U,V,G,H, σg, σh,γ, β).

The approximate posterior distribution is therefore denoted by q(Z). The princi-

ple is to define a parameterized family of distributions over the hidden variables

and then update the parameters to minimize the Kullback-Leibler (KL) divergence

between q(Z) and the true distribution p(Z|Y), denoted by Eq.3.11.

This can be refered to as estimation of the marginal likelihood p(Y) with a

maximal lower bound. With a mean field approximation, q(Z) is factorized with

respect to its partitions as

q(Z) =
∏
k

q(Zk). (4.13)

The expression of the optimal posterior approximation q(Zk) with other variables

fixed can be denoted as

ln q(Zk) = 〈ln p(Y,Z)〉Z\Zk + const, (4.14)

where 〈·〉 denotes the expectation and const denotes a constant which is not depen-

dent on the current variable. Z \ Zk means the set of Z with Zk to be removed.

Each variable is updated in turn while holding others fixed. The iteration rules for

all unknown variables in Eq. (4.13) is detailed below.

Estimation of latent factors U and V

Combining the respective priors of U and G in Eqs. (4.2) and (4.5), the posterior

approximation ln q(U) is derived from Eq. (4.14) as:

ln q(U) = 〈ln P (Y,Z)〉Z\U + const

=
∑
j

−1

2
(u>·j(〈σg〉KUKU

> + Γu·j)u·j − 2〈σg〉u>·jKU〈g·j〉) + const,
(4.15)

where Γu·j = 〈γj〉IM .

From Eq. (4.15) it is found that the posterior density of the jth column u·j of
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U obeys the multivariate Gaussian distribution:

q(u·j) = N (u·j|〈u·j〉,Σu·j), (4.16)

with mean and covariance

Σu·j = (〈σg〉 ·KUKU
> + Γu·j)

−1, (4.17)

〈u·j〉 = 〈σg〉 · Σu·jKU〈g·j〉. (4.18)

Apparently, the posterior approximation of v·j also obeys the multivariate Gaus-

sian distribution with the density denoted by

q(v·j) = N (v·j|〈v·j〉,Σv·j), (4.19)

and the mean and covariance are given by

Σv·j = (〈σh〉 ·KVKV
> + Γv·j)

−1, (4.20)

〈v·j〉 = 〈σh〉 · Σv·jKV〈h·j〉, (4.21)

where Γv·j = 〈γj〉IN .

Estimation of γ

Applying the priors of U,V and γ in the same manner to Eq. (4.14), the

posterior approximation of ln q(γ) is given by

ln q(γ) = 〈P (Y,Z)〉Z\γ + const

= ln(γ
a−1+m+n

2
j exp(−1

2
γj(〈uT·ju·j〉+ 〈v>·jv·j〉+ 2b))) + const.

(4.22)

This is equivalent to

q(γj) ∝ γ
a−1+M+N

2
j exp(−1

2
γj(〈u>·ju·j〉+ 〈v>·jv·j〉+ 2b)). (4.23)

So the posterior distribution of γj is a Gamma distribution with mean

〈γj〉 =
2a+M +N

2b+ 〈u>·ju·j〉+ 〈v>·jv·j〉
. (4.24)
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The required expectations here are found as

〈u>·ju·j〉 = 〈u·j〉>〈u·j〉+ tr(Σu·j), (4.25)

〈v>·jv·j〉 = 〈v·j〉>〈v·j〉+ tr(Σv·j). (4.26)

Estimation of G and H

Similar to estimation of U and V, the posterior approximation of G is given by

ln q(G) = 〈ln P (Y,Z)〉Z\G + const

= 〈ln P (Y |G,H, β) · P (G|V,KU , σg)〉U,V,H,σg , + const

=
∑
i

∑
j

[−1

2
〈β〉(yij − gi·h·j)2 − 1

2
〈σg〉(gij −KUi·U·j)

2] + const

=
∑
i

∑
j

[−1

2
〈β〉(y2

ij − 2yijgi·h·j) + (gi·h·j)
2 − 1

2
〈σg〉(g2

ij − 2gijKUi·U·j + (KUi·U·j)
2)]

+ const

=
∑
i

∑
j

[−1

2
〈β〉(gi·h·j)2 − 2yijgi·h·j)−

1

2
〈σg〉(g2

ij − 2gijKUi·U·j)] + const

=
∑
i

[−1

2
〈β〉(gi·〈HTH〉gTi· − 2gi·〈HT 〉yTi· )−

1

2
〈σg〉(gi·IrgTi· − 2gi·〈U〉TKT

Ui:
)] + const

=
∑
i

[−1

2
(gi·(〈β〉〈H>H〉+ 〈σg〉Ir)gTi· − 2gi·(〈H〉>y>i· + 〈σg〉〈U〉>KU·i))] + const,

(4.27)

which indicates that the ith row of G obeys the multivariate Gaussian distribution

q(gi·) = N (gi·|〈gi·〉,ΣG). (4.28)

The corresponding covariance and mean are denoted as

ΣG = (〈β〉〈H>H〉+ 〈σg〉Ir)−1, (4.29)

〈gi·〉> = ΣG(〈σg〉〈U〉>Ku·i + 〈β〉〈H〉>y>i· ). (4.30)

The jth row of H obeys another multivariate Gaussian distribution

q(hj·) = N (hj·|〈hj·〉,ΣH), (4.31)
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with covariance and mean

ΣH = (〈β〉〈G>G〉+ 〈σh〉Ir)−1, (4.32)

〈hj·〉> = ΣH(〈σh〉〈V〉>KV·j + 〈β〉〈G〉>y·j). (4.33)

The required expectations are expressed as

〈G>G〉 = 〈G〉>〈G〉+mΣG, (4.34)

〈H>H〉 = 〈H〉>〈H〉+ nΣH. (4.35)

Estimation of β, σg and σh

The posterior probability densities of β, σg and σh are all found to be Gamma

distributed. For the noise precision β,

q(β) ∝ β
MN
2
−1exp(−1

2
β〈‖ Y −GH> ‖2

F 〉), (4.36)

with its expectation

〈β〉 =
MN

〈‖ Y −GH> ‖2
F 〉
. (4.37)

The required expectation to estimate 〈β〉 is denoted as

〈‖ Y −GH> ‖2
F 〉 =‖ Y − 〈G〉〈H〉> ‖2

F +tr(N〈G〉>〈G〉ΣH)

+ tr(M〈H〉>〈H〉ΣG) + tr(MNΣGΣH).

(4.38)

The updating rules for σg and σh are derived in the same manner:

〈σg〉 =
Mr

〈‖ G−KU
>U ‖2

F 〉
, (4.39)

〈σh〉 =
Nr

〈‖ H−KV
>V ‖2

F 〉
, (4.40)

with required expectations:

〈‖ G−KU
>U ‖2

F 〉 =‖ 〈G〉 −KU
>〈U〉 ‖2

F +tr(MKU
>KUΣU) + tr(MΣG), (4.41)
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〈‖ H−KV
>V ‖2

F 〉 =‖ 〈H〉 −KV
>〈V〉 ‖2

F +tr(NKV
>KVΣV) + tr(NΣH). (4.42)

Each parameter is updated in turn while holding others fixed. By the properties

of VB, convergence to a local minimum of the algorithm can be guaranteed after

iterations [136].

The aim of the above inference is to recover X from the noisy matrix Y without

missing data. For matrix completion, assume a subset Ω of Y is observed, that

is, Yij = Xij : (i, j) ∈ Ω. The cardinality of Ω is wMN with 0 < w ≤ 1. The

observation model of Eq. (4.11) is thus denoted as:

p(WΩ(Y)|G,H) =
∏

(i,j)∈Ω

N (yij|gi·h>j·, β−1). (4.43)

The corresponding joint distribution of Eq. (4.12) is modified as

p(WΩ(Y),U,V,G,H, σg, σh,γ, β)

=p(WΩ(Y)|G,H, β)p(G|U,KU, σg)p(H|V,KV, σh)

· p(U|γ)p(V|γ)p(σg)p(σh)p(γ)p(β).

(4.44)

Some of the updating rules need to be modified to accommodate the incomplete

matrix Y. The covariance and mean of the posterior density of G is expressed as

ΣG
i = (〈β〉〈H>ΩHΩ〉+ 〈σg〉Ir)−1, (4.45)

〈gi·〉> = ΣG
i (〈σg〉〈U〉>KU·i + 〈β〉〈HΩ〉>y>i· ), (4.46)

where the matrix HΩ contains only the jth rows of H for which (i, j) ∈ Ω, such that

〈H>ΩHΩ〉 =
∑

j:(i,j)∈Ω

〈h>j·hj·〉 =
∑

j:(i,j)∈Ω

〈h>j·〉〈hj·〉+ ΣH
j , (4.47)

where ΣH
j is the posterior covariance of jth row of H. The row vector yi· contains

those observed entries in the ith row of Y.

Similarly, the mean and covariance of the posterior density of the jth row Hj· is

given by

ΣH
j = (〈β〉〈G>ΩGΩ〉+ 〈σh〉Ir)−1, (4.48)
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〈hj·〉> = ΣH
j (〈σh〉〈V〉>Kv·j + 〈β〉〈GΩ〉>y·j), (4.49)

where GΩ contains the ith rows of G for which (i, j) ∈ Ω, such that

〈G>ΩGΩ〉 =
∑

i:(i,j)∈Ω

〈g>i· gi·〉 =
∑

i:(i,j)∈Ω

〈g>i· 〉〈gi·〉+ ΣG
i , (4.50)

where ΣG
i is the posterior covariance of ith row of G. The column vector y·j contains

those observed entries in the jth column of Y. Correspondingly, the mean of the

posterior approximation of β is given by:

〈β〉 =
wMN

〈‖ WΩ(Y)−WΩ(GH>) ‖2
F 〉
. (4.51)

4.3 Algorithms for image restoration

4.3.1 Construction of the kernel

Construction of an effective kernel plays an essential role in guaranteeing a good

performance of kernelized matrix factorization. However, the kernel is problem-

dependent, and there is no unified rule to construct kernels. So far, graph kernel,

diffusion kernel, commute time kernel, and regularized Laplacian kernel have been

developed for utilizing the side information in recommender systems [82]. In the

area of image processing, the kernel incorporating the local spatial smoothness of

an image has been developed to improve image inpaitning [82]. In the past decade,

many algorithms based on the nonlocal framework have been proposed for image

restoration, most of which significantly outperform methods utilizing image local

properties [153]. In this chapter, the aim is to apply the KSBMF model under the

nonlocal framework to improve image denoising and inpainting. A new kernel is

presented below which incorporates the similarity information between patches into

patch group matrix factorization. Denoting the Euclidean distance between a pair

of patches (i, j) by di,jE =‖ y(i) − y(j) ‖2, the similarity between them, i.e., entry of

KU or KV is defined as

kij =
( 1

1 + di,jE /M

) 1
4
, (4.52)
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where M is the total number of pixels in the patch.

Under the nonlocal framework, a pixel and its nearest neighbors in the window

of
√
M×

√
M are modeled as a column vector. The M×N patch group matrix Y is

constructed by grouping other N − 1 patches with similar local spatial structures to

the underlying one in the local window. Since each column shares similar underlying

image structures, the noise-free patch group matrix Y has the low-rank property.

