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Abstract

Congestive heart failure (CHF) is one of the most important cardiovascular syndrome
and end stage of all kinds of heart diseases. Due to high mortality and morbidity,
risk assessment of patient suffering CHF has attracted many attentions. The existing
research about CHF assessment mainly focused on disease detection using ECG signals,
especially with 24-h/5-min heart rate variability (HRV), both in mechanism analysis
and classification. A significant relation between different ECG components and disease
condition had been proved. Furthermore, a good classification performance had been
achieved in CHF detection using HRV. However, there is not much attention focusing
on multilevel assessment of CHF, i.e. disease detection and quantification. Also, sleep
apnea and CHF are two of the most common diseases and interrelated, which are
hard to differentiate from the syndrome. But there is no research in differentiating the
two diseases. Besides, RR intervals are sensitive to physiological activity and rhythm,
increasing unstable analysis and results. Thus, this research will devote to ECG analysis
and multi-level risk assessment model construction to achieve robust, convenient and
accurate CHF detection and quantification, as well as underlying mechanism analysis.

In this research, 116 RR interval data were downloaded from MIT/BIH database,
including 72 normal persons and 44 CHF patients. First, we analyzed 24-h RR intervals
and proposed a series of novel indices of HRV - dynamic indices - to better describing
difference among different risk levels of CHF patients in a day. Then we applied
the decision-tree based support vector machine and backward elimination algorithm
to construct a 4-level risk assessment model for CHF assessment. Results showed a
total accuracy of 96.61% with only two misclassified samples. This demonstrated the
stratifying risk assessment model of CHF in our research has the potential to be a
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reliable and objective prognostic marker for the routine clinical application (especially
daily health nursing) in the future.

Then, we applied 5-min RR intervals into a unsupervised sparse-auto-encoder based
deep learning algorithm to explore CHF detection performance under short cycle in
big data condition. A total of 30592 5-min RR intervals was obtained from 72 healthy
persons and 44 CHF patients. This algorithm first extracts unsupervised features using
a sparse auto-encoder neural network from the raw RR intervals. Then a two layers’
neural network model was constructed. Various hidden node settings were compared
to optimize classification performance. Results showed an accuracy of 72.44% in CHF
detection under the constructed 2-layer neural network, and optimal nodes setting is
(200, 50). This result indicated that short-term RR intervals have the potential for
CHF detection but is sensitive to body condition.

Next, we analyzed different time scale of HRV from 5-min to 24-h to explore optimal
time scale for CHF detection and quantification. Statistical analysis between 3-level
risk-groups was applied under 10 classical HRV measures to evaluate differentiating
power in risk assessment of CHF for the optimal time scale. With the optimal time
length, we used classical classifiers with these classical HRV measures in 3-level risk level
classification of CHF, to prove the usage in risk assessment. The statistical analysis
of HRV measures showed that 2-h RR interval data has the optimal performance
in differentiating three risk levels. The classification performance showed that the
optimal timescale of 2-hour for CHF assessment, yielded an comparable accuracy of
87.88% and 81.13% for classifying the healthy from patients and lower risk from higher
risk patients, respectively. This research demonstrated that the optimal measurement
timescale (2h) has potential in providing convenient and reliable CHF assessment in
the future application, especially in-home monitoring.

Finally, we analyzed whole night Polysomnography (PSG) data to differentiating
congestive heart failure and sleep apnoea patients, which are two of the most tightly
interrelated and common diseases in cardiopulmonary system. Twenty whole night
PSG data from the Sleep Heart Health Study database were included in this study. The
Pan-Tompkins algorithm was applied to the electrocardiograph signal to detect R peaks
of the QRS complex. The whole night R peaks data were then manually checked and
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segmented into 1895 5-minute epochs to calculate three frequency domain and three
nonlinear heart rate variability measures. All these measures were analyzed for their
statistical differences between groups (sleep apnea with and without CHF). Finally, a
binary support vector machine classifier and extreme search method were performed
to construct the model. Results showed that an accuracy of 81.68% was achieved in
distinguishing sleep apnea patients with and without CHF. This indicated that HRV
measures from PSG had the potential to help distinguish sleep apnea patients with
and without CHF reported.

In conclusion, with all these analyses of ECG signals in congestive heart failure
classification, we proved the potential of HRV from ECG in robust, accurate and
convenient congestive heart failure assessment using intelligent methods, which can be
applicated in home-monitoring with wearable ECG measurement equipment.





Publications

The contents of this thesis are based on the following papers that have been published,
accepted, or submitted to peer-reviewed journals and conferences.

