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ABSTRACT

R
ecently, In-band full-duplex (IBFD) transmission, which allows transceivers to

transmit and receive simultaneously on a single frequency band, is regarded

as a promising solution for the problem of frequency spectrum shortage. How-

ever, a fundamental challenge encountered in realizing IBFD communications is self-

interference (SI), which is the strong interference imposed by the transmitter blocking its 

co-located receiver from the signal of interest. Therefore, to enable the IBFD mode, great 

efforts have been devoted to mitigate SI to beyond the noise floor level. Among various 

approaches proposed in the radio frequency (RF) domain, analog least mean square

(ALMS) loop is a promising structure for SI cancellation (SIC) due to its simplicity and 

efficiency. However, the behaviours of the ALMS loop have not been fully understood and

its application was proposed for single-carrier and single antenna IBFD communication 

systems only.

  This study aims at tackling the problem of SI in the RF domain for various IBFD 

systems using the ALMS loop. The contributions of this thesis are as follows. Firstly, 

the performances of the ALMS loop with different transmitted signals is investigated. 

It shows that due to the cyclostationary effect of the transmitted signals, SI cannot be 

removed completely by the ALMS loop but there exists an irreducible SI. The lower

bounds of this irreducible SI are derived for both single-carrier and multi-carrier IBFD 

systems. Additionally, it proves that the ALMS loop also performs well with deterministic 

signals in full-duplex synthetic aperture radars. Secondly, by characterizing the ALMS 

loop in the frequency domain, the achievable levels of SIC by the ALMS loop in both

xvii
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analog and digital domains are revealed. Thirdly, the performance of the ALMS loop

under hardware impairment conditions is investigated. More importantly, a degradation

bound is found to determine how much of compensation should be obtained from other

means of SI mitigation for a given level of imperfection. Fourthly, a novel beam-based

analog SIC structure employing the ALMS loop is proposed for IBFD multiple input

multiple output (MIMO) systems to significantly reduce the number of adaptive filters

required for SIC in IBFD MIMO systems. Finally, a practical structure of the ALMS loop

is proposed and a prototype is implemented using off-the-shelf components to provide

experimental results confirming all the theoretical findings. The analyses and practical

results in this thesis provide a comprehensive view of the ALMS loop and prove its

potential application for SIC in different IBFD radios.
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1
INTRODUCTION

1.1 Background

1.1.1 In-Band Full-Duplex Operation

Wireless communication plays a crucial role in our lives. People, vehicles and devices are

all surrounded by radio signals serving the demands of communications, entertainment,

safety, control and so on. It is forecasted that the number of networked devices and

connections will be up to 27.1 billions in 2021 [1]. In addition, wider bandwidth allocated

for each connection is also demanded. Nowadays, communications include not only voice

call and text messages, but also video conferencing, streamlines, data sharing and so

on. However, radio spectrum, the medium of wireless transmission remains unchanged

and hence becomes a bottleneck for the growth of wireless communication. Therefore,

spectral resource must be exploited more efficiently. Currently, wireless devices operate

in the half-duplex mode in which two different frequency bands are required to transmit

and receive. Otherwise, if only a single frequency band is allocated, the transceiver has

to transmit and receive at different time slots. Therefore, to enhance the efficiency of

spectral exploitation, in-band full-duplex (IBFD) operation has been proposed. In this

mode, only one frequency band is required for a pair of transceivers to communicate

simultaneously. Since IBFD can double channel capacity, it is determined as one of the

key technologies for the fifth generation (5G) mobile network [2].

Beside doubling channel capacity, IBFD transmission is also beneficial in various
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applications. Firstly, for a multi-hop network, an IBFD relay node can forward the

receiving packets. Therefore, transmission delay can be significantly reduced compared to

that of a half-duplex counterpart. Secondly, in a cognitive radio network, a secondary user

can easily recognize the appearance of the primary user by sensing while transmitting.

As a result, the secondary user will not interfere with the primary one, and collision will

be avoided [3]. Another advantage of this innovation can be found in cellular networks

where IBFD allows to reduce the interference from the same frequency cells. Hence,

the distance between the same frequency cells can be reduced. IBFD can also help to

solve the hidden terminal problem in multiple access networks. Considering a scenario

of multiple nodes having data in their buffer for direct transmission to and reception

from a common access point (AP). If a node starts transmitting its data to the AP and the

AP simultaneously starts transmitting data back to this node, the other nodes will hear

the transmissions from the AP and delay their transmissions to avoid collisions. Even if

the AP has no data to send back to the first node, it still repeats an “ACK" for that node

so as to prevent the other nodes from transmitting [4]. Finally, IBFD is expected to be

a key advantage in military operations because this technology can be used in a joint

jammer and communication system which can make an electronic attack to opponents

while intercepting the signal of interest [5].

1.1.2 Self-Interference

Over decades, IBFD was believed to be impossible as stated in [6] because of interference.

Due to the IBFD operation, the transmitted signal interferes to its co-located receiver,

so called self-interference (SI), by propagating over a very short distance (in separated

antenna case) and being reflected from the surrounding obstacles. Since the SI power

is much higher than that of the signal of interest, it can saturate or even damage the

receiver and hence, blocks the receiver from the desired signal. The problem of SI is

demonstrated in Fig. 1.1 [7].

