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species. (g-k) Reproduced from reference'®. Copyright 2018, EISEVIET. ....ccoveieiiriieieieeeeeeeeee e 35

Figure 1.12 (a) Cycling performances of S@MIL-100(Cr), S@SBA-15 and S@mesoporous carbon. The
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insets illustrate the corresponding microstructures. Reproduced from reference'”®. Copyright 2011,
American Chemical Society. (b) Crystal structure of Ni-MOF containing two different types of pores. (c)
Cycling performances of Ni-MOF/S at 0.1, 0.2 and 0.5C. The inset illustrates the interactions between
polysulfides and paddle-wheel unit in Ni-MOF. (b,c) Reproduced from reference'””. Copyright 2014,
American Chemical Society. (d) Comparison of cycling performances of S/MIL-53, S/NH,-MIL-53,
S/HKUST-1 and S/ZIF-8 at 0.5C. (e) Schematic of the largest apertures of the four different MOFs. (f)
Cycling performances of S/ZIF-8 with different particle sizes. The inset shows the SEM images of ZIF-8
with particle sizes of 150 nm, 1 pum and 3 pum (from left to right), respectively. (d-f) Reproduced from
reference'®. Copyright 2014, Royal Society of Chemistry. Crystal structures of (g) PCN-224, (h) MIL-53,
(1) MIL-101, respectively, and illustrations of corresponding ion diffusion pathways in their pores. (g-i)
Reproduced from reference'®'. Copyright 2018, Wiley-VCH. ......o..vveooeeeeeeeeeeeeeeeeeeeeeeeeee e 38
Figure 1.13 SEM images of (a) MHNs/CNT and (b) MOFs/CNT. The inset in b shows the photograph of
the self-standing MOFs/CNT thin film. (¢) Crystal structures of three different kinds of MOFs. (d) Cycling
performances and Coulombic efficiencies of S@HKUST-1/CNT, S@MOF-5/CNT and S@ZIF-8/CNT. (¢)
Cycling performances of soft-package Li-S cells using S@HKUST-1/CNT cathodes at different sulfur
loadings. Reproduced from reference'™. Copyright 2017, Nature Publishing Group. .............cc.cooeevveeene.... 41
Figure 1.14 (a) Cycling performance of S@Na,Fe[Fe(CN)s]J@PEDOT at 5C. (b) The atomic model
configurations of Li,Sy (x=8, 6, 4 and 2) in Na,Fe[Fe(CN)s]. (¢) The optimized interaction of PEDOT with
sulfur species. (d) Illustration of the S@Na,Fe[Fe(CN)s]J@PEDOT system in the early stage of the
discharge process. Reproduced from reference'®. Copyright 2017, Wiley-VCH. .......c..oovvrverereerereeennene. 42
Figure 1.15 (a) Schematic of the synthesis process for S@CB hybrids@thin Ni(OH), layers. SEM images
of (b) CB powder, (¢) Sg@CB and (d) Ss@CB@Ni(OH), hybrids. (¢) Cycling performances and
Coulombic efficiencies of Sg@CB and Sg@CB@Ni(OH), at 0.2C for 500 cycles. The inset shows the
sulfur utilization efficiency. (a-e) Reproduced from reference'®. Copyright 2015, Nature Publishing Group.