Previous algorithms mainly focus on this low-rank property while neglecting the

similarity between the patches in image restoration. The low-rankness and similarity

between patches are taken into account jointly as side information to recover the

image. With the kernel defined in Eq. (4.52), a nonlocal neighbor patch with larger

similarity value has a more substantial contribution in the KSBMF model to recover

the target patch.

4.3.2 Algorithm for image denoising

For the complete image denoising algorithm, patches are clustered with a similar

spatial structure to form a patch matrix firstly. KSBMF is then applied in succession

on each patch group matrix. The denoised patches are aggregated to reconstruct

the whole noise-free image. In practice, iterative regularization is often adopted by

mapping the filtered noise back to the denoised image, which has been demonstrated

to be effective in improving the performance [5, 38]. This scheme is implemented as

Y(d+1) = X̂(d) + δ(Y − X̂(d)), (4.53)

where d denotes algorithm iteration and 0 < δ < 1 is a relaxation parameter. The

complete procedure for the KSBMF based image denoising algorithm is summarized

in Algorithm 4.
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Algorithm 4 Image denoising by KSBMF

Require: Noisy image y

1: Initialize: x̂(0) = y, ŷ(0) = y;

2: for d = 1 : D do

3: Iterative regularization using Eq. (4.53)

4: for each patch yi in y(d) do

5: Cluster similar patch to matrix Yi;

6: Update G using Eq. (4.30);

7: Update H using Eq. (4.33);

8: Update β using Eq. (4.37);

9: Update σg using Eq. (4.39);

10: Update σh using Eq. (4.40);

11: Update U using Eq. (4.18);

12: Update V using Eq. (4.21);

13: Update γ using Eq. (4.24);

14: end for

15: Aggregate X̂i to form the denoised image x̂(d)

16: end for

Ensure: denoised image x̂(D)
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4.3.3 Algorithm for image inpainting

In the case of the image with missing entries, particularly for highly incomplete

cases, the similarity between two patches may be highly unreliable. Naturally, such

a poorly matched patch group matrix directly degrades the inpainting effect. Hence

the algorithm for inpainting is slightly different from denoising: KSBMF is per-

formed on the entire image to give a proper value for each missing entry. Then the

patch matching is executed and each missing value is re-filled at the patch group

level. The procedure for image inpainting is summarized as Algorithm 5.

It should be noted that a straightforward extension of KSBMF to colour images

often introduces perturbing colour artefacts [155, 156]. The alternative option is

to convert the usual RGB image to YUV (or YCrCb) colour system where the

independent processing of each channel does not create noticeable colour artefacts.

Due to the nature of the colour transform, the luminance component contains most

of the valuable information about primitive image structures and has a higher SNR

than the two chroma channels U and V [155, 156]. To take advantage of this fact and

take account for the patch grouping operation sensitive to the presence of noise, the

grouping of the patches is first performed only from the luminance channel. Then,

the same set of group indices are used for the other two channels. Using these sets,

the image restoration (denoising or impainting) and the aggregation are performed

separately on each of the three channels. Finally, the inverse transform converts the

result to an RGB image.

4.4 Experiments on image restoration

4.4.1 Parameter setting and performance evaluation

In this section the experimental results of image restoration using the KSBMF

model are provided. The performance of image denoising is evaluated on twelve
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Algorithm 5 Image inpainting by KSBMF

Require: Incomplete image y

1: Update G using Eq. (4.46);

2: Update H using Eq. (4.49);

3: Update β using Eq. (4.51);

4: Update σg using Eq. (4.39);

5: Update σh using Eq. (4.40);

6: Update U using Eq. (4.18);

7: Update V using Eq. (4.21);

8: Update γ using Eq. (4.24);

9: Pre-completed image y(1)

10: for d = 2 : D do

11: for each patch yi in y(d) do

12: Cluster similar patches to matrix Yi;

13: Repeat 1− 8;

14: end for

15: Aggregate X̂i to form the inpainted image x̂(d)

16: end for

Ensure: Inpainted image x̂(D)



62

benchmark grayscale images, shown in Fig 3.2. The sizes of the first 10 images are

256 × 256 with the size of Baboon and Barbara being 512 × 512. Noisy images

are produced by adding zero mean white Gaussian noise with standard deviation

σ = 20, 50, 70 and 100. The setting of patch size and the number of similar patches

recommended in previous studies [38, 5] are adopted: the former is set to 6×6, 7×7,

8× 8 and 9× 9, and the latter is set to 70, 90, 120 and 140 for σ ≤ 20, 20 ≤ σ ≤ 40,

40 < σ ≤ 60 and σ > 60 respectively. Throughout this chapter, the scaling factor δ

is fixed to 0.2 for all noise levels.

In the image inpainting problem, the algorithm is tested on part of the grayscale

images in Fig 3.2 and two colour images. The patch size is fixed as 10× 10 and the

number of similar patches to 60, which is slightly different from image denoising [35].

The kernel matrix KV is set using Eq (4.52) to utilize the similarity information

between the patches. Since there is no such similarity between rows of patch group

matrix, KU is set as the identity matrix.

The performance of KSBMF is evaluated in terms of PSNR and SSIM. Given a

ground truth grayscale image x, the PSNR of the recovered image x̂ is estimated by

Eq. 3.46.

Assuming an image patch A from x as well as the patch B from the corresponding

recovery x̂, the SSIM index between A and B is defined by Eq. 3.47.

4.4.2 Image denoising

In recent years, nonlocal methods have boosted the performance of image denois-

ing significantly. BM3D is the benchmark algorithm of image nonlocal denoising [5].

Weighted nuclear norm minimization (WNNM) [38] is always ranked as one of the

most competitive methods in comparative studies. Bayesian robust matrix factor-

ization (BPFA) [157] shares a similar principle to KSBMF in that VB is used to
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Table 4.1 : Denoising results (PSNR) by competing methods on the 12 test images.

Best results are in bold.

σ 20 50

schemes BM3D WNNM BPFA KSBMF BM3D WNNM BPFA KSBMF

Bike 28.24 28.70 27.89 28.77 22.42 22.50 23.08 23.11

Cameraman 30.36 30.68 30.14 30.60 24.99 25.16 24.85 25.65

Einstein 31.29 31.47 30.85 31.51 27.11 27.19 26.73 27.31

Flower 29.99 30.42 29.68 30.47 25.12 25.33 24.78 25.64

Hat 31.55 32.05 31.44 31.92 27.14 27.23 26.58 27.59

House 33.88 34.14 33.69 34.07 29.39 29.87 28.60 29.55

Monarch 30.52 31.34 29.45 31.23 25.46 25.56 25.28 26.06

Parrot 29.88 30.03 29.32 29.81 24.76 24.69 24.75 25.22

Peppers 31.28 31.59 31.18 31.52 26.16 26.23 25.54 26.49

Starfish 29.45 30.20 29.63 30.27 24.29 24.41 24.19 24.72

Baboon 25.58 25.67 25.03 25.60 21.83 22.15 21.90 22.52

Barbara 31.23 31.68 31.16 31.64 26.24 26.72 26.42 26.77

Average 30.27 30.66 29.96 30.62 25.41 25.59 25.23 25.89

σ 70 100

schemes BM3D WNNM BPFA KSBMF BM3D WNNM BPFA KSBMF

Bike 20.46 20.08 20.29 20.95 18.38 17.83 18.18 18.68

Cameraman 22.56 22.72 22.38 23.27 19.86 20.25 20.13 20.70

Einstein 25.23 24.97 24.47 25.48 22.63 21.79 21.47 22.73

Flower 23.20 23.47 23.30 23.82 20.59 21.60 21.04 21.68

Hat 25.46 25.23 24.80 25.79 22.90 22.59 22.43 23.21

House 26.98 27.15 26.47 27.68 23.71 23.27 23.00 24.12

Monarch 22.99 23.40 23.08 23.98 19.85 20.82 20.43 21.36

Parrot 22.15 22.39 22.35 22.98 19.17 19.70 19.55 20.35

Peppers 23.97 23.63 23.48 24.20 21.52 20.82 21.12 21.65

Starfish 22.35 21.83 22.28 22.74 20.00 19.05 19.70 20.21

Baboon 20.58 20.87 20.32 21.15 19.17 19.39 19.49 20.16

Barbara 24.56 24.89 24.31 25.14 23.34 23.18 22.92 24.07

Average 23.37 23.39 23.13 23.93 20.93 20.87 20.79 21.58
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Table 4.2 : Denoising results (SSIM) by competing methods on the 12 test images.

Best results are in bold.

σ 20 50

schemes BM3D WNNM BPFA KSBMF BM3D WNNM BPFA KSBMF

Bike 0.887 0.893 0.896 0.898 0.688 0.687 0.702 0.717

Cameraman 0.872 0.877 0.858 0.878 0.747 0.755 0.683 0.762

Einstein 0.801 0.807 0.803 0.807 0.696 0.699 0.638 0.700

Flower 0.874 0.885 0.878 0.883 0.716 0.724 0.678 0.737

Hat 0.876 0.883 0.858 0.885 0.767 0.776 0.667 0.782

House 0.869 0.871 0.864 0.867 0.812 0.826 0.731 0.830

Monarch 0.923 0.930 0.914 0.927 0.824 0.829 0.790 0.832

Parrot 0.867 0.868 0.852 0.872 0.757 0.750 0.699 0.762

Peppers 0.890 0.894 0.876 0.892 0.786 0.788 0.729 0.794

Starfish 0.870 0.885 0.870 0.890 0.725 0.720 0.707 0.739

Baboon 0.722 0.730 0.707 0.728 0.469 0.508 0.486 0.513

Barbara 0.909 0.915 0.907 0.912 0.762 0.785 0.773 0.786

Average 0.863 0.870 0.857 0.870 0.729 0.737 0.690 0.746

σ 70 100

schemes BM3D WNNM BPFA KSBMF BM3D WNNM BPFA KSBMF

Bike 0.588 0.553 0.586 0.618 0.468 0.399 0.471 0.495

Cameraman 0.677 0.679 0.585 0.696 0.592 0.617 0.463 0.624

Einstein 0.646 0.637 0.595 0.661 0.592 0.569 0.464 0.592

Flower 0.623 0.640 0.585 0.647 0.505 0.552 0.466 0.562

Hat 0.732 0.738 0.596 0.745 0.689 0.683 0.495 0.691

House 0.778 0.795 0.652 0.794 0.729 0.726 0.654 0.728

Monarch 0.758 0.766 0.695 0.771 0.649 0.684 0.593 0.695

Parrot 0.685 0.693 0.606 0.702 0.599 0.624 0.526 0.633

Peppers 0.739 0.730 0.654 0.736 0.673 0.657 0.559 0.681

Starfish 0.652 0.623 0.630 0.673 0.556 0.484 0.517 0.571

Baboon 0.440 0.467 0.463 0.472 0.406 0.448 0.426 0.452

Barbara 0.685 0.701 0.692 0.708 0.658 0.683 0.656 0.690

Average 0.667 0.669 0.612 0.685 0.593 0.594 0.524 0.618
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infer the factor matrices; however, the former neglects the side information. The

performance of KSBMF is compared with BM3D, WNNM, and BPFA. The pro-

posed algorithm is implemented in MATLAB, while the others are tested using the

executables and source codes provided by the authors. The PSNR and SSIM are

estimated for each scheme with σ = 20, 50, 70 and 100 dB. The PSNRs and SSIMs

values are displayed in Table 4.1 and 4.2 respectively, where the best results are

bolded. One can first find that KSBMF outperforms both BPFA and BM3D for all

noise levels. It is reasonable to attribute the superiority of KSBMF over BPFA to the

incorporation of side information in the model inference. Besides, with the increase

of the noise level, KSBMF performs increasingly better than WNNM. However,

in the case of low noise level, the performance of KSBMF is in general equivalent

to WNNM. In Fig 4.2 and 4.3, the visual quality of the denoising results on four

methods are compared. Two close-up views are shown at the bottom of each result

for better visualization. In Fig 4.2, the Bike picture under noise level σ = 50 are

compared. It is observed from the close-up views that KSBMF reconstructs more

image details from the noisy observation. However, methods BM3D and BRMF

over-smooth textures while artifacts are visible in the close-up views for WNNM.

