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Abstract 

 

Molecular communication (MC) is an emerging nanoscale communication paradigm, 

biologically inspired by the cellular communications via biochemical molecules in the living 

organisms. The MC paradigm is highly suitable for modelling and abstraction of the 

underlying complex processes in the drug delivery systems (DDSs) over wide spatiotemporal 

scales. Targeted and implantable DDSs are advanced and engineered technologies for 

effective delivery of anticancer drugs to the cancerous tumors without affecting other healthy 

parts in the body. This approach offers an efficient alternative or adjunctive therapy to other 

treatment techniques, such as conventional chemotherapy, thermal ablation, and surgical 

resection. In-Silico (mathematical and stochastic) models are key tools to understand and 

quantify the various parameters and processes in the DDSs, including drug transport, release 

processes, reaction, and other physicochemical interaction processes in the biological 

microenvironments inside the body. These models play an essential role in the design and 

development of the DDSs which in order can reduce the animal experiments and can save 

time and reduce cost.   

The focus of my Ph.D. research is to develop novel mathematical and stochastic simulation 

models using MC paradigm for localized targeted and implantable DDSs over nano- and 

micrometer scales in complex biological microenvironments. Using the MC paradigm, the 

drug delivery process is abstracted as a communication mechanism where the drug source 

acts as a transmitter while the target site (e.g., cancer cell) acts as a receiver and the biological 

environment through which the molecules get transported acts as a propagation channel. The 

anticancer drug molecules represent the information carriers that contain the 

physicochemical properties of the drug. We use system analysis approach using the channel 

impulse response (CIR) coupled with the signal processing technique (convolution) for 

modelling the targeted and implantable DDSs in tumor microenvironments (TME). This 

approach provides more general and flexible models compared to other modelling 

approaches.  
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The thesis made original contributions in the following four major aspects: 

(1) Generalized mathematical and stochastic simulation models are developed for diffusion-

based molecular communications (MC) in complex fluidic microenvironments that include 

multilayered physical structures, ligand-receptor reaction, anisotropic diffusion, and the 

effect of reactive obstacles. These generalized models are developed for modelling and 

design of both the targeted drug delivery systems (TDDS) as well as the molecular 

communication systems between bio-nanomachines or cells in such complex environments 

over microscopic scale. (2) The proposed multilayer MC models have been extended for 

modelling the intravascular TDDS including anticancer drug release from the nanocarriers 

(NCs) and drug transport across the endothelial barrier of the tumor vasculature in tumor 

microenvironments. (3) Novel mathematical and stochastic simulation models are developed 

for modelling the implantable drug delivery system (IDDS) in tumor by predicting and 

characterizing the release process and drug distribution in the surrounding tumor tissue. (4) 

Pharmacokinetic /Pharmacodynamics models are developed for modelling the combination 

therapy using local implantable drug delivery systems in solid tumors following thermal 

ablation therapy. 
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