Journal Papers:

1. Wenhui Chen, Lianrong Zheng, Kunyang Li, Qian Wang, Guanzheng Liu, and
Qing Jiang. "A novel and effective method for congestive heart failure detection
and quantification using dynamic heart rate variability measurement." PloS one,
11(11), e0165304, 2016.

2. Wenhui Chen, Guanzheng Liu, Steven Su, Qing Jiang, and Hung Nguyen. "A
CHF detection method based on deep learning with RR intervals." 2017 39th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC). IEEE, 2017.

3. Wenhui Chen, Steven Su, Hung Nguyen, Qing Jiang, and Guanzheng Liu. "Dy-
namic heart rate variability in autonomic unbalance for congestive heart failure
stratification." (Submitted for publication).

4. Wenhui Chen, Qing Jiang, Steven Su, and Hung Nguyen. "Automatic Risk
Assessment of Congestive Heart Failure Using ECG at Optimal Time scale."
(Submitted for publication).

Conference Papers:

1. Wenhui Chen, Guanzheng Liu, Steven Su, Qing Jiang, and Hung Nguyen. "A
CHF detection method based on deep learning with RR intervals." In the 39th



Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC’ 2019), pp. 3369-3372, IEEE, 2017.

2. Wenhui Chen, Prof. Yifan Chen, MD B. Uddin, Prof. Hung Nguyen, Chin M.
Chow, and Steven W. Su. "An Automatic Method to Differentiate Sleep Apnea
Patients with and without Congestive Heart Failure using Polysomnography
Records." In The 13th IEEE-EMBS International Summer School and Symposium
on Medical Devices and Biosensors (MDBS’ 2019), IEEE, 2019.



Table of contents

List of figures

List of tables

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation and Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Dissertation Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background and Literature Review 17

2.1 Classical HRV Measures for Risk Assessment of Congestive Heart Failure 17

2.2 Statistic Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Feature Selection Methods for Congestive Heart Failure Assessment . . 21

2.3.1 Backward Elimination . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Exhaustive Search . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Classification Algorithm for Congestive Heart Failure Assessment . . . 22

2.4.1 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Decision Tree based Support Vector Machine . . . . . . . . . . . 23

2.4.3 Sparse Auto Encoder based Deep Learning . . . . . . . . . . . . 23



Table of contents

2.5 Performance Evaluation Measures . . . . . . . . . . . . . . . . . . . . . 25

2.6 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.1 Risk Assessment of CHF with Physiological Measures . . . . . . 25

2.6.2 Risk Assessment of CHF with HRV . . . . . . . . . . . . . . . . 29

2.6.3 Risk Assessment of CHF with Other ECG Components . . . . . 32

2.6.4 Risk Assessment of CHF and Sleep Apnea . . . . . . . . . . . . 34

3 Dynamic HRV in Autonomic Unbalance for CHF Stratification 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Samples Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Analysis among Groups . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Subgroup Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Multilevel CHF Detection and Quantification using Dynamic HRV
Measurement 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Multilevel Risk Assessment with 24-h RR Data . . . . . . . . . . . . . 53

4.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 HRV Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 DT-SVM Algorithm based Multistage Risk Assessment Model
Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.4 Validation and Performance . . . . . . . . . . . . . . . . . . . . 61



Table of contents

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Feature Performance Analysis with C-SVM . . . . . . . . . . . . 62

4.4 Multistage Risk Assessment Model Construction based on DT-SVM . . 63

4.4.1 Node and Feature Selection . . . . . . . . . . . . . . . . . . . . 64

4.4.2 DT-SVM based 4-level Risk Assessment Model . . . . . . . . . . 65

4.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6.1 Comparison with Others . . . . . . . . . . . . . . . . . . . . . . 68

4.6.2 HRV Measurement Analysis . . . . . . . . . . . . . . . . . . . . 69

4.6.3 Classifier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.4 Clinical Significance . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Unsupervised CHF Detection method using SAE-based DL and 5-
min RR intervals 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.2 Deep Learning based CHF Detection Algorithm . . . . . . . . . 77

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Automatic Risk Assessment of CHF Using ECG at Optimal Time
Scale 85

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



Table of contents

6.2.2 HRV Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.3 Optimal Time Scale Analysis . . . . . . . . . . . . . . . . . . . 89

6.2.4 3-level Risk Assessment Model Construction . . . . . . . . . . . 91

6.2.5 Validation and Performance . . . . . . . . . . . . . . . . . . . . 94

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.1 The Optimal Time Scale for CHF Risk Assessment . . . . . . . 94

