Application of Heart Rate Variability (HRV) in Congestive Heart Failure (CHF) Detection and Quantification

by Wenhui Chen

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Steven Su

University of Technology Sydney
Faculty of Engineering and Information Technology

February 2020
Declaration

I, Wenhui Chen declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Engineering and IT at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature: ____________________________

Date: 20/02/2020

Production Note:
Signature removed prior to publication.
Acknowledgements

I would like to express my great appreciation to my supervisor A/Prof. Steven W. Su for his continual support, guidance, help and encouragement during my PhD study. A/Prof. Su has brought me into a higher research level for the topic of congestive heart failure classification, and provided an excellent research platform and brilliant insights into my research works. It is my honor to have a supervisor who mentors and inspires me to create and achieve higher targets. His conscientious and meticulous attitude on research has had a significant influence on my work.

I would like to demonstrate my sincere gratitude to my co-supervisor Dr Steve S.H. Ling, and external supervisor Prof. Hung T. Nguyen (Swinburne University of Technology, Australia), for their solid support in congestive heart failure classification in terms of artificial intelligent algorithm field, which improve my understanding of my research works.

I am grateful to the other co-supervisors: Prof. Qing Jiang (Sun Yat-sen University, China), Dr. Guanzheng Liu (Sun Yat-sen University, China), and Prof. Rong Song (Sun Yat-sen University, China), for their kind help in financial support and mental encouragement. Prof. Yifan Chen (University of Electronic Science and Technology, China), and Prof. Chin M. Chow (University of Sydney, Australia), for their professional and precious comments and suggestions on my research.

Besides, the Australia-China Joint Research Institute for Health Technology and Innovation (2014), which established by Sun Yat-sen University and University of Technology Sydney, give me the treasure opportunity and financial support to study in Australia.
Special thanks to my lovely colleagues in A/Prof. Steven W. Su’s research group, in particular, Dr. Tao Zhang, Dr. Lin Ye, Dr. Wentian Zhang, Yao Huang, Taoping Liu, Kairui Guo, and Hairong Yu, for their selfless help and mental support. During my PhD study, it is a precious life memory working together with them.

I am also lucky to meet many lovely friends: Dr. Ye Shi, Dr. Zhichao Sheng, Haimin Zhang, Zhiyuan Shi, Dr. Daniel Roxby, for their warm company.

I also wish to express my appreciation to the staff members in the Centre for Health Technologies, School of biomedical engineering, University of Technology Sydney, especially to Prof. Joanne Tipper and Dr Gyorgy Hutvagner. It’s a special and memorizable experience to work with these adorable and inclusive people.

My deepest gratitude goes to my family for their continuous understand and support.

Thanks to all your encouragement!
Abstract

Congestive heart failure (CHF) is one of the most important cardiovascular syndrome and end stage of all kinds of heart diseases. Due to high mortality and morbidity, risk assessment of patient suffering CHF has attracted many attentions. The existing research about CHF assessment mainly focused on disease detection using ECG signals, especially with 24-h/5-min heart rate variability (HRV), both in mechanism analysis and classification. A significant relation between different ECG components and disease condition had been proved. Furthermore, a good classification performance had been achieved in CHF detection using HRV. However, there is not much attention focusing on multilevel assessment of CHF, i.e. disease detection and quantification. Also, sleep apnea and CHF are two of the most common diseases and interrelated, which are hard to differentiate from the syndrome. But there is no research in differentiating the two diseases. Besides, RR intervals are sensitive to physiological activity and rhythm, increasing unstable analysis and results. Thus, this research will devote to ECG analysis and multi-level risk assessment model construction to achieve robust, convenient and accurate CHF detection and quantification, as well as underlying mechanism analysis.

In this research, 116 RR interval data were downloaded from MIT/BIH database, including 72 normal persons and 44 CHF patients. First, we analyzed 24-h RR intervals and proposed a series of novel indices of HRV - dynamic indices - to better describing difference among different risk levels of CHF patients in a day. Then we applied the decision-tree based support vector machine and backward elimination algorithm to construct a 4-level risk assessment model for CHF assessment. Results showed a total accuracy of 96.61% with only two misclassified samples. This demonstrated the stratifying risk assessment model of CHF in our research has the potential to be a
reliable and objective prognostic marker for the routine clinical application (especially
daily health nursing) in the future.

