THE ROLE THAT CONNECTED AND AUTOMATED VEHICLES CAN PLAY IN RE-ORGANIZING TRAFFIC FLOW: WORK ZONES AND EMERGENCY SERVICES

Yun Zou Candidate of Doctor of Philosophy

Principle Supervisor: Prof. Jianchun Li

Co-supervisor: Prof. Xiaobo Qu

Co-supervisor: Dr. Kasun De Silva Wijayaratna

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Civil & Environment Engineering Faculty of Engineering and Information Technology University of Technology Sydney July 2020

Certificate of Original Authorship

I, Yun Zou declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Civil & Environment Engineering at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

09/07/2020

Date:

The Role That Connected and Automated Vehicles Can Play in Re-organizing Traffic Flow: Work Zones and Emergency Services

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisory panel, Prof. Jianchun Li, Prof. Xiaobo Qu and Dr. Kasun Wijayaratna for their continuous support of my Ph.D study. It would not have been possible to accomplish my researches without their guidance and patience.

I gratefully acknowledge the University of Sydney Technology for the generous supports and the helpful academic environment during my candidature. Besides, I am really thankful to the AI Innovation of Sweden for offering me an internship.

My friends and colleagues have provided me encouragement and collaboration during my candidature, and my life would not be so enjoyable without them; therefore, I cannot express enough thanks to Jun Li, Weiwei Qi and Yuancheng Mao for inspiring me on my researches, and Yang Yu, Jian Zhang, Mengtian Li, Lufei Huang, Bentuo Xu, Jiawei Ren, Haodong Chang, TianmingWang, Zhongqin Wang, Caoyuan Li, Lingxiang Wu etc. for their ideas and collaborations.

Finally, I would like to thank my parents Fuxi Zou and Xiaoli Wang for their continuous support. I would like to thank my girlfriend, Zhexi Kuang, for accompanying me in Australia and Sweden.

List of Publications

Zou, Y., & Qu, X. (2018). On the impact of connected automated vehicles in freeway work zones: a cooperative cellular automata model based approach. Journal of Intelligent and Connected Vehicles.

Zou, Y., & Qu, X. (2019). On the Impact of Emergency Incidents on the Freeway: A Full Velocity Difference (FVD) Model Based Four-Lane Traffic Dynamics Simulation. In Smart Transportation Systems 2019 (pp. 165-174). Springer, Singapore.

Zou, Y., Kuang. Y., Zhi, Y., Qu, X. (2019). Investigation on linearization of data driven transport research: two representative case studies. IET Intelligent Transport Systems. (accepted) (as shown in Appendix A)

Table of Contents

Certif	icate of Orig	ginal Authorship	i
Ackn	owledgemer	nts	. ii
List o	List of Publicationsiii		
Table	Table of Contentsiv		
List o	f Figures		vi
List o	f Tables		. x
List o	f Abbreviati	ions	xi
Abstr	act		xii
Кеуw	ords		iii
Chap	oter 1:	Introduction	.1
1.1	Backgroun	d	. 1
1.2	Main challe	enges	. 4
1.3	Contributio	ons and Outline	. 6
Chap	oter 2:	Related Works	.9
2.1	Connected	and Automated Vehicles	. 9
2.2	Trajectory	planning to improved the traffic flow dynamics	11
2.3	Car-follow	ing model	11
2.4		ge model	
2.5	Work zone	s and Emergency Services	15
Char	oter 3:	CAV-based Traffic Regulation in Work Zones	19
3.1	Introduction	n	19
3.2	Model deve	elopment to simulate Movements of Mannually Driven Vehicles	22
3.3	Model deve	elopment to simulate Movements of Connected and Automated Vehicles	26
3.4	Case Study	·	32
3.5	Summary		44
Char	oter 4:	Congestion Dispersion under Emergency Service	47
4.1	Introductio	n	47
4.2	Model deve	elopment	51
4.3	Result and	discussion	52
4.4	Summary		56
Chap	oter 5:	Lane-change prediction in Re-organized Traffic Flow	59
5.1		n	
5.2	Data Descr	iption and Process	61
5.3	Methodolog	gy	71

