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Abstract

Physiological signals play vital roles in studying the mechanism of human body reaction

during exercise and human kinetics assessment. This thesis develops a wearable exercise

monitoring system to monitor and regulate human cardiorespiratory responses to moderate

exercise. To describe the relationship between the body’s physiological reactions and the

exercise, the modelling approach has been extensively explored in a range of applications.

In this thesis, the cardiorespiratory signal responses to the exercise phase are comprehen-

sively analysed through the means of different modelling approaches. A non-parametric

kernel based modelling approach has been proposed to address the complexity of the model

dynamics. This thesis also develops a novel Inclination based Calibration method to ad-

dress the static nonlinear modelling problem for the calibration of the sensors in an Inertial

Measurement Units.

The non-parametric model is the preferable method when the system structure information

is insufficient, or the system is too complex to be described by a simple parametric model.

Hence, the non-parametric modelling method with kernel-based regularisation is developed

to estimate the physiological signal response to the exercise phase during different types of

exercise. The kernel selection and regularisation strategies are discussed, and a series of

simulations are performed to compare the fitness, sensitivity and stability of different kernels.

For detecting the exercise phase, the innovative in-field calibration method for the portable

tri-axial sensor is developed to calibrate the Inertial Measurement Units data. Based on

the fact that the angle between the local gravity and magnetic field is invariant, this thesis

proposed a new in-field calibration approach, called Inclination Based Calibration, which

can reliably estimate the model parameters of the sensor with a simple linear Least Square

estimator. Based on optimal experimental design, a 12-observation Icosahedron experimental



viii

scheme has been performed for micro Inertial Measurement Units. Both the calibrated results

and the simulation comparison demonstrate the effectiveness of the proposed method.

This monitoring and control system could comprehensively study human kinetics and

cardiorespiratory mechanism and help to make assessments. Some general approaches for

physiological signal processing and modelling, parameters estimation, sensor calibration and

experiment protocol control are proposed in this work. The effectiveness and benefits of

different modelling approaches are demonstrated by a range of means. This system could be

applied in strategic exercise design, athletic assessment, exercise enhancement and health

monitoring.
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Chapter 1

Introduction

This chapter starts with the motivation and scope of this thesis, then introduces some related

research topics, and finally provides an outline of the thesis.

1.1 Motivation and Scope

Physiological assessment is essential for studying the metabolic demands that are placed on

the human body. Physiological assessment can be developed by various means, including

exercise phase evaluation, sports fitness assessment and determination of energy system

utilisation. The most commonly accepted components of physiological assessment include

cardiorespiratory response, energy consumption, and exercise endurance. The physiological

signal is widely used in physiological assessment. The oxygen uptake (V̇ O2) or carbon

dioxide output (V̇CO2) are used to assess aerobic fitness. The Electrocardiogram (ECG),

Electromyogram (EMG) and Electroencephalogram (EEG) are applied to analyse the physio-

logical status of exercisers. Moreover, acceleration and magnetic data serves to detect the

direction and describe status of the movement.

Some of the most significant advancements in physiological assessment have been made

possible by the development of sophisticated and novel equipment. The development of

wearable equipment, such as portable gas analysers, Inertial Measurement Unit (IMU) sensors

and wireless ECG, EMG, EEG sensors, makes it possible to record large amounts of data

unlike the limited data recording opportunities in the past. Meanwhile, modelling methods
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have been enhanced with the development of the wearable devices so that they can effectively

study the relationship between the exercise phase and physiological signal, especially the

cardiorespiratory information. By comparison, the traditional modelling method could only

map levels of fitness with a limited range of data. Hence, improved or optimised modelling

methods were developed to the accommodate large datasets.

The modelling methods are divided into different types with different classification

criteria. In the linear mathematical model, all of the operators must exhibit linearity, otherwise

it is described as a nonlinear model. The static model is a model that calculates the system

in equilibrium and is time-invariant. In contrast, the dynamic model accounts for time-

dependent changes in the state of the system. Different types of models are applied in

physiological assessment according to the characteristic of the physiological model. In this

study, the relationship between the exercise phase and the physiological signal response is

comprehensively studied by various modelling approaches.

During exercise, a vital aspect is to make sure that the IMU data are accurate enough

to detect the exercise phase (such as ascending or descending). Regular calibrations are

necessary to minimise the interference, such as hard iron and soft iron, to ensure the ac-

curacy of the measurements. If the response speed of the IMU sensor is quick enough,

this calibration question is a problem of a static nonlinear modelling. If the environment

changes, the inertial system will not recalibrate on its own. The operating environment

must be evaluated to determine if the application needs to be recalibrated. To meet this

need, the application must have a user-controlled field calibration process. The in-field

calibration are classified as “Attitude-Dependent" and “Attitude-Independent" approaches.

The “Attitude-Dependent" approach requires high precision turntables to control the sensor

orientation while the “Attitude-Independent" approach does not require this. It is necessary

for these methods to solve a nonlinear estimation problem to identify the coefficients of the

tri-axial accelerometers or magnetometers model. Considering these aspects, we intend to

apply the linearisation approach to develop a new calibration algorithm that combines the

acceleration data and magnetic data for calibration. This work proposes a novel calibration

method, called Inclination based Calibration (I-Calibration). It is based on the fact that the

local magnetic inclination is constant, which means that the angle between local gravity

and magnetic field is invariant. The proposed I-Calibration provides a solid foundation for
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the exercise phase detecting to ensure an accurate input in the kinetics-respiration reaction

system.

One of the challenges for the modelling of the human physiological variable is the stimu-

lation of the input is often limited. This prevents the use of models with high-dimensional

parameters, as it usually leads to ill-posed inverse problems. The kinetics-respiration reaction

system is described as a first or higher order time-invariant system in previous research.

The classical system identification methods, e.g. Least Square, Maximum Likelihood and

Prediction Error Method, are broadly used in modelling the first or higher order time-invariant

system. However, an important issue in identification is how to design the experiment to

ensure sufficient stimulation for the modelling of the system. When the structure of the

system cannot be determined or it is too complicated to be described by a simple parametric

model, a better method should be developed.

According to the above aspects, the non-parametric modelling method with a kernel

regularisation term is proposed in this work which is applied in the system modelling for

human physiological assessment as this is also considered to be a dynamic linear modelling

problem. The experiment protocol is also well designed to ensure the stimulation for the

system. The physiological signals collected from the wearable devices are considered as the

output in this system and the aerobic exercise phase is considered as the input in order to

study the cardiorespiratory response during aerobic exercise. Different phases of aerobic

exercise and different performances of the various physiological signals are studied in this

research.

For the first step, the cardiorespiratory response during the simply onset or offset phase

of the jogging exercise on the treadmill is investigated. Treadmill exercise is similar to

outdoor walking or running so it can be applied to analyse the mechanism of human exercise.

Moreover, the treadmill is a good choice for exercise modelling because the model needs

an accurate input to ensure a steady workload and exclude other effect factors. Various

studies manifest different aspects of kinematics and the pattern of gas exchange. How-

ever, the dynamic changes of the V̇ O2 and V̇CO2 during different periods of exercise and

their concomitant relationships need to be more deeply investigated in order to acquire a

comprehensive understanding of the human exercise mechanism.
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The second step is to study the dynamic cardiorespiratory response with the continuously

changing exercise phase. The intensity of the stair exercise can be adjusted by the exercise

phase (ascending or descending) without causing any discomfort to the exercisers. The

continuously changing protocol for the stair exercise provides more stimulation for the

system, utilised as prior information for the tuning of the kernel covariance. Commonly, the

system in previous articles often comes from a single onset or offset period experiment and

is considered as a first-order system. However, the first-order system is not suitable when the

input and output of the system becomess complicated as in our experiment. In addition, the

individual difference in the treadmill onset or offset study also supports the diversity of the

model due to the complexity of the human motion system and respiratory system.

The final step is to study the influence of the parameters in the kernel matrix on the

estimation results. To ensure that there is sufficient stimulation, the dataset from the stairs

experiment is applied in the kernel parameters selection. The selected kernel is utilised to

analyse how the oxygen uptake or carbon dioxide output responds to the walking speed on

the treadmills. Moreover, the advantages of using the non-parametric model, the necessity of

sufficient stimulation for identification and the importance of the kernel regularisation term

are also clearly demonstrated.

These aspects are combined to finalise the monitoring, modelling and control system.

In this system, the modelling approaches are developed in terms of two aspects, static

nonlinear modelling and dynamic linear modelling. The static nonlinear modelling method is

developed by the proposed I-Calibration method to ensure an accurate exercise phase input.

The dynamic linear modelling method is conducted by non-parametric modelling to identify

how the physiological signal responds to the exercise phase. According to the identification

results and analysis, this system could comprehensively study the human physiological

performance and cardiorespiratory mechanism and help to make assessments.

The functional block diagram of this work is shown in Figure 1.1.
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Human Physiological Assessment

Cardiorespiratory Signal Responses to Exercise Phase

Development of Modelling Method

Static Nonlinear Modelling

Dynamic Linear Modelling 

IMU Sensor Calibration 

Non-Parametric

For Detecting

For Identifying

Development of Wearable Devices

Fig. 1.1 Functional block diagram.

In general, the goals of the research in this part of the dissertation can be summarised as

follows:

• Build a comprehensive human physiological assessment system which can be applied

to strategic exercise design, athletic assessment, exercise enhancement and health mon-

itoring. Provide a theoretical framework for the modelling results which will enable a

comprehensive analysis of the human kinetics and cardiorespiratory mechanism and a

solid means to make assessments.

• Study the different characteristic of different models with different modelling methods.

The calibration for the IMU sensor is considered as a static nonlinear model while the

modelling for the physiological signal response during the exercise is considered as a

dynamic linear model.

• Propose a novel calibration method for the IMU sensor which will solve the acceleration

or magnetic field calibration problem with a linear least square problem. This method

would be particularly suitable for real-time in-field calibration for wearable devices

with limited computational power.

• Prove the non-parametric model is beneficial for physiological signal modelling when

the structure of the model is complicated. The non-parametric model could achieve

a higher accuracy for the modelling results. In addition, it is suitable for different

exercise phases and is compatible with individual difference.
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• Study the relationship between V̇ O2 and V̇CO2 from identification results. Demonstrate

V̇ O2 and V̇CO2 during exercise are related and are based on the physiological principle.

The performance of different phases during exercise is different in some respects.

• Make comparison between different phases of the exercise and study the changing

structure of the complicated exercise model. The structure of the system under the

protocol in our experiments is of higher complexity than the first-order system or

time-invariant system and this is demonstrated by the identification results.

• Investigate the importance of the kernel and its parameter selection for building the

non-parametric model. The kernel matrix is the base for the regularisation term which

ensures the accuracy of the modelling results.

1.2 Problems in Physiological Assessment and Aerobic Ex-

ercise

The comprehensive physiological assessment may include extensive cardiovascular eval-

uations with an ECG exercise tolerance test, blood chemistry analysis and blood count,

maximum oxygen uptake measurement, pulmonary function tests, and orthopedic assessment

[1, 2]. Among these, the cardiorespiratory evaluation is studied by different researchers in

terms of various aspects. Among these studies, aerobic exercise is most commonly examined

due to the close relationship between aerobic power and human physiological fitness.

Aerobic exercise is a type of exercise performed at moderate levels of intensity for

extended periods and is a physical exercise which mainly depends on the aerobic energy-

generating process [3]. Among various types of aerobic exercise, the interval training exercise,

e.g., ascending-descending switching exercise, is one of the most commonly used protocols

for enhancing cardiovascular fitness for trainers. The regular stair exercise is a good method

to demonstrate the effects of the interval training exercise due to several reasons. These

include improving cardiovascular fitness, calorie consumption, convenience, and low-cost

[4–6]. The intensity of the stair exercise can be adjusted by the exercise phase (ascending or

descending) without causing any discomfort to the exercisers [7]. The treadmill exercise is

similar to walking or running in daily life so it can be applied to analyse the physiological
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mechanism. It is well documented that regular treadmill exercise can greatly improve the

human cardiovascular system, e.g., increase total oxygen demand and consumption (the

amount of increase depending on the size of the muscles used), and VO2 Max. Moreover,

the treadmill exercise is a good choice for exercise modelling because the model needs an

accurate input to ensure a steady workload and exclude other effect factors.

Some research [8] has employed the Heart Rate (HR) for the purposes of analysis, and

portable sensors enable us to measure the HR conveniently while monitoring the intensity

of the exercise thereby ensuring that the exercise is under aerobic conditions [7, 9, 10].

The Maximum heart rate (HRmax) is the highest HR that an individual can achieve without

causing severe problems through exercise stress [10]. Considering the linear relationship

between the HR and V̇ O2, HRmax [11, 12] has been recognised as an indicator to detect

the exercise intensity [13]. However, HR can easily be affected by human motion or other

aspects. Accordingly, other researchers have focused on how the gas changes during exercise

and this serves as their index.

The four parameters for aerobic fitness include aerobic power, or maximal oxygen uptake,

work efficiency, time constant for oxygen uptake kinetics and the lactate threshold. Thus,

the respiratory information, such as voluntary ventilation, oxygen uptake (V̇ O2) or carbon

dioxide output (V̇CO2), is also commonly used to assess the metabolism demands. In

addition, the respiratory information is not affected by the participants’ emotion compared

with HR and hence guarantees a more accurate assessment result. The oxygen inhaled by the

human body is equal to the demands during exercise and reaches a physiological balance.

Aerobic exercise depends primarily on the V̇ O2, and this intensity is related to respiratory

information. It is recommended that the HRmax shall be kept in a proper range to ensure that

the working peripheral muscles are supplied with enough oxygen.

Decades ago, some sports physiology laboratories used the Douglas bag and the Scholan-

der gas analyser [14] to measure the oxygen (O2) uptake and the amount of carbon dioxide

(CO2) produced before, during, and after exercise. More recently, automated portable gas

analysis systems have been developed and applied in various sports fields for energy con-

sumption assessment [15]. The study of V̇ O2 is a traditional theme of sports physiology

study and one of the paramount areas of current and future sports physiology research. Hill

et al. [16] studied V̇ O2 and investigated its recovery curve. After moderate exercise, it is a
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logarithmic equation, which is equally applicable to the recovery curves of V̇CO2. Similarly,

Wasserman illustrated the equation of V̇CO2 is equal to V̇ O2. Research about the V̇ O2 and

V̇CO2 during the exercise have also been developed.

When people do exercise, the energy consumption, HR, V̇ O2 and V̇CO2 will keep

increasing until it reaches a peak. When the exercise intensity gets lower, these figures will

decrease to form a valley [7]. The phase of the exercise could be considered as a square

signal if we describe the exercise status as two numerical indicators. On one hand, to detect

the exercise phase, the IMU sensors are widely applied in exercise experiments. The IMU

sensors should be calibrated properly to ensure accuracy. The mathematical model for

calibration could be considered as a static nonlinear model. On the other hand, the above

physiological signals, such as HR, V̇ O2 and V̇CO2, change with the phase. Accordingly, the

human cardiovascular system can be described by a dynamic model whose input is the phase

and output is the physiological signal.

1.3 Problems in Physiological Signal Modelling

1.3.1 Static Nonlinear Modelling Problems for Inertial Measurement

Unit Calibration

The chip-based inertial sensors (e.g. Tri-Axial Accelerometers (TAs), Tri-Axial Magne-

tometers (TMs), Tri-Axial Gyroscopes (TGs), and Inertial Measurement Units (IMUs))

of Micro Electro Mechanical Systems (MEMS) have already been extensively utilised in

wearable health monitoring devices [17, 18] and consumer electronic devices [19, 20]. These

kinds of devices are also widely used and effective in terms of detecting the exercise status.

Regular calibrations are necessary to minimise the interference to ensure the accuracy of the

measurements, such as hard iron and soft iron [21, 22]. The calibration procedure can be

considered as a static system when the sensor’s output responds quickly with the input, and

the mathematical model is nonlinear.

Large amounts of auto-calibration methods have recently been developed to calibrate the

MEMS and are suitable for the in-field calibration [23]. The in-field calibration method is an

effective approach and several convenient methods have been developed [24–27]. Compared
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with “Attitude-Dependent" approaches, the “Attitude-Independent" methods do not require

high precision turntables to control the sensor orientation. The parameter estimation of

“Attitude-Independent" is commonly based on the nonlinear filtering approaches or nonlin-

ear parameter estimation algorithms [24, 27]. One of the typical “Attitude-Independent"

calibration methods focuses on minimising the difference between the magnitude of the mea-

sured gravity or magnetic field and that of the local gravity or magnetic field [28]. Another

“Attitude-Independent" method formulates the calibration problem as an ellipsoid fitting

problem [21, 29, 30]. After the ellipsoid fitting calibration, the ellipsoid of data will be

mapped to a sphere [31, 32]. These methods have several advantages and only accelerome-

ters or magnetometers data are needed. However, it is necessary for these methods to solve

a nonlinear estimation problem to identify the coefficients of the tri-axial accelerometers

or magnetometers model. Considering these aspects, we intend to apply the linearisation

approach in developing a new calibration algorithm that combines the acceleration data and

magnetic data for calibration.

The magnetic inclination is the angle between the magnetic field and horizontal plane.

The inclination of a magnetic field is a form of useful angle information applied to the 3D

space [33]. As the local magnetic inclination is constant, the angle between the local gravity

and magnetic field is invariant. In Kok’s paper [34], it was reported that the measured ac-

celerometers data together with magnetometers data could be used to estimate the inclination

if the sensor is mounted in a static platform or its motion acceleration is much lower than the

local gravity [34]. The constant inclination can be described by the magnetic field and the

gravity, and this provides an idea of how to calibrate the measured value based on both the

TMs and TAs.

Design of Experiment (DoE) is vital prior to the calibration to ensure the accuracy

and effectiveness of the calibrated results [35–38]. DoE theory investigates the optimal

selection or design of an appropriate input signal to stimulate the system significantly in

order to extract the maximum system information under a limited number of experiments

with physical constraints. The DoE of traditional IMU calibration problem can be addressed

by using the well-established DoE theory [39–42]. The key step in experimental design

is the calculation and analysis of the Fisher Information Matrix (FIM), which is related to

this classical parameter estimation problem. Later, the optimal experimental design may

be achieved by maximising or minimising a certain index of FIM. Such an index is often
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defined in various ways, which has led to several famous design schemes, e.g., D-optimal,

E-optimal, ED-optimal[43], G-optimal [39], and Ds-optimal design [44]. Based on the study

of the response surface methodology [45], we have therefore developed two types of optimal

experimental methods which are suitable for the calibration of the sensors model.

Well known experimental design methods include Central Composite Design (CCD),

which is based on the measurements from fractional factorial points, axial points and centre

points [38], and Box-Behnken Design (BBD), which is focused on the midpoints of edges and

the centre [35, 38]. Generally speaking, central composite design and Box-Behnken Design

are designed to reach the desired orthogonality, rotatability, and D-optimality as discussed

in [46]. In this study, beside the revised BBD and CCD, we also discuss an Icosahedron

design which is more suitable for this specific model. Based on the DoE for the calibration

of the inertial sensor and unit [27], and considering the similarity of calibration between

magnetometers and accelerometers, the Icosahedron Experiment with 12-observation DoE

has been proposed [47]. In this study, we propose the 12 observation Icosahedron scheme for

the calibration method as it can uniformly distribute the experiment points on experimental

domains.

1.3.2 Dynamic Linear Modelling Problems for Physiological Signal Re-

sponse with Exercise Phase

The modelling method is widely used in physiological signal analysis [48–50]. Among the

research that spans a number of decades, V̇ O2 and V̇CO2 have been measured at various

sports physiological laboratories using the gas analyser [51]. With the development of new

technology, the automated portable gas analysis system has been used in several sports

fields for the energy consumption assessment [14]. V̇ O2 and V̇CO2 analysis during exercise

have been significantly developed to cover a range of aspects. According to the logarithmic

equation of V̇ O2 and V̇CO2, the physiological signal modelling for aerobic exercise is

commonly developed to estimate the steady status and dynamic response during one simple

phase of exercise.

In previous research, the respiration reaction system is often described as a first or higher

order time-invariant system. To the best of our knowledge, all the existing studies only
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utilised classical system identification approaches in modelling the first or higher order time-

invariant system, e.g. the Least Square (LS), Maximum Likelihood (ML) and Prediction Error

Method (PEM). However, the signals exerted on a human body should be carefully selected

to ensure the safety. Due to this reason, when a human being is involved in an experiment,

the input signals are often limited in both intensity and duration, which leads to insufficient

stimulation for the modelling of the system. If this is the case, the LS/ML/PEM equipped

with classical model structure selection approaches often fail to obtain an appropriate model

with desired accuracy and robustness for cardiorespiratory response estimation [52–54].

An important issue in identification is how to design the experiment to ensure that there is

sufficient stimulation for the modelling of the system, as the insignificantly stimulated short

recording data in some system are polluted by artifacts and noise. The input signals need

enough intensity and duration when participants are involved in the experiment. On the other

hand, the signal applied to the human body should be well chosen to ensure safety.

The above conflicting goals can be resolved by considering the following two aspects.