Obviously, removing SI is a fundamental problem to enable the IBFD mode. Since

SI has the same frequency as the desired signal, it cannot be removed by a traditional

band-pass filter as in half-duplex systems. Instead, some mechanisms are required to

mitigate the level of SI to below the noise floor before decoding the received signal. As

an example, the requirement of SI cancellation (SIC) for a WIFI system is presented

in Fig. 1.2 [8]. Particularly, in a WIFI system, the transmit power is 20 dBm, while the

receiver noise floor is approximately -90 dBm. To enable the IBFD mode, at least 110 dB

of SIC must be obtained to reduce the SI below the level of noise floor. However, realizing

2
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Figure 1.1: IBFD radio terminal.

 

Figure 1.2: SI components and the requirements of SIC.

such 110 dB of SIC is very challenged since the SI is unknown. Although the digital

baseband signal is known by the transmitter, the radio frequency (RF) transmitted signal

is quite different from its baseband incarnation because analog components in the radio

transmit chain affect the signal in both linear and non-linear ways. For example, the

power amplifiers can distort the signal by generating the high-order components and

add more noise. The RF signal can also be slightly inaccurate due to the local oscillator

which may have frequency shift or phase noise. As a result, the RF transmitted signal

includes the up-converted version of the baseband signal, the high order components as

well as unknown transmitter noise.

In order to tackle the problem of SI, intensive researches have been conducted us-
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ing many different approaches which can be categorized into three steps including

propagation-domain suppression, analog domain domain, and digital domain cancella-

tion [7] as depicted in Fig. 1.3. Particularly, propagation domain approaches intend to

 

Figure 1.3: Three steps of SIC.

suppress the level of SI at the input of receive antenna. Analog domain cancellation

methods, which can be implemented in RF stage or intermediate frequency stage, aim to

generate a signal mimicking SI to subtract it from the received signal. Digital domain

cancellation employed the knowledge of clean transmitted data from the transmitter

side to estimate the digitized SI. Obviously, to achieve the requirement of SIC, two or

three steps of SI mitigation must be combined.

1.2 Motivation and Contribution

With many great potential benefits, IBFD is one of the key technologies for future

wireless communications. However, to make this scheme practical, great efforts need to

be devoted to tackle the fundamental problem of SIC. As indicated before, since SI is

unknown, suppressing it to below the level of noise floor is challenged especially when

considering other factors such as device size, power consumption, implementation cost,

and complexity.

Among various SI mitigation approaches in the literature, analog least mean square

(ALMS) loop proposed in [9] is a promising structure to sufficiently cancel SI in the radio

frequency domain with low complexity. By using a low-pass filter to replace an ideal

integrator, the ALMS loop forms an adaptive filter without any requirement of digital

signal processing and channel state information.

This thesis aims at investigating the behaviors of the ALMS loop and adopting it in

any IBFD systems. To achieve this ultimate goal, there are five research problems left
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from [9] need to be tackled as shown in Fig.1.4. The first problem is the consideration
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Figure 1.4: Five researches problems.

of transmitted signal properties on the performance of the ALMS loop. In [9], single-

carrier signalling has been investigated. In this thesis, the analyses are extended to

multi-carrier signalling such as orthogonal frequency-division multiplexing (OFDM)

which is commonly used in WIFI systems, and deterministic chirp signals in radar.

Secondly, the performance lower bounds in both RF and digital domains are derived

to estimate the level of cancellation given by the ALMS loop. Thirdly, the problem of

in-phase/quadrature (I/Q) imbalance occurred in the structure is considered to identify

its impact on the performance of the ALMS loop. Next, the problem of how to adopt

this adaptive filter in IBFD MIMO systems is investigated. Finally, the challenge in

implementing the ALMS loop using off-the-shelf components and obtaining the practical

results is tackled to validate the theoretical analyses.

The contributions of this thesis are summarized as follows. Firstly, it shows that the

ALMS loop can work with both single-carrier and multi-carrier signallings. By proposing

a general solution of the weighting error function, this thesis provides a tool to examine

the performance of the ALMS loop with any transmitted signals which satisfy a given

condition. Using this solution, it shows that the weighting error function of the ALMS

loop in case of OFDM signal has wider variation range compared to that in single-carrier

systems. As a result, the irreducible interference suppression lower bound is potentially

much smaller compared to that in OFDM systems. In addition, the investigation of the

ALMS loop with chirp signals provides a design guide for this structure so that it can be

applied in full-duplex synthetic aperture radar systems.
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Secondly, a simulation result in [9] shows that the ALMS loop amplifies the high

frequency components at the edge of residual signal spectrum, yet this phenomenon has

not been investigated. By analyzing the residual SI power in the frequency domain, the

attenuation factor which causes this effect is identified. Furthermore, by considering

the residual SI at both RF domain and digital domain, it is shown that this effect will

be removed by the matched filter. Thus, the level of cancellation will be much higher

considering at the digital domain. Then, by deriving the interference suppression lower

bounds, a formula is provided to estimate the level of cancellation achieved by the ALMS

loop from its parameters and transmitted signal properties such as the roll-off factor of

the transmit pulse shaping filter and its power.

Thirdly, taking into account the problem of I/Q imbalance within the ALMS loop,

this thesis shows that I/Q imbalance leads to the change of loop gain but it can be

easily compensated by adjusting the gain at the LNA. In addition, stationary analysis

quantifies the impact on the level of cancellation by a degradation factor and proves that

the ALMS loop is robust to the frequency-independent I/Q imbalance. More importantly,

by revealing the upper bound of the degradation factor, it provides a means to define how

much compensation from other SIC stages is required for a given level of I/Q imbalances.