5.4	Discussio	n and Analysis	73
5.5	Summary		76
Chap	oter 6:	Improvements on Collaboration in Work Zones	77
6.1	Introducti	on	77
6.2	Model De	scription	77
6.3	Result and	1 Discussion	79
6.4	Summary		
Chap	oter 7:	Improvements on Collaboration in Incident-affected	Zone 88
7.1	Introducti	on	
7.2	Model De	scription	
7.3	Result and	1 Discussion	
7.4	Summary		
Char	4 0	C 1 :	
Chap	oter 8:	Conclusion	
-		Conclusion	
Арре	endices		
Appe Appe	e ndices ndix A Fur		102
Appe Appe 1. Intr	endices ndix A Fur roduction	action-based Calibration of Traffic Data	102 102 102
Appe Appe 1. Intr 2. Lin	endices ndix A Fur roduction acar and no	action-based Calibration of Traffic Data	102 102 102 104
Appe Appe 1. Intr 2. Lin 3. Illu	endices ndix A Fur coduction lear and no astrative ex	nction-based Calibration of Traffic Data nlinear regression model	102 102 102 102 104 105
Appe Appe: 1. Intr 2. Lin 3. Illu 4. Illu	endices ndix A Fur coduction lear and no istrative ex	nction-based Calibration of Traffic Data nlinear regression model ample 1: Traffic flow fundamental diagram	102 102 102 102 104 105 120
Appe: Appe: 1. Intr 2. Lin 3. Illu 4. Illu 5. Sun	endices ndix A Fur coduction lear and no estrative ex estrative ex mmary	nction-based Calibration of Traffic Data nlinear regression model ample 1: Traffic flow fundamental diagram ample 2: Daily bunker consumption	102 102 102 104 104 105 120 125
Appe Appe 1. Intr 2. Lin 3. Illu 4. Illu 5. Sun Appe	endices ndix A Fur coduction lear and no estrative ex estrative ex mmary ndix B Fig	nction-based Calibration of Traffic Data nlinear regression model ample 1: Traffic flow fundamental diagram ample 2: Daily bunker consumption	102 102 102 102 104 105 120 125 127
Appe Appe 1. Intr 2. Lin 3. Illu 4. Illu 5. Sun Appe	endices ndix A Fur roduction lear and no astrative ex astrative ex mary ndix B Fig ndix C Fig	nction-based Calibration of Traffic Data nlinear regression model ample 1: Traffic flow fundamental diagram ample 2: Daily bunker consumption ures of velocities with regards to the location in a work zone	102 102 102 102 104 105 120 125 127 132

List of Figures

Figure 3-1 A plan view of freeway section around a work zone and a work zone on Pacific Highway	22
Figure 3-2 The deterministic indicators of the traffic performance: (a) Average travel time. (b) Quantity of Excessive brakes. (c) Cumulative merge delay. (d) Speed standard deviation. (e) Duration of Stopping. (f) Emission.	36
Figure 3-3 Following front gap comparison based on trajectories	37
Figure 3-4 Following model performance analysis based on trajectories	37
Figure 3-5 Priority analysis during lane-changing period	38
Figure 3-6 Cooperation between CAV and MV during lane-changing period	38
Figure 3-7 Trajectories without CAV's participation	39
Figure 3-8 Trajectories with penetration rate being 100%	39
Figure 3-9 Massive illustration of average travel time over penetration rate	40
Figure 3-10 Massive illustration of emission over penetration rate	40
Figure 3-11 Velocities over longitudinal positions when penetration rate = 0 % with sub-figures illustrating the velocity-location relationships of (1) the 50th vehicle which is a MV; (2) the 150th vehicle which is a MV respectively	42
Figure 3-12 Velocities over longitudinal positions when penetration rate = 30 % with sub-figures illustrating the velocity-location relationships of	42
Figure 3-13 Velocities over longitudinal positions when penetration rate = 50 % with sub-figures illustrating the velocity-location relationships of	43
Figure 3-14 Velocities over longitudinal positions when penetration rate = 80 % with sub-figures illustrating the velocity-location relationships of	43
Figure 4-1 Demonstration of researched four-lane freeway	50
Figure 4-2 Vehicle trajectories with reaction time and regular minimum acceptable gap	54
Figure 4-3 Vehicle trajectories ignoring the reaction time	55
Figure 4-4 Vehicle trajectories with reduced the minimum acceptable following gap	55
Figure 4-5 Vehicle trajectories with reduced minimum acceptable following gap while ignoring the reaction time	55
Figure 4-6 Vehicle trajectories with ideal cooperation	56
Figure 4-7 Lateral movement with ideal cooperation	56
Figure 5-1 Study Area of U.S. Highway 101	63
Figure 5-2 Study Area of Interstate 80 Freeway	64