The first aspect is to apply a non-parametric method for identification. System structure

information used in model complexity selection is a crucial step in modelling. However,

when the information is insufficient to determine the parametric model structure, the system

dynamics are described by non-parametric models instead of the commonly used fixed-order

linear time-invariant models[55, 56]. In addition, the non-parametric model is a better method

to employ when the system has massive information. Furthermore, the well-designed kernel

strategies and regularisation terms can dramatically improve the accuracy and robustness of

the modelling [57–59]. When the structure of the system cannot be determined or it is too

complicated to be described by a simple parametric model, the non-parametric modelling

method is the preferable choice [55, 56]. On the other hand, the development of wearable

equipment, such as the K4b2, makes it possible to record large amounts of data compared

to the limited data recording opportunities that were available in the past. The traditional

modelling method can achieve good fitness with a limited amount of data, while the non-

parametric model is more appropriate to accommodate a large dataset. The non-parametric

model with the kernel-based regularisation approach has been applied by several researchers

to system identification with different demands [54, 58, 60]. This achieves high accuracy

and robustness in system identification when studying the dynamics of the physiological

information responses during the exercise phase.
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The other aspect is to select an appropriate input with sufficient stimulation for the

model. One of the challenges for the modelling of the human physiological variable is

that the stimulation of the input is often limited. This prevents the use of models with

high-dimensional parameters, as it usually leads to ill-posed inverse problems. Recently, the

intrinsical ill-posed problem has been circumvented with kernel-based regularisation methods,

which also admit a Bayesian interpretation. In particular, a non-parametric modelling

approach is proposed, in which the impulse response is modelled as a zero-mean Gaussian

process. In this way, prior information is introduced in the identification process by assigning

a kernel covariance [52, 53, 57]. Various dynamic physiological signals are used in respiratory

modelling, such as HR , V̇ O2 and V̇CO2 , during walking, running [61–63], or treadmill

exercise [8, 64–66]. However, the physiological signal in these studies reaches a steady

platform that shows an identical trend as a step response input. With this in mind, we have

designed an appropriate protocol for the stairs exercise to make the signal continuously

change to ensure sufficient stimulation.

Taking the above two aspects into account , the non-parametric method is applied in this

study but with the condition that the protocol of the exercise experiment is designed with

sufficient stimulation. The recently developed system identification approaches are not only

based on plenty of physical experimental data but also emphasise more prior knowledge of

the system under estimation. System prior information is often applied to model complexity

selection, which is the most critical step for system modelling. In some papers [55, 56],

system dynamics are depicted by non-parametric models rather than the most commonly

used first/second order linear time-invariant models. Often, non-parametric methods are used

when the prior information to good effect is insufficient to determine a parametric model

structure. The new approach [54, 67] which well utilises the prior information is based on

the kernel-based regularisation approach. By using the kernel technique, prior information

is adopted in the identification process by assigning an appropriate kernel to the index

function. The regularisation terms and the kernel designing strategies for non-parametric

system identification are introduced in some research papers [56–59]. Based on these, the

new kernel-based non-parametric approach is the best option for analysing the dynamics of

the cardiorespiratory response to exercise as it greatly improves robustness and accuracy.
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1.4 Thesis Contribution

A monitoring, modelling and control system for human physiological assessment with

wearable devices is developed according to series modelling and estimation results analysis.

This work mainly focuses on how the physiological signal responds to the exercise phase

during aerobic exercise. In detecting the exercise phase, the static nonlinear modelling

method is applied in IMU sensors calibration. In physiological signal identification, the

dynamic linear modelling method is developed through the use of the non-parametric model

with the kernel-based regularisation term.

The novel calibration method named Inclination based Calibration for IMU sensors is

proposed in this work to make the problem a single calculation linear problem according to the

inclination. To describe the relationship between the body’s physiological reactions and the

exercise phase, the system identification approach has been used in many circumstances. The

non-parametric model is proposed in this work as the preferable choice when the information

of the system structure is insufficient, or the system is too complex to be described by a

simple parametric model. Hence, the non-parametric modelling method with kernel-based

regularisation is developed to estimate the physiological signal response to the exercise phase

in different types of exercise. The kernel selection and regularisation strategies have been

discussed, and a series of simulations have been performed to compare the fitness, sensitivity

and stability of different kernels. Based on these, the most appropriate kernel is then selected

for the construction of the regularisation term.

After building the series algorithm and modelling method, the physiological signal

response to the exercise phase in simply status and complicated changing status is studied.

The relationship between the V̇ O2 and V̇CO2, the different physiological performances in

the onset and offset period, and the changing structure of the system with its continuously

changing exercise phase are analysed based on the modelling results.

The contribution of this thesis can be summarised as follows:

• Different modelling methods are developed and optimised in this work for physio-

logical assessment with different demands. The static nonlinear modelling for IMU

calibration aims to detect the exercise phase. The dynamic linear modelling for physio-
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logical response identification is developed for studying the relationship between the

physiological signal and the exercise phase.

• A practical algorithm named Inclination based Calibration (I-Calibration) has been

developed in this work to calibrate the IMU sensors. As the I-Calibration method is

a single calculation linear method, with low computational costs and no divergence

problems, it is more suitable for real-time in-field calibration for wearable devices with

limited computational power.

• The kernel-based non-parametric modelling approach has been applied to describe

the dynamics of respiratory responses to exercise. The advantage of using the non-

parametric modelling method when the system structure is uncertain compared to the

classical linear modelling method is proved in various ways, such as accuracy, stability

and compatibility.

• Based on comprehensive comparative numerical analyses, the proper kernel has been

selected as the best kernel for the identification of the dynamic response to exercise

regarding the goodness-of-fit and parameter insensitivity. The regularisation term with

kernel matrix plays a significate role in identification and the parameter of the kernel

demonstrates that it should be selected carefully.

• According to reliable experimental data acquired from subjects, the dynamic models

of the physiological signal for exercise responses for different exercise phases have

been identified. The changing structure with the different phases of exercise has been

demonstrated.

• Comprehensive statistical analyses are performed to compare the dynamic character-

istics of the exercise status responses for the physiological signal, and several useful

conclusions have been made to provide instructive guidance for exercise strategy

design, athletic assessment, exercise enhancement and health monitoring.

1.5 Dissertation Outline

The outline of the dissertation is as follows:
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Chapter 1

This chapter presents the motivation and scope, the research topics and the outline of the

dissertation.

Chapter 2

A literature review of physiological assessment, static model Inertial Measurement Unit

Calibration and dynamic model of the cardiorespiratory responses during aerobic exercise

are presented.

Chapter 3

In this chapter, an innovative in-field calibration method for portable tri-axial sensors is

developed to calibrate the IMU data for human exercise phase detection. Based on the

fact that the angle between the local gravity and magnetic field is invariant, the Inclination

Based Calibration (I-Calibration) is proposed in this work, which can reliably estimate model

parameters of the sensors by simply using a linear Least Square estimator. Based on optimal

experimental design, a 12-observation Icosahedron experimental scheme has been performed

for a micro IMU, which contains both tri-axial accelerometers and tri-axial magnetometers.

The calibrated results together with the comparison between the two methods demonstrate

the effectiveness of the proposed method.

The work in this chapter has been published in:

• Hairong Yu, Lin Ye, Ying Guo, Steven Su*, “An Innovative 9-Parameter Magnetic

Calibration Method Using Local Magnetic Inclination and Calibrated Acceleration

Value", IEEE Sensors Journal, doi: 10.1109/ JSEN. 2020. 2995876, May 2020.

• Hairong Yu, Lin Ye, Ying Guo, Steven Su*, “An Effective In-Field Calibration Method

for Triaxial Magnetometers based on Local Magnetic Inclination", under review at

IEEE Transactions on Instrumentation and Measurement , 2019.

• Lin Ye, Ying Guo, Lei Dong, Hairong Yu, Hung Nguyen, Steven W Su*, “A Fast-

Converge, Real-Time Auto-Calibration Algorithm for Triaxial Accelerometer." Mea-

surement Science and Technology, vol. 30, no. 6, pp. 065010, February 2019.
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Chapter 4

In this chapter, the simple onset and offset phase of the jogging exercise on the treadmill

exercise is investigated. We compare the identified impulse response models for the two

periods, as well as the relationship between oxygen uptake and carbon dioxide output. The

result indicates that the steady state gain of the carbon dioxide output in the onset of exercise

is bigger than that in the offset while the response time for both onset and offset are similar.

Compared with oxygen uptake, the response speed of carbon dioxide output is slightly slower

in both the onset and offset period while its steady state gains are similar for both periods.

The work in this chapter has been published in:

• Hairong Yu, Lin Ye, Ganesh R. Naik, Rong Song, Hung T. Nguyen, Steven W. Su*,

“Nonparametric Dynamical Model of Cardiorespiratory Responses at the Onset and

Offset of Treadmill Exercises.” Medical & biological engineering & computing, vol.

56, no. 12, pp. 2337-2351, June 2018.

• Lin Ye, Ahmadreza Argha, Hairong Yu, Branko G. Celler, Hung T. Nguyen, Steven

Su*, “Dynamic Characteristics of Oxygen Consumption.”, Biomedical engineering

online, vol. 17, no. 1, pp. 44, December 2018

Chapter 5

In this chapter, a mobile phone application is developed to record the physiological infor-

mation during the exercise phase (i.e. ascending or descending) of stairs exercise. Our

experimental dataset features ten participants and a range of different exercise periods. Based

on the designed experiment protocol, a non-parametric model with an experimentally selected

kernel has been established. Compared with the fixed-order models on accuracy, stability

and compatibility, the modelling results demonstrate the effectiveness of the non-parametric

modelling approach. The influence of exercise duration on estimated fitness reveals that the

model of the phase-oxygen uptake system is not time-invariant.

The work in this chapter has been published in:

• Hairong Yu, Lin Ye, Rong Song, Yuxi Luo, Hamzah M Alqudah, Steven Su*, “Oxygen

Consumption Response to Stairs Exercise by Non-parametric Modelling", under review

at Biomedical Physics and Engineering Express, 2020.
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Chapter 6

In this chapter, the kernel-based regularisation non-parametric model is utilised to analyse

how the oxygen uptake or carbon dioxide output responds to the walking speed on treadmills.

To ensure sufficient stimulation, the dataset from the stairs experiment with a proper protocol

is applied in the kernel parameters selection, and this selection approach is compared with

the numerical simulation approach. The comparison results illustrate an improvement of

4.18% for oxygen uptake and 7.63% for carbon dioxide output in a half period, and 11.00%

for oxygen uptake and 12.60% for carbon dioxide output in one period when using the kernel

parameter selected from the stairs exercise. Moreover, the advantages of using the non-

parametric model, the necessity of sufficient stimulation for identification and the importance

of the kernel regularisation term are also addressed in this work.

The work in this chapter has been published in:

• Hairong Yu, Lin Ye, Hamzah M Alqudah, Kairui Guo, Branko G. Celler, Rong Song,

Steven Su*, “Prediction of Cardiac-respiratory Response to Treadmill Exercise by

Using Non-Parametric Modelling with Stairs Exercise based Kernel Characterization",

under submission to IEEE Transactions on Biomedical Engineering, 2020.

Chapter 7

This chapter summarises the work of this Ph.D. dissertation and presents the future research

developments.





Chapter 2

Background

In this chapter, we first briefly describe some related knowledge about human physiological

assessment. Then, the various modelling methods and assessment approaches about the

cardiorespiratory response for aerobic exercise is introduced. In the aspect of detecting the

human exercise status, the calibration for the IMU sensor is a vital part. With the development

of wearable devices for collecting the physiological data, it is possible for researchers to

record a large amount of data. According to the increasing of the amount of data, the

traditional modelling method is necessary to be improved.

2.1 Human Physiological Assessment

Fitness is defined as the quality or state of being fit. It is commonly agreed that physiological

and physiologically related perspective is necessary for defining fitness parameters and

discussing fitness [2]. The physiological assessment could be viewed in different aspects,

including cardiovascular assessment, respiratory assessment, energy assessment et al. It

should be pointed out that aerobic power is an essential part of human physiological fitness

assessment. Aerobic exercise is a type of exercise performed at moderate levels of intensity

for extended periods. The regular aerobic exercise is with several advantages, including

improving cardiovascular fitness, consuming calorie, convenience, and low-cost [4–6].

Oxygen uptake (V̇ O2) is a vital parameter of human fitness because the maximum

V̇ O2 represents the upper limit of aerobic exercise tolerance [68]. Similarly, the respiratory
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information, such as voluntary ventilation or carbon dioxide output (V̇CO2), is also commonly

used to assess the metabolism demands and analyse the human mechanism [63, 69–75].

According to previous studies, for the V̇ O2 during exercise, the exponential function was

applied to describe the dynamic performance [62, 76, 77].

V̇ O2(t) = V̇ O0
2 +RA[1− e−(t−TD)/τ ]. (2.1)

where V̇ O2(t) is the O2 output at time t, V̇ O0
2 is the initial value of O2 output, RA is the

response amplitude, TD is the time delay, and τ is the time constant.

Puente [62] demonstrated that the V̇CO2 could also be described by the same as:

V̇CO2(t) = V̇CO0
2 +RA[1− e−(t−TD)/τ ]. (2.2)

where V̇CO2(t) is the CO2 output at time t, V̇CO0
2 is the initial value of CO2 output, RA is

the response amplitude, TD is the time delay, and τ is the time constant.

Heart Rate (HR) is the speed of the heartbeat, measured by the number of contractions

(beats) of the heart per minute (bpm). HR can vary with the body’s physical needs, including

the need to absorb oxygen and excrete carbon dioxide. Physical exercise can provoke a

change in HR. The American Heart Association states the HR of a normal resting adult

human is 60 to 100 bpm. The V̇ O2 and V̇CO2 is with linear relationship with HR. Meanwhile,

HRmax [11, 12] has been recognised as an indicator to detect the exercise intensity [13]. The

maximum heart rate (HRmax) is the highest HR that an individual can achieve without severe

problems through exercise stress [10]. One representative formula of HRmax is introduced in

Robert’s research [78] as shown in Eq. (2.3):

HRmax = 205.8−0.685×age, (2.3)

where, age indicates the age of participant.

The cardiovascular and respiratory characterization attracted a lot of scholars to work on

this field for different demands. The first aspect is to study the respiratory mechanism. In the

research of Hill et al. [16], the recovery curve of V̇ O2 is studied. It also demonstrated that the

recovery curve of V̇ O2 is a logarithmic equation after a moderate exercise and it is equally
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applicable to the recovery curves of V̇CO2. A similar conclusion is also drawn by Wasserman

[79] that the equation of carbon dioxide elimination is equal to oxygen uptake. David’s

research provides a comprehensive understanding of the mechanistic bases of V̇ O2 kinetics

[77]. The mechanisms for the acceleration of pulmonary V̇ O2 on-kinetics in human after

prolonged endurance training is demonstrated in Jerzy’s study [76]. The cardiorespiratory

performance of human in different kinds of exercise and different periods of exercise are

also demonstrated by different researches. William studied the individual differences in

respiratory gas change during the recovery period of moderate exercise [80]. The threshold

of anaerobic metabolism for cardiac patients during exercise is detected in Karlman’s study

[81]. The anaerobic threshold and respiratory gas exchange during exercise are also studied

in Karlman’s other study [82]. The oxygen and carbon dioxide performance of young adults

at rest and after exercise are studied in Morton’s paper [83].

2.2 Static Nonlinear Modelling Problems for Inertial Mea-

surement Unit Calibration

2.2.1 In-Field Calibration Method

In the light of the rapid development of MEMS technology, the chip-based inertial sensors

are rapidly improved in terms of the size reduction. Nowadays, MEMS accelerometers and

magnetometers are widely used in various areas [21, 84–87]. The magnetometers measure

a constant local magnetic field vector when the magnetic disturbances are not presented.

Compared with the accelerometers, the magnetometers are relative with low accuracy as the

results of the installation errors, sensor deficiencies and vicinity magnetic interference [31].

Hence, regular calibrations are necessary to minimise interference [21, 22].

The errors of the MEMS magnetometers are usually divided into hard iron distortion and

soft iron distortion [21, 22]. Interference caused by ferromagnetic material or equipment in

the magnetometers vicinity is called hard iron distortion. Soft iron distortion is the result of

material that distorts a magnetic field but does not necessarily generate a magnetic field itself.

In general, the MEMS magnetic sensor should be regularly calibrated to ensure its accuracy

[31, 88]. The in-field calibration method is broadly used as an auto-calibration method for
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calibrating the MEMES [23]. Various in-field calibration methods have been developed and

showed effectiveness in calibration results [24–27].

For conventional magnetometers calibration, “Attitude-Dependent" approaches could

implement calibration in a laboratory environment by comparing the measured data with

the actual magnetic field. However, this method required high precision turntables to accu-

rately control the sensor orientation and was mainly effective for high-precision navigation

types of equipment [22, 25, 26]. The practical in-field calibration methods were “Attitude-

Independent" approaches, whose parameter estimation was based on either nonlinear filtering

approaches, e.g., extended Kalman filter (EKF) and Unscented filter (UF) [24], or nonlinear

parameter estimation algorithms [27]. One of the typical “Attitude-Independent" calibration

methods focuses on minimising the difference between the magnitude of the measured

magnetic field and that of the local magnetic field [28]. Another “Attitude-Independent"

method formulates the calibration problem as an ellipsoid fitting problem [21, 29, 30]. After

the ellipsoid fitting calibration, the ellipsoid of data will be mapped to a sphere [31, 32].

These methods are with several advantages and only magnetometers data are needed.

However, it is necessary for these methods to solve a nonlinear estimation problem to identify

the coefficients of the tri-axial accelerometers and magnetometers model. Hence, a new

linear calibration algorithm that combines the acceleration data and magnetic data together

for magnetic calibration could be proposed. In Kok’s paper [34], it was reported that the

measured accelerometers data together with magnetometers data could be used to estimate

the inclination if the sensor is mounted in a static platform or its motion acceleration is much

lower than the local gravity [34].

As for the mathematical model for the tri-axial senors, it is considered as a nonlinear

model and needed to be linearized to further estimation. Commonly, the 6-parameters

model is suitable in most cases. The 6-parameter model is first proposed and studied in our

work. However, due to the non-orthogonality and misalignment of the tri-axial anisotropic

magnetoresistive sensor, as well as the unwanted magnetic interference, the 6-parameter

model may not be sufficient to obtain the desired estimation [27, 47, 89]. The 9-parameter

auto-calibration model is also adopted to build the I-Calibration algorithm in our work.
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2.2.2 Experimental Design

The classical Design of Experiment (DoE) theory [45] is applied to generate the experimental

schemes for the calibration of TAs and TMs in order to improve the quality of the calibration

method [35–38]. For response surface methodology, there are two types of well developed

optimal experimental method which is suitable for the calibration of tri-axial accelerometers

model and tri-axial magnetometers model.

One is Central Composite design (CCD), which was based on the measurements from

fractional factorial points, axial points and centre points [38]. The CCD is a kind of response

surface method to build a second-degree model. In addition, it is applied to estimate the

curvature according to the measurement value from fractional factorial points, axial points,

and centre points [90]. The general structure of CCD is shown in Fig. 2.1. According to

the points shown in the Fig. 2.1, there will be six runs for centre points, eight runs for eight

fractional factorial points and six run for six axial point for tri-axial accelerometers model

and tri-axial magnetometers model.

Fig. 2.1 The Structure of Central Composite Design (CCD).
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The other commonly used response surface method is Box-Behnken design (BBD), which

is focused on the midpoints of edges and the centre [35, 38]. The general structure of BBD

is shown in Fig. 2.2. As for the points of BBD shown in the Fig. 2.2, it requires twelve runs

for midpoints and three runs for center points. Normally, the BBD could be modified by

reducing to twelve points due to the structure of tri-axial accelerometers model or tri-axial

magnetometers model.

Fig. 2.2 The Structure of Box-Behnken Design (BBD).

Beside BBD and CCD, we utilise an Icosahedron Design which is more suitable for

these specific models. The concept of Icosahedron Design is coming for uniform design. In

order to achieve the goal that the experiment points can uniformly distribute on experimental

domains for six and nine parameters models, the Icosahedron Experiment design is designed

as a twelve points space-filling. The general structure of Icosahedron Design is shown in Fig.

2.3.

All the experiment points will be located on the surface of a sphere whose radius equals

the local gravity or magnetic field owing to the constraint of the tri-axial accelerometers
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model and tri-axial magnetometers model. Moreover, these twelve points will construct an

Icosahedron whose radius of its circumcircle will be gravity or magnetic field.

Fig. 2.3 The Structure of Icosahedron Design for TAs or TMs model.

The key step in experimental design is the calculation and analysis of the Fisher In-

formation Matrix (FIM), which is related to this classical parameter estimation problem.

The optimal experimental design may be achieved by maximising or minimising a certain

index of FIM. Such an index is often defined in various ways, which lead to several famous

design schemes, e.g., G-optimal, D-optimal, E-optimal, ED-optimal, and Ds-optimal design

[39, 43, 44]. Among these design schemes, D-optimality (determinant) is a popular crite-

rion, which seeks to minimise |(XT X)−1|, or equivalently maximise the determinant of the

information matrix XT X of the design. This criterion results in maximising the differential

Shannon information content of the parameter estimates. In addition, G-optimality is also

a popular criterion, which seeks to minimise the maximum entry in the diagonal of the

hat matrix X(XT X)−1XT . This has the effect of minimising the maximum variance of the

predicted values. The 12-observation experimental design applied in our paper is proved to

be both G-optimal and D-optimal in the previous study [47, 91].
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2.3 Dynamic Linear Modelling Problems of Cardiorespi-

ratory Responses of Aerobic Exercise

2.3.1 Cardiorespiratory Signal Modelling Method

Among the researches that study the relationship between exercise phase and physiological

signal, especially the cardiorespiratory information, the modelling methods are widely

developed and applied in these studies [48–50]. Various dynamic physiological signals

are used in respiratory modelling, such as HR , V̇ O2 and V̇CO2 , during walking, running

[61–63], or treadmill exercise [8, 64–66, 92, 93] and so on [94–96].