Fourthly, a novel beam-based analog SIC structure is proposed to significantly reduce

the hardware complexity for IBFD MIMO systems. In an N × N IBDF system, the

SI appearing at each receive chain are from N transmitters so that conventional N2

adaptive filters are required. If the adaptive filter involves digital signal processing (DSP)

to update its tap weights, the DSP complexity also increases quadratically compared

to that in single antenna systems. The proposed structure can reduce the number of

adaptive filters to linearly scale with the number of transmitted beams. An algorithm

to select reference signals for the ALMS loops is also developed to further simplify the

structure.

Finally, a practical structure of the ALMS loop is proposed to implement using off-

the-self components. Based on this structure, a prototype of the ALMS loop with two taps

has been developed to provide some experimental results. Particularly, measurement

results with different signal bandwidths are about 3 dB lower than the estimated levels

calculated from theoretical analyses which are only obtained with much higher number

of taps. The experiments with different roll-off factors and an OFDM signal confirm the

conclusions drawn from the first research problem.
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1.3 Thesis Outline

Chapter 1 introduces the background information about IBFD operations and the prob-

lem of SIC in realizing this mode. Research motivation and contributions are then

presented in this chapter.

Chapter 2 reviews the state-of-the-art approaches proposed in the literature to

mitigate SI. This chapter also presents the background of the LMS algorithm and how

the ALMS loop is developed from this technique.

Chapter 3 presents the study on the impact of transmitted signal property on the

performance of the ALMS loop.

Chapter 4 evaluates the behaviors of the ALMS loop in the frequency domain and

considers the performance bounds in both RF and digital domains.

Chapter 5 considers the impacts of I/Q imbalances occurred in the ALMS loop on its

performance. An upper bound of the degradation factor is derived to estimate how much

of compensation is required in other stages.

Chapter 6 proposes a beam-based analog SIC structure which employs the ALMS

loops as adaptive filters. The development of the proposed structure is described from

mathematical aspect to hardware implementation.

Chapter 7 focuses on the practical perspective of the ALMS loop by proposing an

implementable structure using of-the-shelf components. It then describes the prototype

and experiment results which verify all theoretical analyses.

Chapter 8 summarizes the major contributions of this research, and proposes future

work plan.

7
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2
LITERATURE REVIEW

In this Chapter, some research works related to SI mitigation are firstly reviewed. Then,

brief information about least mean square algorithm in digital adaptive filter is provided.

Finally, a review on the operation and performance of the ALMS loop proposed in [9] is

presented.

2.1 Self-Interference Mitigation

2.1.1 Propagation Domain Suppression

Propagation domain methods aim at reducing the level of SI at the input of the receive

chain. These techniques can be further categorized into passive methods and active

approaches [10], which are briefly described as follows.

Some typical passive propagation domain methods are presented in Fig. 2.1. It is seen

that, in most of these techniques, multiple antennas are employed to reduce the coupling

from the transmitter to the receiver. In Fig. 2.1(a), physical separation techniques locate

transmit and receive antennas at a distance d to obtain a free space propagation loss

[11, 12]. The relationship between d and the level of SI suppression for the carrier

frequency of 2.45 GHz is illustrated in Fig. 2.2 [13]. Obviously, the longer d is, the

higher attenuation will be achieved. Although this approach may not be suitable for

compact size devices, its simplicity is very useful to quickly develop an IBFD front-end.

Physical separation can be combined with spatial separation, demonstrated in Fig. 2.1(b)

9
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Figure 2.1: Propagation domain passive approaches: (a) Physical separation; (b) Spatial
separation; (c) Antiphase control; (d) Cross-polarization.

 

Figure 2.2: Amount of suppression by antenna separation at 2.45 GHz.

to increase the attenuation. In this case, directional antennas are employed and pointed

to different directions to reduce their spatial beam overlap [14]. This method is suitable

10
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for IBFD relay systems.

Figure 2.1 (c) is an example of passive phase control approaches which aim to create

near-field nulls in the antenna radiation pattern. In this configuration, the transmitted

signal and its 180 degree phase shifted version are respectively fed into two transmit

antennas which are symmetrically located at a distance d from the receive antenna.

Since the RF signals from the two transmitted antennas are out of phase and have the

same amplitude, they cancel each other at the receive antenna. This method has been

demonstrated for dipole [15], monopole [16] and patch [17] antennas. Since the antiphase

transmitted signals are simultaneously emitted, this approach requires a careful system

planning to avoid the far-field impact.

Cross-polarization methods shown in Fig. 2.1(d) isolate the transmitter and receiver

by using cross-polarized antennas. Demonstrations of this method can be found in [18]

with linear polarization and in [19, 20] with circular polarization. As pointed out in [10],

the level of isolation achieved by this approach depends on manufacturing accuracy of

antennas as well as the surrounding environment.

Active propagation domain methods require additional circuits or signal processing

to mitigate the level of SI presented at the receiver. A popular approach in this category

is using an impedance tuning circuit which includes a network of adjustable capacitors

or varactors at the output of the receive antenna to terminate the SI from antenna to the

ground [21, 22]. However, this technique can only mitigate the direct propagation path

of the SI. For a complicated SI channel such as in IBFD MIMO systems, the impedance

tuning circuit becomes less efficient.