(a) Original (b) Noisy (c) BM3D (d) WNNM (e) BPFA (f) KSBMF

Figure 4.2 : Comparison of denoising results on the Bike image contaminated by

Gaussian white noise with σ = 50. (a) Original image, (b) Noisy image (PSNR=

14.12 dB), (c) BM3D (PSNR= 22.42 dB), (d) WNNM (PSNR= 22.50 dB), (e) BPFA

(PSNR= 23.08 dB), and (f) KSBMF (PSNR= 23.11 dB).
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(a) Original (b) Noisy (c) BM3D (d) WNNM (e) BPFA (f) KSBMF

Figure 4.3 : Comparison of denoising results on the Starfish image contaminated by

Gaussian white noise with σ = 100. (a) Original image, (b) Noisy image (PSNR=

8.10 dB), (c) BM3D (PSNR= 20.00 dB), (d) WNNM (PSNR= 19.05 dB), (e) BPFA

(PSNR= 19.70 dB), and (f) KSBMF (PSNR= 20.21 dB).

In Fig 4.3, the Starfish picture under noise level σ = 100 is compared. Due

to the much high noise level, the results of all methods suffer from more or less

artifacts in smooth areas and around edges. However, KSBMF achieves a much

more visually satisfactory result with less fleck and preserves much better the image

edge structures, for example, along with the edge between the Starfish image and

the background, than other competing methods. Overall, both quantitative assess-

ment and visual inspection demonstrate that KSBMF yields better restoration of

edges and fewer artifacts in comparison with the state-of-the-art methods in severe

contamination, and is competitive to WNMM at medium noise strength.

4.4.3 Image inpainting

The performance of KSBMF on two inpainting tasks are evaluated, i.e., random

missing pixels filling and text removal. The corresponding three comparative algo-

rithms include BPFA based on Bayesian matrix factorization [157], GSR based on

group sparse learning [158], and TSLRA based on nuclear norm minimization [35].

The algorithms on recovering random missing pixels are tested with four different

observed percentage, i.e., 10%, 20%, 30% and 40%. The first two experiments are
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Table 4.3 : PSNR and SSIM Values by Inpainting Methods on part of Test Images

for Different Tasks

Task BPFA GSR TSLRA KSBMF

Random

10% 21.77/0.8193 22.36/0.8674 22.13/0.8385 22.52/0.8695

20% 22.30/0.8794 22.66/0.9004 25.34/0.9194 25.73/0.9208

30% 26.23/0.9211 28.75/0.9452 27.85/0.9313 28.89/0.9488

40% 29.76/0.9378 30.76/0.9587 30.13/0.9510 30.87/0.9596

Text

Mask 1 25.53/0.8793 25.62/0.8867 26.09/0.9146 26.21/0.9165

Mask 2 33.72/0.9101 36.25/0.9205 34.94/0.9142 35.73/0.9198

Mask 3 28.02/0.8429 33.29/0.9197 32.93/0.8956 33.39/0.9223

Mask 4 27.70/0.8187 33.24/0.8832 22.90/0.7532 33.72/0.8911

performed on the Barbara image and the latter two are performed on the Monarch

image. The PSNR and SSIM values of the results obtained by four algorithms to

recover random missing pixels are displayed in Table 4.3. It is clear that KSBMF

achieves the highest PSNR and SSIM values in all the four random missing pixels

filling tasks. Overall, BPFA behaves the worst for random pixels missing with the

lowest PSNR and SSIM values.

(a) Original (b) Noisy (c) BPFA (d) GSR (e) TSLRA (f) KSBMF

Figure 4.4 : Visual comparison for random missing pixel filling on Barbara. (a) Orig-

inal image. (b) Image with 20% random samples. (c) BPFA (PSNR=22.30 dB). (d)

GSR (PSNR=22.66dB). (e) TSLRA (PSNR=25.34 dB). (f) KSBMF (PSNR=25.73

dB).
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(a) Original (b) Noisy (c) BPFA (d) GSR (e) TSLRA (f) KSBMF

Figure 4.5 : Visual comparison for random missing pixels filling on Monarch. (a)

Original image. (b) Image with 40% random samples. (c) BPFA (PSNR=29.76

dB). (d) GSR (PSNR=30.76dB). (e) TSLRA (PSNR=30.13 dB). (f) KSBMF

(PSNR=30.87 dB).

For the visual quality comparisons, Fig 4.4 shows the results to recover image

Barbara by the competing methods from only 20% random samples. The rich tex-

tures of Barbara are well recovered by KSBMF and TSLRA with better visual qual-

ity than the other two methods. However, BPFA and GSR introduce some incorrect

textures with visual artifacts, which is clearly visible on scarf and pants. Fig 4.5

shows another example of recovering image Monarch with smooth structures from

40% random samples. KSBMF is competitive in visual quality with TSLRA and

GSR, and clearly superior to BPFA. The visual result provided by BPFA has some

artifacts and blurred edges. KSBMF is then applied to remove the text on two

grayscale images, and further two coluor images. The performances of competing

algorithms regarding PSNR and SSIM are summarized in Table 4.3. KSBMF out-

performs all three competitive algorithms on recovering text-corrupted Baboon, Kid,

and Castle images. In regards to the corrupted Einstein image, KSBMF is pretty

competitive to GSR with the former inferior to the latter only 0.13 dB. Fig 4.6-4.9

show the visual comparisons of these inpainting algorithms on text-corrupted Ba-

boon, Einstein, Kid and Castle images, respectively. Similar to filling the random

missing pixels, it is observed that KSBMF achieves the best overall visual effect with
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(a) Original (b) With Text 1 (c) BPFA (d) GSR (e) TSLRA (f) KSBMF

Figure 4.6 : Visual comparison for text removal on Baboon. (a) Original image.

(b) Image with text mask 1. (c) BPFA (PSNR=25.53 dB). (d) GSR (PSNR=25.62

dB). (e) TSLRA (PSNR=26.09 dB). (f) KSBMF (PSNR=26.21 dB).

(a) Original (b) With Text 2 (c) BPFA (d) GSR (e) TSLRA (f) KSBMF

Figure 4.7 : Visual comparison for text removal on Einstein. (a) Original image.

(b) Image with text mask 2. (c) BPFA (PSNR=33.72 dB). (d) GSR (PSNR=36.25

dB). (e) TSLRA (PSNR=34.94 dB). (f) KSBMF (PSNR=35.73 dB).
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(a) Kid Origi-

nal

(b) With Text (c) BPFA (d) GSR (e) TSLRA (f) KSBMF

Figure 4.8 : Visual comparison for text removal on Kid. (a) Original image. (b)

Image with text mask 3. (PSNR=14.33 dB) (c) BPFA (PSNR=28.02 dB). (d) GSR

(PSNR=33.29 dB). (e) TSLRA (PSNR=32.93 dB). (f) KSBMF (PSNR=33.39 dB).

less noise and reconstruction artifacts than competing approaches. However, BPFA

and TSLRA can hardly remove all texts with some visible stains on the recovered

Castle image.

4.5 Conclusions

This chapter has presented a new generative model for Bayesian matrix factor-

ization which enables the incorporation of side information through kernel learning.

A variational Bayesian learning principle is applied to approximately compute pos-

terior distributions of all parameters and latent variables of the model, in which the

low-rank constraint is imposed on the estimation by using sparse representation.

Given the nonlocal similarity and low rankness properties of the patch group ma-

trix, two image restoration algorithms are further developed which leverage KSBMF

under the nonlocal framework. A new kernel is devised particularly to integrate the

similarity information between patches into the parameter learning for image denois-

ing and inpainting. The experimental results on three tasks have demonstrated the

superiority of KSBMF over not only the conventional Bayesian matrix factorization
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(a) Castle Orig-

inal

(b) With Text (c) BPFA (d) GSR (e) TSLRA (f) KSBMF

Figure 4.9 : Visual comparison for text removal on Castle. (a) Original image. (b)

Image with text mask 4. (PSNR=14.50 dB) (c) BPFA (PSNR=27.70 dB). (d) GSR

(PSNR=33.24 dB). (e) TSLRA (PSNR=22.90 dB). (f) KSBMF (PSNR=33.72 dB).

model but also other state-of-the-art image restoration algorithms. If an image does

not possess the low-rank property, the pre-complete step in the proposed inpainting

algorithm may result in a relatively large error, degrading the final inpainting quality

at the patch level. To avoid this limitation, the first step of inpainting on the entire

image can be replaced by an alternative method, for example, total variation based

regularization [159], to pre-complete the whole image for accurate patch matching.

Then applying KSBMF on the patch group matrix can still guarantee to fill the

missing entries accurately. Only Gaussian noise is considered in this chapter. The

model may be extended to a robust version with an extra term to represent outliers,

i.e., Y = X + S + E. The sparse component can be modelled by independent Gaus-

sian priors on each of the entries of the matrix S. When an individual precision of

sij goes to infinity, the corresponding entry goes to zero. Hence, the sparsity in S is

achieved when a large number of precision variables are set to high values. In the

area of machine vision and image processing, the KSBMF model can be extended

to image or video super-resolution, deblurring, and compressed sensing to integrate

other appropriate side information, for example, the statistics of offsets of similar
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patches [160].

Regarding the broad applicability of the proposed model in machine learning,

KSBMF is also expected to improve the prediction or completion accuracy over the

existing methods that only based on the low-rank assumption in recommender sys-

tems, documents labels, background subtraction, and so forth. A couple of other

kernels are also devised and tested including Gaussian function and linear function.

The proposed kernel in Eq. (4.52) yields the best performance for both image denois-

ing and inpainting. However, devising effective kernels to integrate side information

for various applications is still an open issue for kernelized matrix factorization in

future study.
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Chapter 5

Robust kernelized Bayesian matrix factorization

for video background/foreground separation

5.1 Introduction

Development of effective and efficient techniques for video analysis is an impor-

tant research area in machine learning and computer vision. Matrix factorization

(MF) is a powerful tool to perform such tasks. In this contribution, a hierarchical

robust kernelized Bayesian matrix factorization (RKBMF) model is presented to

decompose a data set into low rank and sparse components. The RKBMF model

automatically infers the parameters and latent variables including the reduced rank

using variational Bayesian inference. Moreover, the model integrates the side in-

formation of similarity between frames to improve information extraction from the

video. RKBMF is employed to extract background and foreground information from

a traffic video. Experimental results demonstrate that RKBMF outperforms state-

of-the-art approaches for background/foreground separation, particularly where the

video is contaminated.