(f) Schematic illustration of the synthesis process for Co(OH),@LDH/S. TEM images of (g) ZIF-67, (h)
single-shelled ZIF-67@LDH, i) doubled-shelled Co(OH),@LDH nanocages, and (j) Co(OH),@LDH/S. (k)
Cycling performance of Co(OH),@LDH/S and C/S at 0.1C. (f-k) Reproduced from reference'®®. Copyright
2016, WILBY-VCH. ..ottt sttt sttt sttt be sttt b s b aeaenea 44
Figure 1.16 (a) Schematic of the synthetic process for Li,S@TiS, core-shell nanostructures. (b) SEM
image of Li,S@TiS, core-shell nanostructures. (c¢) Cycling performances of Li,S@TiS, and bare Li,S
cathodes at 0.2C (1C=1166 mA g'lms). (a-c) Reproduced from reference'”. Copyright 2014, Nature
Publishing Group. (d) Illustration of CoS, promoted polysulfide redox reaction. (¢) CV curves of
symmetrical Li,Sg cells with different electrodes. f) Cycling performance and Coulombic efficiency of
CoS;, (15%) + G-based sulfur cathode at 2C for 2000 cycles, followed by 10 cycles at 0.2C. (d-f)
Reproduced from reference'”. Copyright 2016, American Chemical Society. (g) Schematic of the synthetic
process for S@CNTs/Cos;S4 nanoboxes. (h) Schematic diagram of the three-dimensional interlaced carbon
nanotubes threaded hollow Co;S4nanoboxes. (i) TEM image of CNTs/Co;S4 nanoboxes. (j) TEM image of
S@CNTs/Co;S4 nanoboxes. Cycling performances of different electrodes at 0.2C under (k) ambient
conditions and (1) 50 °C. g-1) Reproduced from reference’™. Copyright 2017, American Chemical Society.
(m) Schematic illustration of the fabrication process of honeycomb-like spherical S@CosSg nanostructures.
(n,0) SEM images of honeycomb-like CoySg nanostructures. (p) TEM image of the CoySg nanostructures.
(q) Cycling performance of S@CoySg cathode at 1C for 600 cycles. (m-q) Reproduced from reference®’.
Copyright 2018, WILEY-VCH. .....c.oiiiiiiieieieie ettt ettt ettt et e te s st eseensesseeseeneensesseeneennens 48
Figure 1.17 (a) Schematic illustration of i) the synthesis process of MoS,-encapsulated hollow sulfur
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sphere, and 1ii) effective lithium polysulfides entrapment and structural integrity of MoS,-encapsulated
hollow sulfur sphere upon lithiation/delithiation. (b-d) /n-situ TEM images of MoS,-encapsulated hollow
sulfur spheres upon continuous lithiation and delithiation process. (a-d) Reproduced from reference®”.
Copyright 2017, American Chemical Society. (e) Schematic of the synthesis process of MoS,,/rGO
composite and the conversion of sulfur species on its surface. (f) HR-TEM image of MoS,,/rGO
composite. (g) Comparison of the cycling performances of rGO/S, MoS,/rGO/S and MoS,,/rGO/S
cathodes at 0.5C. (e-g) Reproduced from reference®'’. Copyright 2017, Royal Society of Chemistry. (h)
SEM and (i) TEM images of ZnS nanospheres. (j) CVs of Li,S¢ and Li,Se-free symmetrical cells with
ZnS-CB as working electrodes. (k) Illustration of the promoted redox reaction of polysulfide conversion by
the catalyzing of ZnS nanospheres during discharge. (I) Comparison of the cycling performances of
ZnS-CB/S and CB/S cathodes at 0.2C. (h-1) Reproduced from reference*''. Copyright 2018, Elsevier. (m)
Digital images of Li,S¢ solution after interaction with carbon and different kinds of metal sulfides. Atomic
geometries and binding energies of Li,S¢ adsorption on (n) Ni;S,, (0) SnS,, (p) FeS, (q) CoS,, (r) VS, and
(s) TiS,, respectively. (m-s) Reproduced from reference’'?. Copyright 2017, National Academy of Sciences.

Figure 1.18 (a) In situ XRD measurements of a Li|MogSg/Sg cell. (b) Illustration of the discharge process
of intercalation-conversion hybrid cathodes of MogSg¢/Ss. (¢) Cycling performance of the hybrid cathodes
with 6.2 mg cm™ S loading and 6.1 mg cm™ MogSs loading. (d) The pouch-cell configuration constructed
by the MogSg¢/Sg cathode with an ultralow electrolyte/active material ratio of ~1.2 pL mg'1 and ~2xLi
excess (100 pm for one side). (a-d) Reproduced from reference®"’. Copyright 2019, Nature Publishing
Group. (¢) XRD pattern of the MoS;. The inset shows the schematic structure of the 1D chain-like MoS;.
