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Abstract

The extensive progresses in computer science and communication technology in
recent decades facilitate the development of the connected and automated vehicles
(CAYV). Since the emergence of the concept, the commercialization of CAV has been
looked forward to providing an effective tool to the regulation of the freeway re-
organizing traffic flow who normally initiate the evolvement of the congestion. To
analyse the benefits of the CAV on traffic dispersion, the re-organizing traffic in the
work zone and the incident-affected zone (under emergency services) were adopted as
two cases of non-recurrent congestion, and the microscopic simulations were
conducted on the basis of various car-following models and lane-change models.
Furthermore, collaborative instances were added to the traditional traffic dynamic
models to emulate the motions of the CAV. Trajectories data extracted from NGSIM
open-access database were applied to calibrate the Bayes-classifier-based lane-change
prediction model in order to better emulate the human drivers’ lane-change decision
and to assist the CAV’s collaborations. With the increasing percentage of the CAV,
the traffic congestion on the aforementioned bottlenecks were significantly mitigated.
While CAV are proved to be capable of facilitate the cooperative lane-changes, they
were also trained to refuse the lane-change request if there would be great impact on
the target lanes. Although the lane-changes would inevitably impact the target lanes
owing to the increasing densities and the disturbances during the lane-change motions,
the simulation results showed that CAV are capable of minimizing the negative effects

for the entire traffic system’s perspective.
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Chapter 1: Introduction

1.1 BACKGROUND

Annually, the traffic accidents lead to about 1.2 million fatalities around the
world, and this number will boost by 65% after two decades if we do not take any
preventing action (Peden et al. 2004). Among all crashes, the rear-end crashes account
for around a quarter of total populations. The lane-change maneuvers which account
for 70% vehicle miles in highway driving (Federal Highway Administration 1998) are
regarded to be closely related to the occurrence of rear-end crashes; furthermore, they
bring great impacts on the traffic system, including congestions, oscillations. It is
estimated that crashes caused by the lane-change account for around 10% of annual
crashes in the United States (Kiefer et al. 1999; Lee, Olsen &Wierwille 2004) Apart
from the fatality, the lane-change crashes also represent 10% of delay time (Ding et al.

2013).

The re-organizing traffic flow where lane-change maneuvers can happen
frequently are usually induced by a work zone or an emergency service. In the re-
organizing traffic flow, vehicles attempt to escape from the blocked lane to a target
lane (through lane); therefore, a high frequency of lane-changes are witnessed until the
platoon pass the obstacles. In that case, the vehicles may not comply with a consistent
car-following rule because the lane-changes leads to a re-distribution of the density
and sharp changes of the headways. Due to the heterogeneity of human drivers, there
will appear conflicts among drivers. On the other hand, the misleading indications
(lane-change indicators or excessive motion of vehicles) sent by lane-change vehicles
will induce the wrong judgements of the surrounding vehicles. The lane change
maneuvers may benefit the individual vehicle, but it could possibly result in traffic
instability (Weng & Meng 2014). In that case, drivers may frequently apply the

accelerator and the brake, which causes severe oscillations.

To mitigate the heterogeneity and enhance the collaboration among human
drivers, the intelligent transport systems (ITS) are introduced as an efficient method of
traffic regulation. ITS aims for assisting the human driver on typical driving tasks so
as to creating a collision-free and congestion-free traffic environment (Ding et al. 2013;

Mandalia & Salvucci 2005). Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
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(V2I) are two prevailing architectures of ITS, which allow vehicles to share the
dynamic information with its surrounding vehicles or infrastructures (Miller 2008).
More specifically, V2I enable vehicles to upload their speed and location to the central
server, and the vehicles will be provided with optimized routes via motion planning
technologies. In our case, the significance of the V2I architecture is reporting the
downstream events such as the occurrence of a traffic accident and the existence of a
work zone. While V2I mainly focuses on the macroscopic level, V2V puts more efforts
on the microscopic collaborations among vehicles. Vehicles are turned into nodes that
communicate with their surrounding vehicles (Miller 2008; Bento, Parafita & Nunes
2012). To accurately control the collaborative process, those vehicles are expected to
precisely and comprehensively detect the surrounding traffic conditions, rapidly
communicate and propagate the information, and accurately execute the command;
therefore, the connected and automated vehicles (CAV) are introduced to the ITS. The
CAV are vehicles equipped with sensors like camera, microwave radar, ultrasonic
sensors and lidar to precisely detect and rebuild the surrounding environment, and the
embedded computers are able to take the control of the vehicles based on the collected
‘point-cloud map’ without any human driver’s attention. Ideally, the CAV are
expected to improve the traffic performance by avoiding excessive application of
accelerator or brake, detecting the downstream event and optimizing the approaching
speed, providing acceptable gaps to the lane-change vehicles without significant
sacrifice of ego travel time, executing determined lane-change maneuvers without
violating the safety criteria, etc. While the CAV is still an emerging concept that
comprehensive trajectories with sensor data are scarcely available, we have to rely on
microscopic simulations to evaluate the impact of CAV. The microscopic simulation,
as an efficient tool for transport analysis and management, allows transport researchers
to evaluate the traffic performance operatively (Hidas 2002). With such operative
feature, new technologies are able to be tested in the simulated environment by
adjusting the operational parameters according to the need of research (Hidas 2002) .
The microscopic simulation needs to be as practical as possible so as to sufficiently
demonstrate the effects of the collaborations. Hence, how to reproduce the trajectories

of vehicles and the decision of drivers becomes the key point of the research.

Conventionally, researchers applied rule-based models to simulate car-following

(Luo et al. 2016; Ntousakis, Nikolos & Papageorgiou 2016; Zohdy & Rakha 2016;
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Nagel & Schreckenberg 1992; Larraga, Del Rio & Alvarez-Lcaza 2005; Meng &
Weng 2010, 2011; Jiang & Wu 2002; Bando et al. 1995) and lane-change maneuvers
(Helbing & Tilch 1998; Jiang, Wu & Zhu 2001; Yu, Jiang & Qu 2019; Nagel et al.
1998; Gipps 1986; Zheng 2014). Others applied data-based methodologies to predict
the decision of the drivers (Sledge & Marshek 1998; Gackstatter et al. 2010; Kasper et
al. 2012; Hunt & Lyons 1994; Tomar, R., Verma & Tomar, G 2010; Toar & Verma
2012; Tang et al. 2018; Zheng, Suzuki & Fujita 2014; Yi et al. 2016; Hou, Edara &
Sun 2013, 2015; Mandalia & Salvucci 2005; Dou, Yan & Feng 2016). Using a data-
based methodology is more fault-tolerant when compared to applying either dynamic
or static models yet require the support of a large quantity of accurate and
comprehensive data. However, no matter which method is used there are some

significant concepts and variables to be clarified:

e Ego lane (or origin lane): An ego lane refers to a lane being affected by
a lane closure. In our research, a work zone or an emergency service is
the reason of a lane closure. It worth noting that ego lane denotes the

blocked lane for lane-change vehicles.

e Target lane: A target lane refers to the destination of a lane-change

maneuver. Normally, it is a through lane in proximity to the lane closure.

e Ego vehicle: An ego vehicle (also known as the subject vehicle) refers to
the vehicles on the ego lane. They are the starters of each respective lane-

change collaboration.

e Preceding vehicle (or leading vehicle): A preceding vehicle refers to the

vehicle directly ahead of the ego vehicle in the platoon.

e Following vehicle: A following vehicle refers to the vehicle who directly

follows the ego vehicle in the platoon.

e Immediate preceding vehicle (or anticipated preceding vehicle or
adjacent preceding vehicle): an immediate preceding vehicle refers to the

ego vehicle’s preceding vehicle in the target lane after the lane change.

e Immediate following vehicle (or anticipated following vehicle or
adjacent following vehicle): an immediate preceding vehicle refers to the

ego vehicle’s following vehicle in the target lane after the lane change.
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e Xx; x; X : longitudinal position; longitudinal speed; longitudinal

acceleration
e y; y; y: lateral position; lateral speed; lateral acceleration

e Gap: The gap refers to the net distance of two successive vehicles, where
the net distance indicates the distance from mid-end point of the
preceding vehicle of these two vehicles to the mid-front point of the

following vehicle of these two vehicles.

e Space headway: The distance between the mid-front point of two

successive vehicles.

e (Time) Headway: The headway here refers to how long the following
vehicle can travel through the space headway. It depicts the ‘distance’

with regards to the cruise speed.

The collaborative events involve two aspects that are the collaboration among
the CAV and the collaboration among a mix traffic flow of the CAV and the human-
driven vehicles (HDV). There is no doubt that the latter requires more considerations
due to the heterogeneity of human drivers. The CAV will not dominate the traffic
within a short time, and it may take decades for the customers to accept such emerging
technology and for legislation to specify the responsibilities of all involved parties.
Hence, the most important elaboration to incorporate the CAV into the traffic system
is to teach CAV the rule (rule-based method) or the experience (data-based method)

to cooperate with human drivers or assist the human drivers.

1.2 MAIN CHALLENGES

In some of the districts, short-term work zones will only be deployed during the
night-time. As traffic density is not as high as the that during the daytime, the vehicles
are able to make free (or discretionary) lane-changes which are not much different
from a car-following maneuvers. Long-term work zones and intermediate-term work
zones, on the other hand, require the transport engineers to deal with almost all kinds
of traffic condition from low-density to high-density, even the unexpected accidents
who obviously make the situation worse need to be taken into account. In the dense
traffic flow, the vehicles on the origin lane will make forced (or mandatory) lane-

change decisions to avoid approaching to the end of the lane. Otherwise, vehicles will
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have to decelerate, what make the situation worse is that the growing speed difference
between two platoons will bring even more difficulties to the drivers on making lane-

change decisions.

Alternatively, drivers can expect cooperative lane-changes which strictly reply
on the collaboration of surrounding vehicles. For human drivers, the willingness of
aforementioned collaboration depends on many features, e.g. relative velocity and
positions (both longitudinal and lateral), the lateral distance to the lane mark, the
application of the lane-change indicators, the driving manner of the involved drivers;
at the meanwhile, the willingness is rather unpredictable. For CAV, the transport
researchers are expecting them to be competent enough to provide deterministic
collaborations to the lane-change vehicles; however, there remains a huge gap on
hardware and software technologies to the goal that the CAV are applied into real
traffic flow and substantially help with the traffic. To sufficiently evaluate the impact
of CAV, the microscopic simulation method is adopted because it is not only
economical but also manageable. Most of the researchers focus either the car-
following models or the lane-change models, but the truth is that no high-fidelity
trajectory can be reproduced unless these two models are combined, especially when
we are dealing with re-organizing traffic flow. Also, due to the frequent lane-change
tasks, the preceding vehicle will not the only factor on a car-following motion. As a
matter of fact, any vehicle who would potentially merge into the front gap of the ego
vehicle will impact the cruise speed of the ego vehicle. Sometimes, even a lane-change
indication or a lateral movement of adjacent preceding vehicle can terminate a car-
following motion. One of the challenges is incorporating the impact from adjacent
lanes into the car-following models, followed by another challenge that fusing the
deterministic collaborative content and the human drivers’ heterogeneities. A criterion
that balancing the cost of both CAV passengers and HDV passengers also need to be
fulfilled; therefore, a dynamic threshold is going to be required to control CAV
passengers’ sacrifices on travel time. Furthermore, different scenarios when the
participation rate of CAV varies from 0 to 100% also bring the complexity to our

researches.

It is expected that there will be more improvement on traffic performance when
the CAV dominate the traffic flow; however, the performance will not necessarily be

poor when the HDV dominate the traffic with the assistance of minority of CAV.
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Hence, a feasible collaborative norm needs to be introduced to mitigate the conflict

among vehicles and avoid the risk of crash at the meanwhile.

In summary, the main objectives of the following studies are to develop the car-
following and lane-change models that compatible with the prevailing microscopic
models for the CAV, and to evaluate the impacts brought by the emerging CAV to our
current traffic systems by incorporating the CAV and HDV into a same highway

section, especially in the re-organizing traffic flows.

1.3 CONTRIBUTIONS

The CAV were intuitively introduced into the microscopic simulations as a
solution of the congestions from the re-organizing traffic flow, which complement the
gaps of CAV-related researches to the best knowledge of the authors. In order to avoid
the limitation of the developed microscopic traffic simulation software, we
programmed original micro-simulation environments based on MATLAB and the
Python (Spyder IDE) to deliver visible trajectories and related datasets. New
microscopic models were proposed on the basis of the traditional car-following and
lane-change models to simulate the collaborative instances of the CAV, while the
traditional traffic dynamic models were also modified to practically emulate the human
drivers’ car-following motions and lane-change maneuvers. More specifically,
original CAV-related micro-simulation car-following models were developed based
on the frame of the CA model and the FVD model respectively, and the lane-change
models were established based on some prevailing criteria. Realistic lane-change
duration and trajectories were considered; therefore, the on-going variable effects on
both the ego lane and the target lane were accessed during the lane-change motions.
The impacts of the lane-change tasks were discussed based on the collaborations with
the surrounding vehicles that were involved into the lane-change maneuvers, and it
was found that the collaboration with the preceding vehicles and the following vehicles
were equally important. An original data-based lane-change prediction model was
established based on Bayes classifier. Datasets extracted from the NGSIM databased
were processed for the purposed of lane-change prediction. A combination of k-
nearest-neighbor and SVM were adopted for assigning weights to different features
from the Bayes classifier. We intuitively employed trajectories on the basis of 10 Hz,

which facilitate more logical and controllable cooperative lane-changes. The
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prediction model was then applied to enhance the collaboration among the CAV and

the human drivers.

1.4 OUTLINE

The following context can be outlined as: Chapter 2 lists and illustrates the
related literatures; Chapter 3 demonstrates microscopic simulations in the work zone
of a two-lane freeway based on the cooperative cellular automata model; Chapter 4
presents the microscopic simulations of a four-lane traffic under emergency service
based on the full velocity difference model; Chapter 5 extracts trajectories data from
NGSIM database and calibrates a Bayes classifier-based lane-change prediction
model. Chapter 6 describes a microscopic simulation and analyses the traffic
performance in the work zone of a three-lane freeway based on the proposed prediction
model; Chapter 7 presents the microscopic simulation and analyses the traffic

performance of a four-lane traffic under emergency service, and Chapter 8 concludes.
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Chapter 2: Literature Review

This chapter is outlined with the following topics: the connected and automated
vehicles (section 2.1) where some applications of CAV are illustrated; followed by the
car-following and lane-change models (section 2.2 and section 2.3); the trajectory
planning to improve the traffic flow dynamics (section 2.4). Section 2.5 highlights the
contribution from the transport engineer to facilitate the traffic flow dynamics in work

zone and incident-affected zone.

2.1 CONNECTED AND AUTOMATED VEHICLES

With the development of the communication technology and the computer
science, the vehicle equipped with sensors are being capable of detecting the
environment, communicating with surrounding vehicles or infrastructures, and
automatically controlling the trajectories. The concept of CAV can be separated into
two parts: the connected vehicle and the automated vehicle. Connected vehicles
enables the ego vehicle to communicate with it surrounding vehicles which is called
the Vehicle-to-Vehicle (referred as V2V hereafter) communication, and (or) the
infrastructures which is called the Vehicle-to-Infrastructure (referred as V21 hereafter)
communication. On the other hand, the automated vehicles using the collected data to

control the vehicles’ movement precisely for optimal trajectories.

During the past ten years, the U.S. Department of Transportation (USDOT) have
developed a comprehensive Connected Vehicle Reference Implementation
Architecture (CVRIA) to standardize the technologies (USDOT 2015, Dey et al.
2016). Dedicated short-range communication (DSRC), as outlined by CVRIA, has
been regarded as an efficient communication technology for its low latency, high
security and fast connectivity (Lee & Park 2012). Based on the rapid development of
communication technology on the connected vehicles, the transport engineer has been
seeking helps from the connected vehicle for traffic regulations, especially at the
intersections and the bottlenecks. To improve the safety and the efficiency of the
intersection, Lee and Park (2012) proposed a cooperative vehicle intersection control
system based on the participation of the connected vehicles. The system aimed at

eliminating the potential overlaps of the trajectories; on the other hand, it was also
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capable of dealing with the scenarios when the overlaps could not be avoided. They
conducted the microscopic simulations to access the performance of the proposed
system within the VISSIM, and results showed that the travel time was dramatically
decreased. Li et al. (2019) presented a study on the deployment of connected
infrastructures with the limited budget to optimize the connectivity, and they found
distance-dependent utility measure and the concentration of the users can improve the

entire utilities.

As for automation, vehicles are classified into six levels by society of automotive
engineer (SAE On-Road Automated Vehicle Standards Committee 2014). Level 0
represents the vehicles who are fully driven by human driver, while level 1 to level 5
demonstrates different levels of autonomy (Hecht 2018). Diels and Bos (2016)
illustrates the different levels of autonomy: level 1 refers to driver assistance which
solely takes control of either longitudinal or lateral movement, for instance, the
adaptive cruise control and lane-keeping assist system; level 2 refers to partial
automation who combines the longitudinal control functions and the lateral control
functions, although drivers are still requires to take control of the vehicles; level 3
refers to conditional automation who takes overs the driving tasks in some specific
scenarios, but the drivers are required to be ready for taking the control of the vehicles;
level 4 and level 5 refer to high automation and full automation respectively, and the
only difference is that the level 4 automation cannot be applied on specific road while
the level 5 refers to the capability of controlling the vehicle during the entire trip.
Sensors like camera, microwave radar, ultrasonic sensors and lidar are employed to
collect the data and build the cloud of surroundings, and these data will then be
processed by artificial intelligence (Hecht 2018). Similar with the connected vehicles,
automated vehicles are also engaged by researchers to improve the safety and
efficiency of the traffic networks, and one of the most significant reasons is that the
automated vehicles are error-free and controllable. Milanés et al. (2012) developed a
fuzzy-logic based controller aiming at automatically executing overtaking tasks. The
vision system, global positioning system and inertial measurement unit were applied
to collect the positioning data as the input, while the steer, throttle and brake were
output to automatically control the ego vehicle. The field test of a commercial car
which was embedded with the proposed system shows that the controller is capable of

deliver safe and efficient overtaking trajectories. Despite of the cutting-edge
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researches into the CAV’s perception, connection and automation, few has developed
microscopic models to emulate the behaviours of the CAV in the microscopic
simulations and evaluate the impacts of mixed traffic flow who includes both the CAV

and the HDV on our current traffic infrastructure.

2.2 CAR-FOLLOWING MODEL

In 1992, Nagel and Schreckenberg (1992) intuitively introduced the cellular
automata (CA) model which was admired for being computational efficient to emulate
the drivers’ car-following motions. Larraga et al. (2005) proposed a cellular automate
model to microscopically simulate a one-lane traffic flow dynamics in the highway.
The car following rules are simplified, and the single lane traffic followed a loop
topology. It showed that the simulation result can comply with the fundamental
diagram. Meng and Weng (2011) proposed an improved CA model to simulate the
traffic dynamic in work zones, incorporating a randomization probability function
(Meng & Weng 2010) to emulate the drivers’ car-following behaviour, while the
heterogeneity of the vehicles was also considered. The trajectories are calibrated and
validated based on the trajectory data collected from a work zone in Singapore, and
the results showed good accordance with the fundamental diagram. Jiang and Wu
(2002) analysed the microscopic simulation results macroscopically, and they proved
that the CA model was capable of simulating the synchronized traffic flow. Despite of
the advantage of computational efficiency, the CA model exposed its shortcomings
that the parameters in the car-following are not continuous with the change of the
traffic events. The determination of acceleration rate and deceleration rate follows
discrete steps, and the trajectories cannot be described by one single function. Full
velocity difference (FVD) model, on the other hand, is able to combine the discrete
rule into a continuous process where continuous acceleration can be delivered by one
single model. In 1995, Bando et al. (1995) proposed optimal velocity model (OVM)
to calculate the optimal acceleration rate from the gap with the preceding vehicle
during the car-following motion. The OVM intuitively introduced the sensitive
constant to emulate the drivers’ sensitivity to the difference between the current speed
and the target speed. The simulation based on the OVM showed the capability of
reproducing the evolvement of the traffic congestion and many other features that
normally happens in real traffic. In 1998, Helbing and Tilch (1998) calibrated the

function of optimal speed generation in OVM based on empirical data and validated
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the model with the field data, and it was found that the model had the problem of
generating unrealistically high acceleration and deceleration. A generalized forced
model (GFM) was proposed by Helbing and Tilch (1998) to avoid the unrealistically
high acceleration and deceleration, and they added factor of speed difference of two
successive vehicles to modify the generated acceleration. The GFM complemented to
the scenario when the following vehicle is faster than the preceding vehicle, and it
outperformed the OVM on reproducing the field data. Jiang et al (2001) recognized
that another complementary research on the scenario when the following vehicle is
slower than its preceding vehicle was necessary, and they proposed the full velocity
difference (FVD) model on the basis of this idea. It was found by Yu et al. (2019) that
FVD model can still generate overshooting acceleration and deceleration; therefore Yu
et al. (2019) proposed the confined FVD model, to limit the acceleration and
deceleration into a reasonable range without any collision. Machine learning
algorithms have also been employed to calibrate the car-following models. Zhou et al.
(2019) presented a reinforcement-learning-based car-following model for the CAV to
regulate the driving behaviours at the signalized intersections, and results showed that
the traffic efficiency, level of safety and fuel consumption were improved. Qu et al.
(2019) employed reinforcement learning algorithm to train the car-following model
for electrical CAV aiming at alleviating the oscillation and optimizing the energy
consumption. The analysis of the traffic performance proved the positive effects of the
proposed car-following model; furthermore, the average electric energy consumption

was clearly reduced.