Experimental results on both synthetic data sets and two real-world signals

demonstrate that the proposed model achieves a satisfactory performance against

several representative baselines including Lee and Seung’s NMF algorithm and three

other sparse or robust counterparts. The rest of this chapter is organized as follows.

Section 5.2 elaborates on the details of model specification and inference for DP-

NMF in the presence of different noise types. Results for both synthetic and two

experimental signals, which are compared with state-of-the-art methods, and ob-
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jective assessments, are presented in Section 5.3. Finally, Section 5.4 discusses and

concludes the chapter.

Along the line of this research, a generative model for robust kernelized Bayesian

matrix factorization (RKBMF) is presented which can integrate side information

into inference. The proposed model adopts a different graphical model and priors

as in [83]. A significant difference between the proposed model and [84, 85] is that

the variance of a number of latent variables in [84, 85] is set as constant, which is

unacceptable in the case of video analysis with an unknown noise variance. The

variance of each latent factor matrix is explicitly assigned as a latent variable with

a specified prior in the proposed model. The similarity information between frames

is also integrated into RKBMF to improve the performance of video analysis. The

performance of the model on simulated datasets is tested and then this algorithm

is applied to perform the video background and foreground separation. The re-

sults demonstrated that RKBMF can accurately recover both low rank and sparse

components in simulation, and generate background and foreground images with

better visual effects than other three state-of-the-art robust matrix factorization

approaches.

5.2 Robust kernelized Bayesian matrix factorization

In this section, the model specification of robust kernelized Bayesian matrix

factorization is elaborated in detail. The variational Bayesian method is utilized to

infer all parameters and latent variables of this model in detail.

5.2.1 Model specification

Considering the observation data as an M × N matrix Y, the problem is to

recover the original low-rank matrix X and sparse term S, that is:

Y = X + S + E = UV> + S + E, (5.1)
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where Y ∈ RM×N , U ∈ RM×r, V ∈ RN×r, S ∈ RM×N , E ∈ RM×N , and r the rank

or order of the low-rank term.

γj

a

b

u·m

v·n

g·m

h·n

KU

KV

Y mn

σg

σh

E

β

S

α

1

Figure 5.1 : Directed graphical representation of RKBMF model.

Fig 5.1 shows the graphical model of the proposed hierarchical robust kernelized

Bayesian matrix factorization with latent variables and their corresponding priors.

To automatically infer the rank of the low rank component, sparsity is imposed into

the low rank approximation model.

The priors of variables U,V,γ,G,H, σg, σh and E are defined the same with

Chapter 4.2, so they are omitted here.

The sparse component S is modeled with independent priors on each of the

entries Sij of the matrix S, that is

p(S|α) =
M∏
i=1

N∏
j=1

N (sij|0, α−1
ij ). (5.2)

Given the priors defined above, the conditional distribution for the observation

model is as follows:

p(Y|G,H,S, β) = N (Y|GH> + S, β−1IMN). (5.3)

With the conditional probability and all priors in hand, the joint distribution is
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given by:

p(Y,U,V,S,G,H, σg, σh,γ,α, β)

= p(Y|G,H,S, β)p(G|U,KU, σg)p(H|V,KV, σh)

· p(U|γ)p(V|γ)p(S|α)p(σg)p(σh)p(γ)p(α)p(β).

(5.4)

5.2.2 Model inference of RKBMF

Z is utilizeds to represent the vector of all latent variables such that

Z = (U,V,G,H,S, σg, σh,γ,α, β). (5.5)

The approximate posterior distribution is therefore denoted by q(Z).

q(Z) =
∏
k

q(Zk). (5.6)

Within the VB framework, the expression of the optimal posterior approximation

q(Zk) can be denoted as

ln q(Zk) = 〈ln p(Y,Z)〉Z\Zk + const, (5.7)

where 〈·〉 denotes the expectation and const denotes a constant which is not depen-

dent on the current variable. Z \ Zk means the set of Z with Zk removed. Each

variable is updated in turn while holding others fixed. The iteration rules for vari-

ables S,G,H, α and β in Eq. (5.6) is detailed below. The update equations for

other variables are the same with Section 4.2.

Estimation of sparse component S

The posterior distribution of S is decomposed on its each entries sij which is a

Gaussian distribution

q(sij) = N (sij|〈sij〉,ΣSij). (5.8)
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The covariance and mean are denoted as

ΣSij =
1

〈β〉+ 〈αij〉
, (5.9)

〈sij〉 = 〈β〉ΣSij(yij − 〈gi·〉〈h>i· 〉). (5.10)

Estimation of G and H

Similar to the estimation of U and V, the posterior approximation of G is given

by

ln q(G) =
∑
i

[−1

2
(gi·(〈β〉〈H>H〉+ 〈σg〉Ir)gTi·

− 2gi·(〈H〉>(yi· − si·)
> + 〈σg〉〈U〉>KU·i))] + const,

(5.11)

which indicates that the ith row of G obeys the multivariate Gaussian distribution

q(gi·) = N (gi·|〈gi·〉,ΣG). (5.12)

The corresponding covariance and mean are denoted as

ΣG = (〈β〉〈H>H〉+ 〈σg〉Ir)−1, (5.13)

〈gi·〉> = ΣG(〈σg〉〈U〉>Ku·i + 〈β〉〈H〉>(yi· − si·)
>). (5.14)

The jth row of H obeys another multivariate Gaussian distribution

q(hj·) = N (hj·|〈hj·〉,ΣH), (5.15)

with covariance and mean

ΣH = (〈β〉〈G>G〉+ 〈σh〉Ir)−1, (5.16)

〈hj·〉> = ΣH(〈σh〉〈V〉>KV·j + 〈β〉〈G〉>(y·j − s·j). (5.17)

The required expectations are expressed as

〈G>G〉 = 〈G〉>〈G〉+mΣG, (5.18)

〈H>H〉 = 〈H〉>〈H〉+ nΣH. (5.19)
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Estimation of β

The posterior probability densities of β, σg and σh are all found to be Gamma

distributed. For the noise precision β,

q(β) ∝ β
MN
2
−1exp(−1

2
β〈‖ Y −GH> − S ‖2

F 〉), (5.20)

with its expectation

〈β〉 =
MN

〈‖ Y −GH> − S ‖2
F 〉
. (5.21)

The required expectation to estimate 〈β〉 is denoted as

〈‖ Y −GH> − S ‖2
F 〉 =‖ Y − 〈G〉〈H〉> − 〈S〉 ‖2

F +tr(N〈G〉>〈G〉ΣH)

+ tr(M〈H〉>〈H〉ΣG) + tr(MNΣGΣH) + tr(
M∑
i=1

N∑
j=1

ΣSij).
(5.22)

Estimation of α

Similar to β, σg and σh, the posterior probability density of αij is also found to

be a Gamma distribution with

〈αij〉 =
1

〈sij〉2 + ΣSij
(5.23)

Each parameter is updated in turn while holding others fixed. By the properties

of VB, convergence to a local minimum of the algorithm can be guaranteed after

iterations [136].

The proposed RKBMF model is applied with integrated side information to

improve background subtraction and foreground detection. The kernel proposed in

Eq. 4.52 is utilized to incorporate the similarity information between video frames

into RKBMF.

In the proposed method, the target frame is first vectorized as a column vector.

The M ×N matrix Y is constructed by grouping other N − 1 frames with similar
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local spatial structures to the underlying one. Since each column shares similar

underlying image structures, the noise-free low-rank matrix X corresponds to the

background, while the sparse component corresponds to the foreground. With the

kernel defined in Eq. (4.52), a similar frame with larger similarity value has a

more substantial contribution in the RKBMF model to separate the background

and foreground.

5.3 Results

5.3.1 Numerical simulation

The performance of the proposed algorithm is tested on simulated matrices

firstly. Four square matrices with size M = N = 500, 1000, 1500 and 2000 are

considered. The low-rank component X is simulated by the product of two matrices

whose entries are independently drawn from N (0, 1/M). The sparse component S

is simulated by the non-zero entries located uniformly at random with amplitudes

obeyed uniform distribution within the range of [−1, 1]. The observation is gener-

ated as Y = X + S + E with entries of E independently drawn from N (0, 10−4).

The hyperparameters related to α, β, σg, σh are specified with a relatively small

value, i.e., 10−6. Three metrics, i.e., rank(X̂), ‖ Ŝ ‖0 and ‖ Ŝ − S ‖F / ‖ S ‖F
are used to evaluate the performance of the algorithm. In this simulation, since no

side information is available, it is reasonable to set KU and KV as identity matri-

ces. From Table 5.1, it is clear that RKBMF can accurately approximate the rank

of the low-rank component and ‖ Ŝ ‖0 with a very small reconstruction error of

‖ Ŝ− S ‖F / ‖ S ‖F .
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(a)

(b)

(c)

(d)

Figure 5.2 : Reconstruction of the back-

ground and the foreground. The video

sequence contains 520 frames of size

320 × 240 pixels, and the results for

frame 260 are shown. Left column: orig-

inal image; middle: reconstruction of

the low-rank component (background);

and right: reconstruction of the sparse

component (foreground). (a) Bayesian

Robust PCA, (b) Mixture of Gaussians

RPCA, (c) Online Stochastic Tensor De-

composition and (d) RKBMF.

(a)

(b)

(c)

(d)

Figure 5.3 : Reconstruction of the back-

ground and the foreground under noisy

observation. The additive white Gaus-

sian noise has a standard deviation σ =

10. Left column: original noisy image;

middle: background reconstruction; and

right: foreground reconstruction. (a)

Bayesian Robust PCA, (b) Mixture of

Gaussians RPCA, (c) Online Stochastic

Tensor Decomposition and (d) RKBMF.



81

Table 5.1 : Comparison of reconstruction accuracy for noisy observation, with noise

standard deviation σ = 10−4. The true rank of the matrix X is 5%N , and the

number of nonzero sparse elements is 5%MN .

N rank(X) ‖ S ‖0 rank(X̂) ‖Ŝ−S‖F
‖S‖F

‖ Ŝ ‖0

500 25 12500 25 3.1× 10−5 12498

1000 50 50000 50 2.5× 10−5 50003

1500 75 112500 75 3.3× 10−5 112500

2000 100 200000 100 2.9× 10−5 199990

5.3.2 Video Example

The performance of RKBMF to reconstruct the static background and mov-

ing foreground from a video sequence in traffic surveillance with a fixed camera∗ is

evaluated. Experiments are also conducted using Bayesian robust PCA [75], mix-

ture of Gaussians RPCA [79], and online stochastic tensor decomposition [161], for

comparison. The data are organized such that column of is constructed by concate-

nating all pixels of the frame from a grayscale video sequence. The background is

then modeled as the low-rank component, and the moving foreground is modeled as

the sparse component. The hyperparameters are the same as in 5.3.1. The kernel

function for the latent factor matrix KV is estimated using Eq. (4.52) while the

kernel function for KU is set as an identity matrix. The video sequence contains

520 frames of 320× 240 pixels. Fig 5.2 shows the reconstruction of the background

and the foreground for Frame 260 over four methods. It is observed that the four

models produce good reconstructed background/foreground in this situation since

the observation is relatively noise-free.