Another active propagation domain method is beamforming in the transmitter to

create a null at the location of receive antennas. Beamforming can be controlled by

digital signal processing [23, 24] or by analog components in the RF front-end [25]. When

beamforming is formed in the digital domain, it requires multiple transmit antennas.

As for the case of analog, a combination of attenuators and phase shifters can control

the transmit beam with just one antenna. In both cases, consideration on the far-field

radiation is required to avoid the impact of this technique on the communication link.

2.1.2 Digital Self-Interference Cancellation

Digital cancellation is applied after ADC to mitigate the residual SI and recovered

the signal of interest. These approaches can be classified into two categories including

channel modeling and blind cancellation.

11
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Channel modeling methods exploit the knowledge of the baseband interfering signal

and use adaptive filtering techniques to generate the cancellation signal as shown in Fig.

2.3. Many different techniques have been proposed to estimate the SI channel response,

the nonlinear components and noise caused by the analog devices in both transmit and

receive chains. In particular, least square algorithm has been use to update the tap weight

values in linear finite impulse response filters [26, 27]. For distortions caused by the

power amplifier in the transmitter, Taylor series expansion has been used in [8, 28, 29] to

approximate the non-linear functions. In addition, Hammerstein channel models which

includes a nonlinear estimation filter and a linear one have been proposed in [30, 31] to

possibly mitigate both the memory effects in the transmit channel and the non-linear

distortion components of the PA. As pointed out in [32], these methods require high

computational complexity to estimate the SI channel and nonlinear components. They

are also sensitive to the statistic of the transmitted signal and surrounding environment.

Baseband Tx DAC

Digital 
Cancellation

Tx Chain

ADC Rx ChainBaseband Rx

-
+

Figure 2.3: Digital cancellation using channel modelling methods

Blind cancellation methods do not require the channel state information. Instead,

the mixing of the desired signal and residual SI is considered as a blind source sepa-

ration problem. Since these signals are independent and non-Gaussian, independent

component analysis algorithm can be applied to detect the signal of interest directly

[33, 34]. Although this technique can reduce the computational complexity compared

to estimation based one, it has to assume that the SI channel is static and requires a

training period to search for the de-mixing matrix. Otherwise, an additional receiver

chain is included into the transceiver for signal detection.
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2.1.3 Radio Frequency Domain Cancellation

RF domain cancellation approaches strive to generate a signal that mimics SI in order

to subtract it from the input of the receiver [35]. There are two main different ways to

generate the cancellation signal. One is utilizing additional transmit chains to up-convert

the calculated cancellation baseband signal as in Fig. 2.4(a). The other is employing a

multi-tap adaptive filter to modify the amplitude and phase of the transmitted RF signal

as in 2.4(b).
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Figure 2.4: RF domain SIC approaches: (a) Additional transmit chain; (b) Multi-tap
adaptive filter.

Auxiliary transmit chain or so-called digitally assisted approaches [10] utilize digital

signal processing to estimate the SI channel ĥ from the residual SI and the clean

transmitted data x(n),n =−∞, . . . ,∞ to generate the baseband of the cancellation signal.

Examples of this structure can be found in [12, 36, 37]. Since the modification of the

cancellation signal is conducted in the baseband, this method can benefit from a digital

adaptive filter, which is more flexible and can be implemented with higher number of

taps than analog counterparts. However, an additional transmit chain not only consumes

more energy and creates more noise, but more importantly, it has different properties of

distortion and noise caused by analog components in the auxiliary RF chain compared to

those in the original transmitted signal [38]. Thus, this problem becomes a bottleneck of

this technique and the highest reported level of cancellation was only 30 dB [12].

On the other hand, multi-tap adaptive filter based techniques can potentially over-

come the aforementioned bottleneck problem. As shown in Fig. 2.4(b), the RF transmitted
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Figure 2.5: Multi-tap filter SIC techniques: (a) Time-domain approaches; (b) Frequency-
domain approaches.

signal is employed as a reference at the input of the canceller so that the cancellation

signal has the same distortion and noise properties as the SI. Generally, a multi-tap filter

includes N branches, or so-called taps, to independently modify the amplitude and phase

of the reference signal. Then, by combining the outputs of all the taps, the cancellation

signal is obtained to cancel the SI at the input of the receiver.

Multi-tap cancellers can be implemented in the time-domain or in the frequency

domain as shown in Fig. 2.5(a) and Fig. 2.5(b) [10], respectively. In the former case, each

tap of these filters has a different time delay and a mechanism to modify the amplitude

(e.g. attenuator) and phase (e.g. phase shifter) of the delayed reference signal. Examples

of these filters can be found in [8, 38–40]. In the latter case, narrow-band band-pass

filters (BPF), which have different center frequencies, are used to sample the reference

signal in the frequency domain such as in [41–43]. One advantage of frequency-domain

multi-tap filters is that they can avoid delay lines, which may be challenging if a very fine

amount of delay is required in time-domain approaches. The reason is that a very fine

delay is obtained by a microstrip trace or a coaxial cable, hence increasing the physical

dimension of the time-domain based multi-tap filters. However, one problem with the

frequency-domain based approaches is that, although BPF filters can be adjustable,

they are normally static rather than adaptive as time-domain counterparts. Therefore,

multi-tap adaptive filters are preferable for SIC in the RF stage.
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In order to form an adaptive multi-tap filter, a closed-loop is necessary. As shown in