(f) TEM image of MoS;/CNT composite. (g) Charge-discharge curves of MoS; cathodes in carbonate
based electrolyte. (h) Cycling performance of the MoS; cathode. (e-f) Reproduced from reference”'”.
Copyright 2017, National Academy Of SCIENCES. .......eecueriririeieririieiererteeeeteste e eteee e sreenseseeseesseenseneens 55
Figure 1.19 (a) SEM image of mesoporous TiN. Reproduced from reference’'. Copyright 2016,
Wiley-VCH. (b) Schematic of the mesoporous TiN-O-OMC. (¢) TEM and (d) HR-TEM images of
mesoporous TiN-O-OMC. (b-d) Reproduced from reference**. Copyright 2019, Nature Publishing Group.
(e) SEM image of CosN nanosheets assembled mesoporous sphere. (f) Optical images of Li,S¢ solutions
after adding equal amounts of super P, Co;04 and Co4N, respectively. (g) Co 2ps, XPS spectra of CoNy
phase and Co4N/Li,Sg, respectively. (h) Cycling performances and Coulombic efficiencies of CosN/S
cathodes at 2C and 5C, respectively. (e-h) Reproduced from reference™*. Copyright 2017, American
Chemical Society. (i) Optical image of VN/G composite foams. (j) TEM image of VN/G composite. (i,j)
Reproduced from reference®’. Copyright 2017, Nature Publishing Group. (k) Schematic of sulfur
loaded-VN nanobubble. (I) TEM image of a single VN nanobubble. (k,I) Reproduced from reference”®.
Copyright 2017, American ChemicCal SOCIELY. .......c.evuiririerieitieieierie et etete sttt ste sttt ee e st eseesesseeseennens 59
Figure 1.20 (a) EIS and (b) CV of Li,S¢ symmetric cells with different working electrodes. (c)
Potentiostatic discharge curves of a Li,Sg/tetraglyme solution at 2.05 V on different substrates. The lighter
and darker colors represent the precipitation of Li,S and reduction of Li,Sg/Li,S¢, respectively. (d-f) SEM
images of the precipitated Li,S on different substrates as indicated in c. (g) Cycling performances of
TiC@G/S and TiO,@G/S electrodes at 0.2C. (a-g) Reproduced from reference™”. Copyright 2016,
Wiley-VCH. TEM images of (h) W,C NPs-CNFs, (i) Mo,C NPs-CNFs and (j) TiC NPs-CNFs,
respectively (scale bars=200 nm). (k) Photographs of the Li,S¢ adsorption by different powders in
DOL/DME (1:1, v/v) solution. Optimized geometries of Li,Ss adsorbed on (001) planes of (1) W,C, (m)
Mo,C and (n) TiC, respectively. (0) CV curves of Li,S¢ symmetric cells using W,C NPs-CNFs, Mo,C
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NPs-CNFs, TiC NPs-CNFs and CNFs as electrodes. (h-0) Reproduced from reference®". Copyright 2018,
American ChemiCal SOCIELY. ........cciiieierierieieterie sttt ettt et st et e et et e et essesesseeseensesesseensensensesneensensas 64
Figure 1.21 (a) Schematic structure of B,C@CNF. (b,c) SEM images of B4C@CNF. Electrochemical
performances of coin-cells: (d) Cycling performances of B;C@CNF/S and CNF/S cathodes at 1C over 500
cycles, (e) Cycling performances of B4sC@CNEF/S cathodes at 0.2C with higher sulfur loadings.
Electrochemical performances of pouch-cells: (f) EIS spectra of B4C@CNF/S and CNF/S cathodes before
and after cycling, (g) Cycling performances of B4C@CNF/S and CNF/S electrodes with sulfur mass of 40
mg per cathode at 0.1C, (h) Discharge capacities of B4C@CNF/S with sulfur mass of 200 mg per cathode.