2.3 LANE-CHANGE MODEL

Apart from computational advantages on car-following model, CA model was
also found to be suitable for multi-lane simulations, and Nagel et al. (1998) introduced
the incentive criterion and safety criterion into the symmetric lane-change rule to
reproduce a two-lane freeway traffic. The simulation results not only comply with the
fundamental diagram but demonstrate reasonable traffic dynamics. Meng and Weng
(2011) employed the previously proposed incentive criterion and safety criterion to
regulate the lane-change decisions. A lateral movement rule was proposed to limit the
lateral speed within 1 m/s, and the lane-change span was primarily considered owing

to the finer cell. To avoid the conflicts when a cell become a target of two vehicles,
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Meng and Weng (2011) randomly gave one of the two vehicle the right to enter the

cell.

Since Gipps (1986) proposed a structure of drivers’ lane-change decisions, a lot
of similar research has been done on the basis of Gipps-type lane-change model (2014).
The Gipps’ lane-change model was established in the context of urban area to instruct
the simulated vehicle to maintain desire speed and traverse on the right lane for the
following turning maneuver (Gipps 1986) . Zheng (2014) believed that the Gipps’s
model was deterministic because the possibility, necessity and desirability were
evaluated by deterministic rules, and therefore the drivers’ heterogeneity and the
change of drivers’ factor over time (e.g. the patience-related factor) were ignored.
Yang and Koutsopoulos (1996) developed a lane-change model on the basis of Gipps’
model to simulate the lane-change maneuvers on the freeway in the MITSIM traffic
simulator. Four sequential steps that are decision-making, lane-picking, gap-searching
and lane-change were included in the model (1996). The time-variable factor was
represented by the distance that the vehicle traversed, and this factor was incorporated
into the lane-change rule, as a result, this change made the simulation more realistic.
Hidas (2002) developed a lane-change model for SITRAS, a multi-agent simulation
system, to illustrate the forced and cooperative lane-change in incident-affected area.
Hidas (2005) also proposed a lane-change rule with regards to the incident-affected
zone where the distance to the end of the lane become the vital incentive for the lane-
change. Data collected from video were classified into three groups that are free lane-
change, cooperative lane-change and forced lane-change, and the calibration and the
validation of the proposed model were conducted on the basis of three groups of data.
This model took the interaction among vehicles into account, and it was applied on
microscopic simulations on two hypothetical road networks which were freeway and
signalized urban arterial road within the ARTEMiS traffic simulator. Kesting et al.
(2007) proposed an acceleration-based lane-change model called MOBIL which is the
abbreviation of minimizing overall braking induced by lane-changes. Similar to the
aforementioned models, it included the safety criterion and the incentive criterion. The
politeness factor which illustrates the degree of aggressive of the drivers was
intuitively introduced into the lane-change model; therefore, a more realistic
interaction among heterogenous drivers was presented. As for combining the car-

following model and the lane-change model, it worth noting that the lane-change
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model should be executed ahead of the car-following model in the microscopic

simulations as advised by Zheng (2014).

2.4 TRAJECTORY PLANNING TO IMPROVED THE TRAFFIC FLOW
DYNAMICS

An early research by Shiller and Sundar (1998) applied the planar bicycle model
to emulate the vehicles control. A clearance curve was determined during an
emergency lane-change, and it was capable of guiding the autonomous vehicle to
minimize the longitudinal distances of the emergency lane-change to avoiding
irretrievable collision with the obstacles. During the lane-change tasks, drivers may
sometime face high potential collision risks because they cannot acquire accuracy and
comprehensive information of the surrounding environment; therefore, Luo et al.
(2016) introduced the V2V communication for the trajectory planning and the
trajectory tracking to eliminate the collision risk. A quintic polynomial was computed
with the constrains of safety, comfort and efficiency to reproduce the lane-change
trajectories due to its advantages of a closed form, a continuous third derivative and
smooth curvature (Luo et al. 2016). , Luo et al. (2016) applied the Simulink and the
CarSim to simulate the traffic dynamics, while a driving simulator was engaged to
validate the simulated trajectories. Five scenarios were established based on the
relative speed of the origin lane and the target lane, the road geometry, and the
traversing speed of the ego vehicle. The model was proved to be effective on avoiding
the potential collision, and the most significant contribution was that they proposed a
trajectory-tracking control which kept the vehicle on a well-designed reference
trajectory. Ntousakis et al. (2016) proposed a trajectory planning methodology to
determine the optimal longitudinal merging trajectories in a highway acceleration lane.
Traffic efficiency, safety and passenger’s comfort were able to be guaranteed by
minimizing the cost function of acceleration, jerk and the derivative of the jerk. A
further application of the combination of Linear-Quadratic Regulator and the Model
Predictive Control also showed good performance on determining the optimal
trajectory. Zohdy and Rakha (2016) engaged the cooperative adaptive cruise control
(CACC) to automatically control the vehicles in the intersection so as to increase the
traffic efficiency and improve the safety as the same time. Simulations based on the
CACC-equipped vehicle were conducted, and the comparison with the signalized

intersection, all-way stop control and the roundabout showed advantages on reducing
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the delay and fuel consumption. While the car-following model, lane-change model
and the trajectories planning have been well developed, few studies incorporates them
into a same micro-simulation to the most of the auther’s knowledge, which motivate
the author to establish a complete micro-simulation system to emulate the performance
of mixed traffic flow on the highway bottlenecks, such as the work zones and the

emergency arcas.

2.5 WORK ZONES AND EMERGENCY SERVICES

Work zones and emergency services are induced by different events, but they
both create bottlenecks on the freeway. While work zone are mostly scheduled, the
emergency incidents can happen anytime and anywhere; furthermore, it normally took
long time till the emergency service arrived to regulate the traffic, which may bring

even more impacts on the traffic system.

2.5.1 Emergency Services

Chung et al. (2010) divided the traffic congestion into two groups: recurrent
congestions which are induced the imbalance between the lower road capacity and the
higher the traffic demand, and nonrecurrent congestions which are induced by random
incidents, among which 72 % were contributed by traffic accidents (Skabardonis
Varaiya & Petty 2003). Chung et al. (2010) applied an accelerated failure time metric
model to analyse the critical factors that affects the duration of an accident on the basis
of a total 2940 datasets collected from a Korean freeway on 2004, and then gave
advices on mitigating the impact to the road network by adjusting the factors. For
emergency vehicle dispatching, Haghani et al. (2004) developed a model to simulate
the response of emergency service vehicles real-time traffic information, and then
guided those vehicles into the non-congested road. Smith et al. (2003) researched the
impacts of traffic accident on the traffic capacity by applying traffic flow and accident
dataset, and it was found that the percentage of capacity drop were far more than the
number of the lane blocked. Yoo et al. (2010) proposed a road reservation scheme on
the basis of ubiquitous sensor network to guarantee the quick response and safety of
emergency service vehicles, and results show a 1.09 to 1.20 times faster on the

response.
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2.5.2 Work Zones

Compared to emergency service, a lot more researchers have done valuable
works on the traffic regulation for work zones. Pei and Dai (2007) proposed an
intelligent lane merge control system (ILMCS) on the basis of intelligent
transportation system techniques. The ILMCS were capable of instructing the merge
control based on the collected real-time traffic data, and the scale of the impacts
brought by the work zone can be derived from the collected data (Pei & Dai 2007]. By
conducting simulation in VISSIM, the ILMCS showed a good performance on
mitigating the impacts on a two-lane traffic flow. Yang et al. (2009) demonstrated a
lane-based signal merge control system to regulate the traffic flow at the entry of the
work zone. Simulations in VISSIM were conducted to prove the efficiency of the
control system, and the results showed that this control system outperformed all other
existing strategies at that time (Su et al. 2016). Xue and Kang and Chang (2009)
illustrated a lane-based dynamic merge control model and conducted extensive
simulations in CORSIM-RTE simulation program to evaluable the optimized control
thresholds with regards to the traffic flow dynamics. The overall traffic performance
was improved by the proposed model, yet the inconsistency of the merge strategies
lead to the oscillation of the speed. Hence, a further speed control strategy was required
to be employed. Meng and Weng (2011) analysed the effects of configuration, traffic
flow and heavy vehicle percentage on work zone traffic delay by simulations based on
heterogenous CA model. The length of the transition area was proved to be the
significant factor to the delay. Weng (2011) evaluate the binary effects of transition
taper length on the work zone traffic capacity based on a collision avoidance analysis,
and a minimum length of the taper was determined by the traffic condition and the
road geometry. Wei and Pavithran (2006) employed dynamic merge metering to
facilitate the dynamic late merge control, and VISSIM-based simulations were
conducted to evaluate the performance. Papageorgiou et al. (2008) also applied a
merging operation called ALINEA to mitigate the traffic congestion in the work zone,
and results from the microscopic simulation demonstrated that the congestion problem
can be potentially addressed by this algorithm. While the aforementioned literatures
mainly focused on the congestion of the work zone, many other researchers developed
great researches on the safety of the work zone. Tarko et al. (1999) presented a novel
traffic control system that sets dynamic no pass zone to mitigate the traffic congestion

at the entry of two-lane work zone. With the decreasing number of the aggressive lane-
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changes, the traffic performance with regards to the safety and the travel time are
improved, yet the microscopic improvement is not clearly illustrated. Su et al. (2016)
compared the time-to-collision-based rear-end crash risks of work zones in Beijing and
Singapore on the basis of the trajectories data collected from both cities. Factors that
contributed to the collision were analysed, and this research was able to assist the
traffic engineers on fixing traffic control strategies. Xue and Weng (2014) established
a lognormal distribution function which was calibrated by Bayesian approach to
forecast the response time of a traffic accident in the work zone, A series of factors
were accessed in a case study on field data, and the road type, crash time, weather and
light condition were regarded to be the most significant factors that affected the

response time.







Chapter 3: CAV-based Traffic Regulation
in Work Zones

3.1 INTRODUCTION

A work zone is a partially closed road section due to periodic maintenance,
rehabilitation and reconstruction, bringing negative impacts on traffic performance,
such as, accident, congestion, long travel time and dissatisfaction among road users
(Meng & Weng 2011). The number of the through lanes declines; as a result, the traffic
capacity is significantly reduced because of not only lane closure but also lane-
changing activities (Laval & Daganzo 2006; Qu, Wang & Zhang 2015). Vehicles on
non-through lanes have to merge into through lanes; otherwise, vehicles need to
decelerate or even stop due to the existence of the work zone; in other words, lane-
changing maneuvers become compulsory for those vehicles on non- through lanes. It
makes the situation even worse when a large number of vehicles merge into a same
target lane without cooperation. Indeed, the presence of a work zone can increase not
only the possibility of traffic accidents happening but also the travel time due to the
boost of density (Wang et al. 1996; Rouphail, Yang & Fazio 1988; Khattak, Khattak
& Council 2002; Garber & Zhao 2002; Meng & Weng 2011).

With the continuous increase of the travel demand, traffic flow becomes more
unstable and vulnerable. During peak hours, even a slight disturbance imposes high
possibility of causing severe traffic interruptions, as human drivers are more likely to
make heterogeneous responses under these conditions (Qu, Zhang & Wang 2017). It
has been well recognized that these human driver’s limit and heterogeneity are
essentially non-controllable in traffic operations. Macadam (2003) proposed that
human drivers show obvious reaction delay in reacting to different indications, such
as merge indications and brake indications; moreover, the intensity of an indication
has to reach a threshold to be sensed by human drivers. In this regard, transportation
researchers develop models and applications that are very robust to accommodate
these limit and heterogeneity, which lead to low capacity of our transport systems.
With the advent of the connected and automated vehicles (CAV), the cooperation
among vehicles becomes possible and, as a result, the limit and the heterogeneity can

be controlled through developing a cooperative vehicle motion controlling system that
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is able to smooth our traffic flow dynamics (Zhou, Qu & Jin 2016; Zhou, Qu & Li
2017).

There are a few studies analysing the influences caused by work zones. Adeli
and Jiang (2003) used a neuro-fuzzy logic model to estimate the work zone capacity
on the freeway. Jiang and Adeli (2004) used clustering-neural network models to
estimate the work zone capacity on the freeway with less than 10 per cent error and
applied object-oriented model to estimate the freeway work zone capacity, as well as
queue delay. Meng and Weng (2011) proposed an Improved Cellular Automata Model
(ICAM) to simulate the work zone traffic flow dynamics. Weng and Meng (2014)
proposed a methodology to estimate the rear-end crash possibility on the work zone
merging area, and it is found that this possibility increases as a result of late merging
which is an instant merging maneuver with short front gap to the activity area in a
work zone. Weng and Yan (2016) established a truncated lognormal distribution
method to estimate the traffic capacity due to the presence of work zone. To the best
of our knowledge, there is no research that applies the CAV on smoothing work zone
traffic flow dynamics. The CAV are able to make immediate reaction to the
deceleration of the preceding vehicle; therefore, shorter headways are required.
Moreover, an embedded computer is able to compute the optimal safe speed as well as
sliding distance to narrow the front gap, which is almost impossible for human drivers
to calculate. As such, the average travel time to go through the work zone and the
speed oscillation are anticipated to be reduced as the percentage of the CAV goes up
if a proper collaborative mechanism is well designed. In this research, to bridge this
void, we propose a cooperative cellular automaton model (CCAM) based on the [CAM

developed by Meng and Weng (2011).

The research is organized as follows. In Section 3.2, the configuration of work
zone from cellular automata model and a study area on Pacific Highway are
demonstrated, followed by a review of ICAM with an amendment at the end. Section
3.3 describes the proposed microscopic traffic flow model for the CAV with the
cooperative component among vehicle illustrated in detail. Section 3.4 presents the
performance indicators, including traffic delay, safety and vehicle emission, under

various penetration rates of the CAV. The last section concludes the paper.
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Nomenclature

Gin,t

Bt
Vit
Vlimit,n,t
Geff,n,t

Gwz,n,t

Gsafety
(L fur Las Le)
fu
fu
Lq

Gn,f,t

Pmerge
St
TTC

Dcomfort

= The front gap of vehicle # at time ¢

= The longitudinal location of work zone

= The longitudinal location of left front point on vehicle » at time ¢
= The lateral location of left front point on vehicle » at time ¢

= The length of transition area

= The length of vehicle n

= The headway of vehicle n at time ¢

= The interaction headway

= The acceleration rate of vehicle » at time ¢

= The brake status of vehicle # at time ¢

= The velocity of vehicle n at time ¢

= The speed limitation of vehicle » at time ¢

= The effective front gap of vehicle » at time ¢

= The distance from the front bumper of vehicle n to work zone at
time ¢

= The safety distance

= The randomization probability within work zone

= The traffic flow volume of light vehicles

= The traffic flow volume of heavy vehicles

= The length of activity area

= The front gap of vehicle n with front neighbouring vehicle at time
t

= The possibility of merging maneuver

= Maximum allowable deceleration of vehicle » at time ¢

= The time to collision

= The comfortable deceleration rate
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3.2 MODEL DEVELOPMENT TO SIMULATE MOVEMENTS OF
MANNUALLY DRIVEN VEHICLES

3.2.1 Site description

This research is established on the basis of a two-lane (in one direction) freeway
with a work zone at the Lane 1 starting from longitudinal location x1 to x4 as shown
in Figure 3-1(a). The speed limit on this freeway is 110 km/h before vehicle entering
advance warning zone that is from longitudinal location x0 to x1. The speed limit turns
to 80 km/h after reaching the advance warning sign that is located at x0, and it then
reduces to 60 km/h when vehicles enter the work zone. Figure 3-1(b) shows a photo
of a work zone located on Pacific Highway around Coolangatta airport, where the
number of lanes drops from two to one because of a large scale of construction tasks

as indicated by the circle.

-

Transition Termination
Area Are;

work zone

| | Lang1 | | T Activity Area

() (b)
Figure 3-1 A plan view of freeway section around a work zone and a work zone on
Pacific Highway
3.2.2 Modified ICAM

To simulate the traffic flow dynamics of MV, the ICAM was employed with
modified incentive criterion and safety criterion. According to the ICAM, lanes were
divided into cells of 0.5 meter in length and 0.7 meter in width. For any two

consecutive vehicles
Gn,t = Xp-1t — xn,t - ln—l (31)

where G, ; denotes the front gap between vehicle n and its preceding vehicle n-/ or

the remaining distance to the work zone at time ¢. Similarly,

L
Gwz,n,t = Xyz — xn,t + yn,t X Et (32)

where G,,, , + denotes the front gap between vehicle n and the work zone ahead.
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3.2.2.1 Acceleration

The acceleration rule stipulated two application scenarios. The first scenario is

when time headway t,, , is greater than interaction headway t,.., and the second one

requires that neither vehicle n nor its preceding vehicle n-/ has braked during the

previous simulation interval #-/. When either of these two scenarios happens, vehicle

n accelerates with an acceleration rate a(V, ;). Namely, if (Bp;—1 =0 A Bp_1;4 =

0) \% tn,t > taces

Vn,t = min{Vn,t—l + a(Vn,t)' Vlimit,n,t }

(3.3)

Here, a(V, ) is a function of current speed V,, ;, and the values with regards to various

speeds are demonstrated in Table 3-1. Vi n ¢ denotes the speed limit of the road

section.

Table 3-1 General coefficients

Variable Condition MV CAV
Acceleration Vi1 < 1lcell/s 4 4
rate (cell/s?)
1lcell/s < V4 3 3
< 22cell/s
Vi1 > 22cell/s 2 2
Deceleration 6 6
rate (cell/s?)
Comfortable 6.8 6.8
deceleration
rate (cell/s?)
Interaction 6 6
headway (s)
Safety 9 9
distance (cell)
Maximum Freeway Based on 60
speed (cell/s) Eq. (3.23)
freeway work zone Based on 45
Eq. (3.23)

3.2.2.2 Deceleration
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Compared with the original CA model, the ICAM proposed the effective front

gap, taking the travel distance of vehicle n-/ into account.
Geff,n,t = Gn,t + max{O, min(Vn—l,t—lr Gn—l,t) - Gsafety} (34)

where the component min(Vn_l't_l, Gn—l,t) denotes the anticipated velocity of the
preceding vehicle. It was applied to predict the minimum distance that the vehicle -/

can travel during the current simulation interval.
If Gepfne < Vpye, vehicle n decelerates to avoid a rear-end crash with its

preceding vehicle or the merging vehicle. The target velocity for the deceleration

period is Gff ¢ instead of G, which is too conservative, namely,

Vn,t = min(Vn't, Geff,n,t) (3.5)

If V¢ <Vp—1, vehicle n decelerated with brake status being activated, namely,

B =1
3.2.2.3 Randomization probability

Randomization probability was firstly proposed in Nagel-Schrechenberg’s CA
model to simulate the excessive brake and acceleration delay, which simulates the
human limit as traffic flow forwards (Nagel & Schreckenberg 1992). Meng and Weng
(2010) pointed out that the randomization probability was a function of traffic flow of
light vehicles, traffic flow of heavy vehicles, the length of activity area and the length

of transition area. The randomization probability can be formulated as
P(fL'fHILa'Lt)=afL+be+CLa+st+e (36)

Parameters in Eq. (3.6) were calibrated by Meng and Weng (2011) using a trial-and-

error method as demonstrated in Table 3-2.

Table 3-2 Parameters in randomization probability equation

coefficient Pin Pout
a —1.24x107* —6.80 x 107°
b —-1.30x 107* -1.28 x 107*
c —3.00 x 107° 0
d 0 0
e 0.425 0.541
(Meng & Weng 2011)
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3.2.2.4 Incentive criterion

The incentive criterion is one of the most significant two components in CA-
based lane-change rule. In the ICAM, Meng and Weng (2010) proposed two incentive
criteria, and the criteria referred to a larger following gap in the target lane and a slower
preceding vehicle in the ego lane which can be denotedby V,, ¢ > G ¢ A Vi > Vyoq ¢
and Gn: < G, respectively. Nonetheless, it is believed that the dominating
incentive is the distance to the transition area when a vehicle is approaching a work
zone. In that case, vehicles are encouraged to merge into the through lane when G, ,,
reaches a critical value. Hidas (2002) announced that lane-changing action became
essential when the headway to a lane blockage was less than 8 seconds. As such, we
proposed Eq. (3.7) to calculate the possibility of lane-changing action in this chapter.