6.3.2 Classification Performance of 2h Data in 3-level CHF Assessment 99

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 An Automatic Method to Differentiate Sleep Apnea Patients with
Congestive Heart Failure Using HRV 109

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.1 Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.2 HRV Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.3 Model Construction . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Conclusions and Future Work 119

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

References 125



List of figures

1.1 Symptoms of congestive heart failure. (http://pie.uhnresearch.ca/heartfailure/heart-
failure/symptoms-heart-failure/) . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Heart Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Typical ECG signals with P, Q, R, S, T wave. . . . . . . . . . . . . . . 6

2.1 The Seattle Heart Failure Model has been implemented as an interac-
tive program that employs the Seattle Heart Failure Score to estimate
mean, 1-, 2-, and 5-year survival and the benefit of adding medications
and/or devices for an individual patient. This model is available at
www.SeattleHeartFailureModel.org. ACE-I indicates ACE inhibitor;
ARB, angiotensin receptor blocker; HCTZ, hydrochlorothiazide; Hgb,
hemoglobin; and BiV, biventricular. . . . . . . . . . . . . . . . . . . . . 26

2.2 Event-free survival curves according to baseline percentage of predicted
peak oxygen uptake, greater or less than 62% of the predicted values
(median value)(p=0.0004). . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Images for (a) healthy case, (b) 2 mL water injected in right lung, and
(c) water injected n both lungs with difference of 2 mL. . . . . . . . . . 28

3.1 Difference in mean of low to high frequency (LH) power among different
groups according to severity. N: normal samples; LR: CHF patients with
NYHA I-II; HR: CHF patients with NYHA I-II. *, ** and *** represent
p<0.05, p<0.01 and p<0.001, respectively. . . . . . . . . . . . . . . . . 43



List of figures

3.2 Difference in stabdard deviation (SD) of mean among different groups
according to severity. N: normal samples; LR: CHF patients with NYHA
I-II; HR: CHF patients with NYHA I-II. *, ** and *** represent p<0.05,
p<0.01 and p<0.001, respectively. . . . . . . . . . . . . . . . . . . . . . 44

3.3 Difference in fuzzy entropy (FuzzyEn) of low to high frequency (LH)
power among different groups according to severity. N: normal samples;
LR: CHF patients with NYHA I-II; HR: CHF patients with NYHA I-II.
*, ** and *** represent p<0.05, p<0.01 and p<0.001, respectively. . . . 46

4.1 Flowchart of entire work. N: normal people; P: CHF patients, in which
1 is of New York Heart Association (NYHA) I-II, 2 is of NYHA III,
3 is of NYHA III-IV; S1: basic measures of 24-h RR interval data,
which reflect long-term data variation); S2: basic measures of the second
5-min segment, which representing a stable measurement condition of
short-term data; S3: mid-value of basic measures of 5-min segments,
which showing an intermediate state of short-term data; D1: mean value
of basic measures of 5-min segments, for robustness improvement; D2:
standard deviation of each basic measure of 5-min segments; D3: root
mean square of each basic measure of 5-min segments; D4: coefficient
variation of each basic measure of 5-min segments; D5: percentage of
abnormal value (value intervening M±S) of each basic measure of 5-min
segments; D6: sample entropy of each basic measure of 5-min segments;
D7: fuzzy entropy of each basic measure of 5-min segments; DT-SVM:
decision tree based support vector machine. . . . . . . . . . . . . . . . 54

4.2 Multistage classification algorithm based on DT-SVM for risk assessment.
Upper diagram: tree-structured classifier. Lower diagram: wrappers for
feature selection. N: normal samples; P: CHF patients, in which 1 is
of New York Heart Associaiton (NYHA) I-II, 2 is of NYHA III, 3 is of
NYHA III-IV; DSF: disease screening function; RAF: risk assessment
function, in which I is for discriminating the higher risk from the lower
risk, II is for distinction of moderate risk and mild risk; BE: backward
elimination; SD: significance difference. . . . . . . . . . . . . . . . . . . 62



List of figures

4.3 Multistage risk assessment model of CHF. DSF: disease screening func-
tion to detect normal people from CHF patients; RAF: risk assessment
function, in which I is for discriminating the higher risk from the lower
risk, II is for distinction of moderate risk and mild risk; N: normal
samples; P: CHF patients, in which 1 is of New York Heart Association
(NYHA) I-II, 2 is of NYHA III, 3 is of NYHA III-IV. . . . . . . . . . . 66