(a-h) Reproduced from reference”. Copyright 2018, Wiley-VCH. (i) Schematic of the synthesis process
for TSC/NbC composite. (j,k) SEM and (1) TEM images of TSC/NbC composite. The insets in 1 show the
SAED pattern and enlarged TEM image. (m) Cycling performances of TSC/NbC-S and TSC-S at 0.1C for
500 cycles. The inset demonstrates the LEDs powered by the battery. (i-m) Reproduced from reference®’.
Copyright 2019, WILEY-VCH. ......ooiiiiiieieieie ettt ettt ettt et e s st estesesseeseeneensesseeneennens 67
Figure 1.22 (a) SEM image of MXene phase Ti,C. (b) Illustration of the interactions between MXene and
sulfur species. (¢) Ti 2p XPS spectra of 1) Ti,C and ii) S/Ti,C, iii) Li,S4-Ti,C and iv) S/Ti,C electrode after
discharged to 1.8 V at C/20, respectively. (d) S 2p XPS spectra of i) S, ii) S/Ti,C, and iii) S/Ti,C electrode
after discharged to 1.8 V at C/20, respectively. (a-d) Reproduced from reference®®. Copyright 2015,
Wiley-VCH. (e) Schematic of the synthesis process for N-Ti;C,Ty/S composite. SEM images of crumpled
porous N-Ti;C, T, nanosheets (f,g) before and (h,i) after sulfur loading. (e-i) Reproduced from reference®.
Copyright 2018, WILEY-VCH. .....c.oiiiiiieiieieiietieee sttt ettt ettt st e e besseeseesesseeseeneensesseeneennens 69
Figure 1.23 (a,b) Co 2psp, (c,d) P 2p, and (e) S 2p XPS spectra of (a,c) CoP and (b,d) CoP-R nanoparticles
before and after interacting with Li,S¢. (f) Proposed binding mechanism of lithium polysulfides on CoP
and CoP-R surfaces. (a-f) Reproduced from reference””. Copyright 2018, American Chemical Society. (g)
Schematic illustration of the synthesis process for S@Co-Fe-P nanocubes. (h) TEM image of
Feg 667Co(CN)4(H,0)4 nanocubes. (i) SEM and (j) TEM image of porous Co-Fe-P nanocubes. (k) XRD
pattern of Co-Fe-P nanocubes. (m) Cycling performances of S@Co-Fe-P and S@Co-Fe electrodes at 0.2C.
(n) Cycling performances of S@Co-Fe-P cathodes at 0.2C with higher areal sulfur loadings. g-n)
Reproduced from reference®”*. Copyright 2019, American Chemical SOCIEtY. ..........oveeveeeereeererereeeneene. 73
Figure 1.24 (a) Schematic of TiB, (001) surface. (b) TEM and ¢) HRTEM images of TiB, nanoparticles. (d)
TEM image of TiB,/S composite. (e) Scanning TEM image of a single TiB,/S nanoparticle and
corresponding EDX mapping. (f) Cycling performance and Coulombic efficiencies of TiB,/S cathode at
0.2C for 150 cycles. (a-f) Reproduced from reference®’. Copyright 2018, American Chemical Society. (g)
Schematic of the synthesis strategy for MgB,. (h) XRD pattern of MgB,.The inset shows the SAED pattern.
(i) SEM image of MgB, nanoparticles. (j) SEM image of MgB,-graphene composite. (k) Cycling
performance and Coulombic efficiencies of MgB,-graphene/S cathode with a high sulfur loading of 9.3 mg
cm™ at 0.2C. The first cycle was at 0.05C. (g-k) Reproduced from reference™. Copyright 2019, Cell Press.

Figure 1.25 (a) SEM and (b) TEM images of CoOOH sheets. (¢) TEM image and (d-f) corresponding
EDX mappings of S@CoOOH sheets. (a-f) Reproduced from reference””. Copyright 2019, Wiley-VCH.