0' if Gwz,n,t > 8 X Vlimit,n,t

Prerge = {1, if Guzne < 8 X Vipmitne &7

3.2.2.5 Safety criterion

As mentioned in the ICAM, the value of the gap between vehicle n and its back
neighbouring vehicle in the target lane need to be greater than the value of the
maximum speed, namely, G, ¢+ > Viimirne (Meng & Weng 2011). However, this
safety criterion excluded the gap between subject vehicle and its anticipated preceding
vehicle (APV), which is unrealistic. To avoid rear-end crash during merging period, a
merging vehicle has to maintain a sufficient gap with its anticipated preceding vehicle;
therefore, this gap needs to start from a reasonable value to accommodate the speed

difference.

We proposed a new safety criterion in CCAM, that is, the front gap with the
anticipated preceding vehicle from through lane has to be greater than R, (Vn't —
Valv,t) + Gsafery to accommodate the speed difference. Here, R, denotes the reaction
time, and it was assumed to be one second. With regards to lateral movement, the
speed was limited to be less than 2 cells per second according to the ICAM (Meng &
Weng 2011). However, merging maneuver was assumed to be completed within one
second in CCAM, which means vehicles were able to merge into the target lane during

the next simulation interval as long as safety criterion being fulfilled. To better
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compare the performances of ICAM and CCAM, the MV were assumed to be able to
finish merging maneuver with one second as well, and the main differences between
the ICAM and the CCAM were compared as shown in Table 3-3. Compared with the
ICAM, CCAM assigned different allowed maximum speeds with regards to type of
the vehicles. It worth noting that the speed of the HDV can be affected by the change
of the local density as illustrated in Eq. (3.23). Another difference between ICAM and
CCAM is related to the effective gap who included two preceding vehicles in ICAM
yet the whole platoon of preceding vehicles in CCAM. In the simulations, any negative
front space headway or overshooting deceleration rate was regarded as an indication
of a rear-end crash. Those crashes can happen during the car-following tasks or during
a lane-change attempt, and the values of the safety distance and its related coefficients

need to be modified once a crash is witnessed.

Table 3-3 Comparison between ICAM and Modified ICAM
Variable ICAM Modifications in CCAM

Randomization probability Both are determined by Eq. (3.6), and the parameters are
demonstrated in Table 3-2.
Allowed maximum speed 45 cell/s within a work zone  Illustrated in Table 3-1

60 cell/s elsewhere

Acceleration Both are determined by brake status and headway

Deceleration Determined by effective The effective front gap is modified
front gap as shown in Eq. (3.14)

Incentive criterion Encouraged by a larger front Encouraged by the distance to the
gap work zone

Safety criterion Exclude the influence of the  Include the influence of the front
front gap with the APV gap with the APV

3.3 MODEL DEVELOPMENT TO SIMULATE MOVEMENTS OF
CONNECTED AND AUTOMATED VEHICLES

3.3.1 Following model

3.3.1.1 Maximum allowable deceleration

In this model, we proposed a concept named the maximum allowable
deceleration. The maximum allowable deceleration represented by &, ; can be defined

as the maximum disturbance that two consecutive vehicles could accommodate. The
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deceleration represented by d,. is caused by the disturbance that vehicle n
encountered at time t. If the preceding vehicle is slower than its following vehicle
owing to the disturbance, namely V,, 1 >V, — d,, +, there will be a risk of collision
between these two consecutive vehicles. If the preceding vehicle is still faster than its
following vehicle after decelerating, a collision is unlikely to happen. Hence, we only

applied the maximum allowable deceleration when V, 41 >V, — dyy ¢

When both vehicles maintain the unchanged speed after the deceleration, the

time to collision (TTC) under such disturbance is calculated as:

G
TTC = n+Lt (3.8)
Vn+1,t - (Vn,t - dn,t)

Let 7 be the threshold of time to collision (Kuang, Qu & Wang 2015). Only if

Gn+1t

= 7 can a crash be avoided. Rearranging the equation gives
Vnt1,e—(Vne—dnt)

G
dn,t < (Vn,t - Vn+1,t) + Tl:—'Lf (39)

Thus, the right-hand side of the Eq. (3.9) are regarded as the maximum disturbance

that a car-following scenario can accommodate, namely,

G
6n,t = (Vn,t - Vn+1,t) + Tl:—'l,l' (310)

This disturbance can be further applied to determine the optimal acceleration as

described in the next section.
3.3.1.2 Optimal speed increment

On the purpose of narrowing the car-following distance, a CAV is expected to
adopt an optimal acceleration rate by which the CAV is able to not only reduce the
headway at highest efficiency but also avoid rear-end crash even when its preceding
vehicle encounters a disturbance. In our simulations, a speed difference between two
consecutive simulation intervals delivered by the optimal acceleration is regarded as
the optimal speed increment. The worst condition refers to when the preceding CAV
applies the maximum deceleration rate that is calculated as the lesser of maximum
allowable disturbance &,,_;+ and the comfortable deceleration rate. The minimum
stopping distance for vehicle n during the current simulation interval is approximated

to be (Gn,t + Vn—l,t+1)- Here, Vn—l,t+1 = Vn—l,t - min(5n—1,t'Dcomfort) represents

Chapter 3: CAV-based Traffic Regulation in Work Zones 27



the minimum velocity of the preceding vehicle and the target velocity of vehicle n.
The maximum velocity for vehicle n narrowing the gap is V;,_; + A, ¢, where A, ;

represents the optimal speed increment; thus, the equation can be written as:

(An,t+Vn—1,t)2 - (Vn—l,t+1)2 = Z(Gn,t + Vn—l,t+1)Dcomfort (311)

That is,

0.5
An,t= (Z(Gn,t + Vn—l,t+1)Dcomfort + (Vn—l,t+1)2 - Vn—l,t) (312)
3.3.1.3 Effective gap

The determination of the effective gap highly depends on the type of the
preceding vehicle, and therefore two cases are separately discussed. The first case
refers to when the subject vehicle follows a MV. The CCAM stipulates that if the
preceding vehicle n-1 is a MV, the subject CAV will not expect more information from
its preceding vehicle. Thus, a same function from ICAM was used to calculate the

effective gap, namely,
Geff,n,t = Gn,t + maX{O' min(Vn—l,t—l' Gn—l,t) - Gsafety} (313)

In the second case, the preceding vehicle is a CAV. As two successive vehicles are
both the CAV, we believed that the subject CAV was capable of accessing the effective

gap of the preceding vehicle; therefore, we modified the effective gap as
Geff,n,t = Gn,t + max{O, min(Vn—l,tr Geff,n—l,t) - Gsafety} (314‘)

In Eq. (3.14), V,,_1 ¢ is used to calculate anticipated speed of the preceding vehicle
instead of V,,_; ;_; which is applied in Eq. (3.13), because the preceding CAV n-1 is
able to share the speed with its surrounding CAV accurately with negligible delay.
Additionally, an updated effective gap is sent from the preceding CAV n-1 to the
subject CAV n for the effective gap calculation, which enables two successive CAV
to travel with a shorter gap so as to increase the traffic capacity without decreasing the

speed dramatically.
3.3.1.4 Deceleration

The velocity of a CAV depends on two factors that are the front gap and its
derivative. The CAV will brake if its preceding vehicle decelerate and the front gap is
small, namely, if B,_1, =1 A G, <= aV, 4, B, = 1. Here, a is calibrated to

be two seconds for the purpose of eliminating collisions. The rule emulates thata CAV
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takes two consecutive brakes (during two consecutive simulation intervals) as
potential indicator of the congestion downstream. In that case, if G, >

2 X V,, ¢+—1, there will be two possible scenarios based on the brake status.

In scenario 1, the preceding vehicle’s brake status during next simulation interval
is not activated. G, .41 is definitely acceptable for the subject vehicle to keep its

following action.

In scenario 2, the preceding vehicle’s brake status during next simulation interval
is activated. The front gap which is more than the value of V,, ,_; (thus the effective

gap is definitely greater than the current velocity) is enough for a CAV decelerate.

Trajectories extracted from simulations illustrated that rear-end crash diminished
when a was equal to two. If Gefrne < Vi, vehicle n decelerates to Grrp e avoid
rear-end crash with its preceding vehicle n-1, namely V,; = min (Vo ¢, Geprne) s
moreover, a CAV will decelerate if its surrounding vehicles need cooperation as
illustrated in the lane-changing model. If V, , <V, 4, vehicle n decelerated with

brake status activated (B, = 1).

3.3.1.5 Narrowing the front gap

G was introduced into CCAM from the ICAM to ensure that the CAV can

safety
decelerate to a safe speed before rear-end crash happens with a relatively small
deceleration rate for comfort consideration. If vehicle n has a greater velocity than its
preceding vehicle when the front gap is greater than the safety distance, the velocity
of vehicle n is allowed to be greater than that of its preceding vehicle by one speed

increment; however, the velocity should be less than the effective gap to avoid a rear-

end crash. Namely, If Gt > Gsarery A Vnr-1> Va1
Vae =min(Vy_y ¢ + Dt Goprnt) (3.15)
At the same time, vehicle n can avoid the necessity of excessive brakes.

If the velocity of vehicle n is less or equal to that of vehicle n-1 when the front

gap is greater than the safety distance, there are two scenarios that are:

In scenario 1, when the brake status of vehicle n is not activated, vehicle n accelerates

by acceleration rate proposed in the ICAM, however the speed difference should not
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be greater than one speed increment, namely, If G, > Gsgfery A Bne # 1 A

Vn,t—l S Vn—l,ta
Ve =min(Vye—q + a(Vieo1), Voore + Ant) (3.16)

In scenario 2, when the brake status is activated, vehicle n keeps a lesser speed of

Vn,t—land Vn—l,t—la that iS, If Gn,t > Gsafety A Bn,t =1A Vn,t—l = Vn—l,ta
Ve =min(Vy,eo1,Voo,e-1) (3.17)

3.3.2 Lane-change model
The lane-change model was established based on the types of APV and

anticipated following vehicle AFV, and we defined the scenarios by three cases. In the
first case, the APV and the AFV are CAV, where the APV and AFV denotes the
preceding vehicle and the following vehicle respectively after the subject vehicle
merging into the target lane. If the net distance to the APV and AFV are not less than
the safety distance, namely, Gy, gpp,c = Gsafety N Gnafvt = Gsafety> Vehicle nis able
to start merging. Otherwise, when the net distance to the APV is shorter than the safety
distance, namely, Gy gppt < Gsafery» the ego vehicle will decelerate to increase the
gap. As shown in Eq. (3.18) the deceleration is restricted by comfortable deceleration

rate and the maximum allowable deceleration rate.

Vn,t = Vnt-1— min(Dn,CAV' Dcomfort' 6n,t) (318)

When the net distance to the AFV is shorter than the safety distance, namely,

Gnafve < Gsafety> the AFV will decelerate with a well-controlled deceleration rate as

shown in Eq. (3.19).

Vafv,t = afvt—-1 "~ min(Dafv,CAV' Dcomfort' aafv,t) (319)

Gn,atv,t and Gy, g5, ¢ denote the gaps with the APV and the AFV respectively. Ifa CAV
receives a message indicating the existence of a work zone from the first vehicles of
the platoon, a lane-change maneuver will be indicated. At the meanwhile, its APV and
AFV will receive the message of this lane-change maneuver. When a CAV starts

merging, the APV updates its maximum allowable deceleration by taking Gy, gy, cand
V¢ into account. At the same time, AFV also updates its front gap to Gy, qy,. The

front gap of the ego CAV is equal to the lesser of G, gpyr and Gy, ¢; thus, maximum
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allowable decelerations, optimal speed increments and effective gaps of these three

vehicles are updated accordingly.

In the second case, the AFV is still a CAV, however, the ego vehicle merges to

follow a MV. Similar to the first case, vehicle n will start merging when G, gy, =

Gsafety A Gn,afv,t 2 Gsafetyo but if Gn,alv,t < Gsafetya

Vn,t = Vnt-1— min(Dn,MVJ Dcomfort' 6n,t) (320)

Nonetheless, the difference is that the deceleration rate is determined by a more

conservative effective gap as described by modified ICAM. When G, g5y r < Gsqfety-

Vafv,t = afvit—-1 "~ min(Dafv,CAV' Dcomfort' aafv,t) (321)

Because the APV is driven by a human driver, it will not be notified about this lane-
change maneuver. Even though it is possible that the human driver is carefully enough
to notice the ongoing lane-change maneuver, the ego vehicle will not risk on
continuing the lane-change task. Hence, the deceleration of the APV may interrupt the

lane-change maneuver of the CAV, which makes the waiting period longer.

In the third case, the anticipated following vehicle is a MV, the anticipated
preceding vehicle is either a MV or a CAV. Three different scenarios are illustrated as

below:

In scenario 1, when Gy gpyt = Gsarery N Gnafot = Gsapery + Re (Vafv,t - Vn’t), the

vehicle 7 is able to start merging.

In scenario 2, when Gy, g1pr < Gsqfety, but the gap between anticipated preceding
vehicle and anticipated following vehicle can accommodate the merging vehicle,
namely,  Gpapve + Gnagoe = 2 X Gsafery + Re (Vafv,t — Vn’t) , the wvelocity of
merging vehicle will be adjusted according to an updated front gap that is G, =
min (Gnapv,t» Gne) - The subject vehicle n will be able to merge whenever the

condition mentioned in scenario is reached.

In scenario 3, when Gy, g5yt < Gsqrery» and the gap between anticipated preceding
vehicle and anticipated following vehicle cannot accommodate the merging vehicle,
namely, If Gy gpve + Grapoe < 2 X Gsgfety + Re (Vafv,t — Vn,t), the subject vehicle n

will have to expect to merge into a following gap, and
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Vn,t =Vnt-1— min(Dn' Dcomfortr 5n,t) (322)

Additionally, if the AFV is followed by another CAV, this CAV will decelerate to
prepare a gap for the subject vehicle n: Vipre = Vapppe-1 —
min (Dgfyfs Deomports Sapvre)- Here, Vagyr e denotes the velocity of the following
vehicle of APV, and D, denotes the deceleration rate (which is illustrated in the
ICAM) of the following vehicle of APV.

To summarize, when all of these three vehicles are CAV, a well-developed
collaborative strategy can guarantee a smooth merging maneuver. While the APV is
the only MV among these three vehicles, the other two vehicles’ collaborations can
still perform well without the participation of the APV. If the AFV is a MV, only a
certain condition can encourage the subject CAV merge into the gap no matter APV
being CAV or not; otherwise, the collaboration will be currently terminated while the

subject CAV decelerates to look for collaborations with following vehicles. The

3.4 CASE STUDY

3.4.1 Model calibration

According to traffic fundamental diagram, the speed is limited by the current
density which can be transferred into current headway for individual vehicle.
Greenshield’s model as shown in Eq. (3.23) was applied to emulate the maximum
speed that a driver may accepted under certain traffic density.

V="V - <&> x K (3.23)

Kj

where V denotes the free flow speed which is same as the maximum speed of CAV;
K; denotes the jam density which is assumed to be 60 vehicles per kilometre; V and K
denote the actual speed and actual density respectively. With the decrease of the
headway, drivers of MV are encouraged to drive slower than the actual speed limit to
avoid rear-end crashes. In the simulation, the trajectories of all vehicles were renewed
after every simulation loop, and the simulation would be terminated once a crash or an
overshooting acceleration rate was witnessed. In our generated dataset, results showed
that no crash or overshooting acceleration rate was witnessed after the whole
simulation. To be consistent with the ICAM, the time span lane-change maneuvers

were assumed to be 1 second. It is also assumed that the approaching vehicles were
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impacted by the work zone from as least 8 second away from the work zone. Other
assumptions including the selection of the value of the 7 and the values of the
coefficients ahead of the safety distance from the CCAM were determined to avoid the
rear-end crashes, where the values were approximated into the nearest integers

respectively.

3.4.2 Deterministic indicators

To precisely and comprehensively illustrate the relationship between the
performance of cooperative lane-change and the penetration rate, we conducted 14
microscopic simulations for each penetration rate. The headways are consistently set
to be 3 seconds. The distributions of CAV and MV are different through these 14
simulations so that all scenarios of lane-change cooperation can be covered; moreover,

curve fittings are conducted to clearly demonstrate the trends.

Six deterministic indicators selected to demonstrate the traffic performance are

as follows:

- Travel time: this is an essential criterion to evaluate traffic performance according
to traffic jam economic cost (Zhou, Qu & Jin 2016). The average travel time is the
average duration starting from a vehicle travels exiting the 8,000% cells to entering

the 10,000t cells;

Excessive brake: it describes the quantity of overshooting deceleration that
discomfort the passengers. It was believed that the main reason is the aggressive
(forced) lane-change at the entrance of the work zone. We took 6.8 cell/s* as the
threshold of distinguishing the excessive brakes and the ordinary brakes, which was
suggested by AASHTO (2004) to be the comfortable deceleration rate. Hence, the
quantity of excessive brake is counted on the basis of whether the deceleration rate

is greater than 6.8 cell/s?.

- Merge delay: it represents the duration starting from when the merging indication
is activated to whenever the merging maneuver is finished. On the other hand, it
demonstrates the average time needed for lane-change vehicles to find the lane-

change opportunities.

- Speed standard deviation: this is an indicator for speed oscillation which may cause
passengers’ dissatisfaction, and the speed standard deviation for vehicle n can be

calculated by the Eq. (3.24):
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N (Ve —V)2
SDnz\[ =1 ’;\'; ) (3.24)

- The duration of immobility: it represents the cumulative time span when one
vehicle stops. The immobility is either caused by congestion before reach the work

zone or the failure of lane-change at the entrance of the work zone.

- The quantity of emission: it is generated by VT-micro emission model that was
proposed by Ahn et al.(2002) as shown in Eq. (3.25), where velocities and

accelerations are the key factors that affect the emission.

( 3 3
ZZ(Lf] Xstxal) a=0
=0 j=0
In(MOE,) =< ;" /. (3.25)
Z(Kfjx.s‘xaf) a<o0
\i=0 j=0

Where MOE, denotes the instantaneous fuel consumption (I/s.) or emission rate

(mg/s), L ; and K, represent the coefficients calibrated via the regression of the fuel
i,j i,j g

consumption and the emission data in these two scenarios, while a and s denote
acceleration and speed respectively as shown in Table 3-4. The field data were
collected by the Environment Protection Agency of the Automotive Testing Lab in
Ohio and in Michigan respectively in 1997 mainly focusing on the emission of the HC,
CO, NOx, and COg, while a total of 101 vehicles (including heavy vehicles and light

vehicles) were involved in the experiment.

As shown in Figure 3-2(a), a concave descending trend can be witnessed when
the penetration rate kept increasing. The average travel time was reduced by 25 %
when the penetration rate came to 34.1%, while only half of the original travel time
was needed when penetration rate came to 62.25%. In Figure 3-2(b), the quantity of
the excessive brakes concavely decreased from 3103 to 271 when penetration rate rose
from 0% to 100%. It showed that drivers and CAV were more comfortable with the
disturbances caused by the lane-change maneuvers when more CAV were involved
into the traffic network. In Figure 3-2(c), the cumulative merge delay for all vehicles
showed a non-monotonic decrease from around 3561 seconds to 9 seconds. The reason
is that vehicles were able to find the lane-change opportunities due to the high-level

collaborations. Figure 3-2(d), the standard deviation decreased with the increase of
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penetration rate, and it was proved that the collaborations provided by the CAV were
capable of reducing the traffic oscillations. In Figure 3-2(e), the duration of immobility
showed a concave decrease trend when penetration rate increased, and there were no
vehicle stopping at the end of the transitional taper as a result of high-level
collaborations when the penetration rate came to 98.5%. As shown in Figure 3-2(e),
the y-axis denotes the total emission during the entire time span, and the quantity of
emission continued decreasing with the increase number of the CAV being involved.
The trend was relatively steep when penetration rate rose from 50 % to 80 %, which
means the CAV can contribute more to reduce emission if they take the majority of
vehicles. When the MV was the major component, the CAV had to give priorities to
the MV frequently; thus, the collaboration that the CAV provided is relatively limited.
This result showed that the CAV is not only fuel-economic but also environmental-

friendly.