∗http://jacarini.dinf.usherbrooke.ca/dataset2012/
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Gaussian white noise with standard deviation 20 is then added into the video se-

quence. Such noisy observations are common in practical applications. Fig 5.3 shows

the reconstruction results of all four methods. It is clear that RKBMF still success-

fully separates the foreground from the background. However, Bayesian Robust

PCA fails to separate background/foreground with part of the foreground existing

in the low-rank component. Artifacts can still be found on the foreground extracted

by the mixture of Gaussians RPCA and online stochastic tensor decomposition. In

contrast, RKBMF generates the overall best background and foreground with fewer

artifacts. To further evaluate the performance of the proposed model, RKBMF and

the competitive algorithms are tested on the CAVIAR Test Case Scenarios†. The

experimental results are similar to the case of the traffic surveillance with RKBMF

yielding the best separation performance.

5.4 Conclusions

In this chapter, a novel full Bayesian model for robust matrix factorization is

proposed which integrates the side information for the low rank and sparse compo-

nent extraction. Using both synthetic and real datasets, experimental results show

that the proposed method outperforms other three state-of-the-art robust matrix

factorization approaches. In particular, the proposed method can recover the back-

ground and slow-moving foreground even under high noise level. RKBMF can be

further improved to accommodate streaming video and to integrate multiple side

information.

†http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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Chapter 6

Bayesian nonnegative matrix factorization with

Dirichlet process mixtures

6.1 Introduction

Nonnegative Matrix Factorization (NMF) is valuable in many applications of

blind source separation, signal processing and machine learning. A number of al-

gorithms that can infer nonnegative latent factors have been developed, but most

of these assume a specific noise kernel. This is insufficient to deal with complex

noise in real scenarios. In this chapter, a hierarchical Dirichlet process nonnegative

matrix factorization (DPNMF) model is proposed in which the Gaussian mixture

model is used to approximate the complex noise distribution. Moreover, the model

is cast in a nonparametric Bayesian framework by using a Dirichlet process mix-

ture to infer the necessary number of Gaussians. A mean-field variational inference

algorithm is derived for the proposed nonparametric Bayesian model. The model

is tested on synthetic data sets contaminated by Gaussian, sparse and mixed noise

firstly. Then it is applied to select discriminative features for motor imagery sin-

gle trial electroencephalogram (EEG) classification and to extract muscle synergies

from the electromyographic (EMG) signal. Experimental results demonstrate that

DPNMF performs better in extracting the latent nonnegative factors in comparison

with state-of-the-art methods.

The main contributions of this chapter are summarized as follows. (a) To deal

with complex noise in real scenarios, a hierarchical Dirichlet process nonnegative

matrix factorization model is proposed. (b) The Gausian mixture model is utilized as
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a universal approximator to fit various types of noise rather than a single noise kernel

in existing NMF models. (c)A nonparametric Bayesian technique, i.e., Dirichlet

process, is employed to determine the number of Gaussians needed, instead of doing

heuristic pruning or trying ungrounded guesses. (d) The model is formulated into the

variational Bayesian update rules instead of the usual multiplicative updating rules

for NMF. (e) It is demonstrated that DPNMF significantly improves the performance

of two real-world problems, i.e., muscle synergies extraction and movement imagery

EEG classification, which heavily rely on the NMF technique.

Experimental results on both synthetic data sets and two real-world signals (EEG

and EMG) demonstrate that the proposed DPNMF model achieves a satisfactory

performance against several representative baselines including Lee and Seung’s NMF

algorithm and three other sparse or robust counterparts. The rest of this chapter

is organized as follows. Section 6.2 elaborates on the details of model specification

and inference for DPNMF in the presence of different noise types. Results for

both synthetic and two experimental signals, which are compared with state-of-

the-art methods, and objective assessments, are presented in Section 6.3. Finally,

Section 6.4 discusses and concludes the chapter.

6.2 DPNMF model and inference

6.2.1 Model specification of DPNMF

For the observation matrix Y ∈ Rm×n, nonnegative matrix factorization can be

formulated as decomposing Y into two latent matrices U ∈ Rm×r
+ and V ∈ Rn×r

+ ,

whose values are constrained to be positive. In other words, the task is to solve

Y = UV> + E, (6.1)

where E ∈ Rm×n represents the noise term. The variational Bayesian approach

is employed to this problem. Fig 6.1 shows the graphical model of the proposed
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Figure 6.1 : Directed graphical representation of DPNMF model

hierarchical Bayesian Dirichlet process nonnegative matrix factorization with latent

variables and their corresponding priors. In particular, the mixture of Gaussian

distributions is utilized to model the noise:

p(emn) =
∞∑
k=1

θkN (0, τk), (6.2)

where θk = βk
∏k−1

l=1 (1 − βl) and βk is drawn independently from Beta distribution

B(1, α) according to the stick-breaking construction [129]. In the model, a0, b0, α,

a1 and b1 are hyperparameters. Let zmn be a latent variable that assigns the index

of the parameter associated with the entry emn. The distribution of zmn can be

regarded as a multinomial distribution with parameters {θ1, · · · , θ∞}. In practice,

a relatively large K is set as the initial number of Gaussians to fit the noise term.

A Gamma distribution with shape a0 > 0 and rate b0 > 0 is utilized to model

the precision τk,

p(τk) ∼ G(a0, b0). (6.3)

An exponential prior is set over U and V. In order to automatically prune the

rank of U and V, rate parameters λr is assigned to the exponential prior of both
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columns of u·r and v·r.

umr ∼ f(umr|λr), (6.4)

vnr ∼ f(vnr|λr), (6.5)

where f(x|λ) = λexp(−λx)s(x) is the density of the exponential distribution, and

s(x) is the unit step function. With the constraint of the same rate parameters λr

across u·r and v·r, most of the rate parameters λr will be iteratively updated to very

large values. The corresponding columns of U and V are removed since they make

little contribution to the approximation Y, and hence the rank of latent factors U

and V are automatically determined.

According to the previous studies, the likelihood obeys a Gaussian distribution.

Combining the likelihood and the priors, the joint distribution can be formulated

as:

p(Y,U,V, z, τ ,λ,β|a0, b0, a1, b1, α)

= p(Y |U ,V , z, τ )p(U |λ)p(V |λ)p(λ|a1, b1)

· p(τ |a0, b0)p(z|β)p(β|α)

(6.6)

Based on the mean-field variational approach, the goal changes to infer the pos-

terior of all variables using the following variational distribution:

q(Y ,U ,V , z, τ ,λ,β) =
M∏
m=1

R∏
r=1

qumr(µ
U
mr, τ

U
mr)

N∏
n=1

R∏
r=1

qvnr(µ
V
nr, τ

V
nr)

R∏
r=1

qλr(a
∗
r, b
∗
r)

K∏
k=1

qβk(γk,1, γk,2)

K∏
k=1

qτk(ρk,1, ρk,2)
M∏
m=1

N∏
n=1

qzmn(φmn),

(6.7)

where each entry of U follows a truncated normal distribution with mean µUmr

and covariance τUmr and it is similar for V, τk and λr follow gamma distribution

parametrized by ρk,1, ρk,2 and a∗r, b
∗
r, respectively, qβk(γk,1, γk,2) is a beta distribu-

tion, and qzmn(φmn) is a multinomial distribution.
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6.2.2 Model inference of DPNMF

Parameter βk can be derived from its mean-field posterior representation.

ln q(βk) = Eq[ln p(βk|α)] +
M∏
m=1

N∏
n=1

Eq[ln p(zmn = k|θ)] + const. (6.8)

Since p(zmn|θ) is a multinomial distribution, expanding θ and using the assump-

tion that q(βK = 1) = 1, it is obvious that 1− βK = 0, and q(zmn > K) = 0, then

Eq[ln p(zmn|θ)] = Eq[ln(
∞∏
k=1

(1− βk)I(zmn>k)β
I(zmn=k)
k )]

=
K∑
k=1

q(zmn > k)Eqln (1− βk) + q(zmn = k)Eqln βk.
(6.9)

Since q(zmn > K) = 0, then q(zmn > k) =
∑K

t=k+1 q(zmn = t). Substitute Eq.

(6.9) into Eq. (6.8) and simplify it to

ln q(βk) = const+ (
M∑
m=1

N∑
n=1

q(zmn = k))ln βk

+ (α− 1 +
M∑
m=1

N∑
n=1

K∑
t=k+1

q(zmn = t))ln (1− βk).
(6.10)

Obviously, q(βk) follows a Beta distribution,

q(βk) = Beta(βk|γk,1, γk,2), (6.11)

with

γk,1 = 1 +
M∑
m=1

N∑
n=1

φmnk, (6.12)

γk,2 = α +
M∑
m=1

N∑
n=1

K∑
t=k+1

φmnt, (6.13)

and

Eq(ln βk) = ψ(γk,1)− ψ(γk,1 + γk,2), (6.14)

Eq(ln (1− βk)) = ψ(γk,2)− ψ(γk,1 + γk,2), (6.15)
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where ψ denotes the digamma function.

Then the parameters related to zmn can be updated based on the stick-breaking

process.

ln q(zmn = k)

= EZ/zmn=k[ln p(Y |U ,V , z, τ ) + ln p(z|β)]

= Eq ln
√
τzmn=k

2π
exp{−τzmn=k

2
(ymn − um·v>n·)2

+ I(zmn > k)Eqln (1− βk) + I(zmn = k)Eqln βk}

=
1

2
[ψ(ρk,1)− logρk,2]− ρk,1

2ρk,2
Eq{(ymn − um·v>n·)2

+
k−1∑
t=1

Eqln (1− βt) + I(zmn = k)Eqln βk}

(6.16)

According to Eq. (6.16), it is clear that q(zmn) follows a multinomial distribution,

and its parameters φmnk for k = 1, 2, · · ·K can be represented as:

φmnk ∝ exp{1

2
(ψ(ρk,1)− log ρk,2) + Eqln βk

− 1

2

ρk,1
ρk,2

Eq{(ymn − um·v>n·)2}+
k−1∑
t=1

Eqln (1− βt)}.
(6.17)

The approximation to the posterior of entry umr can be expressed as

q(umr) ∝ exp{Eq[log p(Y |U ,V , z, τ ) + log p(umr|λr)]}

∝ s(x)exp{log (λrexp{−λrumr}) + Eq
∑
n∈Ωm

K∑
k=1(

p(zmn = k)log [

√
τk
2π
exp{−τk

2
(ymn − umv>n )2}]

)
}

∝ exp{−u
2
mr

2
[
∑
n∈Ωm

K∑
k=1

φmnk〈τk〉〈v2
nr〉] + umr[−〈λr〉+

∑
n∈Ωm

K∑
k=1

φmnk〈τk〉(ymn −
∑
r′ 6=r

〈umr′〉〈vnr′〉)〈vnr〉]}s(x)

∝ exp{−τ
u
mr

2
(umr − µumr)2} × s(x)

∝ T N (umr|µUmr, τUmr),

(6.18)
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where 〈·〉 is the expectation operator, Ω is all the entries of the matrix and Ωm =

{m|(m,n) ∈ Ω} and Ωn = {n|(m,n) ∈ Ω}. Eq. 6.18 demonstrates that q(umr) obeys

a truncated normal (TN) distribution.