Figure 5-3 Smoothed longitudinal positions compared to the original	
longitudinal positions	
Figure 5-4 Smoothed velocities compared to the original velocities	
Figure 5-5 Smoothed lateral positions compared to the original lateral positions	. 67
Figure 5-6 Smoothed lateral velocities compared to the original lateral velocities	. 68
Figure 5-7 Smoothed lateral acceleration rates compared to the original lateral acceleration rates	. 68
Figure 5-8 Original trajectory of the vehicles involved in a lane-change tasks	. 69
Figure 5-9 Smoothed trajectory of the vehicles involved in a lane-change tasks	. 70
Figure 5-10 Process of lane-change prediction	. 75
Figure 6-1 Longitudinal position with 0 % CAV penetration rate	. 81
Figure 6-2 Lateral position with 0 % CAV penetration rate	
Figure 6-3 Longitudinal position with 30 % CAV penetration rate	
Figure 6-4 Lateral position with 30 % CAV penetration rate	
Figure 6-5 Longitudinal position with 60 % CAV penetration rate	
Figure 6-6 Lateral position with 60 % CAV penetration rate.	
Figure 6-7 Longitudinal position with 90 % CAV penetration rate	. 84
Figure 6-8 Lateral position with 90 % CAV penetration rate	. 84
Figure 6-9 The number of vehicles failed on lane-change with the increase of the penetration rate	
Figure 6-10 Emission of different penetration rate.	
Figure 6-11 Cumulative distribution of velocities on the non-through lane	
Figure 6-12 Average speed on different longitudinal positions of the non-	. 00
through lane.	. 87
Figure 7-1 Longitudinal position with 0 % CAV penetration rate	. 90
Figure 7-2 Lateral position with 0 % CAV penetration rate	. 90
Figure 7-3 Longitudinal position with 30 % CAV penetration rate	. 91
Figure 7-4 Lateral position with 30 % CAV penetration rate	. 91
Figure 7-5 Longitudinal position with 80 % CAV penetration rate	. 92
Figure 7-6 Lateral position with 80 % CAV penetration rate.	. 92
Figure 7-7 Longitudinal position with 90 % CAV penetration rate	. 93
Figure 7-8 Lateral position with 90 % CAV penetration rate	. 93
Figure 7-9 The number of vehicles failed on lane-change with the increase of	
the penetration rate	. 94
Figure 7-10 Emission for different penetration rate	. 94
Figure 7-11 Cumulative distribution of velocities on the non-through lane	. 95

The Role That Connected and Automated Vehicles Can Play in Re-organizing Traffic Flow: Work Zones and Emergency Services