The step response of physiological signal can be approximated as a first-order system

in these studies. However, the physiological signal changing in these studies will reach a

steady platform that corresponds to the same trend as the step response. In that case, the

dynamic relationship between exercise status and HR is not obvious enough. With this in

mind, an appropriate protocol for the exercise is necessary to be designed to make the signal

continuously changing to ensure sufficient stimulation. In another aspect, some research

[8] applied Heart Rate (HR) to make the analysis, but it can easily be affected by human

motion or other aspects. In this way, other researchers choose how the gas changes during the

exercise as an index. However, the commonly used Least Square (LS), Maximum Likelihood

(ML) and Prediction Error Method (PEM) equipped with classical model structure selection

approaches often fail to obtain an appropriate model with desired accuracy and robustness

for cardiorespiratory response estimation, which is based on insignificantly stimulated short

recording data polluted by artifacts and noise [52–54].

Among the studies of cardiorespiratory response to exercise, researchers preferred to

choose oxygen uptake as the index. Both linear and nonlinear static models [61, 97, 98]

had been proposed based on the walking speed. Furthermore, some researchers modelled

the VO2 response with a monoexponential curve [62, 76, 77]. System structure information

used in model complexity selection is a crucial step in modelling. However, when the

information is insufficient to determine the parametric model structure, the system dynamics

could be described by non-parametric models instead of the commonly used fixed-order

linear time-invariant models[55, 56].
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2.3.2 Development of Wearable Devices

Over the last dozens of years, automated portable gas analysis systems had been developed

and applied in various sports fields for energy consumption assessment [15]. The Tissot

spirometer/volumetric gas analyser system is one of the first open-circuit equipment config-

urations applied in measuring VO2 during exercise [99]. The Douglas bag/volumetrix gas

analyser system is a slight variation of the Tissot spirometer/volumetric gas analyser system

[14]. Hereafter, the volumetric gas analysers are replaced by the electronic gas analysers.

Subsequently, the meteorological balloon/electronic gas analyser system is born [2]. A

portable gas analysis system that is available in the breath by breath Cosmed K4b2 system,

which is the latest of a series (including the K2 and K4) of portable systems Cosmed (Rome,

Italy) has produced [100].

Portable sensors enable us to measure HR conveniently when monitoring the intensity of

exercise so that ensures the exercise is under aerobic conditions [7, 9, 10]. In addition, V̇ O2

and V̇CO2 are measured at various sports laboratories by gas analyser [14, 51, 100]. The

development of wearable equipment and systems makes it possible to record large amounts

of data compared to the limited data in the past. Hence, the optimised modelling method

should be developed to make it suitable for large amounts of dataset.

2.3.3 Non-parametric Modelling with Optimised Kernel-Parameter Se-

lection

In some papers [55, 56], system dynamics is depicted by non-parametric models rather

than the most commonly used first/second order linear time-invariant models. Commonly,

non-parametric methods are used when the prior information is insufficient to determine a

parametric model structure. The new approach [54, 67] which well utilises the prior infor-

mation is based on the kernel-based regularisation approach. By using the kernel technique,

prior information is adopted in the identification process by assigning an appropriate kernel

to the index function. Specifically, papers [56–59] introduced the regularisation terms and

the kernel designing strategies for non-parametric system identification. In this way, prior

information is introduced in the identification process by assigning a kernel covariance

[52, 53, 57]. When the structure of the system could not be determined or it is too compli-
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cated to be described by a simple parametric model, the non-parametric modelling method is

a preferable choice [55, 56].

The non-parametric model with the kernel-based regularisation approach has been applied

by several researchers to system identification with different demands [54, 58, 60], which

achieves high accuracy and robustness in system identification when studying the dynamics

of physiological information responses to exercise phase with a well-designed kernel strategy

and a regularisation term. In addition, the non-parametric model has an advantage when the

system is with massive information. Furthermore, the well-designed kernel strategies and

regularisation terms can dramatically improve the accuracy and robustness for the modelling

[57–59].

2.4 Summary

This chapter reviews the basic knowledge about the human physiological assessment. The

researches that study the different performances of cardiorespiratory information during

different types of exercise are introduced in Section 2.1. From the perspective of detecting

the exercise status, the IMU sensors should be calibrated carefully. The development of the

in-field calibration method is introduced in Section 2.2.1. The experimental design, which is

a crucial step prior to the calibration, is introduced in Section 2.2.2. The modelling methods

of physiological signal response to exercise in previous studies are presented in Section

2.3.1. The development of the wearable devices which is introduced in Section 2.3.2 makes it

possible to record large amounts of data compared to the limited data recording circumstance

in the past. In that case, the non-parameter modelling method is then developed to make an

improvement in the physiological modelling problem, which is introduced in Section 2.3.3.



Chapter 3

An Effective In-Field Calibration

Method for Inertial Measurement Unit

based on Local Magnetic Inclination

3.1 Introduction

The application of Micro-Electro-Mechanical Systems chip-based inertial sensors is popu-

larized in mobile navigation [21, 101] and health monitoring [85, 102, 103]. Specifically,

in order to investigate the relationship between human’s physiological information and the

exercise status, the IMU device is widely applied in human exercise monitoring. To ensure

the accuracy of the IMU device, the calibrations for accelerometers and magnetometers are

vital procedures.

The magnetometers are capable of measuring vector magnetic signals and have key

applications in the fields of Attitude and Heading Reference Systems (AHRS) [84, 104],

ballistics measurement and Magnetic Anomaly Detection (MAD) [87]. Compared with

the accelerometers, the magnetometers are relative with low accuracy as the results of

the installation errors, sensor deficiencies and vicinity magnetic interference [31]. As a

practical device, the existence error is inevitable. The errors of the MEMS magnetometers

are usually divided into hard iron distortion and soft iron distortion [21, 22]. Interference

caused by ferromagnetic material or equipment in the magnetometers vicinity is called
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hard iron distortion. Soft iron distortion is the result of material that distorts a magnetic

field but does not necessarily generate a magnetic field itself. To improve the accuracy, the

magnetometers need to be calibrated regularly because the errors of the low cost MEMS

sensors can be corrupted by various reasons, such as biases and scale factor deviations,

misalignment and nonorthogonality of the sensor axes, sensor fabrication issues and the

magnetic deviations induced by the host platform [25, 105]. Hence, regular calibrations are

necessary to minimise the interference, such as hard iron and soft iron, to ensure the accuracy

of the measurements[21, 22].

Various auto-calibration methods are recently developed to calibrate the MEMS and

are suitable for the in-field calibration [23]. Several convenient effective in-field calibra-

tion methods have been developed, and as mentioned before, the hard iron [24–27] and

soft iron [21, 22, 105] are eliminated through these calibration methods to minimise in-

terference. The in-field calibration methods are classified as “Attitude-Dependent" and

“Attitude-Independent" approaches. “Attitude-Dependent" approaches could implement cali-

bration in a laboratory environment by comparing the measured data with the actual magnetic

field. However, this method required high precision turntables to accurately control the

sensor orientation and was mainly effective for high-precision navigation types of equipment

[22, 25, 26]. Aother practical in-field calibration methods were “Attitude-Independent"

approaches, whose parameter estimation was based on either nonlinear filtering approaches,

e.g., extended Kalman filter (EKF) and Unscented filter (UF) [24], or nonlinear parameter

estimation algorithms [27]. One of the typical “Attitude-Independent" calibration methods

focuses on minimising the difference between the magnitude of the measured magnetic field

and that of the local magnetic field [28]. Another “Attitude-Independent" method formulates

the calibration problem as an ellipsoid fitting problem [21, 29, 30]. After the ellipsoid fitting

calibration, the ellipsoid of data will be mapped to a sphere [31, 32]. These methods are

with several advantages and only magnetometers data are needed. However, it is necessary

for these methods to solve a nonlinear estimation problem to identify the coefficients of

the tri-axial magnetometers model. Considering these aspects, we intend to develop a new

calibration algorithm that combines the acceleration data and magnetic data together for

magnetic calibration. The parameter estimation of the proposed method is a simple linear

least square algorithm, which can be easily implemented in a wearable device with limited

computational power.
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This work proposed a novel calibration method for TMs, called Inclination based Calibra-

tion (I-Calibration). It was based on the fact that the local magnetic inclination is constant,

which means that the angle between local gravity and magnetic field is invariant. Magnetic

inclination can be determined by the angle between the local magnetic field and the horizontal

plane. In Kok’s paper [34], it was reported that the measured accelerometers data together

with magnetometers data could be used to estimate the inclination if the sensor is mounted in

a static platform or its motion acceleration is much lower than the local gravity [34]. Usually,

positive values of inclination indicate that the field is pointing downward, into the earth,

at the point of measurement. For the same location, the inclination is constant and can be

found out on the Magnetic-Declination and Inclination Website. The inclination in Sydney

(Latitude: 33◦52′4.3′′ S, Longitude: 151◦12′26.4′′ E) is 64◦20′ as shown in Fig 3.1. The

constant inclination can be described by the magnetic field and the gravity, and this provides

an idea of how to calibrate the measured magnetic value based on both the TMs and TAs.

Fig. 3.1 The Inclination in Sydney New South Wales Australia (http://www.magnetic-

declination.com/Australia/Sydney/124736.html).

Experimental Design (DoE) is a vital part prior to the calibration to ensure the accuracy

and effectiveness of calibrated results [35–38]. Some well known experimental design

methods included Central Composite Design (CCD), which was based on the measurements

from fractional factorial points, axial points and centre points [38], and Box-Behnken Design

(BBD), which was focused on the midpoints of edges and the centre [35, 38]. Based on

the DoE for the calibration of the inertial sensor and unit [27], considering the similarity
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of calibration between magnetometers and accelerometers, the Icosahedron Experiment

with 12-observation DoE was proposed [47]. The DoE can be achieved by maximising

or minimising a certain index of the Fisher Information Matrix (FIM), which is related to

the classical parameter estimation problem. Several famous design schemes are developed

to define the index of FIM, such as G-optimal, D-optimal, E-optimal, ED-optimal, and

Ds-optimal design [39, 43, 44]. In this study, for the newly proposed calibration method,

we adopted this 12-observation Icosahedron scheme, which can uniformly distribute the

experiment points on experimental domains.

According to both numerical analysis and real-time experiments, it was demonstrated that

the new method could efficiently and reliably estimate the coefficients of the tri-axial magne-

tometers model by simply using a linear Least Square estimator. Specifically, the robustness

to the misalignments of the TAs and TMs for the proposed I-Calibration method was demon-

strated by using numerical simulations. Then, the proposed approach was compared with the

Magnitude Based Calibration (M-Calibration), which was based on our previous work [27].

Real-time experiments were performed according to the Icosahedron Experimental Scheme

[27]. Based on the collected experimental data, the coefficients were estimated by using the

two calibration methods respectively. The comparison results demonstrated the effectiveness

of the proposed approach.

The above calibration is developed on the basis of the 6-parameter model. In the previous

study about TAs and TMs calibration, the 6-parameter model was designed by neglecting

three cross-axis sensitivity factors. However, due to the non-orthogonality and misalign-

ment of the tri-axial anisotropic magnetoresistive sensor, as well as the unwanted magnetic

interference, the 6-parameter model may not be sufficient to obtain the desired estimation

[27, 47, 89]. For a further demonstration, the 9-parameter auto-calibration model is then

adopted to build the I-Calibration algorithm in our work. On the other hand, in the previous

study [47], it has been shown that the 12-observation can potentially reach both G-optimal

and D-optimal for 9-parameter TAs or TMs model.

According to both numerical analysis and real data experiments in our work, it was

demonstrated that the proposed I-Calibration method could efficiently and reliably estimate

the coefficients of the triaxial magnetometers model by simply using a linear Least Square

estimator. The robustness to the misalignments of the TAs and TMs for the I-Calibration
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method was demonstrated by using numerical simulations. In summary, compared to the ex-

isting “Attitude-Independent” calibration methods [106, 107] and the M-Calibration method

[27], the proposed I-Calibration only needs to address a simple linear static parameter es-

timation problem, for which a linear least square method is sufficient. It does not need to

consider the issues of initial condition selection and local optima trap [34, 108]. Thus, the

method can be easily implemented in a wearable device with low computational power.

3.2 Calibration Methodology

The mathematical model of the tri-axial magnetometers measurements is related to the

measurement value Mm ∈ R3 and the local magnetic field Mr ∈ R3. The model could be

expressed as follows:

Mr = G(Mm +O)+n, (3.1)

where G ∈ R3×3 represents the simplified matrix from GsGe [21, 22]. The diagonal matrix

Gs is constructed by scale factors and the matrix Ge stands for the nonorthogonality and

misalignment of the tri-axial sensors [25, 47]. We also assume G = diag{[Gx Gy Gz]}. The

vector O∈R3 represents the offset of measurements, and n∈R3 stands for the Gaussian noise

vector. The vector Mr ∈ R3 represents the estimated output. In this study, as the measured

magnetometers value is local magnetic filed only, Mr should be equal to the local earth

magnetic field. The vector Mm ∈ R3 represents the measured value from the magnetometers.

In order to get the calibrated magnetic value Mc ∈ R3, two principles are applied to

construct the calibration procedure. In one aspect, the magnitude of the local magnetic field

‖Mr‖ remains constant when the disturbances and distortions are negligible, which leads

to the Magnitude based Calibration (M-Calibration). In the other aspect, the Inclination

based Calibration (I-Calibration) is due to the fact that the local inclination is constant for

the same location. That means the dot product between the magnetic field Mr ∈ R3 and the

acceleration field Ar ∈ R3 is also constant.
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3.2.1 Magnitude Based Calibration

According to [47], the magnetometers model in Eq.(3.1) can be re-constructed so that the

parameters can be estimated by using the recursive least square approach proposed in [107].

The error ε between the estimated magnetic value and the local magnetic field Mr can be

expressed based on Eq.(3.1):

εi = ‖Mr‖2 − ∑
j=x,y,z

[G j · (Mm
ji +O j)]

2, i = 1,2, ..,n, (3.2)

here n is the number of data points from the experimental design, and ‖Mr‖ is the magnitude

of the local magnetic field.

To linearize Eq.(3.2) and reduce the computational complexity, Eq.(3.2) can be simplified

by neglecting some less significant terms at first [36, 45]. Hence, Eq.(3.2) is expanded and

rewritten as follows:

‖Mr‖2 = 2 ∑
j=x,y,z

G2
jO jMm

ji + ∑
j=x,y,z

G2
j(M

m
ji)

2 + ∑
j=x,y,z

G2
jO

2
j + εi, (3.3)

for i = 1,2, · · · ,n.

In Eq.(3.3), we define the third term as γ:

γ = ∑
j=x,y,z

G2
jO

2
j . (3.4)

The unknown parameter vector βM = [βx βy βz βxx βyy βzz]
T is defined as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2G2
xOx = βx

2G2
yOy = βy

2G2
z Oz = βz

G2
x = βxx

G2
y = βyy

G2
z = βzz.

(3.5)
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The observation matrix XM ∈ Rn×6 is constructed by the measurements Mm
ji in Eq.(3.3):

XM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mm
x1 Mm

y1 Mm
z1 (Mm

x1)
2 (Mm

y1)
2 (Mm

z1)
2

· · · · · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...

Mm
xn Mm

yn Mm
zn (Mm

xn)
2 (Mm

yn)
2 (Mm

zn)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.6)

where n is the number of data points from the experimental design.

The Eq.(3.3) could be rewritten as a matrix form based on Eq.(3.5) and Eq.(3.6), and

expressed as:

Y = XMβM +γ +ε, (3.7)

where Y∈Rn = [y1 y2 ... yn]
T , ε∈Rn = [ε1 ε2 ... εn]

T and γ ∈Rn = [γ γ ... γ]T .

Eq.(3.7) could be solved by a convergence guaranteed iterative least square estimation

method [32, 29], which is summarized in Algorithm 1 [107].
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Algorithm 1 Convergence Guaranteed Iterative Least Square Estimation for βM

1: The initial value of γ is assumed as zero and the initial estimation of βM is calculated as

β̂
(1)
M = (XM

TXM)−1XM
T(y−γ(0)). (3.8)

2: The matrix G and O could be solved by the estimated β̂M based on Eq.(3.5) and the new

γ̂(i) could be estimated ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ˆ
G(i)

x =

√
β̂ (i)

xx ,
ˆ

G(i)
y =

√
β̂ (i)

yy ,

ˆ
G(i)

z =

√
β̂ (i)

zz ,
ˆ

O(i)
x = β̂ (i)

x

2β̂ (i)
xx
,

ˆ
O(i)

y =
β̂ (i)

y

2β̂ (i)
yy
,

ˆ
O(i)

z = β̂ (i)
z

2β̂ (i)
zz
,

ˆγ(i) = ∑
j=x,y,z

ˆ
G2(i)

j
ˆ

O2(i)
j ,

ˆγ(i) = [ ˆγ(i), ˆγ(i), ..., ˆγ(i)︸ ︷︷ ︸
n

]T .

(3.9)

3: Repeat until the convergence criteria is reached.

4: The final estimator β̂ (n)
M could be expressed as following after n steps

β̂
(n)
M = (XM

TXM)−1XM
T(y− γ̂(n−1)). (3.10)

3.2.2 Inclination Based Calibration

Algorithm for 6-parameter Inclination Based Calibration

A 6-parameter model is first applied to define the unknown parameters as it had been

proved that it is sufficient to obtain desired estimation to some extend [89]. Since the angle

between the local magnetic field Mr ∈ R3 and the gravity field Ar ∈ R3 is a constant, the

dot product between these two vector should be a constant value. In the ideal situation, the

relationship between the real acceleration value Ar = [Ax Ay Az]
T and the real magnetic
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value Mr = [Mx My Mz]
T can be expressed as follows based on the inclination angle θ

[33]:

θ =
π
2
− cos−1(

AxMx +AyMy +AzMz

‖Ar‖‖Mr‖ ). (3.11)

In Eq.(3.23), a constant L can be defined by Ar and Mr as:

L = AxMx +AyMy +AzMz. (3.12)

The constant L could also be expressed as :

L = AxMx +AyMy +AzMz = ‖Ar‖‖Mr‖cos(
π
2
−θ). (3.13)

Based on the model of local magnetic filed and measured value from magnetometers

in Eq.(3.1), the calibrated magnetic value Mc = [Mc
x Mc

y Mc
z ]

T can be calculated by the

measured magnetic value Mm = [Mm
x Mm

y Mm
z ]

T with the following formula:

⎧⎪⎪⎨
⎪⎪⎩

Mc
x = GxMm

x + Õx

Mc
y = GyMm

y + Õy

Mc
z = GzMm

z + Õz,

(3.14)

where Gx, Gy and Gz is the diagonal elements of G. Õ=GO= [Õx Õy Õz]
T (the matrices

G and O have been introduced in Eq.(3.1)). During calibration, the unknown parameters βI

are defined as follows:

βI = [Õx Gx Õy Gy Õz Gz]
T . (3.15)

Based on Eq.(3.24) and Eq.(3.22), the calibration formula can be re-constructed by the

measured acceleration Am = [Am
x Am

y Am
z ]

T and Mm as:

L = Am
x (GxMm

x + Õx)+Am
y (GyMm

y + Õy)+Am
z (GzMm

z + Õz)+ε, (3.16)

where ε ∈ Rn is the measurement noise.
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When there are n sets of measurement data, Eq.(3.26) can be stacked to a matrix form as

follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Am
x1 Am

x1Mm
x1 Am

y1 Am
y1Mm

y1 Am
z1 Am

z1Mm
z1

· · · · · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...

Am
xn Am

xnMm
xn Am

yn Am
ynMm

yn Am
zn Am

znMm
zn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Õx

Gx

Õy

Gy

Õz

Gz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ε =

⎡
⎢⎢⎣

L

· · ·
L

⎤
⎥⎥⎦ , (3.17)

The constant L could be estimated by the local inclination θ based on Eq.(3.23) and Eq.(3.24).

The simplified form of Eq.(3.26) can be written as:

L = XIβI +ε, (3.18)

where

XI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Am
x1 Am

x1Mm
x1 Am

y1 Am
y1Mm

y1 Am
z1 Am

z1Mm
z1

· · · · · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...

Am
xn Am

xnMm
xn Am

yn Am
ynMm

yn Am
zn Am

znMm
zn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The parameters in Eq.(3.28) can be identified by using least square estimation as follows:

β̂I = (XI
TXI)

−1XI
TL. (3.19)

Algorithm for 9-parameter Inclination Based Calibration

The 9-parameter auto-calibration model is also developed in this study due to the non-

orthogonality and misalignment of the tri-axial anisotropic magnetoresistive sensor, as well

as the unwanted magnetic interference which lead to the limitation of 6-parameter model

[27, 47, 89]. According to the mathematical model mentioned previously in Eq.(3.1), the

model could be rewritten as:
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Mr = GsGe(Mm +O)+n = GMm + Õ+n, (3.20)

where, matrix Gs is constructed by scale factors and the matrix Ge stands for the soft iron

causing by the nonorthogonality and misalignment of the tri-axial sensors [25, 47]. The

matrix G ∈ R3×3 is simplified from Gs ×Ge [21, 22, 105]. The offset of measurements

is indicated by O ∈ R3. The matrix Õ = [Õx Õy Õz]
T is the product of G and O. The

Gaussian noise vector with zero mean is presented by n = [nx ny nz]
T .