(g) Schematic illustration of the synthesis process of HNb;Og@S. h) SEM and (i,j) TEM images of
HNb;Og nanobelts. (k) HRTEM image of HNb;Og nanobelts. The inset shows the SAED pattern. m) AFM
image of HNb;Og nanobelts. (n) Scanning TEM image of HNb;Os@S nanobelts and corresponding EDX
mappings. (g-n) Reproduced from reference®®*. Copyright 2019, Wiley-VCH. ..........ooooovereeereeerereererennnne. 79
Figure 1.26 (a) TEM and b) HAADF-STEM images of single Co atoms on nitrogen-doped graphene
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(Co-N/G). (c) CVs of Li,S¢ symmetric cells with different electrodes. (d) Discharge and (e) charge profiles
of S@Co—N/G, S@N/G, S@Co/G, and S@rGO electrodes showing the overpotentials for conversion
between soluble lithium polysulfides and insoluble Li,S,/Li,S. (f) Atomic structures of N/G and Co-N/G
used in the first-principle calculations. (g) Gibbs free energy profiles for the reduction of lithium
polysulfides on N/G and Co-N/G substrates, respectively. The insets show the optimized adsorption
geometries of intermediate sulfur species on N/G and Co-N/G substrates, respectively. Energy profiles of
Li,S decomposition on (h) N/G and i) Co-N/G. The insets show the initial, transition, and final structures.
The black, pink, dark blue, green and yellow balls represent C, N, Co, Li and S atoms, respectively.
Reproduced from reference®®. Copyright 2019, American Chemical SOCICtY. ..........veeveeevereeeereeeeeneene. 82
Figure 1.27 (a) Schematic configiration of a Li-S battery with an additional carbon interlayer. b) SEM
image of the microporous carbon paper. (a,b) Reproduced from reference®'. Copyright 2012, Nature
Publishing Group. (c) Schamatic of four different electrode configurations. Schematics of Li-S batteries
with (d) electrode configuration I and (e) electrode configuration IV. Photographs of ) large-area graphene
current collector strip and g) G-separator. (c-g) Reproduced from reference®™. Copyright 2014,
Wiley-VCH. (h,i) Schematic illustrations of two hypothetical functions of carbon interlayer in Li-S
batteries. (j) Schematic illustrations of four different battery configurations. (k) Cycling performances and
Coulombic efficiencies of Li-S batteries with four different battery configurations. (h-k) Reproduced from
reference”. Copyright 2018, The Electrochemical SOCIELY. ..........v..vw.vveeeeeeeeeeeeeeeeseeeeeeeeeeseeeeeeeeeeseeenes 85
Figure 1.28 Schematic of the fabrication process of sulfur-graphene-PP separator integrated electrode and
the corresponding battery assembly. Reproduced from reference™'. Copyright 2015, Wiley-VCH. ........... 87
Figure 1.29 (a) Schematic and photograph of PP separator covered with 2-layer CVD-graphene with an
areal of 5 x 60 cm’. SEM images of the surface of PP separator (b) with and c) without 2-layer
CVD-graphene. (d) Cross-sectional TEM image of PP separator coated with 2-layer CVD-graphene. (e)
Raman spectra of bare-PP and 2G-PP. Reproduced from reference.”” Copyright 2017, American Chemical

Figure 1.30 Schematic illustrations of Li-S battery configurations using (a) routine membrane and (b) ion
selective membrane. (c¢) Enlarged microstructure of the ion selective membrane. SEM images of (d)
routine PP/PE/PP membrane and (e) ion selective Nafion-PP/PE/PP membrane. (f) Cycling performances
of Li-S batteries with routine membrane and ion selective membrane at 1C, respectively. (a-f) Reproduced
from reference®”. Copyright 2014, Royal Society of Chemistry. Schematics of (g) a hydro-phobic interface
and (h) a polysulfide-phobic interface. (i) Top-view and (j) side-view of VOPO,/PP membrane. The inset
in i shows the photograph of VOPO4/PP membrane. (k) Schematic illustration of suppressing polysulfide
shuttle by using a S¢~-VOPO,/PP separator. (I) Cycling performances of Li-S cells with different
separators. (m) Long-cycling performance of the Li-S battery with S¢>-VOPO,/PP separator at 3C for 2000
cycles. The inset shows the voltage profiles at selective cycles. (g-m) Reproduced from reference™”.