4.4 Confusion matrices. N: normal samples; P: CHF patients, in which 1 is
of New York Heart Association (NYHA) I-II, 2 is of NYHA III, 3 is of
NYHA III-IV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Typical neural network of sparse auto encoder (SAE) based deep learning
(DL) structure. Each circle of hidden layers is a hidden node; input layer
is learnt features with SAE network. . . . . . . . . . . . . . . . . . . . 78

6.1 Flow chart of 3-level congestive heart failure (CHF) assessment using
optimal timescale (2h) and support vector machine. . . . . . . . . . . . 91

6.2 Bar graph of the biggest p-value of features between 1h and 2h. The
x-axis is the ten HRV measures described in Section 6.2; the y-axis is
the biggest p-value of the features among groups. . . . . . . . . . . . . 95

6.3 Bar graph of the biggest p-value of features between 2h and 3h. The
x-axis is the ten HRV measures described in Section 6.2; the y-axis is
the biggest p-value of the features among groups. . . . . . . . . . . . . 96

6.4 Bar graph of the biggest p-value of features between 2h and 4h. The
x-axis is the ten HRV measures described in Section 6.2; the y-axis is
the biggest p-value of the features among groups. . . . . . . . . . . . . 97

6.5 Bar graph of the biggest p-value of features between 2h and 6h. The
x-axis is the ten HRV measures described in Section 6.2; the y-axis is
the biggest p-value of the features among groups. . . . . . . . . . . . . 98

6.6 Bar graph of the biggest p-value of features between 2h and 8ph. The
x-axis is the ten HRV measures described in Section 6.2; the y-axis is
the biggest p-value of the features among groups. . . . . . . . . . . . . 99



List of figures

6.7 Bar graph of the biggest p-value of features between 2h and 24h. The
x-axis is the ten HRV measures described in Section 6.2; the y-axis is
the biggest p-value of the features among groups. . . . . . . . . . . . . 100

7.1 Workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2 Confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



List of tables

1.1 NYHA functional classification . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Related work on congestive heart failure (CHF) detection . . . . . . . . 31

2.2 Related work on congestive heart failure (CHF) stratification . . . . . . 32

2.3 Related work using the other ECG components except heart rate vari-
ability (HRV) in risk assessment of congestive heart failure (CHF) . . 33

3.1 Analysis result of classical heart rate variability (HRV) features of 24-h
data according to severity . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Analysis result of dynamic heart rate variability (HRV) features - mean
and standard deviation (SD) of classical features of 5-min segments in
24-h according to severity . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Analysis result of dynamic heart rate variability (HRV) features - mean
and standard deviation (SD) of classical features of 5-min segments in
24-h according to severity . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Analysis result of dynamic heart rate variability (HRV) features - fuzzy
entropy of classical features of 5-min segments in 24-h according to severity 45

4.1 Classification performance of classical support vector machine (C-SVM)
in 4-level risk assessment of congestive heart failure (CHF) . . . . . . . 63

4.2 Performance of different feature combinations for disease detection and
quantification of congestive heart failure (CHF) . . . . . . . . . . . . . 63



List of tables

4.3 Result of node selection for level 1 among all samples . . . . . . . . . . 64

4.4 Result of node selection for level 2 among CHF patients . . . . . . . . . 65

4.5 Selected optimal feature subsets for each level with backward elimination
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Classification performance . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Highlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Performance of train and test set with different hidden nodes combinations 81

6.1 Sample information about 2h segments . . . . . . . . . . . . . . . . . . 92

6.2 Mean of biggest p-value of features at 1h and 2h. . . . . . . . . . . . . 95

6.3 Mean of biggest p-value of features at 2h and 3h . . . . . . . . . . . . . 96

6.4 Mean of biggest p-value of features at 2h and 4h . . . . . . . . . . . . . 97

6.5 Performance of validation and testing set under possible binary classifi-
cation combinations at layer 1 . . . . . . . . . . . . . . . . . . . . . . . 101

6.6 Performance of validation and testing set with optimal feature subset at
layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.7 The overall performance of validation and testing set with optimal
feature subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.8 Highlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1 Mean and standard deviation (SD) of heart rate variability (HRV)
measures of sleep apnea patients with and without congestive heart failure116

7.2 p-value of heart rate variability (HRV) measures between sleep apnea
patients with and without congestive heart failure . . . . . . . . . . . . 116


	Title Page
	Declaration
	Acknowledgements
	Abstract
	Publications
	Table of contents
	List of figures
	List of tables