The distortion matrix G is expressed as [34] :

G =

⎡
⎢⎢⎣

Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz

⎤
⎥⎥⎦ . (3.21)

According to the model of local magnetic filed and measured value from magnetometers

in Eq. (3.1), the calibrated magnetic value Mc = [Mc
x Mc

y Mc
z ]

T can be calculated by the

measured magnetic value Mm = [Mm
x Mm

y Mm
z ]

T with the following formula based on Eq.

(3.1): ⎧⎪⎪⎨
⎪⎪⎩

Mc
x = GxxMm

x +GxyMm
y +GxzMm

z + Õx

Mc
y = GyxMm

x +GyyMm
y +GyzMm

z + Õy

Mc
z = GzxMm

x +GzyMm
y +GzzMm

z + Õz.

(3.22)

For the purpose of getting the calibrated magnetic value Mc ∈ R3 and considering the dot

product between the magnetic field Mr ∈ R3 and the acceleration field Ar ∈ R3 is constant,

the I-Calibration is proposed in the 9-parameter model. Ideally, the inclination angle θ could

express the relationship between the real acceleration value Ar = [Ax Ay Az]
T and the real

magnetic value Mr = [Mx My Mz]
T [33]:

θ =
π
2
− cos−1(

AxMx +AyMy +AzMz

‖Ar‖‖Mr‖ ). (3.23)

As mentioned before, the dot product between the local magnetic field Mr ∈ R3 and the

gravity field Ar ∈ R3 is invariant, a constant L can be defined to express the relationship
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between Ar and Mr in Eq. (3.23):

L = AxMx +AyMy +AzMz = ‖Ar‖‖Mr‖cos(
π
2
−θ). (3.24)

In order to formulate the 9-parameter model for Eq. (3.22), we assume Gyx = Gxy,

Gzx = Gxz, Gzy = Gyz. The unknown parameter matrix β for 9-parameter I-Calibration

algorithm could be expressed as:

β = [Gxx Õx Gyy Õy Gzz Õz Gxy Gxz Gyz]
T . (3.25)

To ensure the accuracy of the magnetic calibration results, the measured acceleration value

Am = [Am
x Am

y Am
z ]

T is first calibrated by the approach which proposed in our previous

work [107] and identified as Ac = [Ac
x Ac

y Ac
z]

T . Based on Eq. (3.24) and Eq. (3.22), the

calibration formula which expresses the relationship between the measured magnetic value

Mm = [Mm
x Mm

y Mm
z ]

T , the calibrated acceleration value Ac = [Ac
x Ac

y Ac
z]

T and the

constant L is expanded as:

L = Ac
xMc

x +Ac
yMc

y +Ac
zMc

z

= Ac
x(GxxMm

x +GxyMm
y +GxzMm

z + Õx)

+Ac
y(GyxMm

x +GyyMm
y +GyzMm

z + Õy)

+Ac
z(GzxMm

x +GzyMm
y +GzzMm

z + Õz).

(3.26)

Eq. (3.26) can be stacked to a matrix form as shown in Eq. (3.27) when there are n sets

of measurement data and ε ∈ Rn is the measurement noise.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ac
x1Mm

x1 · · · · · · Ac
xnMm

xn

Ac
x1 · · · · · · Ac

xn

Ac
y1Mm

y1 · · · · · · Ac
ynMm

yn

Ac
y1 · · · · · · Ac

yn

Ac
z1Mm

z1 · · · · · · Ac
znMm

zn

Ac
z1 · · · · · · Ac

zn

Ac
x1Mm

y1 +Ac
y1Mm

x1 · · · · · · Ac
xnMm

yn +Ac
ynMm

xn

Ac
x1Mm

z1 +Ac
z1Mm

x1 · · · · · · Ac
xnMm

zn +Ac
znMm

xn

Ac
y1Mm

z1 +Ac
z1Mm

y1 · · · · · · Ac
ynMm

zn +Ac
znMm

yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gxx

Õx

Gyy

Õy

Gzz

Õz

Gz

Gxy

Gxz

Gyz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ε =

⎡
⎢⎢⎣

L

· · ·
L

⎤
⎥⎥⎦ . (3.27)

The constant L could be calculated by the local inclination θ based on Eq. (3.23) and Eq.

(3.24) and simply written as follows based on Eq. (3.26):

L = Xβ+ε, (3.28)

where

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ac
x1Mm

x1 · · · · · · Ac
xnMm

xn

Ac
x1 · · · · · · Ac

xn

Ac
y1Mm

y1 · · · · · · Ac
ynMm

yn

Ac
y1 · · · · · · Ac

yn

Ac
z1Mm

z1 · · · · · · Ac
znMm

zn

Ac
z1 · · · · · · Ac

zn

Ac
x1Mm

y1 +Ac
y1Mm

x1 · · · · · · Ac
xnMm

yn +Ac
ynMm

xn

Ac
x1Mm

z1 +Ac
z1Mm

x1 · · · · · · Ac
xnMm

zn +Ac
znMm

xn

Ac
y1Mm

z1 +Ac
z1Mm

y1 · · · · · · Ac
ynMm

zn +Ac
znMm

yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (3.29)

Then, a least square estimation problem could be formulated to calculate the parameter β

in Eq.(3.28):

β̂ = (XTX)−1XTL. (3.30)
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After the parameters β is calculated, the calibrated magnetic Mc
I = [Mc

Ix Mc
Iy Mc

Iz]
T

value by I-Calibration is calculated according to Eq. (3.22) and Eq. (3.25).

3.3 Experimental Design and Simulation

3.3.1 Experimental Design

The experiment was performed by using the commercially IMU device (VICON IMeasureU,

Auckland, New Zealand) as shown in Fig. 3.2. The experiment was implemented at the

campus of University of Technology Sydney and was performed relatively far away from

any magnetic materials to ensure a homogeneous local magnetic field. This aims to discard

perturbation from the hosting platform to measure the earth’s field. Meanwhile, as the

experiment is performed in clean ferromagnetic surroundings, the measured value from

magnetometers can be approximately equal to the local magnetic field. As mentioned

previously, we adopt the 12-observation scheme [27] to calibrate the magnetometers. During

the experiment, the IMU sensor was rotated to 12 positions with respect to the local horizontal

frame, and was placed in each position according to the 12-observation in Fig. 3.3 for a

certain period to record steady data.
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Fig. 3.2 The IMU Device used in Experiment.

The x, y, z indicate the positive direction in each axis. It should be noted that the high

accuracy platform was not used for the alignment of axis due to the limitation of in-field

calibration. After the 12-observation experiment completed, the data were stored for further

processing. This calibration procedure could be repeated to reduce the influence of sensor

drift [37].
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Fig. 3.3 The Arrangements of MEMS IMU for 12-Observation DoE.

3.3.2 Simulation for Inclination Based Calibration

To evaluate the I-Calibration approach, a series of simulations under different conditions are

developed to study this I-Calibration method. The simulated acceleration value As ∈ R3 and

the simulated magnetic value Ms ∈ R3 are generated according to real situations. Different

weights of the noise level, scale factors and misalignments, offset and tolerance angle are

considered to simulate different conditions for the simulated data. Each run of the simulation

is obtained by the 12-observation DoE as shown in Fig. 6.1. The proposed I-Calibration

method is then implemented to estimate the unknown parameters, and the simulation results

are calculated and recorded.

Firstly, the simulated acceleration value As is generated with the typical errors of scale

factors and offsets are within ±10% and ±0.1g [107], respectively. Next, the simulated

magnetic value Ms is assumed as the projection of acceleration value As in the axis of
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magnetic according to the inclination. A tolerance angle ϕ = [ϕx ϕy ϕz]
T is set to study

the affect of misalignment between the accelerometers axis and the magnetometers axis:

Rx =

⎡
⎢⎢⎣

1 0 0

0 cosϕx −sinϕx

0 sinϕx cosϕx

⎤
⎥⎥⎦ , (3.31)

Ry =

⎡
⎢⎢⎣

cosϕy 0 sinϕy

0 1 0

−sinϕy 0 cosϕy

⎤
⎥⎥⎦ , (3.32)

Rz =

⎡
⎢⎢⎣

cosϕz −sinϕz 0

sinϕz cosϕz 0

0 0 1

⎤
⎥⎥⎦ . (3.33)

The transformation matrix for a rotation about the simulated magnetic value Ms by a

tolerance angle ϕ is identified as Ms
ϕ ∈ R3 and given by Eq.(3.34)[109, 110]:

Ms
ϕ = Rx ×Ry ×Rz ×Ms. (3.34)

The 12-observation DoE is applied to obtain the observation matrix XI in Eq.(3.28) after

the simulated acceleration value As and the simulated magnetic value Ms, Ms
ϕ have been

generated. Then, the I-Calibration method can be implemented to complete the simulation.

As the calibration algorithm utilises the local gravity information, which is measured

by TAs, the overall performance of the proposed calibration method is influenced by the

estimated gravity. For the purpose of studying the influence of accelerometers value accuracy

on the calibration results and evaluating the I-Calibration approach, the second part of

simulation study is developed. Similarly, the simulated TAs output value As ∈ R3 is generated

according to the theoretical projection of the earth gravity, and deliberately added errors to

the model parameters. Specifically, the scale factors are set within ±10% and offsets are

within ±0.1g [107]. In order to implement the angle between the gravity and magnetic field

during simulation, the simulated TMs value Ms is generated as the projection of acceleration

value As in the magnetic axis according to the inclination angle. To make a comparison,



46
An Effective In-Field Calibration Method for Inertial Measurement Unit based on Local

Magnetic Inclination

before calibration, we assume there are additional errors of scale factors ±10% and offset

within ±0.1g in the TAs model, and use As
n to stand for the uncalibrated TAs output. Then,

the 12-observation DoE is adopted to acquire the observation matrix X as introduced in

Section 3.2.2 after the simulated data have been generated. At last, As and Ms, As
n and Ms

are substituted in the formula of I-Calibration method respectively to obtain the simulation

calibration results.

3.4 Results

3.4.1 Simulation Study

Simulation for the Tolerance Angles of Inclination Based Calibration

The simulation results about demonstrating the effectiveness and tolerance angles of I-

Calibration are presented in this section. A randomly-selected example of the estimated

magnetic magnitude value before and after the I-Calibration simulation is shown in Fig. 3.4.

The magnitude value is calculated by the square root of the sum of squares of their vector

components.
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Fig. 3.4 Normalized Magnitude Value before and after I-Calibration Simulation.
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In total, we have 2000 simulations and the results are generated randomly under the

following conditions:

• The weights of noise level follow a uniform distribution U(−10%,10%),

• The scale factors and misalignments of As follow a uniform distribution U(−10%,10%),

• The offsets of As follow a uniform distribution U(−0.1g,0.1g),

• The tolerance angles are set as shown in the following four cases, and run 500 simula-

tions for each case:

ϕx = ϕy = ϕz = 0◦;

ϕx = ϕy = ϕz = 30◦;

ϕx = ϕy = ϕz = 60◦;

ϕx = ϕy = ϕz = 90◦.

According to the magnitude of the simulated magnetic value with different tolerance

angles, the range and standard deviation of magnitude are calculated and represented in Fig.

3.5 to demonstrate the degree of dispersion of magnitude.
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Fig. 3.5 Scaled Range and Standard Deviation of Magnitude before and after I-Calibration

Simulation, where "tolerance angles" is abbreviated as "TA" to save space.

As shown in Fig. 3.5, the magnitude of the estimated local magnetic field is much more

accurate after calibration, which indicates the I-Calibration is effective in calibrating tri-axial

magnetometers. In addition, the tolerance angle has no significant effect on the calibration

results.

Simulation for the Acceleration Calibration of Inclination based Calibration

The simulation results about how the acceleration data affect the magnetometers calibration

results in I-Calibration is illustrated in this section. The sum of the square of the magnetic

data is magnitude, which is a vital factor to indicate the effectiveness of calibration [111, 112].

A randomly-selected example of the simulation results is presented in Fig. 3.6 which shows

the normalized magnetic magnitude value before and after the I-Calibration simulation.

The calibration results calculated by the raw (measured) acceleration value and calibrated

acceleration value are represented respectively.
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Fig. 3.6 Raw Data and Calibrated Data by I-Calibration Simulation with Measured Accelera-

tion data and Calibrated Acceleration data.

According to the magnitude of the magnetic value after 2000 times I-Calibration sim-

ulation with different measured and calibrated acceleration values, the range and standard

deviation of magnitude are calculated and represented in Fig. 3.7.

From the above results, it is demonstrated that the I-Calibration is an effective magnetic

calibration method as the magnitude of the magnetic field is more accurate after calibration. In

addition, the acceleration data after calibration is helpful to improve the magnetic calibration

results.

3.4.2 Experimental Results

Experiment for Magnitude Based Calibration

The experiments for M-Calibration are also performed according to the 12-observation

experimental scheme as shown in Fig. 3.3. It should be pointed out that the simulation

study, without experimental verification, of this calibration approach was already given in our



50
An Effective In-Field Calibration Method for Inertial Measurement Unit based on Local

Magnetic Inclination

With Simulated Measured Acceleration With Simulated Calibrated Acceleration

0

2

4

6

8

10

12

R
an

ge

10-3 Range of Magnitude after I-Calibration Simulation.

With Simulated Measured Acceleration With Simulated Calibrated Acceleration

0

0.5

1

1.5

2

2.5

3

3.5

4

St
an

da
rd

 D
ev

ia
tio

n

10-3 Standard Deviation of Magnitude after I-Calibration Simulation.

Fig. 3.7 Scaled Range and Standard Deviation of Magnitude after I-Calibration Simulation

with Measured Acceleration data and Calibrated Acceleration data.

previous study [47, 107]. Here, for the first time, we experimentally examine this calibration

method.

Based on the experimental data and Algorithm 1, the parameters of the model were

identified recursively. The convergence rate of γ in Algorithm 1 is shown in Fig. 3.8, which

indicates that the estimated value can converge to the real value within 5 iterations.
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Fig. 3.8 Estimation Results of γ and Convergence.

The estimation results (e.g., convergence rate) of the parameters in the matrices G and

O, during the 15 iterations, are shown in the Fig. 3.9. The calibrated magnetic value by
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M-Calibration Mc
M = [Mc

Mx Mc
My Mc

Mz]
T can be calculated by G, O and the measured

magnetic value Mm according to Eq.(3.1).
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Fig. 3.9 Results of Estimated G and O.

The calibrated magnitude value of Mc
M (HM) and the raw magnitude value of Mm (H0)

can be calculated by the square root of the sum of squares of their vector components. The

normalized magnitude value before and after M-Calibration and their boxplot are shown in

Fig. 3.10.
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Fig. 3.10 The Normalized Magnitude Value of the Measured Magnetic Fields before (H0)

and after (HM) Magnitude Based Calibration.

Experimental Results for 6-Parameter Inclination Based Calibration

The experiments for 6-parameter I-Calibration are performed according to the 12-observation

experimental scheme as shown in Fig. 6.1. The calibrated magnetic value by using the

I-Calibration method Mc
I = [Mc

Ix Mc
Iy Mc

Iz]
T is calculated according to Eq.(3.22) and

Eq.(3.30) .

The magnitude of the calibrated data Mc
I (HI) and the measured data Mm (H0) were cal-

culated by the square root of the sum of squares of their vector components. The normalized

magnitude of the calibrated magnetometers data can be seen to lie around 1 as depicted in

red in Fig. 3.11.
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Fig. 3.11 The Normalized Magnitude Value of the Measured Magnetic Fields before (H0)

and after (HI) Inclination Based Calibration.

As the magnitude of measured data H0 (without calibration), the magnitude of calibrated

data by M-Calibration HM, and the magnitude of calibrated data by I-Calibration HI , are

calculated, the detailed comparisons for H0, HM and HI , including the maximum value,

minimum value, range, standard deviation and quartile difference (75th percentile minus

25th percentile) are listed in Table 5.3.

Table 3.1 The Comparison of Raw Magnitude and Calibrated Magnitudes of Two Methods.

Method H0 HM HI

Maximum 1.2226 1.0452 1.0464

Minimum 0.7527 0.9489 0.9530

Range 0.4699 0.0962 0.0934

Standard Deviation 0.1186 0.0138 0.0137

Quartile difference 0.1656 0.0192 0.0186

Based on Table 3.1, we apply the Rank Sum Test on the comparison indexes of M-

Calibration (column II) and I-Calibration (column III), as they do not follow the normal

distribution. Generally, if P < 0.05, it will be considered as statistically significant. The

result of the Rank Sum Test shows that P = 1 means h = 0, which means that the distinction

of the calibrated magnitude acquired from M-Calibration and I-Calibration is not significant.

If the magnetometer is properly calibrated, the magnitude of the calibrated measurement

of the magnetic field will be less independent on the orientation of the platform, and the
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estimated value of the local magnetic field should lie on a sphere [34, 108]. Due to sensor

draft and distortion, the uncalibrated estimations of local magnetic field often lie on an

ellipsoid surface. After a proper calibration for the magnetometer, the calibrated estimations

will distribute in a unit sphere [34]. The calibrated data Mc
M, Mc

I and raw data Mm are

displayed in Fig. 3.12 and compared with a reference sphere.

Fig. 3.12 Raw Data and Calibrated Data by M-Calibration and I-Calibration.

In addition, the Rank Sum Test was applied to the raw data (Mm) and calibrated data

(Mc
M, Mc

I) to demonstrate the distinction. The comparison result between Mm and Mc
M, and

the result between Mm and Mc
I both show P < 1× 10−103 and h = 1, which indicate the

calibrated estimations from both M-Calibration and I-Calibration are significantly improved

compared to the uncalibrated estimations. On the other hand, the comparison result between

Mc
M and Mc

I is P = 0.4706 and h = 0, which implies that the distinction of the calibrated

results from these two methods is not significant.
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Experimental Results for 9-Parameter Inclination based Calibration

The magnitudes of the calibrated magnetometers data Mc and the measured magnetometers

data Mm are also applied as indicators to demonstrate the effectiveness of 9-parameter

I-Calibration in the experiment. The normalized magnitude of the calibrated magnetometers

data can be seen to lie around 1 as depicted in yellow in Fig. 3.13.
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Fig. 3.13 The Normalized Magnitude Value before and after I-Calibration with Calibrated

Acceleration Ac and Measured Acceleration Am.

As mentioned in Section 3.2.2, the acceleration value has been calibrated when the

I-Calibration is applied to the magnetic calibration. In order to illustrate the influence of

acceleration value accuracy on the calibration results, a contrast is proposed by implementing

the measured acceleration value Am = [Am
x Am

y Am
z ]

T without calibration in Eq. (3.26).

The normalized magnitude before and after I-Calibration by using uncalibrated acceleration

value are shown in red in Fig. 3.13.

Generally, if the magnetic distortion and sensor error exist, the magnetometers data

without calibration will lie on an ellipsoid surface. Once the magnetic value has been

calibrated properly, the calibrated magnetic data will be distributed in a unit sphere [34, 108].
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In order to display the raw data, the calibrated magnetic data by I-Calibration using raw

measured acceleration value Am and using calibrated acceleration value Ac directly, Fig.

3.14 and Fig. 3.15 are presented to make a contrast for them with a sphere reference plane.

Fig. 3.14 Raw Data and Calibrated Data by I-Calibration with Calibrated Acceleration Ac

and Measured Acceleration Am (Front Review)
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Fig. 3.15 Raw Data and Calibrated Data by I-Calibration with Calibrated Acceleration Ac

and Measured Acceleration Am (Back Review)

Notation H0 represents the magnitude of raw magnetic data, while H1 and H2 stand for

the magnitudes of calibrated magnetic data by I-Calibration with measured and calibrated

accelerations, respectively. In Table 5.3, the range (the difference between the largest and

smallest values of the magnitudes) indicates the measures of variation and the standard

deviation (SD) represents the dispersion of H0, H1 and H2. In addition, the mean absolute

deviation (MAD) and mean absolute value (MAV) are listed in Table 5.3 to demonstrate the

deviation of H1 and H2 from the baseline, which is defined as 1.

The improvement comparisons for the magnetic calibration by the I-Calibration method

and the importance of the acceleration data calibration are listed in Table 3.3 according to

the statistical indicators in Table 3.1.
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Table 3.2 The Comparisons for Magnitude of Raw Data and Calibrated Data by I-Calibration

with Calibrated Acceleration Ac and Measured Acceleration Am.

Method H0 H1 H2

Range 0.4699 0.1694 0.0953

SD 0.1186 0.0282 0.0142

MAD / 0.0206 0.0098

MAV / 0.0299 0.0115

Table 3.3 The Improvement Comparisons for the Statistical Indicators.

Comparison H1 to H0 H2 to H0 H2 to H1

Range 63.94% 79.72% 43.76%

SD 76.20% 87.98% 49.50%

MAD / / 52.18%

MAV / / 61.44%

The experimental results lead to the same conclusion with the simulation that the I-

Calibration is effective on magnetic calibration and the acceleration data should be calibrated

to ensure accurate calibration results.

3.5 Discussion

The proposed I-Calibration algorithm, which associated with the measured magnetic data and

calibrated acceleration data, has been applied to the simulation and experimental magnetome-

ters calibration procedure. The effectiveness of the I-Calibration algorithm is demonstrated

both by simulation and experiment. In addition, the effect of tolerance angle in 6-parameter

I-Calibration and the effect of calibrated acceleration in 9-parameter I-Calibration is also

demonstrated both by simulation and experiment.