Copyright 2019, WILEY-VCH. .....c.oeiiiieieiieieie ettt ettt sttt te st eseese st e eseeneesesseeneennans 91
Figure 1.31 (a) Schematic of the fabrication process for artificial MOF@GO separator. (b) Schematic of
MOF@GO separator acting as ionic sieve towards polysulfides. The enlarged image illustrates the pore
size of the HKUST-1 (about 0.9 nm) is much smaller than that of polysulfides. (c) Cross-sectional SEM
image of the MOF@GO separator. The inset shows a photograph along the MOF side. Reproduced from
reference”’. Copyright 2016, Nature PubliShing GIOUP. ..........o.ovveeveeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeseese s 92
Figure 1.32 (a) Schematic of the fabrication process for MOF@PVDF-HFP membrane. (b) Digiutal
photos of the flexible MOF@PVDF-HFPs separator. c) TOP-view SEM image of the MOF@PVDF-HFP
separator and the corresponding elemental mappings of Cu and F. (d) Side-view of the MOF@PVDF-HFP
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separator. (e) Digital photos of visible H-type Li-S cells with different separators during a discharging
process. Reproduced from reference®®. Copyright 2018, Wiley-VCH. w.......o.ooveoieerieeeeeeeeeeeeeeeeeseeeeeeenes 94
Figure 1.33 (a) Schematic of the in-situ growth of CoySg arrays on Celgard separator. Surface SEM images
of (b) MOF-Celgard and (c) CosSg-Celgard separators. The insets show the corresponding digital photos.
(d) Cross-sectional SEM image of CoySg-Celgard separator. (e) Photographs of glass cells with Li,S¢ in
DOL/DME solution and pure DOL/DME solvent in the left and right chambers, respectively, separated by
Celgard (top panel) and the CoySg-Celgard separator (bottom panel) and the improvement mechanism of
the CooSg-Celgard separator during the charge/discharge processes. Reproduced from reference™”.
Copyright 2018, Royal Society 0f CREMISIIY. ....c.ecviirieiirieieieresieee ettt see e eeneens 96
Figure 1.34 (a) Schematic of the cross-linking of CMC binder with CA as linker. SEM images of the
surface of thick sulfur cathodes with high sulfur loading of 5.2 mg cm™ using (b) PVDF binder and (c)
cross-linked CMC-CA binder. (a-c) Reproduced from reference®®. Copyright 2016, Wiley-VCH. (d)
Cycling performance of the sulfur cathode using poly(AETMAC-co-EGDA) as binder. The insets show the
SEM image of sulfur@porous hollow carbon sphere cathode, the illustration of S@carbon spheres linked
by the poly(AETMAC-co-EGDA) binder and the structure of the binder. SEM images of the surface of
sulfur cathodes after 100 cycles fabricated with (¢) PVDF binder, (f) poly(DADMAC-co-EGDA) binder
and (g) poly(AETMAC-co-EGDA) binder. (d-g) Reproduced from reference®>’. Copyright 2019, American
CREMUCAL SOCIELY. ...euvevieuieiieieieetiete sttt te ettt et e e e s teest e eeteeseeneenseseeseensensenseeseensenseseeneensenseseeneensensas 100
Figure 1.35 The optimized binding geometries of Li,S and LiS species on (a) PVP and (b) PVDF binders.
