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ABSTRACT

Applied Nanophotonics with Two-Dimensional Materials

by

Ngoc My Hanh DUONG

Silicon semiconductor technology has revolutionized electronics beyond the imag-

ination of pioneering scientists. This technology’s rate of progress since 1947 has

been enormous, with the number of transistors on a single chip growing from a few

thousand in the earliest transistors to more than two billion today. However, there

seems to be a limit to the miniaturization of electronics chips, when the size of indi-

vidual transistors can no longer be reduced, or they become unstable when quantum

tunneling starts to kick in at a few atoms limit. Therefore, there is an urgent need

to complement Si CMOS technology and to fulfil future computing requirements

as well as the need for diversification of applications with new materials. In that

context, two-dimensional (2D) materials emerge as a promising alternative. They

demonstrate a range of superior optical and electronic properties, which are essen-

tial for future optoelectronic applications. In the crystal form, thin layers of these

materials are stacked and held together by relatively weak van der Waals forces.

Consequently, it is easier to exfoliate and transfer them to a target substrate by

a simple tape exfoliation and stamping method. This is a substantial advantage

of 2D materials over their three-dimensional (3D) counterparts for incorporation in

devices.

2D materials promise a heterogeneous platform that is particularly appealing for

on-chip integration, owing to their small footprints and compatibility with semicon-

ductor technology. In this thesis, we investigate the engineering of hexagonal boron

nitride (hBN) at the nanoscale to generate single photon emitters in hBN flakes and

nanoparticles. Next, we discuss the effort to develop novel nanophotonic platforms



by integrating hBN quantum emitters in dielectric waveguides; we successfully cou-

pled and propagated quantum light in hBN through the waveguides. Finally, we

present the work on the incorporation of transition metal dichalcogenide (TMDC)

material in a circular Bragg’s grating structure to improve the directionality of the

emitted photon stream and light extraction efficiency.

Dissertation directed by Professor Milos Toth, Professor Igor Aharonovich

School of Mathematical and Physical Sciences
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recorded from samples S1, S2, and S3, respectively. (g – i)

Histograms of antibunching dip values extracted from 18 spots in

sample S1, 24 spots in sample S2, and 10 spots in sample S3. A

value below 0.5 indicating a quantum emitter. All the

measurements were taken with a 568-nm long-pass filter in the

collection path at room-temperature. Insets represent the median

values and standard deviations of antibunching dips measured from

samples S1, S2 and S3, respectively. . . . . . . . . . . . . . . . . . . . 72

5.4 Photodynamics of quantum emitters obtained using Single-Molecule

Localization Microscopy (SMLM) on samples S2 and S3. (a)

Widefield (max intensity projection) and reconstructed image of an

area in sample S2, based on 6000 frames, processed using

Thunderstorm. Scale bar: 5um. The inset shows a zoom of two

emitters in the super-resolved image (Scale bar: 100 nm) (b)

Timetrace of a localized emitter, derived from the localization table

from (a), and an example of the detected ON and OFF times.

Exposure time: 20ms. (c) Distribution of ON/OFF times in the

localized emitters, calculated from the analysis of their timetraces,

as shown in (b). (d) Histogram of the number of blinks (transitions

from OFF to ON state and back) per emitter, detected throughout

the entire acquisition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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6.1 a) Schematic of a monolayer WSe2 on top of a circular Bragg

grating (CBG) structure. b) Atomic force microscope (AFM) image

of the WSe2 monolayer. The height profile (inset) extract from the

white dashed line shows the step at the substrate/WSe2,

corresponding to thickness of the flake, to be ∼0.7 nm. c)

False-colour scanning electron microscope (SEM) image of the

WSe2-CBG structure with specified positions of WSe2 on the center

(1), near center (2), off the gratings (3) and on the gratings but not

at center area (4). Scale bar in (b) and (c) is 5 μm. . . . . . . . . . . 79

6.2 a) Electric field intensity in the XY-plane superimposed to structure

outlines. b) Purcell factor (left axis, red) and collection efficiency

(right axis, blue) calculated using an objective with NA = 0.9 for a

dipole locate in the center of the structure. The peak at ∼750 nm is

a cavity resonant mode and the others at longer wavelength are

oscillations near the Bragg reflection band-edge. c, d) Far-field polar

plots at the cavity resonant wavelength, 750 nm, on (c) and off (d)

the CBG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 PL emission from WSe2 integrated with different CBG structures.