µUmr =
1

τUmr
(−〈λr〉+

∑
n∈Ωm

K∑
k=1

φmnk〈τk〉(ymn −
∑
r′ 6=r

〈umr′〉〈vnr′〉)〈vnr〉), (6.19)

τUmr =
∑
n∈Ωm

K∑
k=1

φmnk〈τk〉〈v2
nr〉. (6.20)

Similarly, the entry vnr of factor matrix V obeys truncated normal distribution

with mean and precision:

µVnr =
1

τVnr
(−〈λr〉+

∑
m∈Ωn

K∑
k=1

φmnk〈τk〉(ymn −
∑
r′ 6=r

〈umr′〉〈vnr′〉)〈umr〉), (6.21)

τVnr =
∑
m∈Ωn

K∑
k=1

φmnk〈τk〉〈u2
mr〉. (6.22)

Here,

Eq[(ymn − umv>n )2] = (ymn −
R∑
r=1

〈umr〉〈vnr〉)2 +
R∑
r=1

(〈u2
mr〉〈v2

nr〉 − 〈umr〉2〈vnr〉2).

(6.23)

As for precision τ ,

ln q(τk) = Eq[ln p(τk|a0, b0)] + const

+
M∏
m=1

N∏
n=1

q(zmn = k)Eq[ln p(ymn|U ,V , zmn = k, τ )]

= (a0 +
1

2

M∑
m=1

N∑
n=1

q(zmn = k)ln τk − (b0 +
1

2

M∑
m=1

N∑
n=1

q(zmn = k)Eq[(ymn − um·v
>
n·)

2])τk

+const.

(6.24)
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Obviously, it is still a Gamma distribution.

q(τk) = G(τk|ρk,1, ρk,2), (6.25)

where

ρk,1 = a0 +
1

2

M∑
m=1

N∑
n=1

φmnk,

ρk,2 = b0 +
1

2

M∑
m=1

N∑
n=1

φmnkEq[(ymn − um·v
>
n·)

2].

(6.26)

where Eq[(ymn − um·v
>
n·)

2] has already been indicated in Eq. 6.23.

After updating parameters ρ, the weight coefficients θ of the K clusters are also

updated. A θk smaller than a pre-defined threshold means that the probability of

some entries to be represented by this cluster is very rare. So that those clusters

can be pruned, and the noise is represented by a limited number of Gaussians.

Finally, the rate parameter of the exponential prior related to factor matrices U

and V can be updated as:

q(λr) ∝ exp{Eq(
M∑
m=1

log p(umr|λr)) + Eq(
N∑
n=1

log p(vnr|λr)) + Eq(log p(λr|a1, b1))}

∝ exp{(M +N + a1 − 1)logλr − (
M∑
m=1

〈umr〉+
N∑
n=1

〈vnr〉+ b1)λr}.

(6.27)

Obviously, λr obeys a Gamma distribution

q(λr) = G(λr|a∗r, b∗r) (6.28)

where

a∗r = a1 +M +N, (6.29)

and

b∗r = b1 +
M∑
m=1

〈umr〉+
N∑
n=1

〈vnr〉. (6.30)
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The parameters can be updated in turn while holding others fixed. By the

properties of variational Bayesian analysis, convergence to a local minimum of the

DPNMF algorithm can be guaranteed after a suitable number of iterations [129].

6.3 Results

In this Section, the proposed DPNMF model is compared empirically with sev-

eral state-of-the-art methods including MUNMF in [104], a sparseness-constrained

NMF (SCNMF) [29], a Bayesian NMF (PSNMF) [120], and the outlier-robust Mah-

NMF [162]. MUNMF is the standard NMF with multiplicative update rules to

minimize KL divergence. SCNMF is a sparseness constrained NMF method with

a Gaussian noise distribution. We set the sparseness level to 0.5 across activation

coefficients so as to be consistent with the neural sparse coding scheme [163]. Mah-

NMF minimizes the Manhattan distance between Y and UV> for modelling the

heavy tailed Laplacian noise. PSNMF is a variational Bayesian spare NMF model

which assumes the column-wise sparseness of two latent matrices with Gaussian

noise distribution. The equivalent graphic representation of these models is shown

in Fig 6.2.
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Figure 6.2 : The equivalent graphic representation of (a) MUNMF and MahNMF,

(b) SCNMF, and (c) PSNMF.
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6.3.1 Results on synthetic data

The performance of all the above NMF methods are compared using synthetic

data sets firstly. The two latent matrices are generated from unit mean exponential

distributions with three different ranks r = 5, 10 and 15. The ground-truth Y0 is

the product of U ∈ R500×r
+ and V ∈ R500×r

+ . Three types of noise, i.e., Gaussian,

sparse, and mixed, are considered in the simulation. Details of the noise parameters

are shown in Table 6.1. The initial number of Gaussian components K is set to 300

for DPNMF, which is large enough to represent various types of noise.

Although some methods for comparison are incapable of inferring the rank au-

tomatically, the ground-truth rank r is set as a known model input parameter. The

relative error of the Frobenius norm with respect to the ground truth, defined by

Error =
|Y0 −UV

>|F
|Y0|F

, (6.31)

is used as the metric to quantify the performance of each algorithm, where U and

V are recovered latent matrices. For each noise setting, the algorithms are run 20

times with different random input of Y0. The average relative errors are shown in

Table 6.2.

One can find from Table 6.2 that DPNMF yields the smallest relative error under

most cases of the three low-rank settings and three noise settings. For the Gaussian

noise, PSNMF achieves comparable performance as DPNMF. However, the relative

errors for the three other methods are much higher than DPNMF and PSNMF,

even based on the correct rank input, which is difficult to estimate in practical

applications. Besides, it is shown that the relative error of these methods increase

significantly when the initial rank deviates from the ground-truth rank. In the

case of sparse noise, it is evident that the performance of MUNMF and MahNMF

methods degrade. This is reasonable since only Gaussian noise is considered in

these two models. The DPNMF algorithm performs better than PSNMF over rank
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5, although it is slightly inferior to DPNMF over rank 10 and 15. Finally, for the

mixed noise, it is not surprising that it outperforms all the remaining methods with

significantly smaller amount of errors. When the noise type is simple, PSNMF

achieves comparable and even slightly better results than DPNMF. However, the

performance of PSNMF is significantly inferior to DPNMF when the noise becomes

more complicated. This is attributed to the superior capability of DPNMF to fit

unknown complex noise as well as to automatically tune the rank even without prior

knowledge about the exact rank.
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Figure 6.3 : Effect of initial number of Gaussians and rank on the performance of

DPNMF.

These experiments have demonstrated the superiority of DPNMF over compet-

itive methods to recover the latent matrices under mixed noise contamination. The

stability of DPNMF is empirically evaluated in terms of the varying initial number

of Gaussians K and rank r. Fig 6.3(a) shows the average relative error in terms

of the different initial rank for r = 5, 10, and 15, respectively. For each case, the

average relative error has tiny fluctuation when the initial rank varies. However,

with the increasing magnitude of the initial rank, the relative error remains stable

at small values. Fig 6.3(b) shows the effect of the initial number of Gaussians on

the average relative error for r = 5, 10, 15, respectively. Similar to the effect of

fixing K in Fig 6.3(a) illustrates the average relative error is almost flat for the
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initial number of Gaussians varying from 10 to 300. Fig 6.3(c) shows the remaining

number of Gaussians versus the initial number of Gaussians. For the case of mixed

noise in Table 6.1, the required number of Gaussians stays stable around 25 for rank

r = 5. From the plots in Fig 6.3, it is clear that DPNMF is quite robust to the

initialization and input parameters.

Table 6.1 : Noise parameter setting for the synthetic data sets. U denotes the

uniformly distributed noise followed by its range.

N (0, 0.52) N (0, 0.12) U [-5, 5]

Gaussian Noise 100% 0 0

Sparse Noise 0 0 30%

Mixture Noise 60% 20% 20%

Table 6.2 : The average relative error of five algorithms under three types of noise

with three different initial ranks. Best results are shown in bold .

Noise r DPNMF MUNMF SCNMF MahNMF PSNMF

Gaussian

5 0.0110 0.0350 0.6230 0.0508 0.0111

10 0.0087 0.0774 0.4583 0.0661 0.0088

15 0.0075 0.0945 0.2570 0.0747 0.0075

Sparse

5 0.0212 0.0535 0.6232 0.0572 0.0350

10 0.0468 0.0815 0.4585 0.1348 0.0275

15 0.0330 0.0975 0.2542 0.1766 0.0233

Mixture

5 0.0079 0.0551 0.6229 0.0929 0.0449

10 0.0083 0.0856 0.4578 0.1623 0.0355

15 0.0154 0.0965 0.2585 0.2004 0.0300

6.3.2 Extraction of muscle synergies

In neuroscience, it is supposed that the central neural system controls muscle

synergies, or groups of co-activated muscles, rather than individual muscles, to or-
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ganize any simple or complex actions and movements. Muscle synergies, i.e., the

nonnegative factor vectors of U, extracted from multichannel EMG signals using

NMF have been widely applied in human-machine interfaces, prosthetic controls,

neural system disease diagnoses, and stroke rehabilitation. As reviewed in the Intro-

duction, EMG is a typical signal contaminated by multiple types of noise. Here the

performance of DPNMF with competitive methods to extract synergies is compared.

Since the ground truth synergies are not available, Following the study in [164], this

study investigate the classification accuracy of synergies extracted by DPNMF to

recognize six wrist motions. The Ninapro first dataset [165] which consists of EMG

recordings for wrist, hand and finger movements is utilized. Each movement/task

has 10 repetitions from 27 healthy subjects. To this end, the Ninapro real dataset

is divided into training and testing sets with 60% (6 repetitions of each task) of

the data assigned to training for each subject. For each factorization technique,

synergies are estimated from training repetitions for each task. Those synergies are

used to train support vector machines (SVM) to classify six movements, i.e., wrist

flexion and extension, wrist radial and ulnar deviation, and wrist supination and

pronation. DPNMF automatically selects the number of synergies, i.e. the rank r,

while four is assigned as the best number of synergies for other methods based on

previous recommendations [164]. The other four repetitions of each task are used to

test those classifiers. The training and test samples are selected 10 times randomly

to obtain the average accuracy.

