
New Stempation:

A COMPREHENSIVE ANALYSIS OF ADIPOSE STEM CELLS

DOCTOR OF PHILOSOPHY

FACULTY OF SCIENCE

UNIVERSITY OF TECHNOLOGY SYDNEY

I, Naomi Koh Belic, declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Science Faculty at the University of Technology Sydney. This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This document has not been submitted for qualifications at any other academic institution. This research is supported by an Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication. 14th of July 2020

Primary supervisor: Dr Matthew Padula Co-supervisors: Prof Bruce Milthorpe and Dr Michael Lovelace Cover artwork: Nina Chhita

Acknowledgements

Over the last eight years that I've been at the University of Technology Sydney my life has been tumultuous. But there has always been one place that's remained with me through it all. I've always found comfort on a tiny red plastic stool, waiting under the dusty grapes hung up on the roof, littered with Christmas decorations that have never been taken down, the giant deer rug staring into my soul... sometimes my mind wanders, and I remember the round aquarium on the wall that housed a dead goldfish for years. I'm never left with my thoughts for long before my wobbly table is piled high with steamed egg and chive dumplings, hand sliced noodles with fragrant spicy sauce and special braised eggplant. The trifecta that I fell in love with when I had first moved to Sydney at the big age of 17. Chinese Noodle House has seen me through my highest highs while I sloppily scoffed dumplings with a plastic cup full of wine in hand surrounded by friends, and in my absolute lowest of lows when it offered a place where I could come on my own and find joy in the food in front of me. Thank you for offering stability amongst your chaos and for always keeping my belly and heart full.

Table of contents

Chapter One	
The hope and hype of stem cells	1
Chapter Two	
Chewing the fat: proteomic analysis of human adipose stem cells1	.6
1. Introduction1	16
1.1 Background 1	16
1.2 Chapter proposal 2	20
2. Methods2	<u>'</u> 4
2.1 Stem cell isolation and expansion 2	24
2.2 Extraction of cellular fractions 2	25
2.3 Single-pot solid-phase-enhanced sample-preparation	26
2.3 Membrane bound protein extraction 2	27
2.4 Liquid chromatography–mass spectrometry 2	28
2.5 Proteomic data analysis 2	28
2.6 Cytokine detection and analysis 3	30
3. Results3	;1
4. Discussion6	5 5
4.1 Proteomic analysis of ASCs6	55
4.2 Future directions	35
5. Conclusions	39
6. Supplementary figures9)0

Chapter Three

2. Methods	97
1.2 Chapter Proposal	96
1.1 Background	91
1. Introduction	91
cryopreservation on human adipose stem cells	91
Trick or treatment: the effects of xeno free isolation and	

2.1 Xeno free method	
2.2 Cryopreserved method	
3. Results	98
3.1 Traditional and xeno free media	
3.2 Fresh and cryopreserved ASCs	
4. Discussion	144
4.1 Traditional media and xeno free ASCs	
4.2 Cryopreserved and fresh ASCs	
4.3 Future directions	
5. Conclusions	166
6. Supplementary figures	168

Chapter Four

Don't tryp: the kynurenine pathway in human adipose stem cells170
1. Introduction
1.1 Kynurenine pathway 170
1.2 Kynurenine pathway in stem cells174
1.3 Kynurenine pathway in adipose stem cells 177
1.4 Chapter aims 178
2. Methods
2.1 Tissue culture
2.2 Metabolites
2.3 Microscopy
3. Results
3.1 Kynurenine pathway metabolites
3.2 Adipose stem cell confluence
4. Discussion
4.1 Kynurenine pathway in adipose stem cells
4.2 Future directions 192
5. Conclusion

Chapter Five

Multiple sclerosis: made simple	195
1. Introduction	195
1.1 Background	195
1.2 Chapter proposal	196
2. Method	200
2.1 Videos	200
2.2 Self-regulation questions	203
2.3 Scientific questions	204
2.4 Demographic questions	209
2.5 Instructions to participants	210
3. Results	212
4. Discussion	218
4.1 Videos for multiple sclerosis education	218
4.2 Future directions	219
5. Conclusion	221
Chapter Six	