Then, we applied 5-min RR intervals into a unsupervised sparse-auto-encoder based
deep learning algorithm to explore CHF detection performance under short cycle in
big data condition. A total of 30592 5-min RR intervals was obtained from 72 healthy
persons and 44 CHF patients. This algorithm first extracts unsupervised features using
a sparse auto-encoder neural network from the raw RR intervals. Then a two layers’
network model was constructed. Various hidden node settings were compared
to optimize classification performance. Results showed an accuracy of 72.44% in CHF
detection under the constructed 2-layer neural network, and optimal nodes setting is
(200, 50). This result indicated that short-term RR intervals have the potential for
CHF detection but is sensitive to body condition.

Next, we analyzed different time scale of HRV from 5-min to 24-h to explore optimal
time scale for CHF detection and quantification. Statistical analysis between 3-level
risk-groups was applied under 10 classical HRV measures to evaluate differentiating
power in risk assessment of CHF for the optimal time scale. With the optimal time
length, we used classical classifiers with these classical HRV measures in 3-level risk level
classification of CHF, to prove the usage in risk assessment. The statistical analysis
of HRV measures showed that 2-h RR interval data has the optimal performance
in differentiating three risk levels. The classification performance showed that the
optimal timescale of 2-hour for CHF assessment, yielded an comparable accuracy of
87.88% and 81.13% for classifying the healthy from patients and lower risk from higher
risk patients, respectively. This research demonstrated that the optimal measurement
timescale (2h) has potential in providing convenient and reliable CHF assessment in
the future application, especially in-home monitoring.

Finally, we analyzed whole night Polysomnography (PSG) data to differentiating
congestive heart failure and sleep apnoea patients, which are two of the most tightly
interrelated and common diseases in cardiopulmonary system. Twenty whole night
PSG data from the Sleep Heart Health Study database were included in this study. The
Pan-Tompkins algorithm was applied to the electrocardiograph signal to detect R peaks
of the QRS complex. The whole night R peaks data were then manually checked and
segmented into 1895 5-minute epochs to calculate three frequency domain and three nonlinear heart rate variability measures. All these measures were analyzed for their statistical differences between groups (sleep apnea with and without CHF). Finally, a binary support vector machine classifier and extreme search method were performed to construct the model. Results showed that an accuracy of 81.68% was achieved in distinguishing sleep apnea patients with and without CHF. This indicated that HRV measures from PSG had the potential to help distinguish sleep apnea patients with and without CHF reported.

In conclusion, with all these analyses of ECG signals in congestive heart failure classification, we proved the potential of HRV from ECG in robust, accurate and convenient congestive heart failure assessment using intelligent methods, which can be applied in home-monitoring with wearable ECG measurement equipment.
Publications

The contents of this thesis are based on the following papers that have been published, accepted, or submitted to peer-reviewed journals and conferences.

Journal Papers:

Conference Papers:

1. Wenhui Chen, Guanzheng Liu, Steven Su, Qing Jiang, and Hung Nguyen. "A CHF detection method based on deep learning with RR intervals." In the 39th

Table of contents

List of figures

List of tables

1 Introduction

1.1 Problem Statement .. 1
1.2 Motivation and Aims .. 9
1.3 Dissertation Contribution ... 10
1.4 Dissertation Outline .. 12