In the study of 6-parameter I-Calibration and comparison with M-Calibration, it is

demonstrated that the I-Calibration has the similar effectiveness as the M-Calibration in

terms of calibration accuracy. This conclusion is based on the raw and calibrated data

as shown in Fig. 3.12, the Rank Sum Test of comparison index in Table 3.2, and the

estimated vectors (Mc
M, Mc

I , Mm). However, these two methods have different advantages

and disadvantages. The M-Calibration can be utilised to directly calibrate magnetometers

without using the measurements from TAs. However, during calibration, the M-Calibration
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needs some extra conditions to ensure the convergence of the algorithm as it is a nonlinear

parameter estimation algorithm. High computational cost and appropriately selected initial

conditions are required to guarantee the convergence of the iterative algorithm (see Algorithm

1). One the other hand, the I-Calibration is a simple linear method, and it is a single step

linear least square estimator, i.e., without iteration. Furthermore, Fig. 3.5 illustrates that even

though the frames of the tri-axial accelerometers and magnetometers are not consistent, the

I-Calibration method is still valid. However, the accuracy of the tri-axial accelerometers is

essential to ensure the success of I-Calibration method hence this point is discussed in the

9-parameter model.

In the study of 9-parameter I-Calibration, the magnetic field data can also be calibrated

properly. From the results shown in Fig. 3.13, the normalized magnitude of the calibrated

magnetometers data can be seen to lie around 1 which means the data have been calibrated

effectively [108, 111, 112]. The results in Fig. 3.14 also displays that the data is mapped

to a sphere after calibration [34, 105, 108]. For the purpose of demonstrating whether

the acceleration data has an influence on the I-Calibration method, the simulation and

experimental calibration have also been implemented by the raw acceleration data. It can

be noticed that when the acceleration data is without calibration, the normalized magnitude

of the magnetic field is with deviation from the baseline of 1 in Fig. 3.6 and Fig. 3.13.

The deviation is proved by the decreased range and standard deviation of the magnetic field

magnitude after the I-Calibration simulation in Fig. 3.7. The calibrated TMs data with raw

acceleration data as shown in Fig. 3.14 are also with deviation from the reference sphere.

The percentage of the improvement for the magnetic calibration results when the acceleration

data is calibrated in Table 3.2 provides the statistical evidence for the deviation. As we

can see, the range, standard deviation of the magnitude of the magnetic field is decreased

after calibration, and the extent of decreasing when using calibrated acceleration is larger

compared to that using measured acceleration. The decreased MAD and MAV by different

acceleration values also illustrate the necessity of acceleration calibration. According to the

results both from simulation and experiment, the improvement in the calibration results when

using the calibrated acceleration data is demonstrated.

Above all, compared to the existing “Attitude-Independent" calibration methods which

need some extra conditions to ensure the convergence of the algorithm [106, 107] (as it is

a nonlinear parameter estimation algorithm and need appropriate selected initial condition
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[34, 108]), the proposed I-Calibration is a simple linear method, i.e., it is a single step linear

least square estimator without iteration. Thus, the method can be easily implemented in a

wearable device with low computational power. The performance of tri-axial accelerometers

is essential to ensure the success of the proposed I-Calibration method as the uncalibrated

accelerometers data can affect the calibration results as shown in Section 3.4.2. To further

improve the effectiveness of the two proposed methods, in the next step, the I-Calibration

can be used to select the initial conditions, then the M-Calibration can be applied by using

the well selected initial values to ensure the convergence of the M-Calibration [107].

3.6 Conclusion

A practical algorithm named Inclination based Calibration (I-Calibration) has been developed

in this work to calibrate the tri-axial magnetometers. This algorithm is based on the fact

that the angle between the local magnetic field and gravity is constant. Different from

existing in-field calibration methods, the newly proposed I-Calibration could accurately

estimate the coefficients of the magnetometers model by simply using a linear Least Square

estimator. Both 6-parameter and 9-parameter mathematical methods associated with the

12-observation experimental design is proposed to the calibration procedure. The problem is

finally formulated as a linear least square problem based on the measured magnetic value

and calibrated acceleration value.

Extensive numerical simulations for 6-parameter and 9-parameter model demonstrated the

effectiveness of the I-Calibration. The algorithm performs well on both the simulation study

and practical experiment and is confirmed that the I-Calibration is robust to the mismatch of

the frames of TAs and TMs when using 6-parameter model. Real-time experiments were also

performed to compare the performance of the proposed I-Calibration and the M-Calibration.

The experimental results demonstrated the two calibration methods have similar effectiveness

in terms of calibration accuracy. To investigate the significance for the accuracy of the

acceleration value, a contrast study is applied in the simulation and experimental procedure

by 9-parameter model. It is demonstrated that the acceleration data should be calibrated well

to ensure the effectiveness of the Inclination based Calibration algorithm. However, as the

I-Calibration method was a single-calculation linear method, with low computational cost
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and without divergence problem, it would be more suitable for real-time in-field calibration

for wearable devices with limited computational power.





Chapter 4

Non-Parametric Dynamical Model of

Cardiorespiratory Responses at the

Onset and Offset of Treadmill Exercise

4.1 Introduction

Decades ago, some sports physiology laboratories had used the Douglas bag and the Scholan-

der gas analyser [14] to measure the oxygen (O2) uptake and the amount of carbon dioxide

(CO2) produced before, during, and after exercise. Over the last dozens of years, automated

portable gas analysis systems had been developed and applied in various sports fields for

energy consumption assessment [15]. The study of oxygen uptake was both the traditional

theme of sports physiology study and one of the mainstreams of current and future sports

physiology research. The characterization of gas exchanging attracted a lot of scholars to

work in the field. Hill et al. [16] studied oxygen uptake (V̇ O2) and investigated its recovery

curve. After moderate exercise, it is a logarithmic equation, which is equally applicable

to the recovery curves of carbon dioxide output (V̇CO2). Similarly, Wasserman and Berg

illustrated the equation of carbon dioxide elimination is equal to oxygen uptake. Researches

about the V̇ O2 and V̇CO2 during the exercise also had been developed.

Modelling method is widely used in the biological signal analysis [48–50]. Several

research studies for the modelling of the dynamics of physiological signal in response to
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treadmill exercise were also conducted [64, 92, 93]. To the best of our knowledge, all the

existing studies only utilised classical system identification approaches, e.g. the Least Square

(LS), Maximum Likelihood (ML) and Prediction Error Method (PEM). However, the signals

that exert on a human body should be well selected to ensure the safety. Due to this reason,

when the human being is involved in an experiment, the input signals are often limited in

both intensity and duration, which leads to insufficient stimulation for the modelling of the

system. In this case, the LS/ML/PEM equipped with classical model structure selection

approaches often fail to obtain an appropriate model with desired accuracy and robustness

for cardiorespiratory response estimation, which is based on insignificantly stimulated short

recording data polluted by artifacts and noise [52–54].

The recently developed system identification approaches are not only based on plenty of

physical experimental data but also emphasizing more on prior knowledge of the system under

estimation. System prior information is often applied to model complexity selection, which

is the most critical step for system modelling. In some papers [55, 56], system dynamics

is depicted by non-parametric models rather than the most commonly used first/second

order linear time-invariant models. Often, non-parametric methods are used when the prior

information is insufficient to determine a parametric model structure. The new approach

[54, 67] which well utilises the prior information is based on the kernel-based regularisation

approach. By using kernel technique, prior information is adopted in the identification

process by assigning an appropriate kernel to the index function. Specifically, papers [56–59]

introduced the regularisation terms and the kernel designing strategies for non-parametric

system identification. Based on authors’ experiences, for the investigation of the dynamics of

cardiorespiratory response to exercise, the new kernel-based non-parametric approach should

be the best option to greatly improve the robustness and accuracy.

The treadmill exercise is similar to human daily life running or walking status so it could

be applied to analyse the mechanism of one’s exercise. It is well documented that regular

treadmill exercise can greatly improve the human cardiovascular system, e.g., increase

total oxygen demand and consumption (the amount of increase depending on the size of the

muscles used), and V̇ O2 Max. Moreover, the treadmill is a good choice for exercise modelling

because the model needs an accurate input to ensure a steady workload and exclude other

effect factors. Some research [8] applied Heart Rate (HR) to make the analysis, but it can

easily be affected by human motion or other aspects. In this way, other researchers choose
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how the gas changes during the exercise as an index. Among the studies of cardiorespiratory

response to exercise, researchers preferred to choose oxygen uptake as the index. Both linear

and nonlinear static models [61, 97, 98] had been proposed based on the walking speed.

Furthermore, some researchers modelled the V̇ O2 response with a monoexponential curve

[62, 76, 77]. In these studies, the oxygen uptake could indicate the respiratory gas exchange,

energy providing situation, the energy saving phenomenon, the differential effect of training

tense and other biological phenomenon. Some of the researchers had also recorded the V̇CO2

as an auxiliary data for analysis.

The above studies present different aspects of Kinematics and the pattern of gas exchange.

However, V̇CO2 is uncommonly applied. What’s more, the dynamic changing of the V̇CO2

and V̇ O2 during the different periods of exercise and their relationship need a deeper investi-

gation to get a comprehensive understand for human exercise mechanism. In this work, we

apply the non-parametric modelling method [54, 67] to identify the relationship between

V̇CO2 and the speed of the treadmill. The inputs of the Speed − to− the−V̇CO2 system are

step functions (i.e., the onset period is from 3km/h to 8km/h, and the offset is from 8km/h to

3km/h). The exercise protocol of the treadmill speed is illustrated as in Fig. 4.1. We adopted

the kernel-based estimation method for this modelling. The data were collected from 20

untrained participants in the treadmill exercise. After the identification, we make a statistical

comparison between the onset period (from walking to running) of the speed and the offset

period (from running to walking). Moreover, we analysed the relationship between the V̇ O2

and the V̇CO2. The contributions of the part of work are listed as follows:

• The kernel-based non-parametric modelling approach has been applied to describe the

dynamics of both V̇ O2 and V̇CO2 responses to exercise.

• Based on comprehensively comparative numerical analyses, the SS kernel has been

selected as the best kernel for the identification of dynamic response to exercise

regarding the goodness-of-fit and parameter insensitivity.

• Based on the reliable experimental data acquired from twenty subjects, the dynamic

models of the V̇ O2 and V̇CO2 for exercise responses for both onset and offset of

exercise have been identified.
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• Comprehensively statistical analyses are performed to compare the dynamic charac-

teristics of the onset and offset exercise responses for V̇ O2 and V̇CO2, and several

useful conclusions have been made to provide instructive guidance for the regulation

of exercise intensity.
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Fig. 4.1 Raw V̇CO2 and treadmill speed during the exercise.

4.2 Methods

According to previous studies, for the V̇ O2 during exercise, the exponential function was

applied to describe the dynamic performance [62, 76, 77]. Puente [62] demonstrated that the

V̇CO2 could also be described by the same as:

V̇CO2(t) = V̇CO0
2 +RA[1− e−(t−TD)/τ ]. (4.1)

where V̇CO2(t) is the CO2 output at time t, V̇CO0
2 is the initial value of CO2 output, RA is

the response amplitude, TD is the time delay, and τ is the time constant.

This function implies that Puente treated the model of V̇ O2 response as a first-order

dynamic system with constant time delay. However, for different individuals, the patterns of

V̇CO2 responses to exercise are quite different based on our observations. Hence, the first

order model would not be a good choice to use. In this study, as discussed in the introduction
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section, we will adopt the non-parametric kernel-based modelling method to obtain a better

result. Specifically, as one of the most commonly used non-parametric model, the finite

impulse response (FIR), will be used to describe the characteristics of the system.

We first introduce the kernel-based estimation method in section 4.2.1 and then present

the kernels we intend to select in section 4.2.2. The details of the experiment are presented

in section 4.2.3 and the statistical methods are shown in section 4.2.4.

4.2.1 Kernel-Based Estimation Method for the Modelling of Finite Im-

pulse Response

The data of carbon dioxide output and the speed of the treadmill are shown in Fig. 6.3, which

indicates the step response of V̇CO2 regarding treadmill speed.

As previously mentioned, we will use non-parametric estimation based on kernel tech-

nique to build the V̇CO2 model for treadmill exercise. The relationship between the speed of

the treadmill and the V̇CO2 can be considered as a single input single output (SISO) system.

We consider the discrete case and assume the sampling time is t. Thus, the discrete time

output calculated by impulse response can be expressed as (4.2):

y(t) =
∞

∑
τ=0

u(t − τ)g[τ]+ ε(t), t = 1,2, . . . ,N, (4.2)

where u(t) is the input, y(t) is the output, g(τ) is the impulse response, ε(t) is Gaussian

white noise, and N is the total number of sampling.

The model output (predictor) is defined as:

Pt [g] =
∞

∑
τ=0

u(t − τ)g[τ]. (4.3)

Then the cost function regarding estimation error can be written as:

ŷ(t) =
N

∑
t=1

(y(t)−Pt [g])2. (4.4)
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In order to rewrite (4.2) in a vector form, we stack all the elements (row) in y(t) and

u(t − τ) to form the matrices Y and φ. Then the minimum value of the cost function can

be solved by LS estimation or ML estimation. We define g(τ) = θ ∈ R
m, where the vector

θ ∈ R
m contains the FIR coefficients. Then the LS estimation of the parameters g(τ) is:

θ̂ = arg min
θ∈Rm

‖Y −φθ‖2. (4.5)

However, the measurements of V̇CO2 from gas analyser contain various artifacts and

are polluted by various noises. To regularise the estimation, a regularisation term can be

added to (4.5). Regularisation approaches aim to put “soft" constraints on the structure θ

[57, 58]. We define JR(θ) as the regularisation term, and it belongs to a Reproducing Kernel

Hilbert Space (RKHS) H . If we only consider FIR, the norm ‖gθ‖H in the space H can

be expressed via a quadratic form in (4.6), where P is a suitable kernel matrix:

JR(θ) = θTP−1θ. (4.6)

The structure of P can account for different properties associated with prior information,

which will be discussed in next subsection. The estimation of θ can then be expressed as

follow:

θ̂=arg min
θ∈Rm

(
‖Y −φθ‖2 + γθTP−1θ

)
=
(
P φTφ+ γIm

)−1
P φTY ,

(4.7)

where γ is a positive scalar, and Im ∈ R
m×m is an identity matrix with the dimension of

m×m.

4.2.2 Kernel Selection

The construction of kernel P is made up of two parts: the kernel structure design and hyper-

parameter estimation. Many researchers have strived for kernel design [52–54, 67, 113].

Among them, the Stable Spline (SS) kernel, the Diagonal/ Correlated (DC) kernel, and the
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Diagonal (DI) kernel have been well developed. Therefore, we select the following kernels

for simulation study to achieve a better estimation of the impulse response of V̇CO2.

• SS kernel:

P(i, j) =
c
2

e−βmin(i, j)− c
6

e−3βmax(i, j), (4.8)

where c ≥ 0, 0 ≤ β < 1.

• DC kernel:

P(i, j) = cλ
i+ j

2 ρ |i− j|, (4.9)

where c ≥ 0, 0 ≤ λ < 1, ρ ≤ 1.

• DI kernel:

P(i, j) =

{
cλ i, if i = j

0, else
(4.10)

where c ≥ 0, 0 ≤ λ < 1.

According to (4.1), the relationship between the CO2 output and the treadmill speed can

be approximately considered as a first order system. For this reason, we start the simulation

study by using a first order system with different parameter settings. The detailed settings of

the system are as follows:

Y (s) =
K

T s+1
U(s), (4.11)

where K is the steady state gain and follows the uniform distribution U(5, 15). T is the time

constant and follows U(15, 25).

A step function is selected as the input u(t), and the simulated output y(t) is polluted by

a Gaussian white noise with 1 dB Signal-Noise Ratio (SNR). The sampling time is selected

as 1 second. The input u(t) and output y(t) of the simulated system are shown in Fig. 4.2.
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Fig. 4.2 An input and output pair of the simulated system.

4.2.3 Experiment

20 untrained healthy male subjects were asked to run on the treadmill. During the exercise,

all data including V̇CO2 and V̇ O2 are collected by a portable gas analyser-K4B2. The UTS

Human Research Ethics Committee (UTS HREC 2009000227) had approved this experiment

and the informed consent from all participants before the commencement of data collection

was obtained. The statistical physical information of the participants is shown in Table 4.1.

Table 4.1 Information about the subjects

Information Age(year) Height(cm) Weight(kg)

Mean 46.4 176.6 91.2

Standard Deviation 5.68 4.40 11.37

Before the experiment, the subjects were asked to sit for five minutes and then stand

for two minutes. The physical conditions and the environment settings were standardised

for all participants. During the exercise, the participants first were walking at 3 km/h for

four minutes and then running at 8 km/h for eight minutes followed by walking at 3 km/h

for eight minutes before stopping. To exclude the impact of the subjects’ weight on V̇CO2

and V̇ O2, the V̇CO2 and V̇ O2 were both divided by the weight (Kg) of each subject. The

normalized V̇CO2 and V̇ O2 are recorded as V̇dCO2 and V̇dO2.
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4.2.4 Statistic

• The term “Time Index" as a reflection of response speed is introduced, which indicates

the time when the output reaches the 75% of maximum.

• The histogram and normal probability are plotted in Matlab to present whether the

gain and Time Index follow a normal distribution or not. Paired T -test is used for

the one which follows and Rank Sum test is used for the one which does not follow.

Generally, P < 0.05 was considered as statistically significant. Where h = 0 means we

cannot determine the size of the two sets of data by mean value because the distinction

is small. Meanwhile, the mean value can be used to make the comparison when h = 1

because the distinction is significant.

• The correlation coe f f icient between the estimated V̇dCO2 and V̇dO2 is calculated

in order to know about the correlation between them. Normally, if the correlation

coefficient is between ±0.80 to ±1.00, the two variables are highly correlated.

• We calculated the difference of Time Index (V̇dCO2 minus V̇dO2) in two periods to

show whether it is all positive or not.

4.3 Results

In this section, we first present the simulation and kernel selection result in section 4.3.1.

Then the modelling result for the onset and offset period is represented respectively in section

4.3.2 and 4.3.3. The IR and estimated V̇dCO2 of both periods are also shown. Furthermore,

we develop the comparison of onset vs offset and V̇dCO2 vs V̇dO2 from the aspect of the

impulse response, step response and estimated output in section 4.3.4 and 4.3.5. Different

statistic methods are employed for the analysis.

4.3.1 Simulation and Kernel Selection

At first, we use the LS method without kernel technique to perform the identification. The

identified impulse response (IR) of the system is shown in Fig. 4.3. We can observe that
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Fig. 4.3 The estimated IR by using the classical LS estimation.

the estimation error is big in the sense that the noise is amplified. Next, we will show the

effectiveness of the kernel-based regularisation method. Then, we try to select the best

parameters for each kernel and compare the sensitivity to parameters of the three kernels.

The results are shown in Fig. 4.6.

After that, we tune the parameters partially according to the constraints introduced in

[58] and make the final choice by the best results in our simulation. The selected optimal

parameters of the kernels and the regulariser are listed below [52–54, 67, 113].

• SS kernel: c = 1,β = 0.987.

• DC kernel: c = 0.3,λ = 0.999,ρ = 0.999.

• DI kernel: c = 0.3,λ = 0.95.

• Regulariser: γ = 4.

We make a comparison between the true IR and the estimated IR based on the above-listed

kernels. As we can see, the IR from SS kernel is closer to the true value compared to the

others. At the same time, we compare the estimated output and the true output. We carry out

the simulation for 20 times. One of the simulation results about IR and estimation is shown

in Fig. 4.4.
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Fig. 4.4 Observation and estimation of three types kernels.

The goodness-of-fit of the estimated output is calculated by the fit ratio NRMSE (nor-

malised root mean square error) which is defined as:

Fit Ratio =

(
1− ||ŶN −YN ||

||YN −mean(YN)||
)
. (4.12)

The averaged results are shown as follows and the simulation result is shown in Fig. 4.5.

• SS kernel: Average fit=0.9395.

• DC kernel: Average fit=0.9439.

• DI kernel: Average fit=0.9547.

Regarding the goodness-of-fit, the kernel-based methods outperformed the classical LS

estimation. The three kernels have a similar fitness because the mean value of their fitness

are between 0.93-0.96. Thus, we applied T -test to verify the significant difference of the

goodness-of-fit. All the results show that p < 0.0001 which indicate they are of significant

difference. That means the influence of different kernels on the results is significant. We

could observe from the IR in Fig. 4.6 that the DI and DC kernel is over-fitted although they

have a higher fitness. Moreover, the SS kernel has a more smooth IR and less sensitivity to

the parameter. Thus, we choose the SS kernel to get a better IR estimation.
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Fig. 4.5 Box plots of the estimations by using the SS, DC, DI kernels (from left to right).

4.3.2 Modelling of Onset Period

In this part, we selected the data from t1 = 501s to t2 = 900s (see Fig. 4.1) for the modelling

of onset impulse response. The sampling rate of the V̇dCO2 is irregular since the gas response

recorded by K4B2 is breath by breath based. Thus, the raw data of V̇dCO2 and V̇dO2 have

been interpolated and filtered by a median filter. For the recorded 400 observations, to remove

the offset, the average value of the onset period for the initial 150 data is deducted. The order

of the impulse response model is selected as 400.