Table 3-4 Coefficients of VT-micro emission model

Coefficients Constant Speed Speed? Speed®
Positive acceleration

Constant -0.87605 0.03627 -0.00045 2.55E-06
Acceleration 0.081221 0.009246 -0.00046 4.00E-06
Acceleration’ 0.037039 -0.00618 2.96E-04 -1.86E-06
Acceleration® -0.00255 0.000468 -1.79E-05 3.86E-08
Negative acceleration

Constant -0.75584 0.021283 -0.00013 7.39E-07
Acceleration -0.00921 0.011364 -0.0002 8.45E-07
Acceleration’ 0.036223 0.000226 4.03E-08 -3.5E-08
Acceleration® 0.003968 -9E-05 2.42E-06 -1.6E-08

3.4.2.1 Disaggregated trajectory analysis

By extracting the trajectories from the entire traffic network, we can find more
detailed demonstrations of the lane-change collaborations. Figure 3-3 gives the car-
following trajectories of two different types of vehicles. Compared to the following
MYV, the following CAV were shown to be capable of tolerating much shorter
headways, and it demonstrated much fast reaction to the deceleration of the preceding
vehicle. This explains why the increase of density did not reduce the average speed.
Due to the high sensitivity to the change of speed, the CAV demonstrated a
synchronized trajectory with its preceding MV, and almost no delay of CAV’s
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accelerating was witnessed when the preceding vehicle accelerated. This advantage is

even clearer when the CAV were in a plato

on as shown in Figure 3-4. While MV

suffered from the speed variations and over-braking, the CAV were able to keep very

stable car-following motions. Consequently, not only was the average travel time

reduced, but road users’ comfort was guaranteed.

X0 S
¥: 1996 "\_\_\(
X 0.3411
60 \»\\_\ . Y:149
u - &
@140} s ®
I *",\Y @
£ AR 2
F 20t R, k]
5 e e @
T Xt X 0.625 g
& % ;
£ g Y: 99.97 &
© 100 s =
=2 o ®
e XN &
] L 2
Z 80} i £
i z
60 S
N
40t "'\\
20
0 01 02 03 04 05 06 07 08 08 1 0 01 02 03 04 05 06 07 0B 09 1
Penetration Rate (%) Penelration Rate (%)
(a) (b)
5
4000 Ly yit
3500 k- o
I\ 3 P, .
IR WA G
2000 \- "“\.—\
= 5 25 "
B 3
& 2500 | . £
k) A s
] . ]
o 2000 H
= %,
£ AN Qs
B ~, 5
2 e
& 1500 \\ g
s T »
é 1000 = Lg '
1
P06
500
of 1]
-500 05
0 01 02 03 04 05 06 07 08 08 i 0 01 02 03 04 05 06 07 0B 09 1
Penetration Rate (%) Penetration Rate (%)
(<)
4 5
agE10 16 219
Z
g B
2] E
2 15 §
b I 2
o £
G L w
g 1
=
05
0
05 2
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Penetration Rate (%) Penetration Rate (%)

(e)

Figure 3-2 The deterministic indicators of the

(6]

traffic performance: (a) Average travel

time. (b) Quantity of Excessive brakes. (¢) Cumulative merge delay. (d) Speed
standard deviation. (¢) Duration of Stopping. (f) Emission.
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Figure 3-3 Following front gap comparison based on trajectories
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Figure 3-4 Following model performance analysis based on trajectories.

As shown in Figures 3-5 and 3-6, the dash lines record the trajectories when
vehicles were travelling on the origin lane, while solid lines records the trajectories
after vehicles merged into the target lane, and the green circles represent the starts and
the ends of the lane-change maneuvers. In Figure 3-5, a CAV was shown to be capable
of determining whether to merge in front of or behind its adjacent vehicle according
to their relative position. Figure 3-6 demonstrates how CAV facilitated the MV’s lane-
change maneuvers. When a MV sent a lane-changing indication to the anticipated
following CAV, the CAV in the target lane will give priority to the MV to facilitate

the pending lane-change maneuver.
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Figure 3-5 Priority analysis during lane-changing period
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Figure 3-6 Cooperation between CAV and MV during lane-changing period

Figures 3-7 and 3-8 illustrate the trajectories when penetration rate are 0 and
100% respectively. When there was no CAV participating in the simulation, the
merging maneuvers brought severe disturbances to the following vehicles, and the
disturbance then evolved into the wide moving jam. By incorporating the CAV,
collaborations among the CAV can solve this problem effectively. Figure 3-8 shows

the resultant trajectories where regulated collaborations were demonstrated.
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Figure 3-7 Trajectories without CAV's participation

Longitudinal Locations (cell)

Simulation Interval (s)

Figure 3-8 Trajectories with penetration rate being 100%

3.4.3 Probabilistic indicators

Figure 3-9 shows the average travel time collected from more than 2,000
simulations, and the average travel time variation decreased with the penetration rate,
which means that the traffic condition can be predictable in a more deterministic
manner with the increase of CAV’ penetration rate. Similarly, a similar trend appeared
on emission prediction as shown in Figure 3-10. The variation kept decreasing, and
the quantity is negatively related to penetration rate. The main source of the
randomness was the conflicts among heterogenous human drivers either during the
car-following tasks or the lane-change tasks. Even tiny oscillation created between two

drivers can cumulate into a huge congestion, especially in the work zone where the
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traffic density can be usually higher. One of the most significant reasons for the
decreasing randomness was that the deterministic features of the CAV vehicles can
filter plenty of redundant accelerations and decelerations, therefore, the velocities
would be kept on a relative stable level when the penetration rate increased.
Additionally, the collaborations among vehicles during the lane-change tasks can
avoid many aggressive merge behaviours, and thus mitigating the impacts on the target
lanes. In that case, the vehicles from the target lane can traverse without significantly
decreasing the speed even though other vehicles merge ahead of them. It should also

be mentioned that both figures are depicted with a three-second initial headway.
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Figure 3-9 Massive illustration of average travel time over penetration rate
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Figure 3-10 Massive illustration of emission over penetration rate
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3.4.4 Traffic phase analysis

Figures 3-11to 3-14 demonstrate the velocities over longitudinal positions at the
work zone under various CAV’ penetration rates of 0 %, 30 %, 50 % and 80 %
respectively. Their sub-figures illustrate the velocities of the 50 vehicle and the 150
vehicle representing the downstream vehicles and upstream vehicles respectively. The
velocities of their surrounding CAV are also demonstrated for comparison purpose
when penetration rate is 50 % and 80 %. As shown in Figure 3-11, a severe traffic jam
appeared in the work zone area, and most of vehicles kept travelling with low speeds
even though they had passed the work zone by 500 cells. As can be seen from two sub-
figures, the upstream vehicles represented by sub-figure 2 suffered a more severe
disturbance than downstream vehicles represented by sub-figure 1 because
disturbances propagated along the platoon, which is consistent with the traffic-phase
theory. In Figure 3-12, it is shown that vehicles were able to accelerate to relatively
high speed after suffering a severe disturbance even though vehicles were still within
the work zone area with the help of a few (around 30 % of total number of vehicles)
CAV’ collaborations; however, the speeds were still lower than normal speed limit
after passing the work zone, but this problem was alleviated when there were more
CAV in the platoon as shown in Figure 3-13. With the collaboration provided by CAV,
MYV suffered less disturbances as shown in sub-figure 1. Sub-figures 2 and 3 illustrate
the velocities of two successive vehicles that consisted of a preceding CAV and a
following MV, and the main differences are highlighted by the circles in the figure.
The CAV had higher peak speed than the MV at same condition because CAV can
handle shorter front gap after precise calculations. In that case, the vehicle can narrow
the front gaps effectively. When penetration rate came to a relatively high level, most
of disturbances were able to be avoided at high level (80%) of penetration rate. In
Figure 3-14, sub-figures 1 and 2 and sub-figures 3 and 4 illustrate two pairs of
successive vehicles both consisting of a preceding MV and a following CAV. The
circled parts in sub-figure 3 and 4 illustrate the advantage that CAV can decelerate
with a relatively small deceleration rate to avoid passengers’ dissatisfaction while
avoiding the rear-end crash at the same time. Hence, disturbances cumulated along the
platoon can be effectively avoided; moreover, most of vehicles can accelerate to its
original speed after leaving the work zone. Detailed illustrations of speed evolvement
over longitudinal positions are shown in Appendix B, where a clear alleviation of

disturbance can be witnessed. At the meanwhile, it can be clearly witnessed that the
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participation of the CAV was very effective on dampening the traffic oscillations by

comparing all figures with varying penetration rates.
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Figure 3-11 Velocities over longitudinal positions when penetration rate = 0 % with
sub-figures illustrating the velocity-location relationships of (1) the 50th vehicle
which is a MV; (2) the 150th vehicle which is a MV respectively
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Figure 3-12 Velocities over longitudinal positions when penetration rate = 30 % with
sub-figures illustrating the velocity-location relationships of
(1) the 50th vehicle which is a MV; (2) the 150th vehicle which is a MV respectively
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Figure 3-13 Velocities over longitudinal positions when penetration rate = 50 % with
sub-figures illustrating the velocity-location relationships of
(1) the 50th vehicle which is a MV; (2) the 150th vehicle which is a CAV;
(3) the 151th vehicle which is a MV respectively

60

40

20

7000
7500 8000

8500 9000

9500
10000 10500

Velaciy (calvs)
(

Position (cell)

Figure 3-14 Velocities over longitudinal positions when penetration rate = 80 % with
sub-figures illustrating the velocity-location relationships of
(1) the 49th vehicle which is a MV; (2) the 50th vehicle which is a CAV; (3) the
150th vehicle which is a CAV; (4) the 149th vehicle which is a MV respectively
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3.5 SUMMARY

Work zones bring negative impact on freeway traffic, and a number of problems
emerge, such as long travel time, high speed variation, driver’s dissatisfaction and
traffic congestion. In this research, for the first time, we develop a cooperative cellular
automata model introducing a collaborative component of connected and automated
vehicles to simulate a highway work zone system. Results are collected from different
penetration rates for comparison purposes, and positive effects are demonstrated. The
average travel time decreases by 25% and 50% when penetration rate reaches 34.1%
and 62.25% respectively. The variabilities of these indicators also show significant
decrease trend as the penetration rate of connected and automated vehicles goes up.
We also extract some of the trajectories in order to analyse the reason for these
improvements, and it clearly reveals how connected and automated vehicles
harmonize traffic flow dynamics. It can be expected that the work zone traffic will no
longer bring severe negative impacts on our current traffic network even during the
rush hour with reasonable amount of CAV’s participation, because the CAV are
looked forward to address the most significant source of the congestion which are the

oscillations and the lane-change conflicts.

Compared to other CA-based model, the CCAM can deliver more continuous
trajectories without boost computational load; furthermore, it included intelligent
contents which could emulate the collaborative manner of the CAV. The CAV
regulated by the CCAM were able to avoid redundant reactions to the change of the
surroundings while safety level was guaranteed at the same time. Thanks to the
effective gaps, more preceding vehicles can be involved to determine the optimal
following velocities, so the oscillations during the car-following maneuvers can be
effectively reduced. The CCAM also demonstrated a good compatibility to the work

zone traffic simulation where the change of headway and density can be significant.

This study mainly focused on the traffic flow in the freeway, where the speeds
of the vehicles are relatively high, and the number of the entrances and the exits is very
limited compared to the other road types, therefore, the CCAM is only suitable for
simulating the freeway traffic. In the future researches, more development based on
the CCAM are expected to make it compatible with more road types. The limitation of
CCAM is that the information topology adopted in car-following model only involves

three homogenous vehicles in a platoon, thus, a heterogenous traffic system will be
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considered, and more communication topologies will be adopted to improve the
platoon stability and scalability in the future research; moreover, a time-dependent
driver behaviour model needs to be considered in order to examine the feasibility of

CCAM under a more realistic scenario.
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Chapter 4: Congestion Dispersion under
Emergency Service

4.1 INTRODUCTION

Transportation has been playing an extremely significant role in modern
societies from people’s daily routines to the economy of countries. A smooth traffic
can bring high satisfaction to all participations in our society, while a traffic jam can
significantly impact the functionality of a city. Unfortunately, the truth is that our
traffic systems are usually unstable with the presence of incidents, such as traffic
accidents or vehicle breakdowns. Other incidents, like public events, that partially take
up road surface can also bring similar impacts. In that case, lanes are likely to be either
fully blocked or partially impacted creating bottlenecks to the surrounding traffic
system; therefore, the traffic capacity would dramatically reduce due to the closure of
the lanes. Emergency services after severe traffic accidents usually require much larger
space than the incident-affected area, and thus lead to more lane closures. In this
research, the emergency service refers in particular to the existence of the emergency
vehicles, for instance, the ambulance, the wrecker, etc. Under the aforementioned
situations, vehicles on the blocked lane will be forced to execute lane-change
activities; otherwise, they will have to stop at the merging point, which inversely
influence the lane-change maneuver. It is found that both lane closures and lane-
changing activities impact the traffic capacity significantly (Laval & Daganzo 2006;
Qu, Wang & Zhang 2015). With the decreasing of traffic capacity, road users may
experience longer travel time, higher speed variation and traffic congestion (Zou & Qu
2018). Freeways, as a specific scenario where the number of entry and exit is relatively
limited compared to other traffic system, are extremely vulnerable to aforementioned
bottlenecks. Once an incident occurs on the freeway, drivers cannot avoid the
bottleneck via reconfiguring the route, alternatively, they have to queue upstream of
the incident area until incident being cleared. Apart from wasting tremendous amount
of time on queuing, there is also a high possibility that drivers experience the stop-

and-go traffic condition and poor collaborations from other drivers.

To have an in-depth understanding of the impact brought by incidents, researcher

have done a large quantity of simulations both macroscopically and microscopically.
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Among these researches, microscopic simulation models demonstrate a better
performance over macroscopic simulation models with regards to reproducing the
cooperation among vehicles, furthermore, the microscopic simulation model can
demonstrate how vehicles are impacted by lane-change motion individually and
detailly (Zheng 2014). Car-following model and lane-change model as two essential
components of microscopic simulation models are wildly discussed. FVD model as
one of the most prevalent car-following models has been applied and modified to
simulate the driving behaviour under single-lane traffic (Tang et al. 2014). The
development of FVD model can date back to 1995 when Bando et al. (1995) proposed
the Optimal Velocity (OV) model. In the OV model, an optimal following velocity is
calculated for every vehicle by substitute the following gap to their proceeding vehicle

nto
¥ (1) = K[V (s) — 2, ()] (4.1)

where k denotes the sensitivity constant, V(s) denotes the optimal velocity under the
current following gap, x,,(t) denotes the current velocity of vehicle n, X, (t) denotes
the acceleration rate during the following simulation interval. It was then calibrated by

Helbing and Tilch (1998) based on field data, and a function was developed as

V(s) =V, + V, tanh[C,(Ax — 1) — C,] (4.2)

Table 4-1Calibrated parameter of confined FVD

Parameters Values
Vv, 14.300
v, 15.997
C, 0.066
C, 1.508

However, it was soon found that OV model can result in unrealistically high
acceleration rates and deceleration rates (Jiang, Wu and Zhu 2001). To limit the
acceleration rate and deceleration rate into a realistic range, Jiang et al. (2001)
proposed the FVD model taking the velocity difference of two successive vehicles into
account. However, Yu et al. (2019) found that large acceleration and deceleration rates
are still observable, thus, he proposed a confined FVD model and calibrated the
optimal velocity function based on field data collected from NGSIM. The calibrated

values are demonstrated in Table 4-1.
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Due to the similarity of researched area (freeway) between Yu’s research and
ours, we adopted his calibrated parameter to simulate the car following motion of

single-lane traffic, and the function of adopted FVD model is
Xn(t) = k[V(s) = x,(t)] + 1Ax (4.3)

where Ax denotes the velocity difference between two successive vehicles, A denotes

the sensitivity as

: < priti
1= { 0: Ax < critical gap (4.4)

0.5: Ax > critical gap

Although there existed a large quantity of researches on the car following
models, researchers paid much less attention on lane changing model at same time,
fortunately, lane-change model has been attracting more and more attention recently,
because researchers have been gradually noticing that (1) drivers are prone to make
mistake during lane changing motions and (2) lane changing motions bring native
impacts on traffic capacity, reducing the bottlenecks discharge rate (Zheng 2014).
Based on the field observations, Hidas (2005) grouped the lane changing maneuvers
into free lane change, forced lane change and cooperative lane change, and he
discussed the difference among these three types of lane changing maneuvers and
illustrated the procedures of each lane-change maneuver in detail. Hidas (2005) also
proposed a lane-change model comparing the space gap between the preceding vehicle
and the following vehicle respectively with the minimum required space gap, however,
Hidas (2005) made an assumption that lane changing maneuvers are executed
instantaneously, thus the time span of the lane changing motion was taken as 1s which
is equal to the simulation interval. This assumption is not always realistic, especially
under complex lane changing situation when subject vehicles travel much more slowly
than vehicles on the target lane so that the drivers cannot make the lane changing
decision immediately and determinedly. It is obvious that this model did not discuss
the trajectories when vehicles execute lane changing task, thus, it is necessary to

develop a lane changing model taking lane changing trajectories into account.

In our research, we developed a four-lane microscopic model simulating the
traffic dynamics on a four-lane freeway with an incident blocking one lane as shown
in Figure 4-1. Once the drivers see the emergencies, they will start lane-change

mancuvers.
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Figure 4-1 Demonstration of researched four-lane freeway

4.2 MODEL DEVELOPMENT

4.2.1 Car-following model

FVD model as one of the most prevailing car-following models has been widely
researched, and it has been proved that FVD model is able to reproduce the car
following motion both microscopically and macroscopically (Jiang, Wu & Zhu 2001;
Yu, Jiang & Qu 2019). Hence, we adopted FVD model as the car following model as
illustrate in Egs. (4.1) to (4.4), and we introduced the calibrated parameters from Yu
et al. (2019) due to the similarity between two researched cases. In order to simulate
the deceleration motions when the vehicles were approaching the bottleneck, we
proposed a quadratic equation to demonstrate the relationship between remaining
distance to incident and the velocity. Because the existence of the bottleneck was the
main reason for the deceleration motions, we assumed that the velocity limit was
determined by the remaining distance to the bottleneck impacted by an incident. We,
therefore, introduced a velocity cap to limit the maximum velocity of an approaching

vehicle as
VC(x(t)) = (x(t) - xstart)2 + a, (x(t) - xstart) + as (4‘5)

where VC(x(t)) denotes the velocity cap owing to the incident, x(t) denotes the
longitudinal location at time t, x4+ denotes the longitudinal location where drivers
start to decelerate, a, , a, and a5 are constants. Before calibrating these parameters,
we must clarify the location where vehicles will start to be affected by the incident.
We, therefore, assumed that the distance was consist of the length of advanced warning
area L., and the visibility distance L,s. As Law and L,q are highly dependent on road
geometry, we assumed that approaching vehicles start to decelerate when they are 300

meters away from the incident area, at the meanwhile, the closer the vehicles get the
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higher the deceleration rates are supposed to be applied. VC are supposed to fulfil the

requirement of

{Vc(xstart) =16.7 d { VC(xstart) ~ 0 (4.6)

VC(xinCident) =0 VC(xincident) = —Diimit
where Djj;: denotes the maximum deceleration, which is assumed to be 2.7 m/s?
(Zheng 2014), X;nciden: denotes the longitudinal location of incident area. Thus, the

Eq. (4.5) is calibrated based on the highest approaching speed as
VC(x(£)) = —1.86 X 107*(x(t) — Xspare)? + 16.7 (4.7)

4.2.2 Lane-change model

Lane-change models as an essential component of traffic dynamics simulation
model are capable of reproducing the interaction among vehicles at complex traffic
conditions (Zheng 2014). Lv et al. (2011) proposed a lane changing model based on
FVD car following model, but the model is oversimplified for two reasons: (1) the
critical acceptable gaps are constant determined by safety distance; (2) the lane-change
maneuvers are finished instantaneously. In Lv’s model, drivers are encouraged to
execute lane-change maneuvers either by anticipating higher velocity or a larger front
gap, while assumption are made in many other bottleneck-related researches that
vehicles on the through lane do not merge into the blocked lane, and the only
stimulation for lane change is the distance to the bottleneck (Hidas 2002; Meng and
Weng 2011; Zou & Qu 2018). Zheng (2014) classified the impact brought by lane
changing motion into three groups by their occurrence period which are anticipation,
insertion and relaxation. As we assumed that driver will commence merging into the
target lane without any hesitation as long as the immediate preceding gap and
following gap are acceptable, drivers on target lane are unlikely to be disturbed during
the anticipation period. However, we did include the reaction time in our lane-
changing model by adding a term C,V4t00n Which depicted the distance that the
platoon in the target lane travelled during the reaction period. Hence, the critical

acceptable gaps can be calculated via

{gp,min = apl + Cerlatoon (48)

gf,min = afl + Canlatoon

where gy, min and gg min denote the minimum acceptable preceding gap and following

gap respectively, [ denotes the length of vehicles, C, denotes the reaction factor which
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is assumed to be 0.25 seconds, C, denotes the coefficient related to the acceptable gap,
a, and ay are the constants which are assumed to be 1 and 2 respectively (in that case
the safety distance is equal to the length of vehicles). As long as the preceding gap and
following gap are greater than the respective minimum acceptable gap, drivers

commence lane change determinedly.