2 Background and Literature Review

2.1 Classical HRV Measures for Risk Assessment of Congestive Heart Failure 17
2.2 Statistic Analysis Methods .. 20
2.3 Feature Selection Methods for Congestive Heart Failure Assessment ... 21
2.3.1 Backward Elimination ... 21
2.3.2 Exhaustive Search .. 22
2.4 Classification Algorithm for Congestive Heart Failure Assessment ... 22
2.4.1 Support Vector Machine .. 22
2.4.2 Decision Tree based Support Vector Machine 23
2.4.3 Sparse Auto Encoder based Deep Learning 23
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Performance Evaluation Measures</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>Literature Review</td>
<td>25</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Risk Assessment of CHF with Physiological Measures</td>
<td>25</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Risk Assessment of CHF with HRV</td>
<td>29</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Risk Assessment of CHF with Other ECG Components</td>
<td>32</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Risk Assessment of CHF and Sleep Apnea</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>Dynamic HRV in Autonomic Unbalance for CHF Stratification</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Methods</td>
<td>39</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Samples Data</td>
<td>39</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Data Analysis</td>
<td>40</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Statistical Analysis</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Results</td>
<td>41</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Analysis among Groups</td>
<td>41</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Subgroup Analysis</td>
<td>45</td>
</tr>
<tr>
<td>3.4</td>
<td>Conclusion</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>Multilevel CHF Detection and Quantification using Dynamic HRV</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>Multilevel Risk Assessment with 24-h RR Data</td>
<td>53</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Data</td>
<td>53</td>
</tr>
<tr>
<td>4.2.2</td>
<td>HRV Measurement</td>
<td>55</td>
</tr>
<tr>
<td>4.2.3</td>
<td>DT-SVM Algorithm based Multistage Risk Assessment Model</td>
<td>57</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Validation and Performance</td>
<td>61</td>
</tr>
</tbody>
</table>
Table of contents

4.3 Results ... 62
 4.3.1 Feature Performance Analysis with C-SVM 62

4.4 Multistage Risk Assessment Model Construction based on DT-SVM ... 63
 4.4.1 Node and Feature Selection 64
 4.4.2 DT-SVM based 4-level Risk Assessment Model 65

4.5 Validation ... 67

4.6 Discussion ... 68
 4.6.1 Comparison with Others 68
 4.6.2 HRV Measurement Analysis 69
 4.6.3 Classifier Analysis .. 70
 4.6.4 Clinical Significance 71

4.7 Conclusion ... 72

5 Unsupervised CHF Detection method using SAE-based DL and 5-min RR intervals 75
 5.1 Introduction ... 75

5.2 Methods ... 77
 5.2.1 Data .. 77
 5.2.2 Deep Learning based CHF Detection Algorithm 77

5.3 Results and Discussion .. 80

5.4 Conclusion ... 82

6 Automatic Risk Assessment of CHF Using ECG at Optimal Time Scale 85
 6.1 Introduction ... 85

6.2 Methods ... 87
 6.2.1 Data .. 87
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.2</td>
<td>HRV Measurement</td>
<td>88</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Optimal Time Scale Analysis</td>
<td>89</td>
</tr>
<tr>
<td>6.2.4</td>
<td>3-level Risk Assessment Model Construction</td>
<td>91</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Validation and Performance</td>
<td>94</td>
</tr>
<tr>
<td>6.3</td>
<td>Results</td>
<td>94</td>
</tr>
<tr>
<td>6.3.1</td>
<td>The Optimal Time Scale for CHF Risk Assessment</td>
<td>94</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Classification Performance of 2h Data in 3-level CHF Assessment</td>
<td>99</td>
</tr>
<tr>
<td>6.4</td>
<td>Discussion</td>
<td>103</td>
</tr>
<tr>
<td>6.5</td>
<td>Conclusion</td>
<td>107</td>
</tr>
<tr>
<td>7</td>
<td>An Automatic Method to Differentiate Sleep Apnea Patients with Congestive Heart Failure Using HRV</td>
<td>109</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>109</td>
</tr>
<tr>
<td>7.2</td>
<td>Methods</td>
<td>111</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Sample Data</td>
<td>111</td>
</tr>
<tr>
<td>7.2.2</td>
<td>HRV Calculation</td>
<td>112</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Model Construction</td>
<td>113</td>
</tr>
<tr>
<td>7.3</td>
<td>Results and Discussion</td>
<td>115</td>
</tr>
<tr>
<td>7.4</td>
<td>Conclusion</td>
<td>118</td>
</tr>
<tr>
<td>8</td>
<td>Conclusions and Future Work</td>
<td>119</td>
</tr>
<tr>
<td>8.1</td>
<td>Conclusions</td>
<td>119</td>
</tr>
<tr>
<td>8.2</td>
<td>Future Work</td>
<td>123</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>125</td>
</tr>
</tbody>
</table>
List of figures