The IR model can be expressed as:

y[n] = g[1]u[n−1]+g[2]u[n−2]+ . . .+g[400]u[n−400]

=
400

∑
i=1

g[i]u[n− i].
(4.13)

After the pre-processing, we apply the kernel-based estimation method to estimate the IR

model by using the SS kernel (c = 1,β = 0.987,γ = 200) as introduced in Section 4.2.

For the onset period of the treadmill exercise, the estimated impulse response of all

participants (dotted line) and the average IR (bold line) are shown in Fig. 4.7.
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Fig. 4.6 Comparison results of the kernel with different parameters: (A) SS kernel with

different parameters. (B) DC kernel with different parameters. (C) DI kernel with different

parameters. (D) The comparison of the three kernels with well selected parameters and true

IR.
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Fig. 4.7 Average IR and individual IR from 20 participants during the onset period of

treadmill.

The response patterns are similar for most participants, but the individual differences

do exist, which indicate that simply use of a first order model is not sufficient to describe
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the dynamic response of V̇dCO2. This is actually an advantage of adopting non-parametric

modelling approach. The predicted V̇dCO2 output marked (bold line) are compared with the

measured V̇dCO2 of each participant (dotted line) as shown in Fig. 4.8.
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Fig. 4.8 Comparison between estimated V̇dCO2 and measurements from 20 participants

during the onset period.

It can be seen that the estimation fits well with the actual measurements regarding high

goodness-of-fit.

4.3.3 Modelling of Offset Period

We select the data from t1=901s to t2=1300s for the modelling of offset period. Similar to the

onset period, the original data are interpolated and filtered. The average value of the offset

period for the initial 150 data is removed. The sampling time and the order of the impulse

response model are selected as those of onset. The parameters of the kernel are also the same.

The estimated impulse response of all participants (dotted line), as well as the, averaged IR

(bold line) is shown in Fig. 4.9.

Again, most participants have a similar IR pattern, but some of them have a pattern which

is quite different with the response of a first order system. The predicted V̇dCO2 output (bold

line) and the actual V̇dCO2 of each participant (dotted line) are shown in Fig.4.10.
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Fig. 4.9 Average IR and individual IR from 20 participants during the offset period of

treadmill.
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Fig. 4.10 Comparison between estimated V̇dCO2 and measurements from 20 participants

during the offset period of the treadmill.
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4.3.4 Comparison between Onset and Offset Period

To see this difference in the response speed, we normalized the averaged estimation of V̇dCO2

in onset and offset period, which is shown in Fig. 4.11.
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Fig. 4.11 The normalization of V̇dCO2 in onset and offset period (Partial magnification).

To show the transient behaviors, e.g., the response time, the Step Response (SR) of

each participant and the averaged SR are plotted both in onset and offset period. From the

comparison of the average IR and SR between onset and offset period in Fig. 4.12, we find

that the gain of the onset period is bigger than that of the offset. Meanwhile, the response

speed for the IR and SR of the two periods are slightly different.
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Fig. 4.12 Comparison between average IR and SR of V̇dCO2 in onset period and offset period.
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For a thorough individual analysis, we plot the gain and “Time Index" of each participant

which is shown in Fig. 4.13.
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Fig. 4.13 The comparison of individual gain(A) and Time Index(B) of V̇dCO2 in onset and

offset.

The histogram and normal probability plotted in Matlab indicate that the individual

Time Index follows the normal distribution while the individual gain does not strictly follow.

Thus we applied Paired T -test for individual Time Index and test for individual gain using

Matlab. The outcomes of the paired T -test and Ranks Sum test for Time index and Gain

about V̇dCO2 in onset and offset are shown in Table 4.2.

Table 4.2 The statistic test outcome of V̇dCO2 in onset and offset

Item Paired T -test Rank sum test

Time Index h=0, p=0.2539 –

Gain – h=1, p=0.0411

According to the outcomes (i.e. Table 4.2), the Time Index of onset and offset shows

no significant difference. Jerzy’s research [76] reported a similar result about V̇ O2. For the

steady-state gain, we can compare the mean value of 20 participants, 20.50 for onset and

18.35 for offset. Compared to the offset period, the higher gain in the onset period indicates

a higher ratio between output and input. In other words, the results of our study show that for

the same speed change, human body exhales out more CO2 in the onset than offset. We will

give a detail explanation in the next section. Hunt’s research in Heart Rate (HR) modelling

and control [8] also drew a similar conclusion for HR response.



80
Non-Parametric Dynamical Model of Cardiorespiratory Responses at the Onset and Offset of

Treadmill Exercise

4.3.5 Comparison of V̇dCO2 and V̇dO2

Various comparisons, including IR, SR, and estimated output for V̇dCO2 and V̇dO2, for both

onset period and offset period, are shown in Fig. 4.14 and Fig. 4.15, where clearly show that

the changing of carbon dioxide is dynamically correlated to the changing of oxygen, during

onset and offset exercise.
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Fig. 4.14 (A)Comparison between average IR of V̇dCO2 and V̇dO2 during onset period.

(B)Comparison between average estimation output of V̇dCO2 and V̇dO2 during onset period.

(C)Comparison between average SR of V̇dCO2 and V̇dO2 during onset period. (D)The

normalization of estimated V̇dCO2 and V̇dO2 in onset period (Partial magnification).

As the calculated correlation coefficient is 0.9991 in onset period and 0.9990 in offset

period respectively, the high correlation between these two variables can be confirmed.

That means in some cases, the V̇dO2 can be approximately estimated by V̇dCO2, even

in the transient period, or vice versa. This may be helpful to simplify the experimental

procedure, as well as to reduce the cost of equipment maintenance. For example, for the

gas collection during the experiment, it is often the case that the assessment of the exhaled

gas components (with more carbon dioxide) is simpler than that of the inhaled gas (with

more oxygen), i.e., the measurement of carbon dioxide output is more convenient than that

of oxygen uptake. Then, if it is necessary, the measurement of V̇dO2 can be bypassed, but

estimated by using V̇dCO2 instead to reduce the cost.
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Fig. 4.15 (A)Comparison between average IR of V̇dCO2 and V̇dO2 during offset period.

(B)Comparison between average estimation output of V̇dCO2 and V̇dO2 during offset period.

(C)Comparison between average SR of V̇dCO2 and V̇dO2 during offset period. (D)The

normalization of estimated V̇dCO2 and V̇dO2 in offset period (Partial magnification).

To show interpersonal differences, the gain and Time Index of each participant in onset

and offset period are shown in Fig. 4.16 and Fig. 4.17. The histogram and normal probability

of them are plotted in Matlab to decide which test methods will be applied.
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Fig. 4.16 The comparison of individual gain (A) and Time Index (B) between V̇dCO2 and

V̇dO2 in onset.

Similar to the last subsection, we applied Paired T -test for individual Time Index and

Rank Sum test for individual gain (using Matlab) according to whether they follow the

normal distribution or not. The outcomes are shown in Table 4.3 and Table 4.4.
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Fig. 4.17 The comparison of individual gain (A) and Time Index (B) between V̇dCO2 and

V̇dO2 in offset .

According to the above outcomes, the gain of V̇dCO2 and V̇dO2 in both periods shows no

significant difference. Then for the Time Index of the two periods, we can compare the mean

value of 20 participants, 228.15 for V̇dCO2 and 219.80 for V̇dO2 in onset; 229.75 for V̇dCO2

and 220.05 for V̇dO2 in offset. It indicates that the V̇dO2 shows a quicker response speed in

both periods.

To further verify the conclusion, the difference of Time Index (V̇dCO2 minus V̇dO2) in two

periods are calculated. As the differences are all positive, it further validated the conclusion.

Table 4.3 The statistic test outcome of V̇dCO2 and V̇dO2 in the onset

Item Paired T -test Rank Sum test

Time Index h=1, p=6.96×10−6 –

Gain – h=0, p=0.0720

Table 4.4 The statistic test outcome of V̇dCO2 and V̇dO2 in the offset

Item Paired T -test Rank Sum test

Time Index h=1, p=6.54×10−6 –

Gain – h=1, p=0.3942
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4.4 Discussion

In this section, we attempt to explain the results from a physiological point of view. The

explanation about the similarity and difference between onset vs. offset and V̇dCO2 vs. V̇dO2

are illustrated respectively in Subsection 4.1 and 4.2.

Aerobic respiration produces carbon dioxide and water, resulting in the releasing of

energy and generating large amounts of Adenosine Triphosphate (ATP, also known as adenine

nucleoside triphosphate). ATP transports chemical energy within cells for metabolism. Under

normal circumstances, only considering the case of glucose for energy, in aerobic breathing,

the product is carbon dioxide and water. The total reaction of aerobic respiration is shown

in Eq. (4.14). The concept of Respiratory Quotient [114] (referred as RQ or R, the V̇CO2

divided by V̇ O2 in local tissue) was presented, which is equal to 1 when glucose is the only

available source for energy according to Eq. (4.14). Every litre of oxygen will produce one

litre of carbon dioxide and the volume ratio of carbon dioxide and oxygen is 1 [115, 116]:

C6H12O6 +6O2 +6H2O
enzyme−→

6CO2 +12H2O+ large amount o f energy.
(4.14)

Based on the above background about aerobic respiration, the results and their physiolog-

ical explanations are summarized as follows.

4.4.1 Comparison between Onset and Offset Period of V̇dCO2

• The Time Index of V̇dCO2 in onset is similar to offset and the gain of V̇dCO2 in onset

is bigger than offset.

As we observed, for the same speed change, the carbon dioxide output in onset is

more than offset. The reason behind this observation is the fact that ATP is the “molecular

currency" for intracellular energy transfer, storage as well as transfer chemistry energy. With

the increasing of the exercise intensity, the human body has to consume more ATP in onset

period than that of in offset period. Human body provides ATP and produces carbon dioxide
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by respiration. Thus, the participants produce more carbon dioxide in onset period than

offset for the same speed changing rate. This observation is also related to the “oxygen debt"

[65, 82, 117], which is first proposed by Hill [16]. The “debt” occurs during the onset period

because the stored credits are expended.

4.4.2 Comparison of V̇dCO2 and V̇dO2

• Similarity: The V̇dCO2 and V̇dO2 are significantly related, and the gains of V̇dCO2 and

V̇dO2 are similar in both periods.

The similar gain and correlation coefficient of V̇dCO2 and V̇dO2 also work in concert with

the respiration formula as Eq. (4.14).

• Difference: The Time Index of V̇dCO2 is bigger than that of V̇dO2 in both periods, so

the V̇dO2 shows a quicker response speed.

The different Time Index means a different gas delivery rate. The Fig. 3 in Williams’s

research [80] shows the same result. For their half-time constant, oxygen uptake is smaller

than carbon dioxide elimination. This is also related to the O2 debt and excess CO2 and

respond to the Subsection 4.1. The Fig. 2 of Karlman’s research [82] also shows that the R is

over 1 which is same to our results and explain it by a buffer system.

4.5 Conclusion

This study investigates the onset and offset dynamics of cardiorespiratory response to tread-

mill exercise. In order to detect the characteristic differences during onset and offset exercise,

a recently developed non-parametric modelling method based on l2-norm kernel regularisa-

tion has been applied to identify the impulse responses of the carbon dioxide output (V̇dCO2)

and oxygen uptake (V̇dO2) responses. By well-designed kernel-based regularisation term,

this approach can handle the data with short records and low SNR (Signal-to-Noise-Ratio),

and orderly fit the experimental data. In terms of the fitness for the experimental data from

twenty healthy subjects, the stable spline (SS) kernel achieves a reliable estimation of the
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impulse response for both V̇dCO2 and V̇dO2. Based on the identified impulse response model,

various statistical comparisons are developed and the comparison results are explained from

physiological perspective. The bigger gain of V̇dCO2 in onset demonstrates the human’s ATP

storage during the relaxing status. Meanwhile, the quicker response speed of V̇dCO2 in both

periods explains why there is a delay due to the conversion from O2 to CO2. We believe

the kernel-based non-parametric modelling approach together with the developed impulse

response models will significantly improve our understanding of human cardiorespiratory

response to exercise, and provide instructive guidance for the regulation of exercise intensity

to ensure the efficiency and safety during training and rehabilitation exercise.





Chapter 5

Non-Parametric Dynamical Model of

Cardiorespiratory Responses of Stairs

Exercise

5.1 Introduction

Aerobic exercise is a type of exercise performed at a moderate level of intensity for an

extended period of time. Among the various forms of aerobic exercise, the interval training

exercise, e.g., the ascending-descending switching exercise, is one of the most commonly

used protocols for trainers seeking to enhance cardiovascular fitness. The regular stairs

exercise is a proper method to demonstrate the effects of the interval training exercise owing

to several advantages. These include improving cardiovascular fitness, consuming calories,

convenience and low-cost [4–6]. The intensity of the stairs exercise can be adjusted by the

exercise phase (ascending or descending) without causing any discomfort to the participants

[7]. Portable sensors enable us to conveniently measure the Heart Rate (HR) of participants

in order to ensure that the exercise is conducted under aerobic conditions [7, 9, 10]. The

respiratory information, such as voluntary ventilation, oxygen uptake (V̇ O2) or carbon dioxide

output (V̇CO2), is also commonly used to assess the metabolism demands [62, 63, 69–71]. In

addition, unlike HR, the respiratory information is not affected by the participants’ emotion

and hence a more accurate assessment result is guaranteed. The Maximum Heart Rate



88 Non-Parametric Dynamical Model of Cardiorespiratory Responses of Stairs Exercise

(HRmax) is the highest HR that an individual can achieve without causing severe problems

through exercise stress [10]. Considering the linear relationship between the HR and V̇ O2,

HRmax [11, 12] has been recognised as an indicator to detect the exercise intensity [13]. One

representative formula of HRmax is introduced in Robert’s research [78] as shown in Eq.

(6.3):

HRmax = 205.8−0.685×age, (5.1)

where, age indicates the age of the participant.

For the past four decades, V̇ O2 and V̇CO2 have been measured at various sports labo-

ratories by the means of the gas analyser [14, 100]. The energy consumption, HR, V̇ O2

and V̇CO2 keeps increasing until participants reach the peak level in terms of going upstairs

(ascending). When going downstairs (descending), these figures decrease to form a valley

[7]. The phase of the stairs exercise (ascending or descending) can be considered as a square

signal if we describe the ascending and descending as two numerical indicators. The above

physiological signals, such as HR, V̇ O2 and V̇CO2, change with the phase. This means that

the human cardiovascular system can be described as a dynamic model wherein the input is

the phase and the output is the physiological signal.

One of the challenges for the modelling of the human physiological variable is the fact

that the stimulation of the input is often limited. This prevents the use of models with high-

dimensional parameters, as they usually lead to ill-posed inverse problems. Recently, the

intrinsical ill-posed problem is circumvented with kernel-based regularisation methods, which

also admit a Bayesian interpretation. In particular, a non-parametric modelling approach is

proposed, in which the impulse response is modelled as a zero-mean Gaussian process. In

this way, prior information is introduced in the identification process by assigning a kernel

covariance [52, 53, 57]. When the structure of the system cannot be determined or it is too

complicated to be described by a simple parametric model, the non-parametric modelling

method is the preferable choice [55, 56]. Furthermore, the development of the wearable

equipment, such as the K4b2, makes it possible to record large amounts of data compared

to the limited amount of data that was recorded in the past. The traditional modelling

method achieves good fitness with a limited amount of data, while the non-parametric

model accommodates a large dataset. The non-parametric model with the kernel-based

regularisation approach has been applied by several researchers to system identification



5.2 Methods 89

with different demands [54, 58, 60]. This has achieved high accuracy and robust system

identification when it has been applied to the dynamics of physiological information responses

to the exercise phase within a well-designed kernel strategy and regularisation term.

Our study focuses on the dynamic relationship between the exercise phase and the V̇ O2.

The non-parametric model has been applied due to the uncertain structure of the model.

Different types of fixed-order models have been used for the purpose of comparison. The

continuously changing protocol for the stairs exercise provides more stimulation for the

system, utilised as prior information for the tuning of the kernel covariance. The results

demonstrate that the non-parametric model could achieve better performance under different

conditions, i.e. different exercise phases and different participants. The identification

results from the non-parametric model display a consistently high level of accuracy, and

this illustrates that the non-parametric model is compatible. The variant structure of the

phase-oxygen uptake system is also demonstrated. In addition, experimental results justify

the conclusion that has been drawn.

The remainder of this work is organized as follows. Section 5.2 introduces the non-

parametric model with the kernel-based regularisation, the experiment, the pre-processing

and verification approach. The identification and comparison results are presented in Section

5.3. Then, we analyse and discuss the results in Section 5.4. Finally, the conclusion is drawn

in Section 5.5.

5.2 Methods

5.2.1 Experiment

During the stairs exercise experiment, 10 participants’ exercise information, including HR

and exercise phase (ascending or descending), is collected by a self-designed mobile phone

application. In addition, the physiological information is collected by the portable gas

analyser-Cosmed K4b2 (Cosmed, Italy) [118]. The scenario of the experiment, the K4b2 and

the interface of the self-developed mobile phone application are shown in Fig. 5.1. The UTS

Human Research Ethics Committee (UTS HREC 2009000227) approved these experiments
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and informed consent was obtained from all participants before commencement of data

collection.

Fig. 5.1 The Scene, Application Interface and Equipment of the Stairs Experiment.

The mobile phone is placed on the ankle of participants during going upstairs and down-

stairs. The exercise phase is acquired from the measurements of the Inertial Measurement

Unit (IMU) data. During the exercise, ten untrained (non-athletes) and healthy (no records

of motor skill disorder, cardiac-respiratory disorder or related medications history) are in-

structed to maintain their HR within the range from 60% to 80% of their HRmax. When

their HR starts to exceed 80% of HRmax during the ascending phase, the participants are

instructed to go downstairs. Once their HR is below 60% of HRmax during the descending

phase, the participants are instructed to go upstairs. The range of the HR guarantees the

exercise is in an aerobic circumstance and the model will not change dramatically and stay in

a linear range. Also, this protocol ensures that all the physiological signals are constantly

and randomly changing without the participants feeling uncomfortable. Meanwhile, the
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respiration data, such as V̇ O2 and V̇CO2, are collected by the portable gas analyser-K4b2

during the participants’ stairs exercise. Each experiment lasts 12 minutes. An entire period

during the exercise is defined as from the beginning of the ascending period to the end of the

descending period. In that case, most participants completed the experiment within two to

four periods in around 12 minutes. The statistical physical information of the participants is

shown in Table 5.1.

Table 5.1 Information about the Participants (n=10)

Information Age(year) Height(cm) Mass(kg) HRmax 60%HRmax 80%HRmax

Mean 26.2 171.2 83.6 187.8 112.6 150.2

Standard Deviation 6.75 0.42 2.95 4.64 2.95 3.79

The V̇ O2 is divided by the mass (kg) for each participant to exclude the impact of the

participant’s mass on breath information. The normalized V̇ O2 are recorded as V̇dO2. The

phase of the exercise is described as 2 when the participants are ascending (go upstairs) and

as 1 when descending (go downstairs). The phase and measured (V̇dO2) of one representative

participant are shown in Fig. 5.2.
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Fig. 5.2 Measured V̇dO2 and Exercise Phase of One Participant during Stairs Exercise.

5.2.2 Kernel-based Non-parametric Modelling

The kernel-based non-parametric estimation method introduced in the Chapter 4 is also

applied to build the phase-V̇ O2 model in this part of work. Similarly, the relationship

between exercise phase (input) and V̇dO2 (output) is described as a single input single output

(SISO) system. The exercise phase which varies between ascending and descending could be
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considered as a square input. The output can be calculated by impulse response. Accordingly,

the matrix form to describe the system can be written as an FIR model:

Y = φθ+ε. (5.2)

where φ is the input, Y is the output, ε is the Gaussian white noise, and the vector θ ∈ R
m

contains the Finite Impulse Response (FIR) coefficients.

The estimation of θ can be solved by LS estimation as [57]:

θ̂ = arg min
θ∈Rm

‖Y −φθ‖2. (5.3)

As the input of this system is a square signal, and therefore the above equation could be

inappropriate for modelling the V̇dO2 impulse response (especially when m is big). Often the

measurements of V̇dO2 contain various artifacts. In order to regularise the estimation and

guarantee the validity of the obtained model, the regularisation term JR(θ), which belongs to

a Reproducing Kernel Hilbert Space (RKHS) H , is also added to Eq. (5.3):

JR(θ) = θTP−1θ, (5.4)

where P is a suitable kernel matrix.

Finally, the estimation of θ is described as:

θ̂ = arg min
θ∈Rm

(
‖Y −φθ‖2 + γθTK−1θ

)
, (5.5)

where γ is a positive scalar.

Eq. (5.5) could be adapted as the following description:

θ̂ =
(
P φTφ+ γIm

)−1
P φTY , (5.6)

where Im ∈ R
m×m is an identity matrix with the dimension of m×m.
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For the kernel part, we select the Stable Spline (SS) kernel from various kernels to achieve

a better performance of FIR model and a more accurate estimation of V̇dO2 based on previous

study [119, 120]. The SS kernel is described as follows:

P (i, j) =
c
2

e−βmin(i,j)− c
6

e−3βmax(i,j), (5.7)

where c ≥ 0, 0 ≤ β < 1.

The parameters γ , c and β in this identification method need to be well-tuned. The

tuning is based on Alessandro and Tianshi’s studies [58, 121] and we intend to select the best

combination of the parameters. The principle of tuning is to find the best fitness between the

real V̇dO2 and estimated V̇dO2 under the premise of ensuring a smooth Impulse Response

(IR) and avoiding over-fit. Above all, we choose γ = 200, c = 1 and β = 0.9985 after tuning.