4.2.3 Lane-change trajectories

As many previous models being established under the assumption that lane
changing motion is finished within one simulation interval, they inevitably ignore the
lane changing trajectories (Hidas 2002; Meng & Weng 2011; Zheng 2014; Zou & Qu
2018; Lv, Song & Fang 2011). Slege and Marshek (1998) innovatively introduced the
concept of emergency lane-changing trajectories, and Slege and Marshek (1998)
proposed that an ideal lane changing trajectory need to be continuous and smooth with
optimal curvature and minimum longitudinal span. Gackstatter et al. (2010)
approximated the lane changing trajectories into polynomials. Kasper et al. (2012)

introduced a lane change model with third order polynomial trajectories as

y= A3(X(t) - -xstart)3 + Az(x(t) - xstart)2 + Al (x(t) - xstart) + AO (4‘9)

—2(Yend—Ystart) _ 3(¥Yend—Ystart) _ _
D3 s AZ - D2 B Al - 09 AO = Ystart> Ystart and

where A; =
Yena denote the lateral position at the start and the end of the lane change respectively,
Xs¢are denotes the longitudinal location when vehicle commence lane-change, D

denotes the longitudinal distance of the lane-change trajectory, and it is restricted by

6 —
D > X(t)\[ |yeri(;] ylstartl (410)
max

where J,,,denotes the maximum lateral acceleration rate. In order to demonstrate a
smooth trajectory, the value of x(t) was nailed down as the velocity when vehicle

starts a lateral shift.

4.3 RESULT AND DISCUSSION

In the simulation, we hypothesized an incident occurs on the outmost middle
lane denoted by lane 2, and the incident was located at the longitudinal position of 450
meters. Vehicles on the blocked lane started to be impacted by the existence of incident

from the point of 100 meters based on the visibility distance and the deployment of
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roadside signs. It is also assumed that vehicles on through lane will not execute lane-
change motion due to a lack of necessity. Figure 4-2 to 4-6 demonstrate the trajectories
of four-lane freeway, where left-top, right-top, left-bottom and right-bottom sub-
figures represents the trajectories on lane 1 to lane 4 respectively. The trajectories from
the blocked lane were highlighted with the red lines, while the other trajectories were
depicted with the blue lines. The y-axis of each sub-figure represents the longitudinal
location of vehicles, and the x-axis denotes the simulation intervals whose unit is 0.1
second. As vehicles on lane 3 did not merge into lane 4, the trajectories on lane 4 can
be regarded as undisturbed trajectories. When we applied regular lane-change criteria
that is illustrate in Eq. (4.8), eight out of thirty vehicles failed to execute the lane-
change motions before they stopped at the incident-affected zone. Among the twenty-
four successfully merged vehicles, seven of them started lane-change maneuvers when
their velocities were much lower than those of vehicles on the through lanes, which
brought great impacts to their surrounding vehicles as shown in Figure 4-2. When we
improved the inter-vehicle communication by eliminating the negative effect of
drivers’ reaction time, only three out of thirty vehicles merged at relatively low speed,
causing much fewer negative effects on the through lane; however, there were still 6
vehicles failed to merge as shown in Figure 4-3. Alternatively, we reduced the g5 i

Vplatoon
by 2222

5 and depicted the trajectories in Figure 4-4. Even though the lane-change

motions seemed to be smooth, it brought much greater impact on the through lane, and
that might be the result of over-aggressive lane changing maneuvers. In Figure 4-5, we
combined the two methods to smooth the lane changing maneuvers, results show a
great improvement. This might be explained by the concept proposed by Hidas (2005)
that the large velocity difference can increase difficulty of the lane changing. In our
case, even short gaps encouraged driver to merge before velocity difference boost, so
vehicles were able to merge without disturbing the through lanes. When we reduced
the acceptable gap to the minimum requirement, almost all of the vehicles were able
to commence merging immediately after drivers being inform of the occurrence of
incidents as demonstrated in Figure 4-6. It was also found that solely reducing the
preceding or following minimum acceptable gap requirement cannot improve the
performance of the traffic system, thus, the inter-vehicle communication with the
preceding vehicles and following vehicles of target lanes are equally important. By

comparing Figures 4-2 to 4-6, it is not difficult to find out that incorporating the close
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cooperation can not only boost success rate for lane-change but reduce the negative
impact to the target lanes. Figure 4-7 demonstrates the lateral trajectories from origin
lane to the two target lanes, and it is clear that these trajectories varied on shape which

was determined by the drivers’ heterogeneities and the lane-change conditions.
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Figure 4-7 Lateral movement with ideal cooperation

44 SUMMARY

In this chapter, we developed a four-lane traffic dynamic model and
microscopically demonstrated the impact brought by bottlenecks on the freeway. One
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of remarkable improvements was that our model incorporates a realistic FVD-based
lane-change trajectories by approximating the clothoids into cubic polynomials.
Therefore, the time span of lane changing maneuver did not have to be equate with
one simulation interval, instead, more realistic time spans were determined by the
velocities and lane changing trajectories of vehicles. Moreover, the inter-vehicle
communication was indicated by the reduction of minimum acceptable gap, because
inter-vehicle communication can bring connected and automated vehicles and drivers
the confidence when they were executing lane changing maneuvers. It was found that
the communication with the preceding and the following vehicle of target lane can be
equally important when we plan to improve the overall traffic performance. However,
there are some more in-depth researches yet to be done, for instance, how cooperation
among vehicles function need to be further researched. Additionally, the cooperative
lane-change when the following vehicle actively decelerate to encourage lane-change
are to be discussed, because the mechanism of our current model is based on free lane

change and force lane change.
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Chapter 5: Lane-change prediction in Re-
organizing Traffic Flow

5.1 INTRODUCTION

The rule-based microscopic simulations are effective and economical tools to
estimate the dynamics of traffic flow, while more and more researchers focus on non-
parametric models which are established on the basis of historical traffic data. One of
the most significant reasons is that the real traffics are full of complexity and
stochasticity that almost no single model can illustrate the traffic flow realistically. It
will require a large quantity of parameters and functions if all heterogenous road
participators are expected to be reproduced. Many researchers have endeavoured to
apply non-parametric models on predicting the lane-change trajectories. In 1994, Hunt
and Lyons(1994) intuitively applied the neural network to model drivers’ the lane-
change decisions on a dual carriageway. Results showed a great success when training
and predicting based on manually generated data; however, a lack of large-scale data
at that time resulted in a poor training process of real-life traffic data and then a
unsatisfactory prediction. In 2010, Tomar et al. (2010) applied the large-scale
historical data to predict the lane-change trajectories with neural network. They
extracted historical trajectories from NGSIM database to incorporate uncertainties and
behaviours into their prediction model. It was found that the surrounding vehicles
brought the major impacts to the lane-change trajectories, but their model can only
predict some discrete parts of the whole trajectories accurately. It is proposed by
Tomar and Verma (2012) that the lane-change trajectories are not only very sensitive
to the surrounding vehicles but also affected by the subjective features of the ego
drivers. The subjective feature of human drivers can lead to poor performance of lane-
change predictive model, and the Tomar and Verma (2012), regarded that neural
network can facilitate the prediction of lane-change trajectories. They, therefore,
applied the neural network on both the short-term and the long-term prediction of
trajectories on the basis of safety consideration. Tang et al. (2018) proposed an
adaptive fuzzy neural network to predict the steering behaviour during a lane-change
task. The data of trajectories were collected from a driving simulator, and a preceding

vehicle are presented with various velocities under different scenarios.
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Apart from the prediction of the lane-change trajectories, some other researchers
also endeavoured to predict the lane-change decision. Zheng et al. (2014) also applied
the neural network to deal with the complexity of lane-change maneuver. Different
from aforementioned literature, they focus on the decision-making period. The data of
trajectories were extracted from NGSIM database, more specifically, U.S. Highway
101, however, they regarded that continuous trajectories are not suitable for training
this decision-making prediction model. Alternatively, they captured the data from
‘cross-line’ moments as the lane-change instances, and each lane-change instance are
coupled with two randomly selected non-lane-change instances. Results shows that the
neural network outperform the multinomial logit model on the predicting lane-change
decision. Yi et al. (2016) proposed a driver situation awareness algorithm to recognize
the driving states of vehicles. Both supervised learning and unsupervised learning were
applied to categorize the driving environments, and NGSIM database was adopted to
validate the algorithm. Hou et al. (2015) developed a lane-change assistance system
based on random forest and AdaBoost. With the application of the comprehensive
variables and the NGSIM dataset, their system successfully predicted the lane-keeping
decisions, but the performance for predicting lane-change decisions was not very
satisfactory. The Support Vector Machines (SVM) as an effective classification
algorithm are also widely applied on lane-change prediction. Mandalia and Salvucci
(2005) adopted five groups of features for SVM-based early lane-change prediction.
The linear kernel was employed as it outperformed the other kernels including
polynomial, exponential and Gaussian. Most of the aforementioned literatures focused
on the free lane-change tasks and the cooperative lane-change tasks, while they seldom
took into account the compulsory lane-change tasks on incident-affected road sections
or bottlenecks (or lane drops). Dou et al. (2016) combined the SVM and the Artificial
Neural Network (ANN) to analyse the feasibility and possibility of lane-change tasks
with the present of lane drops on the highway. Three features were extracted from the
NGSIM database with regards to speed differences, gaps and positions. Similar to the
other researches, Dou et al. (2016) used the data of U.S. Highway 101 and the Interstate
80 Freeway; however, they focused on the vehicles from auxiliary lanes. The
trajectories were analysed on 1-second interval basis, and they regarded that
continuously approaching to the lane mark was the signal of the lane-change task. It
showed a good performance on non-merge prediction while a relatively poor accuracy

rate was witnessed for merge prediction. Hou et al. (2013) combined the Bayes
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classifier and decision tree to predict the lane-change decision, and it showed that the
combined algorithm outperform each single algorithm. Wang et al. (2014) proposed
minimum Bayes risk decision and minimum error Bayes decision based on the
Bayesian network to establish lane-change model and predict the lane-change
decision-making. Li et al. (2015) applied the BP neural networks and the Bayesian
filters to forecast the drivers’ lane-change intentions. Balal et al.(2014) analysed the
related parameters from free lane-change tasks on the safety basis, and it was found
that one or few parameters would be sufficient enough to evaluate the risk of lane-
change tasks. This is also true for the lane-change prediction as the more parameters
considered the more noised need to be deal with. Although a lot of researchers have
use non-parametric model to predict the human drivers’ lane-change decision, few of
them applied the model on enhancing the collaboration during the cooperative lane-
change within a microscopic simulation. Furthermore, there is not an explicit criterion

extracting the merge and non-merge instances from the large-scale database.

In this chapter, we intuitively introduced the lane-change prediction algorithm
into the microscopic simulation. The CAV who are embedded with this prediction
model from the target lane are able to encourage the ego vehicle to execute the lane-
change task through a collaboration where the requirement of headways and relative
speeds are to be fulfilled to an acceptable extend that the vehicles on the target lane do
not need to sacrifice too much on travel time. Even though the impact of lane-change
on the traffic system is inevitable, our model is looked forward to mitigating the
massive disturbances on the target lane and therefore gradually addressing the
congestion problem owning to the bottlenecks. Non-merge instances are extracted

from trajectories based a criterion rather than randomly selecting cruising moments.

5.2 DATA DESCRIPTION AND PROCESS

In this research, the trajectories were extracted from one of the most prevailing
open-access datasets in the NGSIM database. Trajectories data from a 2100-foot
section of southbound of U.S. Highway 101 (see Figure 5-1) and a 1650-foot section
of Interstate 80 Freeway (see Figure 5-2) were adopted to train and test the Bayes
classifier prediction model. Data of the U.S. Highway 101 were collected for three
pieces that start from 7:50 am, 8:05 am and 8:20 am, and each piece contains data for

a 15-minute time span. Data from the Interstate 80 Freeway were collected for three
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pieces that start from 4:00 pm, 5:00 pm and 5:15 pm, each piece also contains data for

a 15-minute time span.

Among all the trajectories we only selected those affected by the non-through
lanes, more specifically, the auxiliary lane on the U.S. Highway 101 and the sixth lane
of the Interstate 80 Freeway. Vehicles traversing on the auxiliary lane will have to
merge to the adjacent lane, otherwise they will continue traversing on the auxiliary
lane till leaving the highway. In that case, vehicles face a similar scenario with the
non-through lane, and vehicles traversing on the sixth lane on the Interstate 80 Freeway
experience the same scenario that drivers who want to stay on the freeway have to
merge into the adjacent lane to avoiding exiting through the off-ramp. Table 5-1 and
Table 5-2 demonstrate the number of vehicles from the U.S. Highway 101 (refer to
US-101 in the table) and the Interstate 80 Freeway (refer to 1-80 in the table)
respectively, including the original database and the number after the first and the
second filter. Through the first filtering process, only the vehicles who executed lane-
change tasks from ‘non-though’ lanes were kept. Through the second filtering process,
any lane-change involving trucks or motorcycles were eliminated to remove vehicles’

heterogeneities.

Table 5-1 The number of vehicles in the US-101

7:50 — 8:05 8:05 — 8:20 8:20 —8:35
Raw 2169 2017 1915
1% filter 134 127 141
2" filter 130 122 140

Table 5-2 The number of vehicles in the I-80

4:00 —4:15 5:00 - 5:15 5:15-5:30
Raw 2052 1836 1790
1% filter 174 156 156
2" filter 171 150 154
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(Cambridge Systematics 2005)

Figure 5-1 Study Area of U.S. Highway 101
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Figure 5-2 Study Area of Interstate 80 Freeway

Literatures showed that the NGSIM contains many noises (Punzo, Borzacchiello
& Ciuffo 2009; Ossen & Hoogendoorn 2008; Duret, Buisson & Chiabaut 2008;
Kesting & Treiber 2008; Thiemann, Treiber & Kesting 2008). The trajectories were
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collected based on the camera over the highway sections, and the velocities and
accelerations were derived from the positions. Hence, any deviation on reading the
position can lead to huge errors on the velocities and the acceleration. To avoid the
overshooting velocities and accelerations, we applied a moving average smoothing
algorithm to eliminate the random errors from the trajectory data. It was looked
forward that the smoothing method can also eliminate the unrealistic oscillations of
the trajectories. In this research, a symmetric exponential moving average filter (SEMA)
was adopted to smooth the longitudinal position, velocity and acceleration, while the
lateral position, velocity and acceleration was not smoothed because the moving
average would affect the high-frequency components from data with regards to finding

windows (Punzo, Borzacchiello & Ciuffo 2009).

Consider X; as the j th original position of a n-dimensional position matrix and

x; as the i*" smoothed position of a n-dimensional position matrix. The smoothed

position can be calculated by Eq. (5.1) (Thiemann, Treiber & Kesting 2008).

1 _li=jl
X; = ﬁ Z Xje D (51)

i+w

]=l—We

where D = % , T =0.5 denotes the smoothing width, dt = 0.1 represent the

simulation intervals in the NGSIM database. W denotes the smoothing window width,
and W = min (3D,i — 1,n — i) can ensure that the smoothing window is always
symmetric with respect to the X; even near the boundary of the matrix. To avoid the
substantial computational load, we directly derived the velocities and accelerations
from the smoothed position data rather than applying the SMEA to the original data of

velocities and accelerations as shown in Eq (5.2) and (5.3).

o X1 — X

L e N e 5.2
. X 1_2X'+X'_1
g= (5.3)

Figure 5-3 displays the smoothed longitudinal positions, and only slight differences
between the smoothed data and original data can be seen. Even so, the outcome of
smoothing the velocities is distinct as shown in Figure 5-4. The lateral positions, lateral
velocities and lateral acceleration rates were also smoothed by sSsMEA as demonstrated

in Figures 5-5 to 5-6. It is worth noting in Figure 5-6 that the extremely large positive
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and negative accelerations before the 400" interval result from that the vehicles were
initially travelling on the on-ramp that great lateral speed changes along the lateral
direction are need when the vehicle enter the freeway. For all these, the following

unrealistically large accelerations are effectively eliminated.
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Figure 5-3 Smoothed longitudinal positions compared to the original longitudinal
positions
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After eliminating the noises, we focused on categorizing the accepted lane-
change instances and the rejected lane-change instances. An accepted lane-change
instance refers to the scenarios where a driver is able to make lane-change decision
and execute the lane-change task immediately, while a rejected lane-change instance
presents when a driver is not able to start a lane-change maneuver. It has been widely
acknowledged that the start of a continuous movement can be regarded as the accepted
lane-change instance when a vehicle continuously moves to and passes the lane mark
( Dou, Yan & Feng 2016; Hou, Edara & Sun 2013); however, there is not an explicit
criterion to standerize the rejected lane-change instances. At the begining, we took the
previous interval of when a negative velocity exists before the accepted lane-change
instance as the indication; however, it came that the moment of a rejected lane-change
instance is too close to its corresponding accepted lane-change instance that the
feature, such as gap and relative speed, is not distinctive, which reduces accuracy of
lane-change prediction. Alternatively, we selected the rejected instance by searching
for a directly previous negative acceleration that represents a ‘steering’ action back to
the origin lane. The negative acceleration is triggered when a lane-change attempt is

rejected by its surrounding vehicles.
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Figure 5-8 Original trajectory of the vehicles involved in a lane-change tasks
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Figure 5-9 Smoothed trajectory of the vehicles involved in a lane-change tasks

The original trajectories and the smoothed trajectories of the lane-change
vehicle, its adjacent preceding vehicle and its adjacent following vehicles are depicted
in Figure 5-8 and 5-9 respectively. Longitudinal positions of entrance and exit of the
freeway is highlighted by the dash lines. The longitudinal positions of these three
vehicles are marked for the accepted instance, rejected instance and the finish instance.
The lateral velocities of the ego vehicle are also illustrated on the ego vehicle’s
trajectory. By comparing the magnified sub-figures, we can easily tell that a large
quantity of steering actions of the driver are filtered after applying the sMEA to the
lateral features. There is no doubt that applying the SMEA decrease the fidelity of the
dataset; therefore, we decide to only apply sMEA to the longitudinal features of the

trajectories.

Finally, we abandon the data for any of the features being unable to be
demonstrated. The absent of a data may because the adjacent preceding vehicle or the
adjacent following vehicle was too far from the ego vehicles that the records
abandoned them. Due to the fact the researched zone in Interstate 80 Freeway did not
include the end of the sixth lane, we only applied data collected from U.S. Highway
101.
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5.3 METHODOLOGY

In our research, we adopted six features from NGSIM database to forecast the

drivers’ lane-change intention:

Feature 1: Ego speed—the velocities of the researched vehicle who is expecting a lane-

change requirement being accepted;

Feature 2: Distance to the end of the lane—the remaining distance to the activity area

of a work zone or the obstructed area of an incident-affected area.

Feature 3: Speed difference with the adjacent preceding vehicle—the speed difference
between adjacent preceding vehicle and the ego vehicle, and it can be

calculated by (Vapy — Ven);

Feature 4: Speed difference with the adjacent following vehicle—the speed difference
between adjacent ego vehicle and the adjacent following vehicle, and it can

be calculated by (¥ep — Xqfv);

Feature 5: Net distance with the adjacent preceding vehicle—net longitudinal distance
can be calculated by (Xqpy — lapy — Xep) Where 1, denotes the length of

the adjacent preceding vehicle;

Feature 6: Net distance with the adjacent following vehicle—net longitudinal distance
can be calculated by (x¢, — Loy — Xqf,) Where g, denotes the length of the

ego vehicle.

Consider X as 6-dimension input vector; y, denotes the corresponding output of
an accepted instance; y, denotes the corresponding output of a rejected instance.
Taking the prediction of accepted instance as an example, the core function Bayesian
classifier are (Wang, Chai & Cao 2014):

P(X1ya)P(va)

p(X) (1)

P(yalx) =

where P(y,|X) denotes the probability of an accepted instance when given a matrix
of input features X. If the calculated P(y,|X) or p(X|y,)P(y,) is greater than
P(y,|1X) or p(X|y,-)P(y,), the given output of the input features can be regarded as an

accepted instance, and vice-versa. p(X|y,) denotes class conditional probability
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density function which can be calculate by K-nearest neighbour (k-NN) (Buturovi¢
1993), an effective tool for nonparametric estimation, as shown in Eq. (5.2).

k
p(Xly,) = NV (5.2)

where N, denotes the gross number of accepted samples in the dataset; k denotes the
number of nearest samples chosen for prediction the intention, and V,, denotes the 6-
demision hypersphere whose centre is located at X in the hyperspace as shown in Eq.
(5.3). The radius of the hypersphere is determined by the distance of X to its farthest
point of these k points. The selection of k is essential to the prediction as too much or

too few will lead to high computational load and low accuracy respectively.
VvV, =—1® (5.3)

P(y,) denotes the percentage of the accepted samples in the dataset, and it can be

easily calculated by Eq. (5.4).