Stemming the tide of misinformation	.222
References	.232

List of tables

Chapter One	
The hope and hype of stem cells	.1

Chapter Two

Chewing the fat: proteomic analysis of human adipose stem cells	16
Table 1: Proteins detected from ASC whole cell lysate, membrane bound fraction and	
extracellular vesicles from 8 patient samples	31

Chapter Three

Trick or treatment: the effects of xeno free isolation and	
cryopreservation on human adipose stem cells	91
Table 1: Proteins detected from the ASCs of 6 patients.	
Table 2: Proteins detected from whole cell lysate of fresh and cryopreserved AS	Cs from 5
patient samples	122

Chapter Four

Don't tryp: the kynurenine pathway in human adipose stem cell	s170
Table 1: Kynurenine/tryptophan ratio of untreated and IFN-γ treated ASC media	183

Chapter Five

Multiple sclerosis: made simple	195
Table 1: Self-regulation questionnaire results pre videos	213
Table 2: Self-regulation questionnaire results post videos	213
Table 3: Pre and post video ANOVA data summary	214
Table 4: Pre and post video summary of ANOVA findings	214
Table 5: Open ended answer examples question 18	215
Table 6: Open ended answer examples question 21	215
Table 7: Open ended answer examples question 22	216
Table 8: Open ended answer examples question 23.	216

Chapter Six

Stemming the tide of misinformation2	2) [2
--------------------------------------	---	-----	---

List of figures

Chapter One
The hope and hype of stem cells1

Chapter Two

Chewing the fat: proteomic analysis of human adipose stem cells1	16
Figure 1: ASC differentiation capacity.	
Figure 2: ASC proteomic analysis workflow.	
Figure 3: Proportional Venn diagram of ASC whole cell lysate, membrane bound fraction a	
extracellular vesicles.	
Figure 4: ASC proteins from the whole cell lysate, membrane bound fraction and	
extracellular vesicles sorted by molecular function	33
Figure 5: ASC proteins from the whole cell lysate, membrane bound fraction and	
extracellular vesicles sorted by biological process	34
Figure 6: ASC proteins from the whole cell lysate, membrane bound fraction and	
extracellular vesicles sorted cellular compartment.	35
Figure 7: ASC proteins from the whole cell lysate, membrane bound fraction and	
extracellular vesicles sorted protein class	36
Figure 8: ASC proteins from the whole cell lysate, membrane bound fraction and	
extracellular vesicles sorted protein pathway.	41
Figure 9: STRING network of detected proteins unique to ASC whole cell lysate	43
Figure 10: STRING network of detected proteins unique to ASC membrane bound fraction.	
	44
Figure 11: STRING network of detected proteins unique to ASC extracellular vesicles	
Figure 12: Clustered heatmap of proteins present in both ASC whole cell lysate and	
membrane bound fraction	46
Figure 13: STRING network of proteins detected in Cluster 1 of ASC whole cell lysate and	
membrane bound fraction	48
Figure 14: STRING network of proteins detected in Cluster 2 of ASC whole cell lysate and	
membrane bound fraction	49
Figure 15: STRING network of proteins detected in Cluster 3 of ASC whole cell lysate and	
membrane bound fraction	50
Figure 16: STRING network of proteins detected in Cluster 4 of ASC whole cell lysate and	
membrane bound fraction	51
Figure 17: Clustered heatmap of proteins present in both ASC whole cell lysate and	
extracellular vesicles.	53
Figure 18: STRING network of proteins detected in Cluster 1 of ASC whole cell lysate and	
extracellular vesicle fraction.	54
Figure 19: STRING network of proteins detected in Cluster 2 of ASC whole cell lysate and	
extracellular vesicle fraction.	55
Figure 20: STRING network of proteins detected in Cluster 3 of ASC whole cell lysate and	
extracellular vesicle fraction.	56

Figure 21: STRING network of proteins detected in Cluster 4 of ASC whole cell lysate and
extracellular vesicle fraction
Figure 22: Clustered heatmap of proteins present in both ASC extracellular vesicles and
membrane bound fraction
Figure 23: STRING network of proteins detected in Cluster 1 of ASC extracellular vesicle and
membrane bound fraction60
Figure 24: STRING network of proteins detected in Cluster 2 of ASC extracellular vesicle and
membrane bound fraction61
Figure 25: STRING network of proteins detected in Cluster 3 of ASC extracellular vesicle and
membrane bound fraction
Figure 26: STRING network of proteins detected in Cluster 4 of ASC extracellular vesicle and
membrane bound fraction
Figure 27: ASC secreted cytokines 64

