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Figure 4.5. Comparisons of light-dependant dynamic quenching patterns between (a) Pocillopora 
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Thesis abstract 

Algal endosymbionts (family Symbiodiniaceae) fuel the metabolism of reef-forming 

corals through uptake and utilisation of inorganic carbon (Ci) from photosynthesis. Changes in 

photosynthetic performance both within, and between endosymbiont taxa influence the extent 

of organic carbon ultimately translocated to the host coral. However, how such changes are 

regulated by plasticity in light harvesting, versus Ci assimilation processes remains unknown. 

In this thesis, I therefore built on novel approaches to assess functional diversity of fitness traits 

across Symbiodiniaceae to identify the extent with which Ci-uptake and incorporation differed 

amongst taxa and the extent with which differences could be reconciled against evolutionary 

adaptation across the family to sustain reef functioning in response to climate change. 

This thesis focused on direct assessment of Ci-uptake, and how it is linked to light 

harvesting and utilisation by Symbiodiniaceae both ex hospite (in culture) and in hospite (in 

symbiosis with their host). I first cultured a broad range of Symbiodiniaceae taxa to assess how 

Ci was invested into cellular uptake, excretion, and growth; and how these metrics changed 

when three isolates of different thermal tolerances were subjected to sub-optimal conditions of 

growth. I further examined how these different thermo-tolerant Symbiodiniaceae coped with a 

stress-inducing increase of temperature. In parallel with photophysiology and Ci-uptake rate 

measurements, transcriptomics were carried out to resolve the underlying molecular network 

driving physiological response to heat stress. Finally, I extended this laboratory-based 

approach to examine Ci-uptake performance of natural coral communities across complex 

environmental gradients (mangrove vs. reef corals) on the Great Barrier Reef to resolve the 

adaptations of symbionts linked to their survival to extreme environments. 

My results revealed that environmental regulation outweighed evolutionary adaptation 

of Symbiodiniaceae in their capacity for Ci-uptake, suggesting that their ecological success 
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predominantly relies on plasticity of upstream photosynthetic processes (efficiency of light-

harvesting and non-photochemical energy quenching) rather than those downstream (Ci-

uptake, assimilation, and excretion). Despite exhibiting similar trends in functional gene 

expression, each studied Symbiodiniaceae isolate exhibited different photophysiology and Ci-

uptake rates in response to thermal stress for both (previously well studied) light reactions and 

dark reactions of photosynthesis. When in symbiosis, flexibility in the major Symbiodiniaceae 

taxa between reef and mangrove corals was associated with a reduced Ci incorporation in 

mangrove corals compared to reef corals. Together, these results will serve as a stepping stone 

to future research on the long term, aiming to improve worldwide reef health in response to 

global climate change. 
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