Fig. 2.6, after cancellation, the residual signal is looped-back to the weights calculator

block of the tap to synthesize the weighting coefficient w(t), which will modify the phase

and amplitude of the delayed signal. Since the residual SI is involved to the process of
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Phase   Attenuator   

Transmitted 
signal   

w(t)   
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Figure 2.6: One tap of a closed-loop multi-tap filter.

finding weighting coefficients, the cancellation signal can properly mimic the practical

impairments such as nonlinear components of the transmit power amplifier (PA) and the

variation of the SI channel. Hence, the residual SI is minimized and the SI is canceled

efficiently. The looped-back residual signal can be obtained in the RF domain as in

[35, 38, 39, 44] or in the digital domain after the ADC as in [8, 45]. One problem with

the digitalized looped-back signal is that in conventional receivers, an automatic gain

controlled (AGC) amplifier is normally required to stabilize the level of the received

signal which can be affected by multi-path fading. Consequently, the AGC amplifier will

also stabilize the residual SI reducing the accuracy of the weighting coefficients obtained

in this way.

The above analyses have shown that a time-domain multi-tap adaptive filter is a

promising SIC scheme. It is also proved in [44] that this structure is suitable for wide-

band applications. Next section reviews the problem of how to synthesize the optimized

weighting coefficients to minimize the residual SI.

2.2 Least Mean Square Algorithm

Adaptive filters have been widely used for various applications such as noise cancel-

lation, channel equalization, and modelling systems where filters’ parameters need to

be adapted to estimate time-varying signals. Among many different methods to adjust

filter’s coefficients, the least mean square (LMS) algorithm proposed by Widrow and Hoff
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Figure 2.7: L-tap transversal adaptive filter structure.

in 1960 is the most popular one due to its simplicity and robustness to signal statistic

[46]. A general structure of a digital transversal finite impulse response adaptive filter is

shown in Fig. 2.7 [47]. The adaptive filter including L taps whose weighting coefficients

wl(n), l = 0, . . . ,L−1, can be adjusted to generate the output y(n) from the input x(n) as

y(n)=
L−1∑
l=0

wl(n)x(n− l). (2.1)

The weighting coefficients are adjusted so that y(n) efficiently mimics z(n). It means

that the mean square error, defined as ζ = E{d2(n)} = E{[z(n)− y(n)]2} where E{.} is

expectation operation, is minimized.

The LMS algorithm is an alternative computational method to determine the opti-

mum wl(n), l = 0, . . . ,L−1 by replacing the statistic expectation operation by its instan-

taneous estimated value ζ̂ = d2(n). Then, instead of solving a set of linear equations

yielded by differentiating ζ with respect to wl(n), l = 0, . . . ,L−1 to find the optimized

weighting coefficients, the LMS algorithm is a recursive gradient method to update the

filter coefficients as

w(n+1)=w(n)−µOd2(n) (2.2)

where w(n)= [w0(n) w1(n) · · · wL−1(n)]T , µ is the algorithm step size parameter and O=[
∂

∂w0
∂

∂w1
· · · ∂

∂wL−1

]T
is a column vector of the gradient operator. From Od2(n)=−2d(n)x(n)

where x(n)= [x(n) x(n−1) · · · x(n−L+1)], we get the LMS recursion as

w(n+1)=w(n)+2µd(n)x(n). (2.3)

From (2.3), we can see that LMS algorithm is very simple to implement in the

digital domain. Therefore, many RF domain SIC multi-tap adaptive filters such as

[11, 38, 40, 44] require an additional down-converter and ADC to digitalize the RF
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residual signal. Then, the LMS algorithm is applied to update the weighting coefficients.

However, this additional receiver chain leads to more hardware complexity and produces

more noise for the receiver.

Widrow et. al proved that the LMS algorithm can also be applied for continuous

signal [48] by converting (2.2) into an integration operation. The updating equation for

the tap weight coefficient wl(t) can be expressed as

wl(t)=−2µ
∫t

0
Owl d

2(τ)dτ. (2.4)

From (2.4), the structure of an L-taps continuous-time LMS adaptive filter is presented

in Fig. 2.8 [49]. In this structure, an ideal integrator is required to update the weighting

Delay 
Td

w0(t) w1(t) wL-1(t)

z(t)y(t)
d(t)

x(t) Delay 
Td

Delay 
Td



2m 

Figure 2.8: L-tap transversal continuous-time adaptive filter structure.

coefficient for each tap. Due to ideal integrators are only available at low frequency,

continuous-time LMS adaptive filters have been used in wired digital communications

such as voice-band modem [50, 51] and asymmetric digital subscriber lines (ADSL) [52].

To applied in the RF domain SIC, a mixer is used to down-convert the RF residual SI

before implementing a continuous-time adaptive filter [39].

2.3 Analog Least Mean Square Loop

The unavailability of RF integrators makes the implementation of continuous-time LMS

adaptive filters being complicated. To overcome this problem, a more practical analog

LMS algorithm has been proposed in [9] by replacing (2.4) with the following equation

wl(t)
dt

+αwl(t)=− µα

K1K2

∂d2(t)
∂wl(t)

, l = 0, . . . ,L−1 (2.5)

where µ, α, K1, and K2 are constant parameters defining the convergence of the filter.