Optical microscopy images of electrode slurries of (c¢) Li,S/Carbon/PVP and (d) Li,S/Carbon/PVDF in
NMP (60:35:5 by weight in both cases). The insets show the corresponding digital images. (a-d)
Reproduced from reference’®. Copyright 2013, Royal Society of Chemistry. (¢) Schematic of electrode
construction using (e) traditional PVDF binder and f) polar polymer with abundant amino and amide
groups. (g) The reducible molecular structure PPA binder. (e-g) Reproduced from reference™. Copyright
2018, WILEY-VCH. ..ciiiiiiiiiiict ettt ettt ettt bttt st ettt be st et eaeneas 103
Figure 1.36 (a) Molecule structures of four different binders. (b) Cycling performances at 0.1C and
self-discharge tests of cathodes with different binders. Reproduced from reference’®. Copyright 2015,
EISEVIL. .ttt ettt et h et et s ettt h ettt b ettt b bt neenea 104
Figure 1.37 (a) Voltage profiles and (b) cycling performances of Li-S batteries at different
sulfur/electrolyte ratios. Reproduced from reference®®®. Copyright 2013, The Electrochemical Society...107
Figure 1.38 (a) Schematic for in situ wrapping a TPS layer on the cathode. TEM images of (b) CMK-3/S,
(c) CMK-3/S@PANS and (d) CMK-3/S@PANS@TPS. The scale bars are all 10 nm. Digital photos of
glass cells with (¢) CMK-3/S, (f) CMK-3/S@PANS and (g) CMK-3/S@PANS@TPS cathodes after 20
cycles at 0.1C. Reproduced from reference™. Copyright 2017, Nature Publishing Group. ...................... 109
Figure 1.39 (a) Ab initio calculations of the two electrolyte systems with different electrolyte/lithium salt
ratios. The purple, cyan, grey, gold and blue color represent Li" cations, free diethylene glycol dimethyl
ether (G2) molecules, coordinated G2 molecules, contact-ion-pair of TFSI™ anions and aggregates of TFSI
anions, respectively. The cubic box represents the supercell for the calculated system. (b) Discharge
profiles and (c) cycling performance of Li-S cells using G2:LiTFSI electrolytes with different molar ratios.
(d) Cycling performances and Coulombic efficiencies of Li-S cells using an low E/S ratio of 5 pL/mg at
0.2C with different G2:LiTFSI electrolytes. Reproduced from reference™'. Copyright 2018, Nature
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Figure 1.40 Schematic of the garnet bilayer solid-state electrolyte. Reproduced from reference™”.
Copyright 2017, Royal Society of ChemiStIY. .......c.eciririeieierieieieerie ettt 115
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Figure 1.41 (a) SEM image of the PETEA-based gel polymer electrolyte. The inset shows the photographs
of the gel electrolyte and its precursor solution. (b) Illustration of the formation of a passivation layer on
the sulfur cathode surface. (c) Cycling performances of Li-S cells with PETEA-based gel polymer
electrolyte and liquid electrolyte. (a-c) Reproduced from reference®'. Copyright 2016, Elsevier. (d) Visual
glass cells of SnO,/LE/S and SnO,/GPE/S. Reproduced from reference’. Copyright 2016, Elsevier. ....116
Figure 1.42 (a) Schematic of tween polymer-grafted lithium metal. (b) Schematic of lithium plating and
stripping process on bare lithium metal and tween polymer-grafted lithium metal. Reproduced from
reference™”. Copyright 2018, American Chemical SOCIELY. ..............oovwrveerveerreseeeeeeeeseeseeeeeseeseeseneone 121
Figure 1.43 (a) a) Schematic of the fabrication process of MoS,-coated Li metal anode via the sputtering
and subsequent lithiation. (b) Side and (c) top view SEM images of as-deposited MoS; on lithium metal.
The inset in ¢ shows the enlarged image. (d) Top-view SEM image of lithiated MoS; on lithium metal
surface. (e) Cycling performance of a Li-S battery with MoS,-coated Li metal as anode and CNT-sulfur as
cathode for 1200 cycles at 0.5C. The inset illustrates the configurations of the as-assembled battery.
Reproduced from reference®™. Copyright 2018, Nature Publishing GIoup................cooeovvveeeeeeeeereeeenenen. 123
Figure 1.44 (a) Schematic of the fabrication process for layered Li-rGO film. (b) Digital photos of (b) GO
film, (c) sparked rGO film and d) layered Li-rGO film. (a-d) Reproduced from reference™”’. Copyright
2016 Nature Publishing Group. (e) Schematic of the lithium metal coated by a thin layer of LiF. (f) Cycling
performances of Li-S prototype cells with Li foil, Li-rGO and LiF-coated Li-rGO as anodes. (e,f)
Reproduced from reference®®. Copyright 2017, American Chemical SOCIEtY. ...........vveoveeveevereeeeeeeenen. 125
Figure 1.45 (a) Schematic of the microstructure of LiyM/graphene film. b) Schematic of the fabrication
process for LiyM/graphene film. Reproduced from reference’”. Copyright 2017, Nature Publishing Group.