5.2.3 Pre-processing, Identification Strategy and Verification

Due to the individual differences, the total number and length of one entire period are

different for each participant. In that case, the results of the identification fitness are affected

by these factors. Table 5.2 presents the total number of periods of each participant and makes

a summary.

Table 5.2 Quantity of Participants with Different Number of Exercise Periods.

Periods Participants Quantity

2 6

3 4

According to Table 5.2, we make a comparison of the fitness of the filtered V̇dO2 estima-

tion when the number of periods is 0.5, 1, 2, as all the participants have at least two entire

exercise periods. This estimation is conducted by the non-parametric model method, which

is introduced in Section 5.2.2. After the identification, we applied the Wilcoxon Rank Sum

Test to illustrate the significant difference of the IR results with different number of periods

as the results does not follow the normal distribution.

In order to demonstrate the benefit of this method and study model structure of the

exercise phase- V̇dO2 system, the system identification toolbox in MATLAB is applied to
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make a comparative identification. The fixed-order model including first, second and third-

order are implemented in MATLAB. The goodness of fit of estimated output is calculated by

the fit ratio NRMSE (normalised root mean square error):

NRMSE =

(
1− ||ŶN −YN ||

||YN − (ȲN)||
)
. (5.8)

where N is total number of sampling, YN is the real data (reference), ŶN is the estimated YN

and ȲN is the mean value of YN .

To verify the changing of the system structure throughout the entire exercise and demon-

strate the benefit of the non-parametric model when we focus on the whole exercise period,

the IR model and three kinds of fixed-order models identified from previous period, are

applied to estimate the output of the next period for each participant. The goodness of fit is

the primary indicator in this stage to study the estimation performance of these approaches.

5.3 Results

This section shows the identification results and the fitness of different models in a different

situation. The results about Wilcoxon Rank Sum Test and variance is used to demonstrate

the significant difference of the IR from different periods and verify the stability of different

models. The verification results about the changing structure for different periods are also

presented.

Three representative identification results by non-parametric model of each number of

periods are shown in Fig. 5.3, Fig. 5.4, Fig. 5.5, which contains the impulse response and

the estimated output (V̇dO2) from half, one and two periods.

The boxplot to describe the fitness results from non-parametric model of a different

number of periods for all participants is presented in Fig. 5.6.

The results from one and two periods are focused for the next step study as the IR of them

perform stable in the end as shown in Fig. 5.5. We calculated the estimated output fitness of

10 participants which are from different methods, including non-parametric model, first-order,

second-order and third-order model. The comparison results is shown in Fig. 5.7. The fitness

from four methods of each participant is represented separately. For the second-order and
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Fig. 5.3 Impulse Response and Estimated (V̇dO2) of Three Participants (0.5 period).
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Fig. 5.4 Impulse Response and Estimated (V̇dO2) of Three Participants (1 period).
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Fig. 5.5 Impulse Response and Estimated (V̇dO2) of Three Participants (2 periods).
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Fig. 5.6 Fitness of Estimated Output of Different Number of Periods from Non-parametric

Model.

third-order model, some results of fitness show a quite concussive or peculiar performance,

which means the non-parametric and first-order model is more stable than higher-order model

for this system.
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Fig. 5.7 Fitness of Different Methods of 10 Participants with One Period or Two Periods.

The variance of the fitness by different models indicates the stability of the model which

is shown in Table 5.3. We could find that the non-parametric model exhibits the smallest

variance in both one period and two periods, which means that this model is more stable and
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suitable for different situations. Moreover, the first, second and third-order show different

performance as the number of periods change.

Table 5.3 The Variance of Fitness by Different Model Method in One or Two periods.

Model Type One Period Two Periods

First-order 0.0031 0.0350

Second-order 0.0239 0.0539

Third-order 0.0695 0.0514

Non-parametric 0.0030 0.0218

In order to demonstrate the significant difference between the different number of periods,

we apply Wilcoxon Rank Sum Test on IR because it does not follow a normal distribution.

The IR of the same participants with the different number of periods are compared and the

results are shown in Table 5.4. Generally, P < 0.05 is considered as statistically significant.

All the P value means h = 1, which also means that all the distinctions of IR (different

number of periods with the same participants) are significant. This also illustrates that the

system model of a different period is quite different.

Table 5.4 Rank Sum Test of Same Participants’ IR with Different Numbers of Periods.

Participant Half vs One One vs Two Half vs Two

1 P=2.42−215 P=2.38−214 P=0

2 P=1.73−240 P=1.11−129 P=0

3 P=5.17−113 P=4.22−258 P=0

4 P=2.36−131 P=5.09−208 P=0

5 P=2.26−184 P=6.31−98 P=0

6 P=1.26−214 P=2.70−110 P=0

7 P=1.68−273 P=1.82−114 P=0

8 P=0 P=7.66−20 P=0

9 P=9.23−225 P=7.90−38 P=0

10 P=4.90−317 P=2.14−10 P=0

When extending the identification period, the fitness is significantly decreased as shown

in Fig. 5.6 and Fig. 5.7. We intend to verify the structure of the system is changing with

periods and demonstrate the non-parametric method is more stable. Therefore, the impulse

response model acquired from the non-parametric modelling approach and the first-order,

second-order, third-order model in the previous period is implemented to estimate the output
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in the next period for each participant. The verification fitness of the estimation is shown in

Fig. 5.8.
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Fig. 5.8 The Fitness of Period Verification by Different Model Method.

The initial point of the first period is ensured to be consistent with the next period when

the verification is conducted. According to the results in Fig. 5.6, Fig. 5.7 and Table 5.3,

the fitness of the estimation output in next period decline when using the IR model from the

previous model. In addition, Fig. 5.8 illustrates that the IR model from the non-parametric

model is with robustness when the identification period changes. The summarization is

displayed in Fig. 5.9 which combined the results from Fig. 5.7 and Fig. 5.8. The results of

different models (non-parametric model, first-order model, second-order model, third-order

model) for different periods (one period, two periods and previous period model verification

for next period) are directly shown in Fig. 5.9, and demonstrate that the non-parametric

model performs better than the other three models in different situation.

5.4 Discussion

In this section, the results are analysed and explained as follows.
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Fig. 5.9 The Boxplot for Fitness from Different Models and Different Periods.

1. From the perspective of the periods comparison in Fig. 5.6, the fitness of two periods

is significantly lower than those of half or one period when the model of two periods

is described by one stable IR model as shown in Fig. 5.7. Table 6.5 illustrates that

the IR model is quite different when the number of periods is different. Furthermore,

the testing part is conducted to support this point. Comparing Fig. 5.8 with the left

figure in Fig. 5.7, it is concluded that the IR model from the previous period is not

particularly suitable for the next period as the fitness level is lower. In all of the above

results, the model of the system changes with different exercise periods. In the next

step, we plan to apply an online modelling approach, which could adjust the system

structure over time in order to do the identification.

2. As for the structure of the system order, the comparison between the non-parametric

model and the fixed-order model illustrates that the structure of the model is variant.

The examples of IR model in Fig. 5.5 also illustrate this conclusion. The continuously

changing protocol for the stairs exercise provides more stimulation for the system,

utilised as prior information for the tuning of the kernel covariance. Commonly, the

system in previous articles [62, 66, 95] comes from a single onset or offset period

experiment and is considered as a first-order system. However, the first-order system

is not suitable when the input and output of the system become complicated as in

our experiment. Moreover, the individual difference in our previous study [66] also

supports the diversity of the model due to the complexity of the participants’ respective

motions and respiratory systems. The continuously changing protocol for the stairs

exercise in our study provides more stimulation for the system which is also an
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important aspect. As the participants’ HRmax is maintained in the range of 60% to

80%, the maximum range of stimulation is provided. The input signals from the stairs

exercise have significant strength and duration, and the uncertainty of the stochastic

input can increase the index of the information matrix.

3. In terms of the above demonstration, the advantages of the non-parametric model are

obvious. The fitness comparison in Fig. 5.7 and variance comparison in Table 5.3

indicate that the non-parametric model is more stable for different participants and

different numbers of periods. When the first, second and third-order models are applied

to identify the system model, the best fitness for different participants is obtained from

different models. In addition, for some participants, the fitness is quite low when using

these three kinds of model. This illustrates that the system could not be described as a

fixed-order model. In contrast, the fitness from the non-parametric model performs

well for all of the participants. As for the verification results in Fig. 5.8, the model from

the previous period using the non-parametric model also performs better in the next

period. The summarized performance of different models in different periods shown in

Fig. 5.9 also directly and clearly demonstrates the higher fitness of the non-parametric

model. The above aspects indicate that the non-parametric model is suitable for the

system when the structure is complicated and changing. The reason is that the amount

of information is sufficient when the non-parametric model is applied to fully utilise

the priori information. The priori information in the kernel provides a foundation to

estimate the structure of the system and provides the capacity to accommodate the

complexity of the model.

5.5 Conclusion

The non-parametric model is applied to investigate the dynamics of V̇ O2 responding to

stairs exercise. The self-designed application and K4b2 gas analyser provide a reliable

technique to record V̇ O2 data and exercise phase. The protocol of the experiment guarantees

a continuous and random changing V̇ O2 and the exercise phase. The identification results of

different numbers of periods are compared to illustrate the variation model of the system.

Experimental results indicate that the model from the previous period is no longer suitable
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for the next period. The fixed-order model includes three types of order which are conducted

as comparison approaches to demonstrate the benefits of using the non-parametric modelling

approach. It can be concluded that the non-parametric model is more stable and compatible

for different participants in different periods. The complexity of human respiratory systems,

as well as individual differences, would be worth exploring in more depth in future research.





Chapter 6

Prediction of Cardiorespiratory

Response to Treadmill Exercise Using

Non-parametric Modelling with

Optimised Kernel-Parameter Selection

6.1 Introduction

Aerobic exercise is a physical exercise which mainly depends on the aerobic energy-

generating process [3]. The oxygen inhaled by the human body is equal to the demands

during exercise and reaches a physiological balance. Aerobic exercise depends primarily

on oxygen uptake, the intensity of which is related to respiratory information. The oxygen

uptake (V̇ O2) or carbon dioxide output (V̇CO2) are widely used to analyse the mechanism of

the human body during exercise [72–75]. Due to the linear relationship between respiratory

information (e.g. V̇ O2 and V̇CO2) and heart rate (HR), the maximum heart rate (HRmax)

[11, 12] is recognised as a key indicator for detecting exercise intensity [13]. It is recom-

mended that the HRmax should be kept in a proper range to ensure that the working peripheral

muscles are supplied with enough oxygen.

Among the research that spans across the three decades, V̇ O2 and V̇CO2 have been

measured at various sports physiological laboratories using the gas analyser [51]. With the



104
Prediction of Cardiorespiratory Response to Treadmill Exercise Using Non-parametric

Modelling with Optimised Kernel-Parameter Selection

development of new technology, the automated portable gas analysis system has been used in

several sports fields for energy consumption assessment [14]. V̇ O2 and V̇CO2 analysis during

exercise have been significantly developed in different ways. Hill [122] and Wasserman [79]

demonstrated the logarithmic equation of V̇ O2 and V̇CO2. Based on this equation, the V̇ O2

and V̇CO2 modelling for aerobic exercise has been developed to estimate the steady status

and dynamic response during one simple phase of exercise. The respiration reaction system

is described as a first or higher order time-invariant system in the respective research of Hill

and Wasserman. The classical system identification methods, e.g. Least Square, Maximum

Likelihood and Prediction Error Method, are broadly used in modelling the first or higher

order time-invariant system. However, an important issue in identification is how to design

the experiment to ensure sufficient stimulation for the modelling of the system. The input

signals need enough intensity and duration when participants are involved in the experiment.

On the other hand, the signal applied to the human body should be carefully chosen to ensure

safety. Considering the following two aspects, the conflicts of the goals can be successfully

resolved.

The first aspect is to apply the non-parametric method for identification. System structure

information used in model complexity selection is a crucial step in modelling. However,

when the information is insufficient to determine the parametric model structure, the system

dynamics could be described by non-parametric models instead of the commonly used

fixed-order linear time-invariant models[55, 56]. In addition, the non-parametric model has

the advantage when the system is in a state of massive information. Furthermore, the well-

designed kernel strategies and regularisation terms can dramatically improve the accuracy

and robustness of the modelling [57–59]. The other aspect is to select an appropriate input

with sufficient stimulation for the model. Various dynamic physiological signals are used

in respiratory modelling, such as HR , V̇ O2 and V̇CO2 , during walking, running [61–63],

or treadmill exercise [8, 64–66]. However, the physiological signal in these studies reaches

a steady platform that shows an identical trend as a step response input. With this in mind,

we designed an appropriate protocol for the stairs exercise to make the signal continuously

change to ensure sufficient stimulation.

In this study, the kernel-based non-parametric method to identify how the V̇ O2 or V̇CO2

response to treadmill speed is developed. Different with the previous section, two approaches

are compared in the selection of the kernel parameter in this methodology. One approach
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is numerical simulation which has been proposed in our previous paper [66], and the other

approach is selecting the parameters of the kernel in the regularisation term based on iden-

tification results when using data from the stairs experiment. During the stairs exercise,

the energy consumption, heart rate, and minute ventilation volume will increase until it

reaches a peak when people go upstairs (ascending). When going downstairs (descending),

these figures will decrease to form a valley. The exercise phase and the physiological signal

change continuously during this experiment. The selected parameters of the kernel ensure a

consistent stability for the purpose of treadmill exercise identification. After the parameters

selection and identification by the non-parametric method, the experimental results and the

goodness-of-fit (NRMSE) comparison demonstrate that the non-parametric method is more

suitable in order to identify how the V̇ O2 or V̇CO2 responds to treadmill speed according to

accuracy and flexibility. It should be emphasized that the system model in our research is no

longer a simple onset or offset structure which can be described as a linear model. According

to the complexity and the massive information in the system, the non-parametric model is

chosen as the identification approach. Furthermore, the parameter from the stairs experiment

is also proven to be a better choice, since it provides enough stimulation and diversified input.

The remainder of this part of work is organized as follows. Section 6.2 introduces the

non-parametric model with the kernel-based regularisation, the experiment, and the parameter

selection. The identification and comparison results are presented in Section 6.3. Then the

analysis and discussion about results are presented in Section 6.4. Finally, the conclusion is

drawn in Section 6.5.

6.2 Methods

In this section, we illustrate the non-parametric modelling method that is applied for the

V̇ O2 and V̇CO2 identification during the treadmill exercise. The experiment is introduced

afterward, which contains the stairs experiment and treadmill experiment. Two different

selection methods for the parameters of kernel including the numerical simulation and tuning

from stairs experiment are also introduced for the non-parametric modelling of treadmill

exercise.
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6.2.1 Non-parametric Modelling of Finite Impulse Response Based on

Kernel

The non-parametric modelling method based on kernel, which is introduced in Chapter 4

and 5, is conducted to discern how the V̇ O2 or V̇CO2 reacts to treadmill speed. Under the

discrete case, the relationship between treadmill speed (input) and V̇ O2 or V̇CO2 (output) is

also considered as a single input single output (SISO) system which can be calculated by

impulse response.

The estimation of θ is obtained and adapted as Eq. (6.1):

θ̂ =
(
P φTφ+ γIm

)−1
P φTY , (6.1)

where γ is a positive scalar and Im ∈R
m×m is an identity matrix with the dimension of m×m.

The priori information in kernel matrix P−1 could help the estimated θ̂ provide a better

and smoother result when compared to least square estimation [57].

Based on our previous work [66], the Stable Spline (SS) kernel which is shown in Eq.

(6.2), demonstrates a better performance than the other kernels based on the aspects of

accuracy, sensitivity, stability and smoothness.

P(i, j) =
c
2

e−βmin(i, j)− c
6

e−3βmax(i, j), (6.2)

where c ≥ 0, 0 ≤ β < 1.

The SS kernel inherits all the approximation capabilities of the spline curve by construc-

tion [57][123] and is intrinsically stable. The SS kernel represents the least committing priors

when smoothness and stability is the sole information on θ.

6.2.2 Experiment

Two experiments, namely “stairs experiment" and “treadmill experiment ", which are in-

troduced in Chapter 4 and 5, are also conducted in this part of work due to the different

command. In summary, the set-up of the two experiments, hardware and the application

interface are shown in Fig. 6.1. For the two experiments, the V̇CO2 and V̇ O2 were both
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divided by the weight (Kg) for each participant to exclude the impact of the participant’s

weight on breath information. The normalized V̇CO2 and V̇ O2 are recorded as V̇dCO2 and

V̇dO2. The participants are recruited randomly. These two experiments (stairs experiment

and treadmill experiment) recruited different participants (random difference in age, height

and HRmax) to ensure the fairness of the comparison for the two kernel parameters selection

methods.

Fig. 6.1 Scenes of Experiments, the Equipment and Application Interface.

Table 6.1 Information about the 15 Participants in Stairs Experiment

Information Age (year) Height (cm) Mass (kg) HRmax 60%HRmax 80%HRmax

Mean 29.60 172.60 83.00 185.40 111.10 148.30

Standard Deviation 7.60 3.40 5.39 5.25 4.28 3.35
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Fig. 6.2 Measured V̇dO2, V̇dCO2 and Exercise Direction of One Participant during Stairs

Experiment.
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Fig. 6.3 Measured V̇dO2, V̇dCO2 and Speed of One Participant during the Treadmill Experi-

ment.

Table 6.2 Information about the 20 Participants in Treadmill Experiment

Information Age (year) Height (cm) Mass (kg) HRmax 60%HRmax 80%HRmax

Mean 46.40 176.60 91.20 173.60 104.16 138.88

Standard Deviation 5.68 4.40 11.37 5.53 3.32 4.42

Stairs Experiment

The stairs experiment is about HR maintaining between the range of 60% to 80% of the

participants’ HRmax during the stairs exercise. In this experiment, HRmax is calculated as

[78]:

HRmax = 205.8−0.685×age (6.3)

A self-designed mobile application is used to collect the various information from 15

untrained (non-athletes) and healthy (no records of motor skill disorder, cardiac-respiratory

disorder or related medications history) male participants, including HR, steps, and direction

(upstairs or downstairs). The mobile phone is placed on the ankle of participants. The Inertial

Measurement Unit (IMU) data could represent the direction of the movement. Meanwhile,
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the breath data including V̇dO2 and V̇dCO2 are collected by a portable gas analyser- Cosmed

K4b2 (Cosmed, Italy) [118]. The basic biological information of the participants is shown in

Table 6.1.

The participants are instructed to go upstairs and downstairs continuously for 12 minutes.

The experiment starts by collecting data while going upstairs. Once the participants’ HR

exceeds 80% of HRmax, they are instructed to go downstairs. When their HR is under 60%

of HRmax, they are asked to go upstairs again. The V̇ O2max is monitored to ensure the lactate

threshold V T 2 will not be reached. There will be 2−4 complete periods (one whole period

is from the beginning of upstairs exercise to the end of downstairs exercise) for an entire

exercise routine for all participants. The direction of the exercise is described as 1 when the

participants are ascending (go upstairs), and 2 when descending (go downstairs). A sample

of the direction and measured V̇dCO2 and V̇dO2 from one participant is shown in Fig. 6.2.

The V̇dCO2 or V̇dO2 are filtered by median filter to remove the artifacts before identification.

This experiment ensures a continuously changing input (direction) and output (V̇dCO2 or

V̇dO2) for guaranteing a sufficient stimulation in kernel parameter selection part.

Treadmill Experiment

The treadmill experiment is about a jogging exercise on treadmill. The V̇dCO2 and V̇dO2 data

is also recorded by the K4b2 when the 20 untrained (non-athletes) and healthy (no records

of motor skill disorder) males, who are not the same individuals as the stairs experiment,

are jogging on the treadmill following an exercise protocol. The physical information of the

participants is shown in Table 6.2.

The protocol of this experiment is shown in Fig. 6.3. The participants first walk at 3

km/h for four minutes, and then run at 8 km/h for eight minutes, followed by another walk

at 3 km/h for eight minutes before stopping.

6.2.3 Parameter Selection

The parameters of the kernel are a vital part to determine the estimated model structure. Two

different methods are applied to select the parameters c and β in SS kernel as shown in Eq.

(6.2). The first method is numerical simulation and the second method is parameter tuning in
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the stairs experiment. The most appropriate parameters are selected to the non-parametric

modelling for the treadmill experiment.

We apply the fit ratio NRMSE (normalised root mean square error) to obtain the goodness

of fit of estimated output, which is represented as follow:

NRMSE =

(
1− ||ŶN −YN ||

||YN −mean(YN)||
)
, (6.4)

where N is total number of sampling, YN is the real data (reference) and ŶN is the estimated

YN .

Parameters Selected from Numerical Simulation

Our simulation begins with a first-order system to describe the relationship between the O2

uptake or CO2 output and the treadmill speed according to the description of V̇dCO2 and

V̇dO2 in previous study [62][66] as shown in Eq. (6.5):

V (t) =V0 +RA[1− e−(t−TD)/τ ]. (6.5)

where V (t) is the V̇dO2 or V̇dCO2 at time t, V0 is the initial value of V̇dO2 or V̇dCO2, RA is

the response amplitude, TD is the time delay, and τ is the time constant.