Figure 7-12 Cumulative distribution of velocities on the right adjacent lane	96
Figure 7-13 Cumulative distribution of velocities on the left adjacent lane	96
Figure 7-14 Average speed on different longitudinal positions of the non- through lane	97
Figure A-1 Single-regime speed-density models and GA400 dataset	. 106
Figure A-2 Performance of Greenberg model with regards to four calibration methods.	. 110
Figure A-3 Greenberg model with data transformation of density.	. 111
Figure A-4 Performance of Northwestern model with regards to four calibration methods.	. 112
Figure A-5 Northwestern model with data transformation of density	. 113
Figure A-6 Performance of Underwood model with regards to four calibration methods.	. 114
Figure A-7 Underwood model with data transformation of speed	. 114
Figure A-8 GA400 dataset distributions of densities and assigned weights	. 116
Figure A-9 GA400 dataset distributions of speeds and assigned weights	. 117
Figure A-10 Performance of rearranged Greenberg model with regards to the four calibration methods.	. 117
Figure A-11 Performance of rearranged Underwood model with regards to the four calibration methods.	. 118
Figure A-12 Relation between bunker consumption and sailing speed of SG-JK given by nonlinear regression and linear regression	. 123
Figure A-13 Relation between bunker consumption and sailing speed of SG- KS given by nonlinear regression and linear regression	. 123
Figure A-14 Relation between bunker consumption and sailing speed of HK- SG given by nonlinear regression and linear regression	. 124
Figure A-15 Relation between bunker consumption and sailing speed of YT- LA given by nonlinear regression and linear regression	. 124
Figure A-16 Relation between bunker consumption and sailing speed of TK- XM given by nonlinear regression and linear regression	. 125
Figure B-1 Model demonstrate of the CCAM	. 127
Figure B-2 Velocities over longitudinal positions with 0 % penetration	. 128
Figure B-3 Velocities over longitudinal positions with 10 % penetration	. 128
Figure B-4 Velocities over longitudinal positions with 20 % penetration	. 129
Figure B-5 Velocities over longitudinal positions with 40 % penetration	. 129
Figure B-6 Velocities over longitudinal positions with 50 % penetration	. 130
Figure B-7 Velocities over longitudinal positions with 70 % penetration	. 130
Figure B-8 Velocities over longitudinal positions with 80 % penetration	. 131
Figure B-9 Velocities over longitudinal positions with 100 % penetration	. 131

Figure C-1 Longitudinal position with 10 % CAV penetration rate132
Figure C-2 Lateral position with 10 % CAV penetration rate
Figure C-3 Longitudinal position with 20 % CAV penetration rate
Figure C-4 Lateral position with 20 % CAV penetration rate
Figure C-5 Longitudinal position with 40 % CAV penetration rate134
Figure C-6 Lateral position with 40 % CAV penetration rate
Figure C-7 Longitudinal position with 50 % CAV penetration rate
Figure C-8 Lateral position with 50 % CAV penetration rate
Figure C-9 Longitudinal position with 70 % CAV penetration rate136
Figure C-10 Lateral position with 70 % CAV penetration rate
Figure C-11 Longitudinal position with 80 % CAV penetration rate137
Figure C-12 Lateral position with 80 % CAV penetration rate
Figure C-13 Longitudinal position with 100 % CAV penetration rate
Figure C-14 Lateral position with 100 % CAV penetration rate
Figure D-1 Longitudinal position with 10 % CAV penetration rate
Figure D-2 Lateral position with 10 % CAV penetration rate
Figure D-3 Longitudinal position with 20 % CAV penetration rate 140
Figure D-4 Lateral position with 20 % CAV penetration rate
Figure D-5 Longitudinal position with 40 % CAV penetration rate141
Figure D-6 Lateral position with 40 % CAV penetration rate
Figure D-7 Longitudinal position with 50 % CAV penetration rate142
Figure D-8 Lateral position with 50 % CAV penetration rate142
Figure D-9 Longitudinal position with 60 % CAV penetration rate143
Figure D-10 Lateral position with 60 % CAV penetration rate
Figure D-11 Longitudinal position with 70 % CAV penetration rate 144
Figure D-12 Lateral position with 70 % CAV penetration rate
Figure D-13 Longitudinal position with 100 % CAV penetration rate145
Figure D-14 Lateral position with 100 % CAV penetration rate