1.1 Symptoms of congestive heart failure. (http://pie.uhnresearch.ca/heartfailure/heart-failure/symptoms-heart-failure/) ... 2

1.2 Heart Structure. ... 4

1.3 Typical ECG signals with P, Q, R, S, T wave. 6

2.1 The Seattle Heart Failure Model has been implemented as an interactive program that employs the Seattle Heart Failure Score to estimate mean, 1-, 2-, and 5-year survival and the benefit of adding medications and/or devices for an individual patient. This model is available at www.SeattleHeartFailureModel.org. ACE-I indicates ACE inhibitor; ARB, angiotensin receptor blocker; HCTZ, hydrochlorothiazide; Hgb, hemoglobin; and BiV, biventricular. ... 26

2.2 Event-free survival curves according to baseline percentage of predicted peak oxygen uptake, greater or less than 62\% of the predicted values (median value)\(p=0.0004\). ... 27

2.3 Images for (a) healthy case, (b) 2 mL water injected in right lung, and (c) water injected in both lungs with difference of 2 mL. 28

3.1 Difference in mean of low to high frequency (LH) power among different groups according to severity. N: normal samples; LR: CHF patients with NYHA I-II; HR: CHF patients with NYHA I-II. *, ** and *** represent \(p<0.05\), \(p<0.01\) and \(p<0.001\), respectively. ... 43
3.2 Difference in standard deviation (SD) of mean among different groups according to severity. N: normal samples; LR: CHF patients with NYHA I-II; HR: CHF patients with NYHA I-II. *, ** and *** represent $p<0.05$, $p<0.01$ and $p<0.001$, respectively. 44

3.3 Difference in fuzzy entropy (FuzzyEn) of low to high frequency (LH) power among different groups according to severity. N: normal samples; LR: CHF patients with NYHA I-II; HR: CHF patients with NYHA I-II. *, ** and *** represent $p<0.05$, $p<0.01$ and $p<0.001$, respectively. 46

4.1 Flowchart of entire work. N: normal people; P: CHF patients, in which 1 is of New York Heart Association (NYHA) I-II, 2 is of NYHA III, 3 is of NYHA III-IV; S1: basic measures of 24-h RR interval data, which reflect long-term data variation; S2: basic measures of the second 5-min segment, which representing a stable measurement condition of short-term data; S3: mid-value of basic measures of 5-min segments, which showing an intermediate state of short-term data; D1: mean value of basic measures of 5-min segments, for robustness improvement; D2: standard deviation of each basic measure of 5-min segments; D3: root mean square of each basic measure of 5-min segments; D4: coefficient variation of each basic measure of 5-min segments; D5: percentage of abnormal value (value intervening M±S) of each basic measure of 5-min segments; D6: sample entropy of each basic measure of 5-min segments; D7: fuzzy entropy of each basic measure of 5-min segments; DT-SVM: decision tree based support vector machine. 54

4.2 Multistage classification algorithm based on DT-SVM for risk assessment. Upper diagram: tree-structured classifier. Lower diagram: wrappers for feature selection. N: normal samples; P: CHF patients, in which 1 is of New York Heart Association (NYHA) I-II, 2 is of NYHA III, 3 is of NYHA III-IV; DSF: disease screening function; RAF: risk assessment function, in which I is for discriminating the higher risk from the lower risk, II is for distinction of moderate risk and mild risk; BE: backward elimination; SD: significance difference. 62
List of figures

4.3 Multistage risk assessment model of CHF. DSF: disease screening function to detect normal people from CHF patients; RAF: risk assessment function, in which I is for discriminating the higher risk from the lower risk, II is for distinction of moderate risk and mild risk; N: normal samples; P: CHF patients, in which 1 is of New York Heart Association (NYHA) I-II, 2 is of NYHA III, 3 is of NYHA III-IV. .. 66