Thus, the system is set as Eq. (6.6):

Y (s) =
K

T s+1
U(s), (6.6)

where K that follows the uniform distribution U(5, 15) is the steady gain, and T which

follows U(15, 25) is the time constant.

The input of the system u(t) is set to be the same trend as the stairs experiment to ensure

a similar stimulation. The simulated output y(t) is polluted by a Gaussian white noise with 1

dB Signal-Noise Ratio (SNR). The sampling time is selected as 1 second.

The parameter c and β in Eq. (6.2) of the SS kernel mentioned in Section 6.2.1 are the

primary targets of tuning. After tuning the parameters in the simulation [121], we selected

the following combination of c = [100 200 300] and β = [0.95 0.987 0.99] and the samples
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Fig. 6.4 Impulse Response from SS kernel Compared to the True Value of Impulse Response

in the Simulation.

of the IR model are shown in Fig. 6.4. After the statistics of fitness and the observation of IR

smoothness and stability, the best combination is c = 200 and β = 0.987.

Parameters Tuning from Stairs Experiment

As mentioned above, the continuously changing data in stairs experiment could ensure a

enough stimulation for the system. Therefore, the identification for V̇dCO2 and V̇dO2 in

the stairs experiment is aimed to select the most appropriate parameters and compare the

selection process. We choose one period from each participant to do the identification. The

identification is also conducted by non-parametric method. After the preliminary range

selection, we find that when β is in the range of 0.9975− 0.999, the fitness shows better

results. Then we make further statistics about the fitness of the parameters in this range.

Table 6.3 represents the fitness level of stairs experiment identification results (10 out of 15

participants) (> 60%). The results from these 10 participants are chosen to construct the

model for the kernel parameters selection. Finally, we decided that c = 200 which is same
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Table 6.3 The Fitness of Different Parameter β for V̇dO2 and V̇dCO2 about the Stairs Experi-

ment Identification for Ten Participants.

Sub. V̇dO2

β 0.9975 0.9978 0.998 0.9985 0.999
1 68.91% 73.16% 75.34% 76.91% 76.40%

2 66.64% 66.74% 66.53% 65.42% 63.85%

3 81.95% 82.11% 82.30% 82.00% 81.16%

4 76.89% 79.36% 80.36% 80.46% 79.41%

5 65.30% 69.06% 71.94% 76.95% 76.98%

6 63.07% 64.16% 64.69% 64.69% 63.27%

7 75.83% 76.25% 76.11% 75.17% 73.34%

8 76.66% 77.49% 77.58% 76.70% 74.85%

9 66.27% 66.29% 66.36% 67.85% 69.41%

10 63.84% 65.42% 66.26% 66.79% 65.41%

Best 0 2 2 1 2

Sub. V̇dCO2

β 0.9975 0.9978 0.998 0.9985 0.999
1 73.26% 73.82% 74.66% 75.93% 75.45%

2 66.68% 66.46% 66.29% 65.21% 63.42%

3 80.69% 80.91% 81.23% 81.67% 81.18%

4 81.55% 81.68% 81.70% 81.19% 80.23%

5 76.96% 77.90% 78.26% 77.99% 76.41%

6 64.45% 64.72% 64.68% 64.25% 63.04%

7 77.51% 77.30% 76.98% 76.29% 74.50%

8 77.15% 77.92% 78.12% 77.29% 75.32%

9 66.30% 66.30% 66.31% 67.85% 69.45%

10 67.58% 67.16% 66.93% 65.8% 64.54%

Best 3 0 4 2 1
* “Sub.” means the ten participants.
** “Best” indicates the number of participants which achieve the best

fitness when using this value of parameter-β .
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with the simulation, and β = 0.998, which is marked as red in Table 6.3, according to its

university for most participants’ V̇dCO2 and V̇dO2.

6.2.4 Statistical Analysis

In order to verify that the fitness of the models is significantly different between the two

parameters selecting approaches, the statistical analysis is necessary. After the fitness of

identification results from treadmill experiment by different parameters selecting approaches

is calculated, the histogram and normal probability of the fitness is plotted in Matlab to

determine whether the fitness follows a normal distribution. As the results of normality

shows, the Wilcoxon Rank Sum test is used because the fitness does not follow normal

distribution. Generally, p < 0.05 means h = 1, and the fitness is considered as statistically

significant.

6.3 Results

In this section, the identification results about the V̇dO2 and V̇dCO2 in the treadmill experiment

are discussed. The comparison between estimation fitness when using the parameter β from

stairs experiment and simulation are also be presented.
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Fig. 6.5 IR and Estimated V̇dO2 Comparison with Different Parameters in Whole Period and

Half Period of Participant A.
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Fig. 6.6 IR and Estimated V̇dCO2 Comparison with Different Parameters in Whole Period

and Half Period of Participant A.

We applied the non-parametric model identification method for both the ascending period

and entire period of V̇dO2 and V̇dCO2 in the treadmill experiment. The impulse response

and the estimated results (ascending period and entire period) of V̇dO2 and V̇dCO2 from one

representative participant are shown in Fig. 6.5 and Fig. 6.6. Based on the IR in these two

figures, the model is more flexible when the parameter β from stairs experiment is used.

Furthermore, the estimated output is closer to the real output both for V̇dO2 and V̇dCO2

during both ascending and entire period.
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Fig. 6.7 Estimated V̇dO2 Fitness Comparison between Simulation and Stairs of 20 Participants

in Whole Period and Ascending Period.
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Fig. 6.8 Estimated V̇dCO2 Fitness Comparison between Simulation and Stairs of 20 Partici-

pants in Whole Period and Ascending Period.

To investigate the quality of the parameter β from both the stairs experiment and the

simulation, a comparison is established for estimated fitness during the onset period and the

whole onset-offset period in treadmill experiment, which is shown in Fig. 6.7 and Fig. 6.8.

The figures illustrate that all the output estimation fitness when using the parameter β from

the stairs experiment is higher than using the parameter β from the simulation for both V̇dO2

or V̇dCO2. The fitness improvement by kernel parameters from stairs experiment compared

with parameters from numerical simulation are summarized in Table 6.4.

Table 6.4 The Improvement of Estimation Fitness Using Kernel Parameters from Stairs

Experiment.

Comparison Improvement

V̇dO2 in Half Period 4.18%

V̇dO2 in One Period 11.00%

V̇dCO2 in Half Period 7.63%

V̇dCO2 in One Period 12.60%

The histogram and normal probability of the V̇dO2 and V̇dCO2 estimation fitness during

treadmill experiment shown in Fig. 6.9 include the estimation fitness using parameters

from simulation or stairs experiment during half or one period, which demonstrate that the

identification fitness is commonly higher when using the parameter selected from the stairs

exercise than numerical simulation. The Wilcoxon Rank Sum test is applied because the
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estimation fitness does not follow the normal distribution. As the Wilcoxon Rank Sum test

results shown in Table 6.5, all four outputs satisfy with the general condition, indicating that

the results is statistically significant.

Fig. 6.9 V̇dO2 and V̇dCO2 Estimation Fitness for One Period/ Half Period by Parameter from

Simulation/ from Stairs Experiment.

Table 6.5 Wilcoxon Rank Sum Test of Estimation Fitness Comparison when Using β from

Simulation and Stairs Experiment.

Output p value h

V̇dO2 in Half Period p=1.55−2 h=1

V̇dO2 in One Period p=5.24−5 h=1

V̇dCO2 in Half Period p=1.44−4 h=1

V̇dCO2 in One Period p=8.60−6 h=1

6.4 Discussion

The regularisation term within the kernel matrix plays a significate role in identification. Ac-

cordingly, the parameter of the kernel should be selected carefully. For the impulse response

estimation, the kernel P possesses a large condition number which leads to numerical prob-

lems, such as failure or inaccuracy of the Cholesky decomposition of P [121]. Compared

with the numerical computation method in Gulob and Van Loan’s study [124], this problem

could be tackled in an active way based on our priori information about P in the impulse
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response estimation. If the parameters of the kernel that controls the decaying rate of P

are very small, the kernel may have a large condition number. Under this circumstance, the

extra constraint on these parameters should be enforced in order to guarantee the tolerably

large condition number which is designed to avoid numerical problems. To reach such a

goal, the selected value from the stairs experiment is compared with the value from the

simulation to create a more appropriate constraint for the parameter β of the kernel. The

extra constraints limit the search region of the parameters. The research of Chen, Ohlsson

et al.[52] demonstrates that the extra constraints do not cause the performance issues in the

regularised least squares estimation.

The advantage of using the non-parametric modelling method when the system structure

is uncertain as opposed to the classical linear modelling method [65, 72, 75], was presented in

various ways. The impulse response of the model generated by the two approaches illustrates

the characteristics of a non-first-order system and this is demonstrated directly in Fig. 6.5.

By contrast, the IR model using the parameter β from the stairs experiment fluctuates to

a greater extent than the simulation. The oxygen uptake identification results of the stairs

experiment using the linear model from Jan’s paper (Table 2) [75] showed a mean fitness of

62.5%. The fitness results using the non-parametric model in this work, as shown in Table

6.3, are 6.21% higher. As the non-parametric model is applied, the amount of information

is sufficient to fully utilise the priori information and this ensures the complexity of the IR

model for estimation. The priori information in the kernel provides the support to estimate

the structure of the system. In addition, the regularisation term contains the kernel matrix

which eliminates the possibility of overfitting.

The structure of the system under the protocol in our experiments is of higher complexity

than the first-order system or time-invariant system and this is demonstrated by the identifica-

tion results. In the simulation, we acquired the parameter β under the assumption that the

system is a first-order system based on the previous study [62]. Our previous study [66] also

revealed that in the single ascending or descending period, the system is close to a first-order

system, but there are still exceptions because of the individual difference. However, in this

research, the physiological information contains two periods of ascending (0−3−8km/h)

or a whole period with ascending and descending (3− 8− 3km/h). This means that the

information is not enough to determine the structure of the system which is more complicated

than a single onset or offset period. Thus, we can achieve ideal results when we use the
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non-parametric model. We can also demonstrate that the system is no longer a first-order

system or that it doesn’t vary when the period changes. The higher improvement in terms of

estimation in one period, as shown in Table 6.4, also demonstrates that the non-parametric

model is effective for the complicated system.

The fitness of identification results is higher in Fig. 6.7-Fig. 6.9 when using the parameter

β from the stairs experiment, which is also demonstrated by the fitness comparison in Table

6.4. As well, the estimated output in Fig. 6.5 shows that the estimation when using the

parameter β from the stairs experiment observes some slight changing trends in relation

to the V̇dO2 or V̇dCO2. The reason for the higher fitness is that sufficient stimulation is

important for the modelling. Data from the stairs experiment ensures that there is sufficient

input, which is a continuously changing step response for the system. The direction switching

strategy guarantees the randomness of the input. The selection of the participants’ HRmax

from the 60% to 80% range is designed to ensure a maximum range of stimulation. The

uncertainty of a random input could make the information matrix substantial in a limited

time. The input signals from the stairs experiment are of enough intensity and duration.

The dynamic relationship between the exercise phase and V̇dO2 or V̇dCO2 during the stairs

experiment is obvious enough because of their continuously changing nature. By contrast,

the frequently changing treadmill speed can make the participants uncomfortable. However,

this shortcoming does not exist in the stairs experiment. Accordingly, this is the reason for

using the stairs experiment for the parameters selection.

6.5 Conclusion

To make a summarize, we applied the kernel-based non-parametric method to identify

the dynamics of V̇dO2 and V̇dCO2 responses to treadmill speed. In order to guarantee a

sufficient stimulation for modelling, the parameter β selected from the stairs experiment is

constructed and compared with β from simulation. The data from the stairs experiment is

collected by a self-designed application, and this experiment protocol ensures a continuously

changing input and physiological signal. The results demonstrate the benefits of using the

non-parametric modelling method when the system structure cannot be described by a simple

model. The fitness comparison also illustrates that when using the parameter β from the
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stairs experiment, the estimation results are better than the ones from the simulation. This

is because the switching protocol provides a sufficient level of random stimulation and the

stairs experiment provides continuously changing data.





Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this section, we firstly summarise the contributions of the dissertation and secondly,

we conclude the thesis. The research in this dissertation addresses several challenging

physiological assessment problems with respect to static nonlinear modelling and dynamic

linear modelling problem. The main contributions of this thesis are as follows:

• The physiological assessment which focused on the cardiorespiratory responses to the

exercise phase is comprehensively studied in this work. To meet different demands in

the assessment procedure, different modelling methods are proposed. For the purpose

of detecting the exercise phase in our experiment, the static nonlinear modelling method

is proposed in IMU sensor calibration. As to the aspect of modelling the relationship

between the physiological signal and exercise, the dynamic linear modelling method is

developed.

• The Inclination based Calibration is proposed to calibrate the IMU sensor based on the

fact that the angle between the local magnetic field and gravity is constant. This method

can accurately estimate the coefficients of the magnetometers model by simply using a

linear Least Square estimator. The advantage of this method is low computational cost

and no divergence problems.
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• The non-parametric modelling approach with a kernel-based regularisation term is

developed in this work. This modelling approach is applied in studying the relationship

between the oxygen uptake and carbon dioxide output during aerobic exercise, and the

different performances of different exercise phases. Through these aspects of results

analysis, the advantage of non-parametric modelling is proved in different ways, such

as accuracy, stability and compatibility.

• The kernel matrix in the regularisation term of the non-parametric model is significant

in the identification results. Hence, the different selection approaches of the parameters

in the kernel matrix are compared in this study. The proper kernel and parameters

are selected for the identification part regarding the goodness-of-fit and parameter

insensitivity.

• The experiment protocol is well designed to meet the demands in studying the changing

structure with the different phases of the exercise. With this experiment protocol and

the non-parametric model, sufficient stimulation for the system is ensured and the

dynamic models of the physiological signal for exercise responses for different exercise

phases are identified.

• The analysis results, such as the difference between the static nonlinear model and

dynamic linear model, the relationship between different physiological signal, the

various performances of the exercise phase, the importance of the experiment protocol,

provide comprehensive instructive guidance for strategic exercise design, athletic

assessment, exercise enhancement and health monitoring.

In Chapter 1, a brief introduction to the related works and a brief overview of interesting

problems in the related topics is provided.

In Chapter 2, some basic knowledge of physiological assessment and related topics are

reviewed. Particularly, the in-field calibration method and experimental design in static

nonlinear modelling, the cardiorespiratory signal modelling, the development of wearable

devices and the development of non-parametric modelling in dynamic linear modelling, etc.,

are reviewed.

In Chapter 3, A practical algorithm named Inclination based Calibration (I-Calibration)

is developed to calibrate the tri-axial magnetometers. This algorithm is based on the fact that
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the angle between the local magnetic field and gravity is constant. As opposed to existing

in-field calibration methods, the newly proposed I-Calibration can accurately estimate the

coefficients of the magnetometers model by simply using a linear Least Square estimator.

Both 6-parameter and 9-parameter mathematical methods associated with the 12-observation

experimental design are proposed for the calibration procedure. The problem is finally

formulated as a linear least square problem based on the measured magnetic value and

calibrated acceleration value. Extensive numerical simulations demonstrate the effectiveness

of the I-Calibration. The algorithm performs well on both the simulation study and practical

experiment. It also proves that the I-Calibration is robust to the mismatch of the frames of

TAs and TMs. Real-time experiments are also performed to compare the performance of

the proposed I-Calibration and the M-Calibration. The experimental results demonstrate the

two calibration methods are similar effective in terms of calibration accuracy. To investigate

the significance of the accuracy of the acceleration value, a contrast study is applied in the

simulation and experimental procedure. It demonstrates that the acceleration data should be

calibrated well to ensure the effectiveness of the Inclination based Calibration algorithm. As

the I-Calibration method is a single-calculation linear method, with low computational costs

and no divergence problems, it would be more suitable for real-time in-field calibration for

wearable devices with limited computational power.

In Chapter 4, we investigate the onset and offset dynamics of the cardiorespiratory

response to treadmill exercise. In order to detect the characteristic differences during the

onset and offset exercise, a recently developed the non-parametric modelling method based

on the l2-norm kernel regularisation has been applied to identify the impulse responses of the

carbon dioxide output (V̇dCO2) and oxygen uptake (V̇dO2) responses. Through the means of a

well-designed kernel-based regularisation term, this approach can handle the data which has

short records and a low SNR (Signal-to-Noise-Ratio), and it can orderly fit the experimental

data. In terms of the fitness for the experimental data from twenty healthy subjects, the stable

spline (SS) kernel achieves a reliable estimation of the impulse response for both V̇dCO2 and

V̇dO2. Based on the identified impulse response model, various statistical comparisons are

developed and the comparison results are explained in terms of the physiological perspective.

The bigger gain of V̇dCO2 in onset demonstrates the human ATP storage during the relaxing

status. Meanwhile, the quicker response speed of V̇dCO2 in both periods explains why there

is a delay due to the conversion from O2 to CO2. We believe the kernel-based non-parametric
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modelling approach together with the developed impulse response models will significantly

improve our understanding of human cardiorespiratory response to exercise, and provide

instructive guidance for the regulation of exercise intensity to ensure efficiency and safety

during the training and rehabilitation exercise.

In Chapter 5, the non-parametric model is applied to investigate the dynamics of V̇ O2

responding to the stairs exercise. The self-designed application and K4b2 gas analyser

provide a reliable technique to record V̇ O2 data and the exercise phase. The protocol of

the experiment guarantees a continuous and random changing V̇ O2 and the exercise phase.

The identification results of a different number of periods are compared to illustrate the

variation model of the system. Experimental results indicate that the model from the previous

period is no longer suitable for the next period. The fixed-order model including three types

of order are conducted as comparison approaches to demonstrate the benefit of using the

non-parametric modelling approach. It can be concluded that the non-parametric model is

stable and compatible for different participants in different periods. The complexity of human

respiratory systems, as well as individual differences, are worth further in-depth research.

In Chapter 6, the kernel-based non-parametric method is also applied to identify the

dynamics of V̇dO2 and V̇dCO2 responses to treadmill speed. In order to guarantee a sufficient

stimulation of modelling, the parameter β selected from the stairs experiment is constructed

and compared with β from the simulation. The data from the stairs experiment and this

experiment protocol ensures a continuously changing input and physiological signal. The

results demonstrate the benefits of using the non-parametric modelling method when the

system structure cannot be described by a simple model. The fitness comparison also

illustrates that when using the parameter β from the stairs experiment, the estimation

results are better than the ones from the simulation because of the sufficiently random

stimulation provided by the switching protocol and the continuously changing data of the

stairs experiment.

7.2 Future work

Interesting directions for future work are detailed below.
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• In Chapter 3, to further improve the effectiveness of the two proposed methods, the

I-Calibration can be used to select the initial conditions, then the M-Calibration could

be applied by using the well-selected initial values to ensure the convergence of the

M-Calibration. In addition, the non-parametric model with kernel regularisation term

could be implemented in the calibration method when the parameters of the model are

more than nine. This method can omit the step of linearising the nonlinear model.

• In Chapter 4, the kernel-based non-parametric modelling approach together with the

developed impulse response models could be investigated with more experiment data

to understand the human cardiorespiratory response to exercise and provide instructive

guidance for the regulation of exercise intensity to ensure efficiency and safety during

training and rehabilitation exercise [125].

• In Chapter 5, owing to the changing structure of the physiological signal-exercise

phase system [126], the complexity of human respiratory systems, as well as individual

differences, it be worthwhile exploring these areas in more depth in future research.

• In Chapter 6, the next step in terms of research would be to apply an online modelling

approach, which could adjust the system structure over time, to do the identification.

[56, 127, 128].
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Appendix A

List of Main Variables

Table A.1 List of Main Variables.

Variables Description

V̇ O2 Oxygen Uptake

V̇CO2 Carbon Dioxide Output

ECG Electrocardiogram

EMG Electromyogram

EEG Electroencephalogram

IMU Inertial Measurement Unit

I-Calibration Inclination based Calibration

M-Calibration Magnitude based Calibration

HR Heart Rate

HRmax Maximum Heart Rate

TAs Tri-Axial Accelerometers

TMs Tri-Axial Magnetometers

TGs Tri-Axial Gyroscopes

IMU Inertial Measurement Unit

MEMS Micro Electro Mechanical Systems

DoE Design of Experiment

FIM Fisher Information Matrix

CCD Central Composite Design

BBD Box-Behnken Design



138 List of Main Variables

V̇ O0
2 Initial Value of O2 Output

RA Response Amplitude

TD Time Delay

τ Time Constant

AHRS Attitude and Heading Reference Systems

MAD Magnetic Anomaly Detection

Mm measurement magnetic value

Mr local magnetic field

Mc calibrated magnetic value

Ms simulated magnetic value

Am measured acceleration

Ar acceleration field

Ac calibrated acceleration value

As simulated acceleration value

Gs scale factors

Ge nonorthogonality and misalignment of the sensors

G simplified matrix from GsGe
βM and βI unknown parameter vector

XM and XI observation matrix

L constant for I-Calibration

ϕ tolerance angle

HM calibrated magnitude value by M-Calibration

HI calibrated magnitude value by I-Calibration

H0 raw magnitude value

SD standard deviation

MAD mean absolute deviation

MAV mean absolute value

IR impulse response

FIR Finite Impulse Response

SR Step response

θ FIR coefficients

P kernel matrix

SS Stable Spline kernel

DC Diagonal/ Correlated kernel

DI Diagonal kernel

V̇dCO2 V̇CO2 normalized by weight

V̇dO2 V̇ O2 normalized by weight

NRMSE normalised root mean square error
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