Chapter Three

Trick or treatment: the effects of xeno free isolation and	
cryopreservation on human adipose stem cells	.91
Figure 1: Venn diagram of ASC whole cell lysate and membrane bound fraction from both traditional and xeno free media.	
Figure 2: ASC proteins from the traditional media whole cell lysate, traditional media membrane bound fraction, xeno free whole cell lysate and xeno free membrane bound	
fraction, sorted by molecular function.	100
Figure 3: ASC proteins from the traditional media whole cell lysate, traditional media membrane bound fraction, xeno free whole cell lysate and xeno free membrane bound	
fraction, sorted by biological process Figure 4: ASC proteins from the traditional media whole cell lysate, traditional media	101
membrane bound fraction, xeno free whole cell lysate and xeno free membrane bound fraction, sorted by cellular component	102
Figure 5: ASC proteins from the traditional media whole cell lysate, traditional media membrane bound fraction, xeno free whole cell lysate and xeno free membrane bound	
fraction, sorted by protein class.	103
Figure 6: ASC proteins from the traditional media whole cell lysate, traditional media membrane bound fraction, xeno free whole cell lysate and xeno free membrane bound	
fraction, sorted by pathways.	
Figure 7: STRING network of detected proteins unique to traditional media whole cell lys	
Figure 8: STRING network of detected proteins unique to traditional media membrane bound fraction.	111
Figure 9: STRING network of detected proteins unique to xeno free whole cell lysate Figure 10: STRING network of detected proteins unique to xeno free membrane bound	
fraction	113
Figure 11: Clustered heatmap of proteins present in both traditional media and xeno free ASC whole cell lysate	5
Figure 12: STRING network of proteins detected in Cluster 1 of ASC traditional media and xeno free whole cell lysate	ł
	±±0

Figure 13: STRING network of proteins detected in Cluster 2 of ASC traditional media and	7
xeno free whole cell lysate	/
Figure 14: STRING network of proteins detected in Cluster 3 of ASC traditional media and	_
xeno free whole cell lysate	3
Figure 15: STRING network of proteins detected in Cluster 4 of ASC traditional media and	
xeno free whole cell lysate 119)
Figure 16: STRING network of proteins detected in Cluster 5 of ASC traditional media and	
xeno free whole cell lysate	
Figure 17: Traditional and xeno free ASC secreted cytokines 122	Ĺ
Figure 18: Proportional venn diagram of fresh and cryopreserved ASC whole cell lysate 123	3
Figure 19: Fresh and cryopreserved ASC proteins sorted by molecular function 124	ł
Figure 20: Fresh and cryopreserved ASC proteins sorted biological process 125	5
Figure 21: Fresh and cryopreserved ASC proteins sorted cellular compartment	5
Figure 22: Fresh and cryopreserved ASC proteins sorted protein class	7
Figure 23: Fresh and cryopreserved ASC proteins sorted pathways)
Figure 24: STRING network of detected proteins unique to fresh ASC whole cell lysate 13:	
Figure 25: STRING network of detected proteins unique to cryopreserved ASC whole cell	
lysate	ł
Figure 26: Clustered heatmap of proteins present in both fresh and cryopreserved ASC	
whole cell lysate	5
Figure 27: STRING network of proteins detected in Cluster 1 of fresh and cryopreserved ASC	
whole cell lysate	
Figure 28: STRING network of proteins detected in Cluster 2 of fresh and cryopreserved ASC	
whole cell lysate	3
Figure 29: STRING network of proteins detected in Cluster 3 of fresh and cryopreserved ASC	
whole cell lysate)
Figure 30: STRING network of proteins detected in Cluster 4 of fresh and cryopreserved ASC	
whole cell lysate)
Figure 31: STRING network of proteins detected in Cluster 5 of fresh and cryopreserved ASC	
whole cell lysate	L
Figure 32: STRING network of proteins detected in Cluster 6 of fresh and cryopreserved ASC	
whole cell lysate)