PO = 12 5.4

The distance between a sample X; and the input x can be determined by a weighted

Euclidian distance as illustrated in Eq. (5.5)

D(Xi,X) = ZW](XL'J —Xj)z (55)
j=1

where W; denotes the weight of the j* feature, which can be calculated by support
vector machines (SVM) (Buturovi¢ 1993) as shown in Eq. (5.6) (Domeniconi,
Gunopulos & Peng 2005).

(R();)’

55 (R (5.6)

W(Q)j =

where t is a positive integer, and t = 1 shows the best performance in all predictions.

R(q); can be calculated by Eq. (5.7).

R(@); = |e]'Vf(p)| (5.7)
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As a linear kernel is applied, f(p) can be written as the linear hyperplane wx — b = 0
if the samples are separable, otherwise, f(p) = X; w;v;x] x — b. Vf(p) denotes the
gradient vector, and e; is a canonical unit vector. Figure 5-10 demonstrates the process

of the lane-change prediction.

5.4 DISCUSSION AND ANALYSIS

Table 5-3 demonstrates the weights of each feature in the hyperspace. It is shown
that the distance to the end of the lane contributes most to the lane-change intentions.
We applied both the traditional Bayes classifier and the weighted k-NN Bayes
classifier to predict the lane-change decision-making. After three levels of filters, we
finally have 514 groups of data. We adopted k=5 as the number of nearest neighbours
for the consideration of efficiency. Table 5-4 shows that the weighted k-NN Bayes
classifier can predict both the accepted lane-change instances and rejected lane-change
instances with relatively high accuracy. The overall accuracy is 84.44%, and the
misclassification rate of lane-change intention is 6.74. The misclassification rate of
inappropriate lane-change conditions is 42.19 % that more than 40 % of inappropriate
conditions will be recognized as lane-change conditions. This may bring very high
risks of collision if the model instructs the ego vehicle on lane-change tasks, but this
model is established for lane-change collaborations. Imagine the ego vehicle is
travelling on a non-through lane, and it will definitely need to merge into the through
lanes. The difficulty for the collaboration is to predict when the driver is going to
merge and what kind of condition (headway) can encourage the driver to start a
merging task. Our model will instruct the adjacent to create suitable gaps, and then
facilitate the lane-change maneuver. Table 5-5 demonstrates the prediction accuracy
(the rate of the correct predictions over total predictions) of traditional Bayes classifier,
and it can be seen that the weighted k-NN Bayes classifier outperforms that traditional
Bayes classifier. Even so, the traditional Bayes classifier show a better performance
than neural network who only successfully predict 65 % of the instances. When we
applied a misclassification cost, where misclassifying the rejected instances costed 1.5
times more than misclassifying the accepted instances, to the weighted k-NN Bayes
classifier, the accuracies were improved as shown in Table 5-6. As a result of the
misclassification cost, any prediction of the accepted instance would receive more
punishment if the lane-change is actually rejected, so the misclassification rate of

rejected instance reduced from 42.19 % to 28.12 %. Compared with the rule-based
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lane-change model, the proposed lane-change model can provide more flexible lane-
change criteria without affected by the threshold of each factor. To be specific, the
proposed model enabled the CAV to collaborate with different driver via various
models which had been developed on basis of the driver’s historical trajectories, while
most of the current lane-change models mainly focus on the difference between each
feature and the corresponding predetermined threshold. By applying the prediction
model, it would be much easier to deal with the human drivers’ heterogeneities. Figure
5-10 demonstrates a rough process of model development. The first two steps are to
input the NGSIM database and to extract the lane-change trajectories that started from
the non-through lane to the through lane. According to extracted trajectories, the
accepted lane-change instances and the rejected lane-change instances can be
discriminated as described in section 5.2. Based on the scenarios vary on the presence
of the surrounding vehicles, features are selected to prediction the lane-change
decision. An ANN (developed in Simulink) was first employed to predict the lane-
change decisions, but it showed poor result on the prediction accuracy. Hence, the
ANN was only adopted as a comparison group for the other two Bayes-classifier-based
algorithms. The second method employed the Bayes classifier as illustrated in Egs.
(5.1), (5.3) and (5.4) where the Eq. (5.3) varied with the number of the features. The
SVM was adopted to figure out the weights of each feature which were related to the
distance to the dividing hypersurface as illustrated in Egs. (5.5) to (5.7), at the
meanwhile, a fixed number of nearest datasets were extract from the whole data space.
The calculated weights and the extracted datasets would then be substituted into the
Bayes classifier to further improve the prediction accuracy. Finally, the whole database
was divided into two groups: model development group and the validation group, and

the algorithm with higher accuracy was selected for the prediction model.
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Figure 5-10 Process of lane-change prediction

Table 5-3 Weight of each feature by SVM

Assign weights

Feature 1 2 3 4 5

6

Weight  0.011608 0.020543 0.791840 0.152605 0.003744 0.019659

Table 5-4 Accuracy analysis of weighted k-NN Bayes classifier

Accepted Rejected
Training set 195 62
Test set 193 64
Prediction 207 50
Accuracy 86.96% (180/207) 74.00% (37/50)
Misclassification rate 6.74% (13/193) 42.19% (27/64)
Overall Accuracy 84.44%
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Table 5-5 Accuracy analysis of Traditional Bayes classifier

Accepted Rejected
Training set 195 62
Test set 193 64
Accuracy 81.73% 46.6%
Misclassification rate 15.68% 56.25%
Overall Accuracy 59.90%

Table 5-6 Accuracy analysis of weight k-NN Bayes classifier with applying

misclassification cost

Accepted Rejected
Training set 195 62
Test set 193 64
Accuracy 90.72% 73.02%
Misclassification rate 8.81% 28.12%
Overall Accuracy 86.38%

5.5 SUMMARY

In this chapter, a weighted k-NN Bayes classifier is established to predict the
lane-change maneuvers on the basis of 10Hz data. This model adopted six features,
and it is able to enhance the cooperative lane-change; however, the model is not
suitable to instruct the ego drivers. Vehicles in the target lane can follow the instruction
to prepare acceptable gaps in order to encourage the lane-change maneuvers. The data
is extracted from NGSIM database, an open-access database. The trajectories in the
database is from different vehicles, therefore, the threshold is highly affected by the
human drivers’ heterogeneities. Imaging we collect the historical data from one single
drivers, the trained model can be more representative to help instructing the lane-
change collaboration. For future works, a comprehensive dataset that incorporating the
drivers’ information is preferred, for instance, the eyesight movement can indicate the
drivers’ lane-change intention. It will be easier to collect the rejected lane-change

instance precisely if we know when the driver intent to merge.
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Chapter 6: Improvements on Collaboration
in Work Zones

6.1 INTRODUCTION

As mention in the previous chapters, the CAV are expected to improve the traffic
performance by offering collaboration to their surrounding vehicle, like providing
acceptable gaps to the lane-change vehicles without significant sacrifice of ego travel
time, executing determined lane-change maneuvers within the safety criteria, etc. In
this chapter, a lane-change prediction model was applied to assist the collaboration of
cooperative lane-changes in a work zone. We conducted microscopic simulations to
demonstrate the traffic performance of this road section when the penetration rates of
the CAV increase from 0 % to 100 % by 10 %. Consider the road section originally
has three lanes, yet one lane outmost lane is closed due to the deployment of a long-
term work zone. FVD model was applied to simulate the car-following motions, and a
lane-change model was established on the basis of a variable-time-span lane-change
model as illustrated in chapter 4. As illustrated in the aforementioned literatures, the
lane-change will inevitably impact the target lane during the cooperative lane-changes.
Even with the participation of the CAV, we still believe that the traffic performance of
the target will be affected more and less; however, the participation of the CAV is

looked forward to mitigating the impacts and facilitating the collaboration.

6.2 MODEL DESCRIPTION

As illustrated in the chapter 5, there are six features being involved in the lane-

change prediction model:

Ay v denotes the longitudinal gap between the ego vehicle and the adjacent

following vehicle;

- Ay 45y denotes the speed difference between the ego vehicle and the adjacent

following vehicle;

- Ay apv denotes the longitudinal gap between the ego vehicle and the adjacent

Preceding vehicle;
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A, apv denotes the speed difference between the ego vehicle and the adjacent

preceding vehicle;

- D, denotes the distance between ego vehicle and the end of the lane that is the

activity zone in this chapter;
Xo, denotes the longitudinal velocity of ego vehicle;

In this chapter, we assumed that a vehicle would at least be able to connect to its
surrounding vehicles or adjacent infrastructures even if the vehicle was currently
driven by a human driver. If the ego vehicle is driven by a human driver, the on-board
computer can extract the historical lane-change trajectories of this particular driver and
predict the expected Ay ¢, and Ay, 45, that enable the human driver to start a lane-
change maneuver on the basis of the other four features as shown in Eq. (6.1) where
LPM denotes the lane-change prediction model, and then the A, and A, 45, Will be
passed to the AFV.

Ax,afw Av,afv = LPM (Ax,apw Av,apv' DW’ xev) (61)

Then, the AFV will evaluate the required speed difference and gap to fulfil both of the

requirement:

(X'ev + jievt) - (X'afv + Xafvt) = Av,afv

5 Xevtz 5
Xop + Xyt + > — | Xafv + Xappt + = Ay arv

Xafvtz (62)

where t denotes the threshold of time to collision, and t = 3 is applied (Kuang, Qu &
Wang 2015); x,,, Xep, Xep denote the position, velocity and acceleration of the ego
vehicle respectively; Xqy,, Xofv, Xqf» denote the position, velocity and acceleration of
the adjacent following vehicle respectively. At the meanwhile, X4, = —§ restricts the
maximum deceleration by maximum allowable disturbance between AFV and its
following vehicle as demonstrated in Eq. (3.10). Otherwise, the CAV will seek for the
opportunities for immediate lane-change to its adjacent lane. Alternatively, if the ego
vehicle is automated, the sensor will evaluate the approaching speed of the AFV,
therefore, making precise lane-change decision, e.g. accept shorter gap with the AFV.
Different from human drivers, CAV need not check the gaps with it APV and AFV

repetitively, which significantly decreases the reaction time. Additionally, CAV were
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assumed to be capable of searching for lane-change opportunities earlier than HDV as

a result of V2I.

The lane-change model in chapter 4 was further modified to demonstrate more
realistic interactions among vehicles. Firstly, not only the target lane but the ego lane
will be impacted when the lane-change vehicle is crossing the lane mark and the
impacts can be calculated on the basis of the percentage of width invading the target
lane (or ego lane). More specifically, an interpolated speed between scenarios with and
without the ego vehicle are determined by the aforementioned percentage.
Furthermore, the on-going lane-change vehicle will bring an immediate impact to its
preceding vehicle if this preceding vehicle is seeking for merging into the same target

lane.

A driver’s patience factor was also proposed to simulate the decreasing of
patience during finding the acceptable gap, and the Eq. (4.10) can be rewritten as Eq.
(6.3):

6|yend - ystartl
|Vimax]

D> (x(t) + p)\[ (6.3)
With the decreasing of the minimum requirement of D, the ego vehicle will adopt a
more aggressive lane-change strategy. The patience factor p decreases with the times

of lane-change attempts.

6.3 RESULT AND DISCUSSION

The longitudinal trajectories and lateral trajectories are plotted in Figures 6-1 to
6-8 with 0, 30%, 60% and 90% CAYV participating in the traffic flow respectively.
Trajectories from other penetration rate can be found in Appendix C. The right-top,
left-bottom and right-bottom sub-figures illustrates the trajectories of non-through lane
(lane 1), left adjacent lane (lane 2) and the outermost lane (lane 3) respectively. The
left-top sub-figure represents a comparison group when a lane is not impact by the
work zone. It can be told from Figure 6-1 that almost half of the vehicles failed to
merge into the target lane and had to decelerate to before entering the work zone. What
made the situation worse was that drivers are increasingly aggressive with the growing
times of attempts. Those drivers may accept more lateral acceleration and larger yaw

angle regardless of the increasing speed difference between ego vehicle and the
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vehicles in the target lane; therefore, great impacts were brought to the target lane as
shown at the 500" and 750" simulation intervals. No vehicle was witnessed to merge
into the outermost lane due to the low necessities as shown in Figure 6-2. Similar
scenario can be seen from Figure 6-3, but the 30 % of CAV continued merging into
the outermost lane creating acceptable gaps for further lane-change tasks into the
middle lane. With the increasing of CAV’s penetration rate, more vehicles can avoid
stopping in front of the work zone as shown in Figure 6-5. In Figure 6-7, the 90 %
penetration of CAV facilitated the lane-changes within 800 simulation intervals. The
100 % penetration rate of the CAV a surprising result that the traffic performance was
not further improved compared to 90 % penetration rate as illustrated in the Figure C-
13, which means the 90 % penetration rate has been sufficient to dampen the oscillation
brought by the human drivers’ heterogeneities. In contrast, it took longer for vehicles
to merge into the target lane because too many early lane-changes boost the density on
the target lane increasing the difficulty of lane-change on downstream. Well-organized
lane-change collaborations among vehicles from the non-through lane and the left
adjacent lane can be seen between the 300" to the 750" simulation intervals. It can
also be told from the comparison of lateral trajectories that the more vehicles will
choose gentle lane-change strategies with the increase of the penetration rate. The most
distinctive and remarkable improvement of incorporating the CAV into the traffic
system is that more vehicles can merge into the expected target lanes without huge
drop of speed as can be seen from Figure 6-9. Imagine a three-lane traffic flow
travelling through a work zone, the lane-change processes will be smooth if 80 % of
vehicles activate connected and automated system. Comparing Figures 6-2, 6-4, 6-6
and 6-8 tells that the participation of the CAV had significant positive effects on
assisting the lane-change collaboration. Under the situation when the amount of the
CAV is low, the drivers from blocked lane experienced high difficulties on lane-
change task; at the meanwhile, the drivers in the adjacent lane did not have enough
motivation to change lane for smoother dispersion as shown in Figures 6-2 and 6-4.
With the increasing number of the CAV, collaborations among vehicles were
increasingly frequent, and all vehicles were able to finish lane-change tasks when the

penetration rate reached 90 % as shown in Figure 6-8.
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Figure 6-1 Longitudinal position with 0 % CAV penetration rate.
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Figure 6-5 Longitudinal position with 60 % CAYV penetration rate.
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Figure 6-9 The number of vehicles failed on lane-change with the increase of the
penetration rate

The emission of the 105 vehicles are calculated by VT-micro emission model
which has been illustrated in Eq. (3.25). In Figure 6-10, the emission with regards to
the penetration rate is displayed, and it can be seen that the emission of vehicles on
lane 1 boosts with the increase number of the CAV. Nonetheless, it does not mean
more jerks, on the contrary, this is right because vehicles merge into the through lanes
and continue travelling through the work zone. Fortunately, it is pleasing to see that
the lane-change maneuvers did not increase the emission on the target lane. Figure 6-
11 shows cumulative distribution of velocities of lane 1 under different penetration
rate, and large quantity of observations can be witnessed in the low-speed zone when
the penetration rate is low. With more automated system being activated, the data on
the low-speed zone gradually vanish, which also indicates the decrease of average
travel time consumed on travelling through the work zone. Figure 6-11 summarizes
the average speed of every 50-meter longitudinally span from the position of 250
meters to the position of 700 meters on lane 1. When the penetration rate is equal to
0 %, 30 % and 60 %, there are clear speed drops, while 90 % penetration rate of
vehicles mitigates the impacts of work zone significantly on lane 1. Figure 6-12
showed a great effect of dampening the traffic oscillations brought by the CAV. It is
clear that the positive effects grew with the penetration rate of the CAV, and the speed

drops were completely mitigated at 90 % penetration rate.
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6.4 SUMMARY

In this chapter, the lane-change prediction model was applied to simulate the
collaborative instances of the CAV. A microscopic simulation was conducted based
on a three-lane traffic flow with one lane blocked by a work zone. The model of CAV
was derived from the model of HDV with modification being applied to optimize the
lateral movement. Results showed that the participation of the CAV can effectively
mitigate the impact brought by work zones. Though the lane-change maneuvers
inevitably impacted the target lane, the CAV showed great effects on reducing the
disturbances. The most extraordinary benefit was decreasing number of vehicles
stopped by the work zone, and it showed that traffic dispersion was perfectly done
when 80 % of vehicles activated the connected and automated system. When the
penetration rate reached 100 %, the time span of the traffic dispersion surprisingly
grew as a result of too many early lane-changes, which indicated that 80 % penetration

rate has been sufficient enough to enhance the collaborations.
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Chapter 7: Improvements on Collaboration
in Incident-affected Zone

7.1 INTRODUCTION

Different from work zone, an emergency incident can happen anytime in day
with a long period of unsupervised traffic. Due to this characteristic, the regulation of
incident-affected traffic needs to be capable of dealing with high-density traffic,
sometime even heavy traffic jam. In this chapter, we conduct micro-simulation for the
four-lane traffic, where the second outmost lane is blocked by the unexpected incident,
and there are 45 vehicles in each lane. Vehicle on the non-through lane then have to
seek for lane-change opportunities in order to avoiding stuck into the incident-affected
area. Individually, stopping increase the difficulty of lane-change, while it also
increases the impacts on the whole traffic system, especially the target lane. Again, the
CAV are looked forward to mitigating the impacts, yet, as discussed in the previous
chapter, the most penetration rate of the CAV does not mean the best performance.
Hence, how many vehicles” automation systems need to be activated becomes a vital

question.

7.2 MODEL DESCRIPTION

The model applied on the simulation was similar with the one illustrated in the
previous chapter, and the most distinctive feature was that the ego vehicle would have
two options on merging direction. The CAV and the HDV will execute lane-change
tasks based on different criteria that HDV can only focus on gap on one lane, therefore,
possibly missing the better gap in the other lane, but CAV will consider the lower-

density lane in priority as the potential target lane.