4.4 Confusion matrices. N: normal samples; P: CHF patients, in which 1 is of New York Heart Association (NYHA) I-II, 2 is of NYHA III, 3 is of NYHA III-IV. .. 67

5.1 Typical neural network of sparse auto encoder (SAE) based deep learning (DL) structure. Each circle of hidden layers is a hidden node; input layer is learnt features with SAE network. .. 78

6.1 Flow chart of 3-level congestive heart failure (CHF) assessment using optimal timescale (2h) and support vector machine. .. 91

6.2 Bar graph of the biggest p-value of features between 1h and 2h. The x-axis is the ten HRV measures described in Section 6.2; the y-axis is the biggest p-value of the features among groups. .. 95

6.3 Bar graph of the biggest p-value of features between 2h and 3h. The x-axis is the ten HRV measures described in Section 6.2; the y-axis is the biggest p-value of the features among groups. .. 96

6.4 Bar graph of the biggest p-value of features between 2h and 4h. The x-axis is the ten HRV measures described in Section 6.2; the y-axis is the biggest p-value of the features among groups. .. 97

6.5 Bar graph of the biggest p-value of features between 2h and 6h. The x-axis is the ten HRV measures described in Section 6.2; the y-axis is the biggest p-value of the features among groups. .. 98

6.6 Bar graph of the biggest p-value of features between 2h and 8ph. The x-axis is the ten HRV measures described in Section 6.2; the y-axis is the biggest p-value of the features among groups. .. 99
6.7 Bar graph of the biggest p-value of features between 2h and 24h. The x-axis is the ten HRV measures described in Section 6.2; the y-axis is the biggest p-value of the features among groups. 100

7.1 Workflow. 112

7.2 Confusion matrix. 117
List of tables

1.1 NYHA functional classification ... 3

2.1 Related work on congestive heart failure (CHF) detection 31

2.2 Related work on congestive heart failure (CHF) stratification 32

2.3 Related work using the other ECG components except heart rate variability (HRV) in risk assessment of congestive heart failure (CHF) ... 33

3.1 Analysis result of classical heart rate variability (HRV) features of 24-h data according to severity .. 42

3.2 Analysis result of dynamic heart rate variability (HRV) features - mean and standard deviation (SD) of classical features of 5-min segments in 24-h according to severity .. 43

3.3 Analysis result of dynamic heart rate variability (HRV) features - mean and standard deviation (SD) of classical features of 5-min segments in 24-h according to severity .. 44

3.4 Analysis result of dynamic heart rate variability (HRV) features - fuzzy entropy of classical features of 5-min segments in 24-h according to severity 45

4.1 Classification performance of classical support vector machine (C-SVM) in 4-level risk assessment of congestive heart failure (CHF) 63

4.2 Performance of different feature combinations for disease detection and quantification of congestive heart failure (CHF) 63
4.3 Result of node selection for level 1 among all samples 64
4.4 Result of node selection for level 2 among CHF patients 65
4.5 Selected optimal feature subsets for each level with backward elimination algorithm 65
4.6 Classification performance 68
4.7 Highlight 69

5.1 Performance of train and test set with different hidden nodes combinations 81

6.1 Sample information about 2h segments 92
6.2 Mean of biggest p-value of features at 1h and 2h. 95
6.3 Mean of biggest p-value of features at 2h and 3h 96
6.4 Mean of biggest p-value of features at 2h and 4h 97
6.5 Performance of validation and testing set under possible binary classification combinations at layer 1 101
6.6 Performance of validation and testing set with optimal feature subset at layer 2 101
6.7 The overall performance of validation and testing set with optimal feature subset 102
6.8 Highlight 104

7.1 Mean and standard deviation (SD) of heart rate variability (HRV) measures of sleep apnea patients with and without congestive heart failure 116
7.2 p-value of heart rate variability (HRV) measures between sleep apnea patients with and without congestive heart failure 116