Since (2.5) represents a low-pass filter with the impulse response αe−αt for t > 0 and the
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input signal −
(

µα

K1K2

∂d2(t)
∂wl (t)

)
, the analog LMS (ALMS) adaptive filter can be implemented

purely in the RF domain without ideal integrators and DSP. The weighting coefficient is

expressed by convolving the filter impulse response with the input signal as

wl(t)=− µα

K1K2

∫t

0
e−α(t−τ) ∂d2(τ)

∂wl(τ)
dτ. (2.6)

Since z(t) is independent to wl(t), l = 0, . . . ,L−1, ∂d2(t)
∂wl (t)

=−2d(t) ∂y(t)
∂wl (t)

. Assuming the ALMS

filter is implemented in an IBFD system with transmitted signal x(t)= Re{X (t)e j2π fc t}

where X (t) and fc are the baseband equivalent and the carrier frequency, we have

∂d2(t)
∂wl(t)

=−2d(t)X (t− lTd)e j2π fc(t−lTd). (2.7)

Therefore, the weighting coefficient of the proposed ALMS algorithm is obtained by

wl(t)=
2µα

K1K2

∫t

0
e−α(t−τ)d(τ)X (τ− lTd)e j2π fc(τ−lTd)dτ. (2.8)

Based on (2.8), the ALMS loop was proposed in [9] as shown in Fig. 2.9.
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Figure 2.9: ALMS loop structure.
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In this structure, the residual signal is amplified by an LNA with 2µ gain and then

looped-back to the input of all the taps. An in-phase/quadrature (I/Q) demodulator is

employed at each tap to multiply the looped-back signal with the delayed reference signal

which acts as ∂d2(t)/∂wl(t). The multipliers in two branches of the demodulator have the

same dimensional constant K1. The outputs of the LPFs will be wl(t)K2 where K2 is the

dimensional constant of the multipliers, which are also assumed to be the same in the

modulator. Here, the dimensional constant of a multiplier K is defined by the ratio of the

product of input voltages over the output voltage, i.e., K =Vin1Vin2/Vout. Therefore, in

overall, the output of the adaptive filter will be scaled by 1/K1K2. From this structure,

the cancellation signal is represented by

y(t)=Re
{L−1∑

l=0
w∗

l (t)X (t− lTd)e j2π fc(t−lTd)
}
. (2.9)

Due to the IBFD operation, at the input of the receiver, there appears the SI z(t), the sig-

nal of interest s(t), and noise n(t), i.e., r(t)= z(t)+s(t)+n(t)=Re
{
[Z(t)+S(t)+N(t)]e j2π fc t

}
where Z(t),S(t), N(t) are the low-pass equivalent of those signals, respectively. The SI

channel is modelled as an L-tap delay line filter, i.e.,

z(t)=Re
{L−1∑

l=0
h∗

l X (t− lTd)e j2π fc t
}

(2.10)

where hl , l = 0, . . . ,L−1 are the tap coefficients. From (2.9) and (2.10), the residual SI

signal, denoted v(t), can be expressed as

v(t)=Re
{L−1∑

l=0
[hl −wl(t)e j2π fc lTd ]X (t− lTd)e j2π fc t

}
. (2.11)

Defining the weighting error function ul(t)= hl −wl(t)e j2π fc lTd as the difference between

the channel coefficient and weighting coefficient of the l-th tap of the adaptive filter, ul(t)
represents the performance of the ALMS loop. The weighting error function has been

comprehensively investigated in [9] under both micro and macro scales.

Fig. 2.10 summarizes the earlier results on the ALMS loop presented in [9]. After

proposing the ALMS loop structure and describing its operation, the impact of the

transmitted signal has been considered for a single-carrier system. It has shown that due

to the cyclostationary property of the transmitted signal, the weighting error function

will not converge to a stable value, but it always varies in a range. Hence, this variation

leads to an irreducible interference. The convergence behavior of the ALMS loop is also

proved to be jointly determined by the decay constant α of the LPF and the loop gain
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ALMS Loop
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Figure 2.10: Earlier research on ALMS loop.

µV 2
X /K1K2 where VX is the mean square amplitude of the baseband transmitted signal.

Then, by using stationary analysis, the residual SI has been derived and the level of

cancellation under a given SI channel has been determined. However, these analyses are

conducted under ideal condition of the ALMS loop. The problem of I/Q imbalances which

may occur in the I/Q demodulators and modulators has not been evaluated. In addition,

the application of the ALMS loop is only shown with the single input single output (SISO)

system only. Finally, the analyses are all confirmed by simulation in MATLAB.
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ALMS LOOP WITH DIFFERENT SIGNAL PROPERTIES

It has been shown in [9] that properties of the transmitted signals have a significant

impact on the performance of the ALMS loop. The analyses in [9] were conducted for the

single-carrier system only. Therefore, to adopt the ALMS loop to other IBFD systems,

the behaviors of the ALMS loop with different transmitted signals are evaluated. Partic-

ularly, the ALMS loop performance with multi-carrier signalling in an OFDM system

is firstly investigated using both cyclostationary and stationary analyses. Secondly, the

performance of the ALMS loop with OFDM signal is compared to that with single-carrier

signal. Finally, the ALMS loop is studied with deterministic chirp signal for its potential

applications in full-duplex synthetic aperture radar (SAR) systems.