7.3 RESULT AND DISCUSSION

The longitudinal trajectories and lateral trajectories are plotted in Figures 7-1
to 7-8 with 0, 30%, 80% and 90% CAYV participating in the traffic flow respectively.
Trajectories from other penetration rate can be found in Appendix D. The left-top,
right-top, left-bottom and right-bottom sub-figures illustrates the trajectories of right

adjacent lane (lane 0), non-through lane (lane 1), left adjacent lane (lane 2) and the
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outermost lane (lane 3) respectively. The microscopic simulation depicts the
dynamics of a four-lane traffic flow with lane 1 being affected by an emergency
incident. Different from the simulation in the Chapter 6, vehicles had two options to
avoid being stopped by the incident. We assumed that the lane-change to the right
adjacent lane and the left adjacent lane require were equally accessed, but the CAV
would strive for a less impact on the entire traffic. Figure 7-1 tells that the success
rate of merge was not improved even though drivers can merge into both lanes.
Among those who had successfully merged into the target lanes, some just caused
severe delay of the following vehicles. We assumed that driving manners were not
sufficient for further efforts to lane-change to the lane 3 as shown in Figure 7-2;
therefore, the lane 2 would not be able to accommodate more vehicles with growing
density. More connected and automated systems being activated showed great effects
on facilitating the cooperative lane-change and mitigating the impact of the incident.
Figure 7-9 demonstrates the number of vehicles being stopped by the incident zone,
and it worth noting that the number under 90 % penetration rate is more than that
under 80 % penetration rate. Comparing the trajectories from Figures 7-5 and 7-8
reveal a possible reason that the overreaction of CAV had cumulative impacts on
speed reduction, therefore, increase the travel time. Nonetheless, the CAV still
showed positive effects on the entire traffic flow, and the one who was not able to
merge within 1,000 simulation intervals was an HDV. Different from the results in
the previous chapter, 100 % penetration rate did not lead to longer dispersion period
as illustrated in Figure D-13 when compared with those of the 80 % and 90 %
penetration rate. The reason was that the vehicles had more than one option regarding
to the target lanes; therefore, the early lane-changes did not dramatically boost the
density of any single one target lane. The emission of the 180 vehicles are calculated
by VT-micro emission model which has been illustrated in Eq. (3.25). In Figure 7-
10, the emission with regards to the penetration rate is displayed, and it can be seen
that the emission of vehicles on lane 1 boosts with the increase number of the CAV.
Nonetheless, it does not mean more jerks, on the contrary, this is right because
vehicles merge into the through lanes and continue travelling through the incident-
affected area. In the meanwhile, the emission on the lane 2 almost levels off while

other two lanes show slight decreasing trend.
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Figure 7-1 Longitudinal position with 0 % CAV penetration rate.
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Figure 7-7 Longitudinal position with 90 % CAYV penetration rate.
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The cumulative distributions of different penetration rates display the
observations of velocities from lane 1, lane 0 and lane 2 respectively in Figures 7-11,
7-12 and 7-13. When all vehicles are driven by human drivers, a large quantity of speed
observations gather at the low speed zone. The observations gradually move towards
the higher speed zone with the increase number of CAV in the traffic flow in lane 1.
On the contrary, Figure 7-12 shows an opposite trend in lane 0 because the lane-change
maneuvers inevitably bring negative effects on the target lane. On the other hand, there
is much less impacts on the lane 2 owing to lane-changes from the lane2 to the lane 3.
Figure 7-14 summarizes the average speed of every 50-meter longitudinally span from
the position of 250 meters to the position of 700 meters on lane 1, lane 2 and lane 3
respectively. When the penetration rate is equal to 0 %, 30 % and 60 %, there are clear
speed drops, while 90 % penetration rate of vehicles mitigates the impacts of work
zone significantly on lane 1. It is rather clear that the participation of the CAV helped

with dempening the traffic oscillation induced by the incidents.
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Figure 7-11 Cumulative distribution of velocities on the non-through lane.
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74 SUMMARY

In this chapter, the lane-change prediction model was applied to simulate the
collaborative instances of the CAV, including the lane-picking criterion. A
microscopic simulation was conducted based on a four-lane traffic flow with one
middle lane blocked by an emergency incident. Compared to work zones, the
emergency incidents need more consideration as they are non-scheduled bottleneck.
The model of CAV was modified to be capable of optimizing the lane-picking and
lateral movement. Results showed that the participation of the CAV can effectively
mitigate the impact brought by the incident. Though the lane-change maneuvers
inevitably impacted the target lane, the CAV showed great effects on minimizing the
disturbances. The comparison between the lane 2 and the lane 0 demonstrates the
advantages of CAV on dispersing the high-density platoon. The most extraordinary
benefit was decreasing number of vehicles stopped by the incident, and it showed that
traffic dispersion was sufficiently done when 80 % of vehicles activated the connected
and automated system. A further increase of the penetration rate to 90 % and 100 %

kept a consistent level of effect on the dispersion rate as the 80 % penetration rate.
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Chapter 8: Conclusion

Our research started from an analysis on the impacts of connected and automated
vehicles on work zones in a two-lane traffic based on microscopic simulations. The
CA-based model was proposed to simulate the car-following and lane-change
maneuvers of connected and automated vehicles, while ICAM was modified to
emulate the human drivers in the work zone. Results showed that the connected and
automated vehicles had distinctive effects on mitigating the traffic congestion in the
work zone; however, due to the limitation of CA model, the lateral trajectories were
deliberately ignored. In chapter 4, the FVD-based model combined with the Hidas-
type lane-change model was introduced to emulate the traffic dynamics of a four-lane
traffic flow in an incident-affected zone. Different from the CA-based simulations,
realistic lane-change trajectories were incorporated into the simulations. The clothoids
spirals were employed to represent the trajectories and they were further approximated
into cubic polynomials. Various lane-change trajectories were depicted on the basis of
human drivers’ heterogeneities and the lane-change conditions; thus, it was possible
to emulate the vehicles’ on-going effects on the origin lane and the target lane during
the lane-change maneuvers. By adjusting the reaction factors and the lane-change
thresholds, an intuitive analysis on the contribution of connected and automated
vehicles was demonstrated. In chapter 5, trajectories affected by lane drops were
extracted from the NGSIM database, the k-NN algorithm and the Bayes classifier were
combined to predict the human drivers’ lane-change decision on the basis of 10 Hz
trajectories data. Based on the lane-change prediction model, the connected and
automated vehicles were able to collaborate with heterogenous drivers precisely. The
model was then applied to simulate the cooperative lane-change in the work zone and
the incident-affected zone respectively, and satisfactory outcomes were witnessed on
facilitating well-regulated lane-change collaborations and improving the traffic

performance.

To summarized, the connected and automated vehicles were intuitively
introduced into the microscopic simulations as a solution of the congestions in the re-
organizing traffic flow, especially in the work zone and the incident-affected zone.

New microscopic models were proposed on the basis of the traditional car-following
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and lane-change models to simulate the collaborative instances of the connected and
automated vehicles, while the traditional traffic dynamic models were also modified
to practically emulate the human drivers’ car-following motions and lane-change
maneuvers. Realistic lane-change duration and trajectories were considered; therefore,
the on-going variable effects on both the ego lane and the target lane were accessed
during the lane-change maneuvers. A combination of k-nearest-neighbor and Bayes
classifier were presented for lane-change prediction purpose on the basis of 10 Hz
trajectories dataset, which facilitated more logical and controllable cooperative lane-

changes.

The microscopic simulations demonstrated the clear evolvement of the
congestion under low connected and automated vehicles’ penetration rate, while the
process slowed down or even diminished with more connected and automated vehicles
in the traffic network. The travel time, average speed and the emission were applied
as the main deterministic indicators of the traffic performance, and the analysis of these
three indicators proved the positive effects of the connected and automated vehicles.
The congestion brought by the re-organizing traffic flow can be potentially addressed
by incorporating connected and automated vehicles, but the results also showed that
low penetration rate of the connected and automated vehicles may not be capable of
facilitating the high-level cooperative lane-change. On the other hand, when the
connected and automated vehicles took the majority of traffic flow, the impacts of the
bottlenecks were able to be effectively mitigated. However, the proposed models for
the CAV was not able to be calibrated due to a lack of the CAV’s field data. Future
works would expect the researchers to apply the real-world trajectories to calibrate the
parameters in the models. Furthermore, a driving simulator would be expected to
validate the collaboration by the heterogenous human drivers in the future. This thesis
gave a clear demonstrate of the CAV’s benefits, nevertheless, it mainly focused on the
freeway where the quantity of entrances and exits is very limited. The authors believe
that complex road section would be conducive to highlighting the CAV’s benefits, yet
more intelligent contents need to be added into the current models. It is obvious that
the historical trajectories from a one single driver are able to reflect his/her driving
manners; therefore, the trajectories can be applied to assist in predicting the driving
maneuvers under various situations. The more trajectories being collected, the more

scenarios the prediction model can cover, and therefore, the more accurate the
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collaboration will be. The growing of the CAV’s market would increase the
penetration rate of the CAV, but the traffic would never be deterministic as long as the
existence of human drivers on the road. Hence, the interaction among human drivers

and intelligent driving systems would still be a popular topic in the future.
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Appendices

Appendix A

Investigation on linearization of data driven transport research

1. INTRODUCTION

Transportation engineering, as a practical engineering discipline, relies heavily
on the accurate calibration of important parameters from field data, not only for
microscopic models at the vehicle (Zhang, Tang & Wang 2019) or bottleneck level,
but also for macroscopic models at the planning and network level. When the
functional relationships among parameters are linear, linear regression models are
usually applied to calibrate the relationships. Sun et al. (2003) applied a local linear
method to calibrate the nonlinear time-variant function from a traffic-forecasting
model with high computational efficiency. Meng and Qu (2013) applied a linear
regression method to calibrate two parameters, passenger boarding time and times of
door opening and closing, from a function of dwell time against the number of
boarding passengers. Unfortunately, linear equations could not always reflect the
relationship between the dependent and independent variables, as a result of the
complexity of real-world traffic, and many exhibit notable nonlinearity. As a result,
researchers usually either apply nonlinear regression models (Qu, Wang & Zhang
2015; Wang et al. 2011), which require high computational efficiency, or linearize the
relationship so that linear regression models can still be applied (Wang & Meng 2012).

Indeed, nonlinear regression has many shortcomings, one of which is that the
shape of the regression curve is related to the distribution of the data. Qu et al. (Qu,
Wang & Zhang 2015) proposed a theorem stating that the calibration of parameters
can be sensitive to collection bias if there exists a nonlinear relation between
independent and dependent observations, and put forward a weighted approach to
mitigate the impact brought about by the sample selection bias. Other shortcomings
include non-convergence or slow convergence, redundant variables and local minima
(Motulsky & Ransnas 1987). The nonlinear regression may terminate without
convergence when the dataset is either too large or too small, or when the dataset spans

with an insufficient range (Motulsky & Ransnas 1987). Furthermore, the choices of
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the upper and the lower bound, and the starting value of each parameter also impact
the convergence. More specifically, a bad choice of starting value may result in a local
minimum, and the tight bound can lead to a sub-optimum with the calibrated
parameters lying either on the upper bound or the lower bound. Unfortunately,
researchers have to frequently deal with aforementioned situations in transport
research where the size and the variance of the dataset is difficult to control, and
parameters that are not intuitive (e.g. sensitivity constant) cannot be subjectively
regulated. Instead of applying nonlinear regression models, many researchers, for
simplicity reasons, linearize the relation by applying a data transformation, and it is
found that the transformation of dependent variables has implications for the nature of
the residual (Wang & Meng 2012; Motulsky & Ransnas 1987; Nielsen 2007];
however, Motulsky and Ransnas (1987) point out that applying a data transformation

may distort the errors.

In this research, the LSM and other extensions of the LSM are adopted as
linear/nonlinear regression methods to calibrate linear/nonlinear regression functions.
Here, we mainly focus on the calibration of nonlinear regression functions, and the
solutions are classified into two groups: applying nonlinear regression methods, such
as the nonlinear (weighted) LSM; and using linear regression methods for a linearized
nonlinear regression function. The second solution only requires a (weighted) LSM,
but it does involve a different objective function, which could be incorrect in some
circumstances. Hence, we make a comparison between the linearized LSM with data
transformation and the nonlinear LSM using two illustrative examples and analyse the

mechanisms of the two different methods in detail.

The remainder of this paper is organized as follows: Section 2 presents the
difference between the nonlinear LSM and the LSM for a linearized nonlinear
regression function. Section 3 illustrates an example related to the calibration of the
fundamental diagram. Both linear regression and nonlinear regression are described in
detail. Section 4 presents an example of bunker consumption and sailing speed. Section

5 presents the theoretical investigation and section 6 concludes.
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Table A-1 Two-parameter single-regime speed-density models.

Model Function Parameter
Greenberg v =1v,In (%) v, , kj
Underwood v = vy exp (_ % ) v, Ky
Northwestern v = vy exp [_ % (%D)Zl vy, kg

Notation: v - speed, k - density, v, - speed at capacity, k, - density at capacity, vy - free flow speed,

k; - jam density

2. LINEAR AND NONLINEAR REGRESSION MODEL

2.1 Nonlinear Regression Models
Consider a set of m observations, (xy,y;1), (X2,¥2) ..., (X, Vm), and a
nonlinear/linear regression function y, = F(x;) . Then, the objective of the

nonlinear/linear LSM is to minimize the sum of the squared errors, namely,
min S = min X2, (v; — 5)?) (A.1)

If we consider f to be a p -dimensional vector representing the matrix of parameters,
Y an m X 1 matrix of dependent observations, X an m X p matrix of independent
observations, and e an m X 1 matrix of residuals, the linear relation can be formatted

as
Y=XB+e (A.2)

The LSM can easily calibrate the value of § by setting the derivative of the
objective function S equal to zero, and # = arg min S can be directly formulated as a
cross product of a matrix, which will be illustrated in detail in the next section. The
nonlinear regression model, on the other hand, cannot be written as Eq. (A.2) but must

be written as
Y=FX,pB)+e (A.3)

In this case, the calibration of 8 requires a high-computational iterative solution;
however, linearizing the regression and transforming the observations accordingly can

approximate the nonlinear regression model as a linear regression model.

2.2 Linear Regression Model with Linearized Function
After the linearization of the function and data transformation, the nonlinear
regression function is transformed into a linear relation between a function of

independent variables and a function of dependent variables. Define g(x;),i =
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1,2,..,m, as the transformation of the independent variables and f(y;), i =
1,2, ...,m, as the transformation of the dependent variables. Hence, the observations
can be transformed into g(X) and f(Y). The linearized nonlinear relation can be

formatted as
fX)=F@X),B)+e =gX)B +e (A.4)

where B’ and e’ denote the matrices of parameters and residuals after the data

transformation, respectively, and y = F'(x) denotes the linearized function.

As such, the nonlinear regression is transformed into a linear regression.
Accordingly, the objective of the LSM is transformed from minimizing the sum of the
squared errors between y; and ¥, to minimizing the sum of the squared errors between
f(y;) and F'(g(x;),B'). Substituting f(y;) and F'(g(x;),B’) into the objective

function gives
min S’ = min (Z?;l(f(yi) - F’(g(xi):ﬂ,))z) (A.5)

2.3 Discussion

Because a different objective function is being used, there is a high possibility
that the calibrated parameters will deviate from the global optimum. Hence, the main
goal of this paper is to discuss when the application of a data transformation is feasible

and, if it is not feasible, how the regression is impacted.

3. ILLUSTRATIVE EXAMPLE 1: TRAFFIC FLOW FUNDAMENTAL
DIAGRAM

The well-known fundamental diagram is the foundation of traffic flow theory,
and demonstrates either the speed-density or flow-density relationship (Qu, Zhang
Wang 2017). The speed-density relationship often attracts more interest because it
presents an intuitive connection with the daily driving experience (Wang & Meng
2012). The calibration of the fundamental diagram has frequently been discussed ever
since Greenshields’ model (Greenshields, Channing & Miller 1935) was proposed.
Many researchers have dedicated themselves to improving the empirical accuracy of
the single-regime model, such as Greenberg (1959), Newell (1961), Underwood
(2008), Drake et al.(1966), Wang et al. (2012) and Qu et al. (2015). In this study, we

select three two-parameter nonlinear single-regime models (demonstrated in Table A-
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1) to examine the performance of the nonlinear LSM and the LSM for a linearized

regression function.

180 -
1 . data
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160 n Underwodd
Northwestern |
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Figure A-1 Single-regime speed-density models and GA400 dataset.

3.1 Data Description

In this paper, we use the Georgia State Route 400 (referred to as the GA400
dataset hereafter) to calibrate the single-regime models. The GA400 dataset contains
47,581 observations that are collected from 76 stations. The one-year continuous
observations are aggregated from 20 s to 5 min when they are applied to calibrate the
speed-density relation (Sun et al. 2003). In the following context, the observations of
the density (observations projected to the abscissa) are denoted as the x-observations
and the observations of speed (observations projected to the ordinate) are denoted as
the y-observations. Applying a weighted nonlinear LSM (Motulsky & Ransnas 1987),

the single-regime models can be calibrated as depicted in Figure A-1.

3.2 Calibration Using Nonlinear Regression Method

Normally, when dealing with linear regression, we would want to minimize the

sum of the squared error. Fortunately, that is equivalent to letting the derivative of the
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sum of the residuals be equal to zero. Consider a linear relation between densities and
velocities v = F(B, k), and a set of data points extracted from GA400 dataset (k,,v;),

(k3,v3),..., (Km, V), an m-dimensional vector Y™ = [v,,v,, ..., v,,]7, an m x 2

1 k
matrix X™*? = 1 k:Z and a 2 X 1 parameter vector B2*1 = [B;, ,]7. Hence, the
1 km

linear relation between k; and v; can be formulated as in Eq. (A.2). Here, e denotes an

m X 1 matrix of residuals. Then, the objective function of the LSM can be written as
S=¥-Xp)"¥Y-Xp) (A.6)

The derivative of the squared error can be simplified to

g—; = —XTY + X"XB (A.7)

To minimize the squared error, it is necessary to set the derivative of the squared error
with respect to B to be equal to zero. By letting Eq. (A.7) equal zero, we can solve for

an optimal B; mathematically,
B=X"X)"'X"Y (A.8)
Unlike with the LSM, with the nonlinear LSM one cannot calibrate the
parameters directly by letting the derivative of the objective function equal zero.
Instead, an iterative solution must be adopted, such as Gauss-Newton method and
Levenberg-Marquardt method (Levenberg 1944; Marquardt 1963). Nielsen (2007)
introduced a nonlinear LSM which is identical to the Gauss-Newton method. Taking
Greenberg model (1959) as an example, we approximate the nonlinear regression
model by a Taylor expansion at each {k;, v;}%,; and omit the high-order terms (see Eq.
(A.9)),

2, 9F (B, X,
v; = F(BL X)) + Z% (B =B ) +e i€{1,2..,m} (4.9)
j=1 J

. . 2 o
where t denotes the iterative index, {,8]-1}, | are the initial guesses of the parameters,
]=

and X; denotes the ith row of matrix X™*2. Consider an m X 2 Jacobian matrix,
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Table A-2 Two-parameter single-regime speed-density models with linearization.

Model Function Transformation
Greenberg v =, In(k;) —v,9(k) g(k) = In(k)
k
Underwood f() =In(v,) - % f() =In(v)
1
Northwestern f@ =n(v) =579k f) =In(w); g(k) = k*

oF(pLki)  OF(BLik)

B} 9p;
] = : : (A.10)
OF(Bikm) OF(B3km)
aBf 9B5
Then, we can simplify Eq. (A.9) as
e=J6+e (A.11)

where e = v; — F (,8]?, ki), and & is a two-dimensional vector denoting the change of

parameters, so mathematically, § = [(Bf** — BY), (B5* — BL)]T. Following the same

process as illustrated in Egs. (A.6)-(A.8) gives

S=0"DYTe (A.12)
After calculating the optimal change of parameters, we can update the matrix of

parameters and start a new iterative step, terminating the iteration when & is smaller

than a predetermined threshold.

3.3 Calibration Using Simple Linear Regression for Linearized Function

An alternative method consists of linearizing a nonlinear regression function and
executing a data transformation of the observations to establish a relation between
functions of the independent variables and the corresponding dependent variable. In
that way, the aforementioned single-regime models can be linearized, the results of
which are shown in Table A-2. Let us take the Greenberg model as an example to
demonstrate the process of calibration. The first step is to rearrange the Greenberg

model into an f(V) = f,g(K) + B, format,
v =1, ln(kj) — v, In(k) (A.13)

where f(V) =[v1 V2 - Un]",g(K) =[In(ky) In(ky) .. In(k)I", By =

v, ln(kj) , and $, =v,. Let B = [VO ln(k]-) VO]T, Y=fWV), M be an m-
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dimensional vector of ones, [1 .. 1]7, and X =[M g(K)]. Solving the linear
LSM as we did in Egs. (A.6)-(A.8) gives Eq. (A.14).

(B BI"=(M gUOI'[M gD M gEIf(V) (A.14)

It should be noted that a new matrix of weights needs to be computed according
to g(K) when applying the weighted least squares method (WLSM) proposed by Qu
et al. (2015).

3.4 Result and Discussion

The root-mean-square error (RMSE) is an efficient way to evaluate the accuracy
of predictive models. Therefore, we adopt the RMSE to evaluate the performance of
the regression. The RMSE demonstrates the standard deviation between predicted

values and field data, and can be formulated as

RMSE = J (v — )2 (A.15)

In order to give a better demonstration of the regression, the fitting curves and
RMSEs are compared simultaneously, and the RMSEs are calculated for each 5
veh/km increment in density. In this section, four calibration methods, the WLSM,
WLSM with data transformation (referred to as WLSMT hereafter), OLSM and OLSM
with data transformation (referred to as OLSMT hereafter), are illustrated and
compared. The curves produced by the four calibration methods are demonstrated in

figures, along with their aggregated RMSEs.

By substituting the calibrated 5; and S, (from either the nonlinear LSM or the
LSM for the linearized function) into the nonlinear regression function, we can obtain
the calibrated Greenberg model as depicted in the sub-figure a of Figure A-2. It is
obvious that the linearization and data transformation distort the regression of the
WLSM away from the optimum, but do not impact the OLSM, which suggests to us
that the weights assigned to the observations make the WLSM vulnerable to the data
transformation. With an in-depth investigation into the linearization of the Greenberg
model and the corresponding data transformation of the GA400 dataset, it is found that
the x-observations are distributed very differently after the logarithm is taken, and the
weights are related to the distribution of the x-observations. Therefore, the weights can

vary significantly after the transformation.
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Figure A-2 Performance of Greenberg model with regards to four calibration
methods.

a: Result of regressions; b: RMSEs of four methods.

A further investigation into the OLSM shows that the [M g (K)] from Eq.
(A.14) are the same as the Jacobian Matrix J from Eq. (A.10). If we define V(B, K)
as the prediction of speed from the tth iterative solution B* given by the Greenberg
model, with parameters V as the velocities, extracted from the GA400 dataset, then

Eq. (A.12) can be rewritten as
B - Y = XTX) X (V- V(B4 K)) (A.16)

Please note that B is [VoIn(k;) vo] here. If B**1 — Bt is smaller than a certain
threshold, Bt*! can be regarded as B, and it is also apparent that B% can be

approximated by B when V (B¢, K) approaches V. Thus,
Bt = X"X)'X"V(B", K) (A.17)
Therefore, cancelling out B¢ and V(B¢ K) gives
B=X"X)"'X"V (A.18)

which is exactly the same matrix of parameters as the one calibrated for the linearized

regression function. Hence, the nonlinear LSM and LSM for a linearized function are
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essentially the same method when used to calibrate the Greenberg model. More
generally, it can be concluded that the LSM for a linearized function will remain
mathematically the same mechanism as the nonlinear LSM as long as the regression
model only requires a data transformation of independent variables, no matter how
those independent variables are transformed. On the other hand, the data
transformation and the linearization have a negative impact on the WLSM, especially
when there is collection bias. The reason is illustrated in Figure A-3, where the data
transformation compels the weight assignment method to put higher weights on
originally densely distributed observations. At the same time, the thinly distributed
observations receive less weight, preceding to the converging curves depicted by
WLSMT and OLSM respectively in Figure A-3. This also corresponds to the
converging WLSMT and OLSM curves in Figure A-2. Even though the WLSMT
curve diverges from the WLSM curve with an increase in density, WLSMT still

outperforms OLSM in terms of RMSE in most circumstances.
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Figure A-3 Greenberg model with data transformation of density.