Figure 1.46 Schematic of an all-in-one solid-state Li-S battery based on trilayer garnet electrolyte.
Reproduced from reference’'®. Copyright 2018, EISEVIET. ............ovveiveeeeeeeeeeeeeeeeeeeeeeeseeseeeeseeeeeeeeeseeene 127
Figure 1.47 (a) Schematic of the fabrication process for 3D NPC@S/3D NPC@Li full cell. Reproduced
from reference’'”. Copyright 2018, Wiley-VCH. (b) Schematic for the fabrication of dendrite-free lithium
anode by designing NPCN-wrapped 3D metal foam as the current collector. (¢) Cycling performances of
Li/Cu foil|C/S, Li/Cu foam|C/S, and Li/Cu@NPCNIC/S full cells at 1C. (d) Cycling performance of
Li/Cu@NPCN|C/S full cell at 2C. (b-d) Reproduced from reference’”. Copyright 2019, American
Chemical Society. (¢) Schematic of the synthesis process MCS and CMCS. SEM images of f) MCS and (g)
CMCS. h) Schematic of lithium deposition on Cu foil directly and through MCS. (i) Schematic of the Li-S
full cell with S@CMCS as cathode and Li@MCS as anode. (j) Cycling performances of S@CMCS
cathodes coupled with Li@MCS and Li@Cu anodes respectively at 1C. e-j) Reproduced from reference™'*.
Copyright 2019, WILEY-VCH. ....cuioieieiieiieieeee ettt ettt te b st e e nseeneentenseseeneenneneas 129
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ABSTRACT

Lithium-sulfur (Li-S) batteries, which rely on the redox reactions, show great promise for
next-generation energy storage owing to their high theoretical energy density, environmental
benignity and low cost of sulfur. However, the practical application of Li-S batteries has been
largely impeded by the low conductivity of sulfur and the shuttle effect of polysulfides. One
of the most effective strategies to overcome these problems is to disperse insulating sulfur
active material within other conductive matrixes that are capable of physically adsorbing
and/or chemically binding sulfur and its intermediate polysulfides. In this thesis, we designed
two types of host materials that can be used to improve the electrochemical performance of
Li-S batteries.

A new self-standing host enabled by a 3D hierarchically-porous titanium
monoxide-graphene composite film was designed to overcome the main challenges of Li-S
batteries. The hierarchically porous graphene scaffold can not only facilitate rapid lithium ion
and electron transport, but also provide sufficient spaces to accommodate sulfur species. In
addition, the ultrafine and polar titanium monoxide nanoparticles embedded in the
three-dimensional graphene networks show strong chemical anchoring for polysulfides, and
their inherent metallic conductivity accelerates the redox reaction kinetics. Benefiting from
this attractive architecture, the freestanding titanium monoxide-graphene/sulfur cathode
demonstrated superior electrochemical performance for Li-S batteries.

Uniform Co-Fe mixed metal phosphide (Co-Fe-P) nanocubes with highly

interconnected-pore architecture were synthesized as sulfur host for Li-S batteries. With the
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highly interconnected-pore architecture, inherently metallic conductivity and polar
characteristic, the Co-Fe-P nanocubes not only offer sufficient electrical contact to the
insulating sulfur for high sulfur utilization and fast redox reaction kinetics, but also provide
abundant adsorption sites for trapping and catalyzing the conversion of lithium polysulfides
to suppress the shuttle effect. As a result, the sulfur-loaded Co-Fe-P (S@Co-Fe-P) nanocubes

exhibited superior electrochemical performances both in coin cells and pouch cells.
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