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ABSTRACT 

To satisfy the increasing energy demand and solve the global warming issue, renewable 
clean energy sources were in the urgent requirement. Hydrogen energy was regarded as the 
most potential clean energy suppliers. Electrocatalytic water splitting as one of the most 
promising approach for hydrogen production, has been rapidly blossomed. Tremendous 
efforts have been devoted into the electrocatalysts’ development. However, the design of 
highly efficient non-noble electrocatalysts for large-scale hydrogen production was still a 
tough challenge. In the doctoral work, a series of non-noble metal electrocatalysts were 
prepared and investigated.  

In the first project, we prepared the “superaerophobic” Ni2P nanoarray catalyst grown on a 
nickel foam substrate. The Ni2P catalysts demonstrate an outstanding electrocatalytic 
activity and stability in alkaline electrolyte. Their high catalytic activities can be attributed 
to the favorable electron transfer, superior intrinsic activity and the intimate connection 
between the nanoarrays and their substrate. Moreover, the unique “superaerophobic” 
surface feature of the Ni2P nanoarrays enables a remarkable capability to withstand internal 
and external forces and timely release the in-situ generated vigorous H2 bubbles at large 
current densities (such as > 1000 mA cm-2). Our results highlight that an aerophobic 
structure is essential to catalyze large-scale gas evolution. 

The second project concentrates on tuning the internal structure of nanomaterials to boost 
their intrinsic catalytic properties. We reported an incorporation of sulfur ion into 
crystalline cobalt oxide (S-CoOx) to create structural disorder via a facile room-temperature 
ion exchange strategy. Compared with its crystalline form, the disorder in S-CoOx catalyst 
endows it remarkable catalytic activities for hydrogen evolution reaction (HER) and 
oxygen evolution reaction (OER). The water electrolyser adopting S-CoOx as cathode and 
anode requires mere 1.63 V to reach 10 mA cm-2 in 1 M KOH. Charaterizations and 
analysis demonstrate that the enhanced electrocatalytic properties could be attributed to 
increased low oxygen coordination, more defect sites and modified electron densities 
characteristics. This work provides the new insight on designing structural disordered 
catalysts for energy storage areas. 

In this thesis, the two projects are both about the design of the freestanding and three-
dimensional materials. Their advantages could be concluded into two aspects. One is the 
more effective electron and mass transfer pathway, providing the effective intrinsic catalyst 
properties. Other is the solid connection, guaranteeing their stabilities even at the high 
current densities. These findings spotlight the usage of freestanding catalysts in the energy 
storage and conversion devices. 
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