Fig 6.4 shows the first two synergies and the corresponding weight coefficients of

a representative wrist extension movement extracted via five NMF models. Due to

space restriction, other synergies are listed in Supplementary Material. From Fig 6.4,

the proposed method indicates that the primary driver of these movements comes

from channels 7 and 8, i.e., front arm. This is more consistent than other methods

with the physiological origin of muscles involved in wrist extension [165]. Fig 6.5 is
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Figure 6.4 : Four muscle synergies (odd columns) and the weight coefficients (WC)

(even columns) extracted via the five NMF models for a representative EMG record-

ing of wrist extension movement.

the violin graph of the classification accuracy for five methods with DPNMF yielding

82.4% accuracy. The average accuracy of all remaining methods is inferior to at least

10% to that of DPNMF.

In this example, the performance of DPNMF is investigated over a motor im-

agery EEG classification problem in the brain-machine interface, which heavily re-

lies on the nonnegative matrix factorization technique. A BCI competition data set

provided by the Department of Medical Informatics, Institute for Biomedical Engi-

neering, Graz University of Technology, Austria is used [166]. This data set consists

of 140 labeled trials for training and 140 unlabeled trials for the test with the sub-

jects performing left/right imagery hand movement. Each trial has a duration of 9

seconds with the first 3 seconds as preparation period. Therefore only the remaining

6 seconds of the EEG is analyzed to perform the imagination task. The criterion is

to dynamically identify the actual class as soon as possible with higher probability

rather than to provide a class label using the entire data segment. Following up the

previous recommendation [166], only signals in channels C3 and C4 are used since
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Figure 6.5 : Violin graph for the accuracy of the full synergy to classify six wrist

movements for five NMF models. The black line represents the average accuracy.

channel Cz contains little information for discriminant analysis.

6.3.3 Classification of motor imagery EEG

EEG signal is firstly decomposed into wavelet coefficients using complex Mor­

let wavelet over the frequency range [4, · · · , 30] Hz. Fig 6.6 shows the contours of

wavelet coefficients for representative left and right imagery EEGs. One can find the

different µ rhythm (8­12 Hz) and β rhythm (18­25 Hz) during two different move­

ments. For simplicity, most previous studies assumed that the noise distribution

of wavelet coefficients subjects to the same Gaussian distribution as in time do­

main [167]. The training sampling matrix Y ∈ R54×TP is factorized by DPNMF and

four other competitive methods to generate the factor matrices, which are specifi­

cally termed as basis vectors U and encoding variable matrix V in BCI, where T

represents trials and P data points of EEG.

For the test sample Ỹ, its encoding variable matrix Ṽ is recovered by the product

of pi(U) and Ỹ, where pi(U) is the pseudo­inverse of U. With the encoding variable

matrices V and Ṽ, the decision can be made to have the class label at a single point
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Figure 6.6 : The contours of wavelet coefficients for a representative left imagery

(upper panels) and a right imagery (bottom panels) EEGs.
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Figure 6.7 : Basis vectors extracted from imagery movement two­channel EEG

training samples using five NMF models.
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in time from the maximal posterior probability. Readers are referred to [168] for

the details of this online Bayesian classifier. Fig 6.7 shows the basis vectors of

training samples obtained by five NMF models. All basis vectors reveal some useful

characteristics, for example, µ rhythm, β rhythm, and sensori-motor rhythm (12-

16 Hz). Fig 6.8 indicates the time course of five methods to continuously classify

the single-trial imagery movements on test data. Five methods have a similar time

course profile of classification accuracy. The accuracy is much lower at the beginning

of the imagery and suddenly rises to a local maximum at around 3.2 s. However, the

accuracy of DPNMF is superior to others with a 2-3% increment. Then, following

the subject continuously performing the mental task, the accuracy of all methods

slightly decreases and suddenly rises again. DPNMF reaches the highest accuracy

of 83% at 3.8 s while others also rise with the maximum lower than 81% at almost

the same time. It can be concluded from this figure that DPNMF performs much

better than others to extract discriminative features for this imagery movement

classification problem.

3 4 5 6 7 8 9
Time(s)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Ac
cu

ra
cy

DPNMF
MUNMF
SCNMF
MahNMF
PSNMF

Figure 6.8 : Time course of the classification accuracy using the encoding variable

matrix extracted from five NMF models.
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6.4 Discussion and Conclusion

A new NMF method is proposed by using a Dirichlet process to model noise

as a mixed Gaussian distribution under the variational Bayesian framework. To

make variational inference feasible, a stick-breaking representation of the Dirichlet

process and a factorization assumption for the posterior distribution are used. In

addition, the order of latent matrices is automatically pruned by placing an ARD

prior. Compared with the existing NMF methods, which assume a certain noise

distribution (e.g., Gaussian or sparse noise) on data, DPNMF can extract the latent

factor matrices under more complex noise distributions. The effectiveness of DP-

NMF has been demonstrated by synthetic data with artificial noise and by muscle

synergies extraction and imagery movement classification problems with real noise.

The proposed DPNMF model yields much better performance result over existing

methods with respect to its capability to accurately extract the latent structure

and elaborately model the multimodal noise configuration from observed signals.

Although this chapter focuses on two applications in biomedical engineering and

neuroscience, DPNMF is expected to have a broader range of applications in signal

processing and machine learning.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis had presented works on nonparametric Bayesian models and their ap-

plications on signal processing, including image denoising, inpainting and biomedical

signal processing. In the following, the key results and findings of this thesis are

summarised as follows.

(1) A hybrid nonlocal image blind denoising framework is proposed which exploits

both Bayesian low-rank approximation and Stein’s unbiased risk estimation. A

variational Bayesian model is utilized to approximate the low-rank structure

of the patch matrix, which simultaneously performs the noise removal and

noise variance estimation. The full-rank Stein’s unbiased risk estimator and

its divergence formulas are modified for use in reduced-rank singular value

thresholding. This modified SSVT algorithm directly maximizes the PSNR

by refining the optimal threshold that minimizes the MSE estimation of rank-

reduced eigen-triplets. The modified SURE model is applied on the rank-

reduced eigen-triplets to enhance the initial low-rank approximation and to

produce a more precise estimate of the original image.

(2) A generative model is presented for kernelized sparse Bayesian matrix fac-

torization (KSBMF). The proposed formulation implicitly estimates the rank

of the matrix without requiring the prior knowledge on the rank of the ma-

trix, which frees the user from extensive parameter-tuning and groundless

attempts. In addition, KSBMF simultaneously achieves low-rankness through
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sparse Bayesian learning and sparsity through an enforced constraint on la-

tent factor matrices. Furthermore, this generic model is applicable to either

recovering low-rank items from noisy measurements or performing matrix com-

pletion. Based on the model, two algorithms are presented which incorporate

the patch similarity-based kernel into the generic KSBMF model for enhanced

image denoising and inpainting.

(3) To deal with complex noise in real scenarios, a hierarchical Dirichlet process

nonnegative matrix factorization model is proposed. The model takes advan-

tage of the GMM as a universal approximator to fit various types of noise

rather than a single noise kernel in existing NMF models. Dirichlet process

is employed to determine the number of Gaussians needed, instead of doing

heuristic pruning or trying ungrounded guesses. The model is formulated into

the variational Bayesian update rules instead of the usual multiplicative up-

dating rules for NMF. The proposed model is demonstrated to significantly

improve the performance of two real-world problems, i.e., muscle synergies ex-

traction and movement imagery EEG classification, which heavily rely on the

NMF technique.

7.2 Future Work

To better handle the noise in the signal, the future research can be conducted in

but not limited to the following aspects.

(1) The proposed image denoising models can naturally extend to the models to

remove Poisson, Gamma, Rician as well as hybrid noise in the image for real-

world applications. The combination of the current model with deep neural

networks to form a hybrid deep Bayesian learning scheme for improved image

denoising, deblurring, and completion is also worth to investigate.
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(2) A number of NMF algorithms have been extended to nonnegative tensor de-

composition. To leverage the capacity of DP to model complex noise and

tensor to represent multiway data together, it is worth to try to develop DP-

based Bayesian nonnegative tensor decomposition model, which is expected

to improve the performance of tensor signal processing tasks, for example, the

tensor EEG involving both temporal and trial coordinates or the tensor EMG

in a temporal-spatial-spectral domain.



104

Appendix

Von Mises-Fisher distribution

For a matrix random variable D ∈ Rp×q with restriction p ≥ q and D′D = Iq,

the von Mises-Fisher distribution of D is given by

f(D|F ) = vMF(F ) =
1

κ(p,F ′F )
exp(tr(F ′D)), (7.1)

κ(p,FF ′) = 0F1(
1

2
p,

1

4
F ′F )C(p, q), (7.2)

where F ∈ Rp×q is a matrix parameter of the same dimensions as D and κ(p,F ′F )

is the normalizing constant. 0F1(·) denotes a hypergeometric function of matrix

argument F ′F . C(p, q) denotes the area of the relevant Stiefel manifold F.

Truncated normal distribution

The probability density function of the truncated normal distribution f(x) for

x ∈ (a, b) is given by

f(x|µ, σ, a, b) =

√
2exp(−(1/2)((x− µ)/σ)2)

σ
√
π(erf(β)− erf(α))

χ((a, b]), (7.3)

where α = (a − µ)/σ
√

2, β = (b − µ)/σ
√

2. The first two moments of Eq. (7.3)

are x̂ = µ − sζ(µ, s) and x̂2 = s2 + µx̂ − sρ(µ, s), which depend on the auxiliary

functions

ζ(µ, σ) =

√
2[exp(−β2)− exp(−α2)]√

π(erf(β)− erf(α))
, (7.4)

ρ(µ, σ) =

√
2[bexp(−β2)− aexp(−α2)]√

π(erf(β)− erf(α))
. (7.5)

Here erf(x) denotes the error function.
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Gamma distribution

The probability density function of the gamma distribution with shape parameter

α and rate parameter β is denoted as

f(x|a, b) =
βαxα−1e−βx

Γ(α)
(7.6)

where x > 0 and α, β > 0. Γ(·) is the gamma function. The first moment of Eq. (7.6)

is x̂ = α/β.



106

Bibliography

[1] P. Orbanz and Y. W. Teh, “Bayesian nonparametric models.” Encyclopedia of

machine learning, no. 1, 2010.

[2] N. Sengupta, M. Sahidullah, and G. Saha, “Lung sound classification us-

ing cepstral-based statistical features,” Computers in biology and medicine,

vol. 75, pp. 118–129, 2016.

[3] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing. Pearson

Education, 2014.

[4] A. Buades, B. Coll, and J. M. Morel, “On image denoising methods,” CMLA

Preprint, vol. 5, 2004.

[5] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by

sparse 3-D transform-domain collaborative filtering,” IEEE Transactions on

Image Processing, vol. 16, no. 8, pp. 2080–2095, 2007.

[6] M. L. Uss, B. Vozel, V. V. Lukin, and K. Chehdi, “Local signal-dependent

noise variance estimation from hyperspectral textural images,” IEEE Journal

of Selected Topics in Signal Processing, vol. 5, no. 3, pp. 469–486, 2011.

[7] S. Pyatykh, J. Hesser, and L. Zheng, “Image noise level estimation by principal

component analysis,” IEEE Transactions on Image Processing, vol. 22, no. 2,

pp. 687–699, 2013.

[8] X. Fu, K. Huang, N. D. Sidiropoulos, and W.-K. Ma, “Nonnegative matrix

factorization for signal and data analytics: Identifiability, algorithms, and



107

applications,” IEEE Signal Processing Magazine, vol. 36, pp. 59–80, 2019.