3.1 ALMS Loop for OFDM Systems

3.1.1 OFDM System Model

In an OFDM system, the transmitted signal x(t) is defined as

x(t)=Re{Xo(t)e j2π fc t} (3.1)

where Xo(t) is the complex envelope of the OFDM signal with a cyclic prefix and fc is

the carrier frequency. Xo(t) is represented by

Xo(t)=
∞∑

n=−∞

∞∑
m=−∞

Nst/2∑
k=−Nst/2,k 6=0

ak,me j2π k
N (n−m To

Ts )w(n−m
To

Ts
)p(t−nTs) (3.2)
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where k is the k-th sub-carrier; m is the m-th OFDM symbol; n is the sample index; t
is continuous time; Ts is the sampling period of the baseband signal; To is the OFDM

symbol period; Nst is the total number of data subcarriers; N is the number of samples

in one OFDM symbol excluding cyclic prefix; w(n) is the windowing function; and p(t) is

the pulse shaping function. The root mean square amplitude of the transmitted signal

is defined as VX =
√

1
To

∫To
0 E{|X (t)|2}dt , where E{.} stands for expectation. The load is

normalized to 1Ω so that the average power of Xo(t) is V 2
X . The complex data symbols

ak,m are assumed to be independent to each other such that the ensemble expectation

E{a∗
k,mak′,m′}=

1, for k = k′,m = m′

0, for k 6= k′,m 6= m′.
(3.3)

3.1.2 Cyclostationary Analysis

Cyclostationary analysis is applied to evaluate the performance of the ALMS loop under

the impact of several factors including the properties of the transmitted signal, loop gain,

and the parameter of the LPF. This analysis is important to derive the lower bound of

the irreducible interference given by the ALMS loop and digital cancellation.

3.1.2.1 Autocorrelation Function

The autocorrelation function of an OFDM signal is defined as Φo(t,τ)= E{X∗
o (t)Xo(t−τ)}.

Let l = n−mTo/Ts in (3.2) and define g(t,τ) =∑∞
m=−∞ p∗(t−mTo)p(t−mTo −τ). Using

the property expressed in (3.3), the autocorrelation function can be expressed as

Φo(t,τ)=
∞∑

l=−∞

∞∑
l′=−∞

Nst/2∑
k=−Nst/2,k 6=0

e− j2π k
N (l′−l) ×w(l)w(l′)g(t− lTs, (l

′ − l)Ts +τ). (3.4)

When p(t) is a Raised Cosine pulse shaping function with roll-off factor 0.25, g(t) is

shown in Fig. 3.1. It can be seen that g(t,τ) ≈ 0 when τ is any integer multiple of

Ts. Therefore, the autocorrelation function at τ = 0 can be approximated as Φo(t,0) =
Nst

∑∞
l=−∞ w2(l)g(t− lTs,0). For simplicity, the convolution of w2(l) with g(t,0) can be

further approximated as a periodic function with a continuous window in one period,

i.e., Φo(t,0) ≈ V 2
X

∑∞
l=−∞ w2(t− lTo) where w(t),0 ≤ t ≤ To is the normalized windowing

function such that 1
To

∫To
0 w2(t)dt = 1.

3.1.2.2 Solution for Weighting Error Function

The interference channel is modeled as a multi-tap filter so that the equivalent baseband

Z(t) of the SI can be expressed as Z(t) = ∑L−1
l=0 h∗

l Xo(t− lTs) where L is the number of
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Figure 3.1: g(t,τ) with To = 80Ts and pulse shaping roll-off factor 0.25.

taps, and tap delay is equal to the sampling period Ts for simplicity. The performance of

ALMS loop therefore can be represented by the error ul(t) between the l-th tap coefficient

of interference channel model and the corresponding weight of the adaptive filter. The

expected value of ul(t) is derived in [9] as ūl(t)= hl− µαV 2
X

K1K2

t∫
0

e−α(t−τ)ūl(τ)Φ̃o(τ,0)dτ where

Φ̃o(τ,0) = 1
V 2

X
Φo(t,0) is the normalized autocorrelation function. Solving this equation,

the final expression of ūl(t) is obtained as

ūl(t)= hl

[1+µA2e−α(1+µA2)t

1+µA2

]
e−αµA2 ∫t

0 (Φ̃o(τ,0)−1)dτ (3.5)

where A =VX /
p

K1K2 . Applying the windowing function recommended in IEEE802.11a

[53], which is converted to the continuous function and normalized as

w(t)=
√

4(1+βo)
4−βo


sin2(π2 ( t

T1
)) 0≤ t < T1

1 T1 ≤ t < T2

sin2(π2 ( To−t
T1

)) T2 ≤ m < To

(3.6)

where T1 =βTo/(1+βo) and T2 = To/(1+βo) with βo as the roll-off factor of the windowing

function, we have

ūl(t)= hl
1+µA2e−α(1+µA2)t

1+µA2 e−αµA2q(t) (3.7)
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Figure 3.2: (a) Normalized weight error; and (b) Normalized weight error variation.

with q(t) in period [0,To] derived as

q(t)=



5(βo−1)
2(4−βo) t− 2βoTo

(4−βo)π sin( πt
T1

)+
βoTo

4π(4−βo) sin(2πt
T1

) 0≤ t < T1

5βo
4−βo

(t−To/2) T1 ≤ t < T2

5(βo−1)
2(4−βo) (t−To)+ 2βoT

(4−βo)π sin(π(To−t)
T1

)−
βTo

4π(4−βo) sin(2π(To−t)
T1

) T2 ≤ t < To.

(3.8)

Since q(t) is a periodic function with the period of To, the error function ūl(t) has

cyclostationary property, i.e., it does not converge to a stable value but varies accordingly.