List of Tables

Table 3-1 General coefficients	23
Table 3-2 Parameters in randomization probability equation	24
Table 3-3 Comparison between ICAM and Modified ICAM	25
Table 3-4 Coefficients of VT-micro emission model	35
Table 4-1Calibrated parameter of confined FVD	48
Table 5-1 The number of vehicles in the US-101	62
Table 5-2 The number of vehicles in the I-80	62
Table 5-3 Weight of each feature by SVM	75
Table 5-4 Accuracy analysis of weighted k-NN Bayes classifier	75
Table 5-5 Accuracy analysis of Traditional Bayes classifier	76
Table 5-6 Accuracy analysis of weight k-NN Bayes classifier with applying misclassification cost	76
Table A-1 Two-parameter single-regime speed-density models	104
Table A-2 Two-parameter single-regime speed-density models with linearization	108
Table A-3 Rearranged single-regime models	116
Table A-4 Rearranged single-regime models with linearization	116
Table A-5 Calibrated parameters in single-regime models	118
Table A-6 Sum of squared errors of the four calibration methods	119
Table A-7 Statistical analysis of nonlinear and linear regressions	119
Table A-8 Squared errors from predicted values.	120

List of Abbreviations

CAV	= Connected and Automated Vehicles;
HDV (or MV)	= Human-driven Vehicles (or Manual-driven Vehicles);
CA	= Cellular Automata;
FVD	= Full Velocity Difference;
ICAM	= Improved Cellular Automata Model;
CCAM	= Cooperative Cellular Automata Model;
AFV	= Anticipated (Adjacent) Following Vehicle;
APV	= Anticipated (Adjacent) Preceding Vehicle;
SVM	= Support Vector Machines
k-NN	= k Nearest Neighbor
NGSIM	= Next Generation Simulation
US-101	= U.S. Highway 101
I-80	= Interstate 80 Freeway
SITRAS	= Simulation of Intelligent Traffic System
sEMA	= symmetric Exponential Moving Average
VT-micro	= Virginia Tech microscopic
ILMCS	= Intelligent Lane Merge Control System
ITS	= Intelligent Transportation System
V2V	= Vehicle to Vehicle
V2I	= Vehicle to Infrastructure
USDOT	= U.S. Department of Transportation
CVRIA	= Connected Vehicle Reference Implementation Architecture
DSRC	= Dedicated short-range communication
CACC	= Cooperative Adaptive Cruise Control
OVM	= Optimal Velocity Model
GFM	= Generalized Forced Model
TTC	= Time to Collision
ANN	= Artificial Neural Network
LSM	= Least Squares Method
GA400	= Georgia State Route 400
WLSM	= Weighted Least Squares Method
RMSE	= Root-Mean-Square Error
WLSMT	= Weighted Least Squares Method with Data Transformation
OLSMT	= Ordinary Least Squares Method with Data Transformation
OLSM	= Ordinary Least Squares Method

Abstract

The extensive progresses in computer science and communication technology in recent decades facilitate the development of the connected and automated vehicles (CAV). Since the emergence of the concept, the commercialization of CAV has been looked forward to providing an effective tool to the regulation of the freeway reorganizing traffic flow who normally initiate the evolvement of the congestion. To analyse the benefits of the CAV on traffic dispersion, the re-organizing traffic in the work zone and the incident-affected zone (under emergency services) were adopted as two cases of non-recurrent congestion, and the microscopic simulations were conducted on the basis of various car-following models and lane-change models. Furthermore, collaborative instances were added to the traditional traffic dynamic models to emulate the motions of the CAV. Trajectories data extracted from NGSIM open-access database were applied to calibrate the Bayes-classifier-based lane-change prediction model in order to better emulate the human drivers' lane-change decision and to assist the CAV's collaborations. With the increasing percentage of the CAV, the traffic congestion on the aforementioned bottlenecks were significantly mitigated. While CAV are proved to be capable of facilitate the cooperative lane-changes, they were also trained to refuse the lane-change request if there would be great impact on the target lanes. Although the lane-changes would inevitably impact the target lanes owing to the increasing densities and the disturbances during the lane-change motions, the simulation results showed that CAV are capable of minimizing the negative effects for the entire traffic system's perspective.

Keywords

Connected and automated vehicle; Work zone; Emergency Service; incident-affected traffic; freeway; bottleneck; microscopic simulation; car-following model; lane-change model; cooperative lane-change.