[9] J. Shi, X. Zheng, and W. Yang, “Survey on probabilistic models of low-rank

matrix factorizations,” Entropy, vol. 19, no. 8, p. 424, 2017.

[10] M. A. Davenport and J. Romberg, “An overview of low-rank matrix recovery

from incomplete observations,” arXiv preprint arXiv:1601.06422, 2016.

[11] S. Li and Y. Fu, “Robust subspace learning,” in Robust Representation for

Data Analytics. Springer, 2017, pp. 45–71.

[12] X. Zhou, C. Yang, H. Zhao, and W. Yu, “Low-rank modeling and its appli-

cations in image analysis,” ACM Computing Surveys (CSUR), vol. 47, no. 2,

p. 36, 2015.

[13] T. Bouwmans, A. Sobral, S. Javed, S. K. Jung, and E.-H. Zahzah, “Decom-

position into low-rank plus additive matrices for background/foreground sep-

aration: A review for a comparative evaluation with a large-scale dataset,”

Computer Science Review, vol. 23, pp. 1–71, 2017.

[14] T. Virtanen, J. F. Gemmeke, B. Raj, and P. Smaragdis, “Compositional mod-

els for audio processing: Uncovering the structure of sound mixtures,” IEEE

Signal Processing Magazine, vol. 32, no. 2, pp. 125–144, 2015.

[15] L. Yang, X. Chen, Z. Liu, and M. Sun, “Improving word representations with

document labels,” IEEE/ACM Transactions on Audio, Speech, and Language

Processing, vol. 25, no. 4, pp. 863–870, 2017.

[16] L. Lan, K. Zhang, H. Ge, W. Cheng, J. Liu, A. Rauber, X.-L. Li, J. Wang,

and H. Zha, “Low-rank decomposition meets kernel learning: A generalized

nyström method,” Artificial Intelligence, vol. 250, pp. 1–15, 2017.



108

[17] A. Narita, K. Hayashi, R. Tomioka, and H. Kashima, “Tensor factorization

using auxiliary information,” Data Mining and Knowledge Discovery, vol. 25,

no. 2, pp. 298–324, 2012.

[18] R. Forsati, M. Mahdavi, M. Shamsfard, and M. Sarwat, “Matrix factorization

with explicit trust and distrust side information for improved social recommen-

dation,” ACM Transactions on Information Systems (TOIS), vol. 32, no. 4,

p. 17, 2014.

[19] W. Fithian, R. Mazumder et al., “Flexible low-rank statistical modeling with

missing data and side information,” Statistical Science, vol. 33, no. 2, pp.

238–260, 2018.

[20] K.-Y. Chiang, C.-J. Hsieh, and I. Dhillon, “Robust principal component anal-

ysis with side information,” in International Conference on Machine Learning,

2016, pp. 2291–2299.

[21] N. Xue, Y. Panagakis, and S. Zafeiriou, “Side information in robust principal

component analysis: Algorithms and applications,” in Proceedings of the IEEE

International Conference on Computer Vision, 2017, pp. 4317–4325.

[22] V.-G. Nguyen and S.-J. Lee, “Incorporating anatomical side information into

PET reconstruction using nonlocal regularization,” IEEE Transactions on Im-

age Processing, vol. 22, no. 10, pp. 3961–3973, 2013.

[23] Z. Zhang, Y. Liu, and Z. Zhang, “Field-aware matrix factorization for recom-

mender systems,” IEEE Access, vol. 6, pp. 45 690–45 698, 2018.

[24] L. Huang, X. Li, P. Guo, Y. Yao, B. Liao, W. Zhang, F. Wang, J. Yang,

Y. Zhao, H. Sun et al., “Matrix completion with side information and its ap-

plications in predicting the antigenicity of influenza viruses,” Bioinformatics,

vol. 33, no. 20, pp. 3195–3201, 2017.



109

[25] K. Huang and N. D. Sidiropoulos, “Putting nonnegative matrix factorization

to the test: A tutorial derivation of pertinent Cramer–Rao bounds and perfor-

mance benchmarking,” IEEE Signal Processing Magazine, vol. 31, no. 3, pp.

76–86, 2014.

[26] Y.-X. Wang and Y.-J. Zhang, “Nonnegative matrix factorization: A com-

prehensive review,” IEEE Transactions on Knowledge and Data Engineering,

vol. 25, no. 6, pp. 1336–1353, 2013.

[27] N. Gillis, “The why and how of nonnegative matrix factorization,” Regulariza-

tion, Optimization, Kernels, and Support Vector Machines, vol. 12, no. 257,

2014.

[28] G. Zhou, A. Cichocki, Q. Zhao, and S. Xie, “Nonnegative matrix and tensor

factorizations: An algorithmic perspective,” IEEE Signal Processing Maga-

zine, vol. 31, no. 3, pp. 54–65, 2014.

[29] P. O. Hoyer, “Non-negative matrix factorization with sparseness constraints,”

Journal of Machine Learning Research, vol. 5, no. Nov, pp. 1457–1469, 2004.

[30] A. B. Owen, P. O. Perry et al., “Bi-cross-validation of the SVD and the non-

negative matrix factorization,” The Annals of Applied Statistics, vol. 3, no. 2,

pp. 564–594, 2009.

[31] J. Josse and F. Husson, “Selecting the number of components in principal com-

ponent analysis using cross-validation approximations,” Computational Statis-

tics & Data Analysis, vol. 56, no. 6, pp. 1869–1879, 2012.

[32] M. Gavish and D. L. Donoho, “The optimal hard threshold for singular values

is 4/
√

3,” IEEE Transactions on Information Theory, vol. 60, no. 8, pp. 5040–

5053, 2014.



110

[33] Q. Guo, C. Zhang, Y. Zhang, and H. Liu, “An efficient SVD-based method

for image denoising,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 26, no. 5, pp. 868–880, 2016.

[34] Y. Zhang, J. Liu, M. Li, and Z. Guo, “Joint image denoising using adaptive

principal component analysis and self-similarity,” Information Sciences, vol.

259, pp. 128–141, 2014.

[35] Q. Guo, S. Gao, X. Zhang, Y. Yin, and C. Zhang, “Patch-based image in-

painting via two-stage low rank approximation,” IEEE Transactions on Visu-

alization and Computer Graphics, vol. 24, no. 6, pp. 2023–2036, 2018.

[36] E. J. Candes, C. A. Sing-Long, and J. D. Trzasko, “Unbiased risk estimates

for singular value thresholding and spectral estimators,” IEEE Transactions

on Signal Processing, vol. 61, no. 19, pp. 4643–4657, 2013.

[37] W. Dong, G. Shi, and X. Li, “Nonlocal image restoration with bilateral vari-

ance estimation: a low-rank approach,” IEEE Transactions on Image Process-

ing, vol. 22, no. 2, pp. 700–711, 2013.

[38] S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted nuclear norm minimization

with application to image denoising,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2014, pp. 2862–2869.

[39] S. F. Yeganli, H. Demirel, and R. Yu, “Noise removal from MR images via

iterative regularization based on higher-order singular value decomposition,”

Signal, Image and Video Processing, vol. 11, no. 8, pp. 1477–1484, 2017.

[40] Z. Huang, Q. Li, H. Fang, T. Zhang, and N. Sang, “Iterative weighted nuclear

norm for X-ray cardiovascular angiogram image denoising,” Signal, Image and

Video Processing, vol. 11, no. 8, pp. 1445–1452, 2017.



111

[41] X. M. Luo, Z. Y. Suo, Q. G. Liu, and X. F. Wang, “Efficient noise reduction for

interferometric phase image via non-local non-convex low-rank regularisation,”

IET Signal Processing, vol. 10, no. 7, pp. 815–824, 2016.

[42] Y. Xie, S. Gu, Y. Liu, W. Zuo, W. Zhang, and L. Zhang, “Weighted Schatten

p-norm minimization for image denoising and background subtraction,” IEEE

Transactions on Image Processing, vol. 25, no. 10, pp. 4842–4857, 2016.

[43] J. Josse and S. Sardy, “Adaptive shrinkage of singular values,” Statistics and

Computing, vol. 26, no. 3, pp. 715–724, 2016.

[44] M. Verbanck, J. Josse, and F. Husson, “Regularised PCA to denoise and

visualise data,” Statistics and Computing, vol. 25, no. 2, pp. 471–486, 2015.

[45] X. Jia, X. Feng, and W. Wang, “Rank constrained nuclear norm minimization

with application to image denoising,” Signal Processing, vol. 129, pp. 1–11,

2016.

[46] M. Nejati, S. Samavi, H. Derksen, and K. Najarian, “Denoising by low-rank

and sparse representations,” Journal of Visual Communication and Image

Representation, vol. 36, pp. 28–39, 2016.

[47] W. He, H. Zhang, L. Zhang, and H. Shen, “Hyperspectral image denoising

via noise-adjusted iterative low-rank matrix approximation,” IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8,

no. 6, pp. 3050–3061, 2015.

[48] C. Zhang, W. Hu, T. Jin, and Z. Mei, “Nonlocal image denoising via adaptive

tensor nuclear norm minimization,” Neural Computing and Applications, pp.

1–17, 2015.

[49] X. Liu, X.-Y. Jing, G. Tang, F. Wu, and Q. Ge, “Image denoising using



112

weighted nuclear norm minimization with multiple strategies,” Signal Pro-

cessing, vol. 135, pp. 239–252, 2017.

[50] Z. Wu, Q. Wang, J. Jin, and Y. Shen, “Structure tensor total variation-

regularized weighted nuclear norm minimization for hyperspectral image

mixed denoising,” Signal Processing, vol. 131, pp. 202–219, 2017.

[51] P. D. Hoff, “Model averaging and dimension selection for the singular value

decomposition,” Journal of the American Statistical Association, vol. 102, no.

478, pp. 674–685, 2007.

[52] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian

denoiser: Residual learning of deep CNN for image denoising,” IEEE Trans-

actions on Image Processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[53] M. O. Ulfarsson and V. Solo, “Dimension estimation in noisy PCA with SURE

and random matrix theory,” IEEE Transactions on Signal Processing, vol. 56,

no. 12, pp. 5804–5816, 2008.

[54] ——, “Selecting the number of principal components with SURE,” IEEE Sig-

nal Processing Letters, vol. 22, no. 2, pp. 239–243, 2015.

[55] N. R. Hansen, “On Steins unbiased risk estimate for reduced rank estimators,”

Statistics & Probability Letters, vol. 135, pp. 76–82, 2018.

[56] S. Ramani, Z. Liu, J. Rosen, J.-F. Nielsen, and J. A. Fessler, “Regulariza-

tion parameter selection for nonlinear iterative image restoration and MRI

reconstruction using GCV and SURE-based methods,” IEEE Transactions on

Image Processing, vol. 21, no. 8, pp. 3659–3672, 2012.

[57] T. Qiu, A. Wang, N. Yu, and A. Song, “LLSURE: local linear SURE-based

edge-preserving image filtering,” IEEE Transactions on Image Processing,

vol. 22, no. 1, pp. 80–90, 2013.



113
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