Chapter Four

Don't tryp: the kynurenine pathway in human adipose stem cells170
Figure 1: Kynurenine pathway 171
Figure 2: Tryptophan concentration of media for untreated ASCs, IFN-y treated ASCs and
neat media
Figure 3: Kynurenine concentration of media for untreated ASCs, IFN-y treated ASCs and
neat media
Figure 4: Kynurenic acid concentration of media for untreated ASCs, IFN-γ treated ASCs and
neat media
Figure 5: Anthranilic acid concentration of media for untreated ASCs, IFN- $\!\gamma$ treated ASCs and
neat media
Figure 6: Quinolinic acid concentration of media for untreated ASCs, IFN-y treated ASCs and
neat media

Figure 7: Picolinic acid concentration of media for untreated ASCs, IFN-γ treated ASCs a	nd
neat media	187
Figure 8: Confluency of untreated and IFN-γ treated ASCs	188
Figure 9: Confluency of untreated and quinolinic acid treated ASCs	188

Chapter Five

Multiple sclerosis: made simple	195
Figure 1: Chronic(les) of MS.	
Figure 2: Lessons in lesions.	
Figure 3: Inflammation information	201
Figure 4: Cause for thought	202
Figure 5: Tricky treatments	202
Figure 6: (Re)searching high and low.	203
Figure 7: Percentage scores of scientific questions pre and post episode	212
Figure 8: Education level of participants	217

Chapter Six

Stemming the tide of misinformation22	22
---------------------------------------	----

Abstract

Stem cells are defined by their ability to self-renew and differentiate into multiple cell types. Because of this, they have potential to repair or replace damaged tissue and are of great interest for regenerative medicine which is advancing at an astonishing rate. However, patient hope is also being exploited by predatory clinics offering unproven stem cell treatments. These treatments have little to no scientific evidence of safety, let alone efficacy and are detrimental to scientific progression. The growth of unproven autologous stem cell treatments can be attributed to the realisation that liposuction can be used to extract stem cells. As adipose stem cells are being used in both proven and unproven treatments it is vital to understand how they function. This project successfully characterised the proteome of adipose stem cells through the analysis of the whole cell lysate, membrane bound fraction, extracellular vesicles and select secreted cytokines. Isolation and cryopreservation techniques were also investigated as there is a lack of standardisation in these areas. When comparing traditional and xeno free media for the isolation and expansion of adipose stem cells, there was a distinct shift in the proteome, and this is largely associated with proteins involved in metabolism. Furthermore, the cytokine profiles were wildly different, and the absence of vital stem cell cytokines suggest that traditional media may be preferential, however substantially more research is required to validate this. It was revealed in this study that cryopreservation also causes a shift in the adipose stem cell proteome, albeit not as distinct as the one observed from different media. This proteomic shift also manifests in the metabolome with evidence of particular pathways being altered after cryopreservation, but again this requires further validation. Metabolites involved in the kynurenine pathway were further investigated as this pathway accounts for the metabolism of more than 95% of tryptophan. This is the first study to confidently demonstrate that the kynurenine pathway of tryptophan metabolism is activated by IFN-y in human adipose stem cells. Lastly, because it is the responsibility of scientists to ensure that science is accessible for everyone, the use of digital media for scientific education was explored. The knowledge from this project can be adapted to produce better scientific educational video content, and should be employed to educate the broader community about stem cell therapies, as it is known that patients use digital media to access unproven treatments.

Abbreviations

ASC adipose stem cell
BMSC bone marrow stem cell
DMEM Dulbecco's modified eagle medium
ESC embryonic stem cell
FBS fetal bovine serum
FGF fibroblast growth factor
FSC fetal stem cell
G-CSF granulocyte colony-stimulating factor
GM-CSF granulocyte macrophage colony-stimulating factor
HSC hematopoietic stem cell
IDO 1 indoleamine 2,3-dioxygenase
IFN interferon
IL interleukin
IP interferon gamma-induced protein
KMO kynurenine 3-monooxygenase
LC-MS/MS liquid chromatography coupled with tandem mass spectrometry
MCP monocyte chemotactic protein
MIP macrophage inflammatory protein
NSC neural stem cell
PGDF platelet-derived growth factor
RANTES regulation on activation normal T cell expressed and secreted
TDO tryptophan 2,3-dioxygenase
TNF tumour necrosis factor
VEGF vascular endothelial growth factor