However, the finding illustrated by Egs. (A.16)-(A.18) is not applicable to the
other two single-regime models. The apparent reason is that either the y-observations

(in the Underwood model) or both the x-observations and the y-observations (in the
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Northwestern model) are transformed. Nevertheless, the fitting performances of four
calibration methods based on the Underwood model are pretty similar to each other as
demonstrated in Figure A-4, despite the data transformation. Figure A-5 demonstrates
that the data transformation which corresponds to the linearization of the Underwood
model delivers the best linear relation of two-dimension observations among the three
models. Hence, the linear regressions scarcely vary with the selection of regression
method. WLSMT yields similar results to WLSM, as shown in Figure A-4, while
WLSM still outperforms WLSMT on the regression of densely distributed
observations. Unlike when calibrating the Greenberg model, the weights of the
observations are not redistributed because the independent variable is not transformed

with the linearization; thus, the impact of the redistributed weights can be eliminated.
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Figure A-4 Performance of Northwestern model with regards to four calibration
methods.
a: Result of regressions; b: RMSEs of four methods.
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Figure A-5 Northwestern model with data transformation of density.

As for the Northwestern model, the data transformation leads to the worst
performance, which can be witnessed in Figure A-6, where there exists a large
deviation between the observations and the regression calibrated by WLSMT. One of
the reasons (which can be explained based on Figure A-7) is that squaring the x-
observations assigns higher weights to the thinly distributed observations, while the
densely distributed observations are assigned lower weights; in other words, the
importance of previously emphasized observations is overestimated, distorting the
regression result away from the densely distributed observations. On the other hand,
the performance of the OLSMT is still acceptable, as can be seen in Figure A-6, despite
the slight deviation around the density of 50 veh/km.
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Figure A-6 Performance of Underwood model with regards to four calibration
methods.
a: Result of regressions; b: RMSEs of four methods.
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The deviations could be due to two possible reasons: the mathematical
mechanism of each model and (or) the choice of transformed variable. More
specifically, the function of each model has its own limitations in the regression of the
GAA400 dataset; therefore, the result may vary when a different set of observations is
adopted for the calibration. Moreover, the transformation of the y-observations gives
a different objective function, and the calibration ends up with a sub-optimal matrix of
parameters. On the other hand, the transformation of the x-observations gives a
different matrix of weights, preceding to a regression that may overfit some

observations but underfit others at the same time.

To clarify the cause(s) of the deviations, we rearrange the model to make density
a function of speed, as shown in Table A-3, while the functions after the data
transformation are demonstrated in Table A-4. The benefits of this rearrangement are
two-fold: Firstly, the rearranged Greenberg model takes the same format as the original
Underwood model, while the rearranged Underwood model takes the same format as
the original Greenberg model. At the same time, the x-observations and y-observations
from the GA400 dataset are exchanged so as to make the calibrated parameters
physically meaningful. As the objective function changes for the LSM after the
transformation, the transformed GA400 dataset is treated as a new dataset. In this way,
we are able to compare the performance of similar regression functions when they are
calibrated with different datasets. Secondly, although the collection biases of these two
datasets are similar, as can be seen in Figure A-8 and Figure A-9, the matrices of
weights vary significantly. It is apparent that the observations in the transformed
GA400 dataset are more evenly distributed than in the original GA400 dataset. Thus,
the impact of the redistributed weights should be mitigated. As can be seen from Figure
A-10, the differences between the four LSMs are acceptable and the RMSEs are close
to each other, which is also confirmed by Table A-5, where the corresponding
calibrated parameters are very close to each other. This finding is consistent with the
performance of the original Underwood model, and both methods avoid the impact of

a varying weight distribution.
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Table A-3 Rearranged single-regime models.

Model Function Parameter
Greenberg k = kjexp (— %) vy, K
Underwood k =k, In() vg, k,

v
Northwestern vy, k,

k=k, /21n("7f)

Notation: v - speed, k - density, v, - speed at capacity, k, - density at capacity, vy - free flow

speed, k; - jam density

Table A-4 Rearranged single-regime models with linearization.

Model Function Transformation
Greenberg g(k) = ln(k]-) — Vl g(k) =In(k)
Underwood k= koln(vf) —kof(v) f() =In(v)

Northwestern g(k) = 2k2 (ln(vf) -f) g(k) = k% f(v) = In(v)
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Figure A-8 GA400 dataset distributions of densities and assigned weights.
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Figure A-9 GA400 dataset distributions of speeds and assigned weights.
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Figure A-10 Performance of rearranged Greenberg model with regards to the

four calibration methods.
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Table A-5 Calibrated parameters in single-regime models.

Speed-density! Density-speed?

Greenberg v, k; v, k;
WLSM 34.39 162.77 46.68 115.43
WLSM" 23.01 372.34 45.59 115.01
OLSM 30.21 320.42 45.76 116.13
oLsM" 30.21 320.42 44.01 121.14

Underwood 17 k, Vr k,
WLSM 125.54 45.34 150.87 35.29
WLSM" 114.77 47.91 185.68 31.07
OLSM 126.63 52.27 141.15 37.80
oLSMT™ 135.11 41.91 141.15 37.80

Northwestern 17 k, vr k,
WLSM 98.46 40.05 109.00 (LB) 37.04
WLSM" 45.45 69.43 84.82 45.33
OLSM 107.01 34.96 109.00 (LB) 33.73
oLSMT™ 101.94 43.15 104.72 39.01

Notation: ': v,, k; calibrated by taking density as x-coordinate, speed as y-coordinate; *: v,, k;
calibrated by taking speed as x-coordinate, density as y-coordinate; *: LB denotes lower bound
applied in LSM
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Figure A-11 Performance of rearranged Underwood model with regards to the

four calibration methods.
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In Figure A-11, the calibrations of OLSM and OLSMT deliver the same result,
which is consistent with the finding illustrated by Egs. (A.16)-(A.18). The fitted curve
calibrated by WLSMT still shows a slight deviation when compared to the other
methods; however, the deviation is much smaller than that shown in Figure A-2, as the
weights are more evenly distributed. Thus, the collection bias will not distort the fitted
curve dramatically. To summarize, the mechanism of the function does not impact on
the regressions, while the choice of observations to transform does have an impact.
Discussion of the rearranged Northwestern model is omitted because the rearranged
function requires the speed-related parameter to be greater than the maximum
observation of speed, otherwise imaginary values will be given. In such circumstances,
the linearizing of the nonlinear regression model will produce a loose bound on the
LSM. In Table A-5, all of the parameters of the speed-density and density-speed
relations are shown. The sum of the squared errors for the curves calibrated by the four
methods are also calculated, for a better comparison, and provided in Table A-6. It is
found that the linear regression for the linearized function cannot deliver the optimal
choices of parameters, except in the case where only the independent variables are
transformed, as illustrated by Egs. (A.16)-(A.18); however, the accuracy of the WLSM

is more vulnerable to the data transformation of the independent variables.

Table A-6 Sum of squared errors of the four calibration methods

Greenberg Underwood Northwestern
WLSM 1.0432 x 107 3.5114 x 10° 3.0921 x 10°
WLSMT 2.2709 x 107 8.1354 x 10° 1.3068 x 108
OLSM 5.1363 x 10° 2.3962 x 10° 1.2340 x 10°
OLSMT 5.1363 x 10° 2.8289 x 10° 2.1089 x 10°

Table A-7 Statistical analysis of nonlinear and linear regressions.

Nonlinear regression Linear regression
Voyage legs a b a b
Singapore-Jakarta 0.0137 2.8918 0.0095 3.0218
Singapore-Kaohsiung 0.0104 3.0019 0.0067 3.1494
Hong Kong-Singapore 0.0043 3.3143 0.0058 3.2138
Yantian-Los Angeles 0.0112 3.1177 0.0094 3.1759
Tokyo-Xiamen 0.0372 2.7092 0.0296 2.7881
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Table A-8 Squared errors from predicted values.

S S of linearized model S’
Singapore-Jakarta 31.1213 32.8969 0.0158
Singapore-Kaohsiung 121.0043 127.2445 0.0171
Hong Kong-Singapore 66.8693 69.2825 0.0155
Yantian-Los Angeles 82.8022 89.1935 0.0062
Tokyo-Xiamen 60.0832 68.2390 0.0077

4. ILLUSTRATIVE EXAMPLE 2: DAILY BUNKER CONSUMPTION

Bunker consumption, which impacts the profits of liner shipping companies, is
introduced as another example. Research has shown that daily bunker consumption
has a positive relation with sailing speed, and more specifically a particular power
relation (Wang & Meng 2012; Levenberg 1944; Marquardt1963; Ronen 1982, 2011;
Corbett, Wang & Winebrake 2009; Meng & Weng 2010, 2011). Wang and Meng
(2012) proposed a more general model (referred to as the Bunker-Speed model for
short), as shown in Eq. (5.19), as an alternative to the third power function of sailing

speed:
Q=axvb (A.19)

4.1 Data Description

Data are collected on the basis of three types of ship, from a global liner
company, with 20 observations recorded on each voyage leg, to demonstrate the
relation between daily bunker consumption and average sailing speed (Wang & Meng
2012). The quantity of observations is much smaller than in the GA400 dataset and the
observations are well-distributed along the abscissa, which reduces concerns about

sample selection bias.

4.2 Calibration Using Nonlinear Regression Method

As described in illustrative example 1, the nonlinear LSM starts with an
approximation of the Taylor expansion (see Eq. (A.20)), where i indexes the data, t
denotes the number of iterations, and Q and V represent daily bunker consumption (in

Q —a'v
tons) and sailing velocity (in knots), respectively. Let € = : , Jacobian

tysbt
Q20 — a' V3
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vEt atv'n (V)

matrix J = , and iterative step & = [gt*tl — gt pttl — pt]T.

Vzbot atvzbotln (V20)
Then, the optimal parameters can be calculated at a specific iteration when & is smaller
than a predetermined threshold. In Table A-7, the calibrated parameters are shown in

the second and third columns.

4.3 Using Simple Linear Regression for Linearized Function

By taking the logarithm of both sides of Eq. (A.19), the relation can be simplified

to a linear relation between In Q and In v, mathematically,
InQ=Ina+b XIlnv (A.21)

Thus, the nonlinear regression is transformed into a simple linear regression of
transformed observations. Wang and Meng (2012) apply the LSM to calibrate Eq.
(A.21). Here, we can directly substitute the relevant parameters and transformed

observations into Eq. (A.8), namely,
[lna b]"=(M Inv]"[M Inv]) M Inv]"InQ (A.22)

where M denotes a 20 X 1 matrix of ones. For comparison, the calibrated parameters

are shown in the fourth and fifth columns of Table A-7.

4.4 Result and Discussion

Compared to the GA400 dataset, the bunker consumption and sailing speed
dataset contains much fewer observations (specifically, 20 compared to 47,581) for
each voyage leg and the observations of sailing speed span a much smaller range than
the densities do. Despite that, deviations between the nonlinear regression method and
the linear regression for the linearized function can still be observed in Figures A-12
to A-16. Table A-7 shows the calibrated parameters of the nonlinear regression and
the linear regression of the linearized model. Some of the variances are acceptable, but
others, such as parameter a for the Singapore-Kaohsiung voyage leg, are relatively
huge compared to the magnitudes of the parameters. Nevertheless, 213 demonstrates
that the error between the two regressions does not explode because the sailing speed

is limited to a small range.
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Table A-8

Table A-7 Statistical analysis of nonlinear and linear regressions.

Nonlinear regression Linear regression
Voyage legs a b a b
Singapore-Jakarta 0.0137 2.8918 0.0095 3.0218
Singapore-Kaohsiung 0.0104 3.0019 0.0067 3.1494
Hong Kong-Singapore 0.0043 3.3143 0.0058 3.2138
Yantian-Los Angeles 0.0112 3.1177 0.0094 3.1759
Tokyo-Xiamen 0.0372 2.7092 0.0296 2.7881

compares the two methods based on the sum of squared errors. As the objectives of
the two regression methods are to minimize the squared errors, we believe that the
value of the squared error can assist in comparing the fit performance of the two
regression methods. In Table A-8, S represents the sum of the squared deviations
between the predictions from the nonlinear regression (based on Eq. (A.19)) and the
observations of bunker consumption. On the other hand, S’ represents the sum of the
squared deviations between the predictions from the linear regression (based on Eq.
(A.21)) and the logarithm of bunker consumption. Even though both methods aim at
minimizing the sum of squared errors, the optimization processes rely on different
objective functions, as illustrated in Egs. (A.1) and (A.5) respectively; therefore, we
cannot conclude from S’ being less than S that the linear regression method for the
linearized function outperforms the nonlinear regression method. To standardize the
deviations, we substitute the parameters from the linear regression into Eq. (A.19) and
recalculate the squared deviations between the predictions and observations. The
results are given by the column named S from the linearized model from Table A-8.
It is found that S from the linearized model is greater than S for every voyage leg,
which means that the calibration of the linear regression does not deliver the optimal
choices of parameters, even though the regression achieves the optimal solution in the
linear regression. Thus, the linear regression for the linearized function can predict

with acceptable deviations when the sailing speed is within a given range.
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Figure A-13 Relation between bunker consumption and sailing speed of SG-

KS given by nonlinear regression and linear regression.
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Figure A-14 Relation between bunker consumption and sailing speed of HK-
SG given by nonlinear regression and linear regression.
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Figure A-15 Relation between bunker consumption and sailing speed of YT-

LA given by nonlinear regression and linear regression.
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Figure A-16 Relation between bunker consumption and sailing speed of TK-

XM given by nonlinear regression and linear regression.

5. SUMMARY

In this research, we creatively analyse the feasibility of linear regression for a
linearized model and compare it to the nonlinear LSM. After the linearization, the
nonlinear regression models are transformed into linear relations between functions of
independent or dependent variables, and data transformations of the observations are

also executed, accordingly.

Two illustrative examples are provided to intuitively investigate the reason for
the deviations. In the calibration of the fundamental diagram with the GA400 dataset,
the WLSM is adopted to overcome the drawbacks of selection bias; however, it is
found to be extremely vulnerable to redistributed weights after the data transformation
of the independent variables. We also rearrange the regression model to calibrate the
density-speed relation, in order to see whether the deviation is caused by the regression
models’ mathematical mechanism or by the selection of observations to transform.
After a comparison of the corresponding regressions, it is found that the difference
between the objective functions of the nonlinear regression method and the linear

regression method for the linearized function is the main reason for the sub-optimal
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matrix of parameters, while the redistributed weights contribute more to the deviations

of WLSMT.

The subsequent illustrative example uses the relation between bunker
consumption and sailing speed. Due to the limited quantity and span of observations,
the OLSM is applied to calibrate the two related parameters. The transformation
applied to the bunker-speed model also changes the objective function from Eq. (A.1)
to Eq. (A.5). A deviation is witnessed; however, it does not explode due to the narrow
span of the x-observations. The calibration of the bunker-speed model shows that
linearization can be applied to calibrating a high-order polynomial, but further
investigations, using a large dataset to calibrate the bunker-speed model, will need to

be carried out.

All in all, a suggestion is given that linearization of nonlinear regression needs to be
conditionally applied when dealing with nonlinear regression. More specifically, the
WLSMT need to be avoided when the linearization changes the distribution of the x-
observations, but OLSMT can produce a same regression as long as the y-observations
and the dependent variable are not transformed during the linearization. Once the
dependent variable is transformed, the regression will apply a different objective
function, which means that the calibration will adopt a sub-optimal solution; however,
when the span of x-observation is narrow, linear regression of linearized function can
be approximate into the nonlinear regression of its original function, through which

the nonconvergence due to the narrow span can be also avoided.
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Figures of velocities with regards to the location in a work zone
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Figure B-4 Velocities over longitudinal positions with 20 % penetration.
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Figure B-6 Velocities over longitudinal positions with 50 % penetration.
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Appendix C

Figures of trajectories for work zone traffic regulation
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Figure C-1 Longitudinal position with 10 % CAV penetration rate.
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20.0

17.5 4

15.0 4

12.5 1

10.0 4

1.5 4

Lateral Position

5.0 4

2.5 4

0.0

T T T T T
0 200 400 600 800 1000
Simulation Inverval

Figure C-10 Lateral position with 70 % CAV penetration rate.

136 Appendices



1000
750 A

I.rf,. ) o

500 - A 4
R AL
e Y

v

250 4 Ay / W
D
s o iy

o8]
(=
(=] [=] o
1 1
2
3
L
T ™
ST
o
R
o
Ry
=
—
o
S
e,
e

un

Ppsitipn

T
250

T T
500 750

T
1000

inal
=
(]
o
(=]

Longitud
|
[¥]
o
1

s ! a

Y
i AR
e

o
i rf,;f,f:’r_,

A
Wik
fﬁ?f?r!

i

500 QUL

T T
500 750 1000 0 250

Simulation Inverval

500

T T
750 1000

Figure C-11 Longitudinal position with 80 % CAYV penetration rate.

20.0

17.5 4

15.0 1

12.5 1

10.0 4

Lateral Position

0]

5.0 4

2.5

0.0

T
200

T T
400 600
Simulation Inverval

T
800

T
1000

Figure C-12 Lateral position with 80 % CAV penetration rate.

137

Appendices



1000

1000

750 4
500 A
250 4 i

[ %, I ¥ ]
o w
[=T = R

inal Ppsition
et o
=]
o
(=]

Longitud
|
[¥,]
o

Ln

[=]

=]
I

0 vy
o

7
LA
A

1 |
o

>
S
=

DAL i
S
L
W -}f-‘,d.r,, WA

i A
AR
R

LY
’ L 750 4

IR, /
f:r-f.f.-'.-y', A A

R

e

500
250 +

250 -
500

0_:

0 250

T
500

T
750

T
1000

T T
250 500

T T
750 1000

G

.r-;'ff'?
b
.Jr;;ff e

i
&

i i
i
o, A

i

g //
7
o
£

i
o
7

/;/
.
,af—/;
7,
S
.f{a’. S,

s

e
_
i
.

e
@?

4

-
7
4

=

7 v é’%
7 //4{{ ,7/:":5%/ -
. 4

1000
750 A
500 +
250 1

0 -
F250

)
B

i
ey

i

s
7

i

i

i
i i

&ﬁﬁ////%’/x
;
i

o

0 250

500

T
750

——500
1000

0

Simulation Inverval

T T
750 1000

Figure C-13 Longitudinal position with 100 % CAV penetration rate.

20.

17

15.0 4

Lateral Position

0

9]

1254 [/ || [

2.5

0.0

T
200

T
400

T
600

Simulation Inverval

T T
800 1000

Figure C-14 Lateral position with 100 % CAYV penetration rate.

Appendices

138



Figures of trajectories for incident-affected traffic regulation
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Figure D-4 Lateral position with 20 % CAV penetration rate.

140

Appendices



1000 1000
| Hr ’ A : ' jf/ |
750 y ’ ;?;; . 750
500 ,i%;’f?f; /// /?’f / ; 500 4
_ f,j,rf,; // / / / / .
250 / ﬁ% . %457%; ,, ,/ / // 250
0 77 ”“/// ”’ 0|
—,-.r_ff j;/ /
c ’}?V¢ffémgf i 47”/;//
S2s0 777 i 1250 -
G 7 ff,ﬁff?’fﬁ’ff,fz:’f,fﬂff’:fﬁ;ffi';ff
S-500 L+ i —-500
= 0 250 500 750 1000
£1000 1000
E
2 750 - 750
=3
S 500 - 500
250 - 250
0 7 i 04
Y
2504777 -250 -
{{xr’f;’r’fé& '5'”5?;;{?"’;,'},} .rﬂ
-500 : 500 .
500 750 1000 0 250 500 750 1000

0

Figure D-5 Longitudinal position with 40 % CAYV penetration rate.

250

Simulation Inverval

20.0

17.5 4

15.0 1

12.5 1

10.0 4

0]

Lateral Position

5.0 4

2.5

0.0

T
200

T
400

T
600
Simulation Inverval

Figure D-6 Lateral position with 40 % CAV penetration rate.
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Figure D-11 Longitudinal position with 70 % CAYV penetration rate.
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Figure D-12 Lateral position with 70 % CAV penetration rate.
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Figure D-13 Longitudinal position with 100 % CAYV penetration rate.
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Figure D-14 Lateral position with 100 % CAV penetration rate.
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