Emission of WSe2 on CBGs with different resonant mode at 728 nm

(a), 732 nm (b) and 741 nm (c). The insets show the CBG’s optical

modes. All the measurements were performed in ambient conditions. 82

6.4 Optical characterizations of the WSe2-CBG hybrid structure. a)

CBG mode measured from a bare CBG at 77K with 532 nm

excitation. Inset: a schematic of the CBG structure with a black

circle showing the place the resonance spectrum is collected. b, c)

PL emission comparison for WSe2 on-center (red line) and

off-grating (blue line) measured at room temperature (b) and 77K

(c). d) Time-resolved PL measurement from WSe2 on center (red

circle) and off-grating (blue circle) at 77 K. . . . . . . . . . . . . . . . 83
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6.5 Lifetime of WSe2 coupled to the bullseye structure at Room

temperature with on-center (red line) and off-gratings (blue line). A

Purcell enhancement of ∼1.7 is calculated based on the lifetime

extracted from the curves. . . . . . . . . . . . . . . . . . . . . . . . . 84

6.6 Temperature-dependent emission characterization of WSe2-CBG

hybrid system. a) PL emission of WSe2 on the center of the CBG

structure and b) off-grating measured from 300K to 77K. The

neutral exciton (X0) and the trion peak (X*) are labelled. c)

Temperature-dependent PL intensity at resonant wavelength of

CBG from WSe2 on-center of the CBG (red circles) and off-gratings

structure (blue circles). . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.7 a–d) Emission from WSe2 at different spots (same ones of figure 1c)

under circularly-polarized excitation at 532 nm. The σ+ and σ− PL

components are measured at each of the spots with the

corresponding values for the contrast ρ listed on each graph. . . . . . 87

7.1 (a)Schematic of the p-i-n device, (b) Confocal PL scan of an

example device with isolated emitters sandwiched between two

layers (example circled in red), confirmed by autocorrelation (inset)

showing g(2)(0) < 0.5 (red line) [9]. Adapted with permission from:

(a) - [9], (b) - [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.1 Schematic of the polarization-measurement experiment in Chapter 6 . 93



Abbreviation

2D: Two-Dimensional

3D: Three-Dimensional

TMDCs - Transition Metal Dichalcgenides

hBN - Hexagonal Boron Nitride

WSe2 - Tungsten Diselenide

PL - Photoluminescence

RWA: Rotating Wave Approximation

SPE: Single Photon Emitter

CVD: Chemical Vapour Deposition

PMMA - Polymethyl Metacrylate

CW - Continuous Wave

AFM - Atomic Force Microscopy

ZPL - Zero Phonon Line

FWHM - Full Width at Half Maximum

PDMS - Polydimethylsiloxane

QD - Quantum Dot

FDTD - Finite-Difference Time-Domain

NA - Numerical Aperture

PSB - Phonon SideBand

AlN - Aluminum Nitride

FFT - Fast Fourier Transform

HBT - Hanbury Brown and Twiss

EMCCD - Electron Multipying CCD
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SMLM - Single Molecules Localization Microscopy

CBG - Circular Bragg Grating

Si3N4 - Circular Bragg Grating

SEM - Scanning Electron Microscopy

CL - Cathodoluminescence



Nomenclature and Notation

Capital letters denote matrices.

Lower-case alphabets denote column vectors.

k denotes modulus of the wave vector.

E is the electric field.

h is the Planck constant n× n.

v denote the photon velocity.

�ε defines the direction of the electric field.

V is the quantization volume.

�ω0 is the energy difference between the two levels.

FP denote the Purcell factor.

Q is the quality factor.

V0 is the mode volume.

I(σ+) and I(σ−) are right and left circularly polarized emission, respectively.

ρ denote the degree of PL polarization.
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