The normalized ūl(t) and its variation with the error without cyclostationary behavior

ũl(t) are presented in Fig. 3.2(a) and Fig. 3.2(b) respectively.

Discussion

1. When applied to a multi-carrier system, the ALMS loop behaves similarly as in

a single-carrier counterpart. The weight error function ūl(t) and ũl(t) are both

periodic of OFDM symbol period To and respectively converge to hl
1

1+µA2 e−µA2αq(t)

and hl
1

1+µA2 (e−µA2αq(t) −1) when t →∞. The convergence speed is driven by the

loop gain µA2 and the LPF parameter α.

2. The residual interference power and interference suppression ratio (ISR) can be

calculated as in [9] PRI = 1
1+µA2

A2

2
∑L−1

l=0 |hl |2 and ISR = PRI
PI

= 1
(1+µA2)2 respectively.
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Figure 3.3: ISRLB versus αTs with various windowing roll-off factors βo.

3. The irreducible interference power is calculated by

PI I = PI
1

To

∫To

0

[ 1
1+µA2 (e−αµA2q(t) −1)

]2
dt

≈ PI
1

To

∫To

0
[αq(t)]2dt.

(3.9)

Therefore, irreducible ISR lower bound is

ISRLB =PI I

PI
= α2T2

oβ
2

(4−βo)2(1+βo)2

{25
12

(1−βo)2 + 5βo

16π2 (81−55βo)
}
. (3.10)

From (3.10), it can be seen that the ISRLB of an OFDM system is determined

by the LPF constant α and the roll-off factor βo of the windowing function. This

relationship is presented in Fig. 3.3.

Fig. 3.3 shows that the windowing function plays an important role in the performance

of ALMS filter. The ISRLB becomes smaller if the windowing function has closer form of

the rectangular one.

From the ISRLB expression, the LPF parameter can be determined in order that

the ISRLB is much smaller than ISR. In this case, stationary analysis can be applied to

evaluate the behavior of the ALMS loop. Under this macro-scale analysis, the weight

error function and interference residual power are solved with non-ideal signal autocor-

relation, fractionally-spaced taps ALMS filter and general interference channel. Since
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the transmitted signal is treated as a stationary process, both ensemble expectation and

time average is applied to the autocorrelation function of the OFDM signal. It means that

the solutions for the time and ensemble averaged weight function ¯̄w(t) and the residual

interference power PRI are not different from those of a single-carrier case. Therefore,

the results derived in [9] can be applied for this case. Specifically, the matrix of weight

function ¯̄w(t)= [ ¯̄w0(t) ¯̄w1(t).. ¯̄wL−1(t)]T is found as

¯̄w(t)=diag
{

e− j2π fcTd l
}
Qdiag

{ µλl

1+µλl
(1− e−(1+µλl )αt

}
Q−1h (3.11)

and the PRI(t) is calculated by

PRI(t)= 1
2
ε2 + 1

2
hHQdiag

{ λl

(1+µλl)2

}
Q−1h (3.12)

where ε is the error between the real SI Z(t) and the modeled one; h is the one-column

matrix of the modeled tap coefficients h= [h0 h1 ... hL−1]T ; Q and λl are the orthonormal

modal matrix and the eigenvalues of the normalized autocorrelation matrix Φ with each

element defined by

Φ̄o(τ)= 1
K1K2To

∫To

0
Φo(t,τ)dt. (3.13)

It is shown in [9] that the ISR can be calculated from PRI(t) and PI(t) as

ISR =
ε2 +hHQdiag

{
λl

(1+µλl )2

}
Q−1h

ε2 +hHΦh
(3.14)

Using these formulas, the weight error functions, the normalized residual interference

power, and ISR can be determined.

3.1.3 Simulation Results

The simulation is performed with an OFDM system specified in the IEEE802.11 standard.

Transmitted data is generated with sampling period of Ts = 5 ns and modulated using

BPSK before going through a 64-point IFFT block. Cyclic prefix is then added which

occupies one fourth of an OFDM symbol. The IEEE 802.11 windowing function and the

RC pulse shaping function are utilized with the roll-off factors βo = 0.25. The power of

the transmitted signal is set at 0 dBm, and the multiplier dimensional constants are

set to be K1K2 = 0.001V 2 so that A = 10. Another loop gain parameter µ is selected

as µ = 10. α is determined using the expression of ISRLB = 10−10. Simulations are

conducted under two scenarios of interference channel which are set as the same as in

[9]. Specifically, the first scenario assumes that the reflected paths of the interference
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Figure 3.4: Simulated and theoretical weighting coefficients of ALMS loop with Ts
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channel have the delays of multiple Ts so that the interference channel is chosen as

h(t)= 10
−25
20 {[

p
2

2 −0.5 j]δ(t)−0.4δ(t−Ts)+0.3δ(t−3Ts)}. The second scenario considers

the general case of interference channel where the reflected paths have arbitrary delays,

i.e., h(t) = 10
−25
20 {[

p
2

2 −0.5 j]δ(t)−0.4δ(t−0.9Ts)+0.3δ(t−3.3Ts)}. The performance of

the ALMS loop filter with 8 taps spaced at Ts and 16 taps spaced at Ts/2 are also

investigated.

The convergence curves of the first tap coefficients w̄0(t) under the first scenario with

Ts spaced is presented in Fig. 3.4. At macro scale, the simulated weights coefficients

converge to almost the same values calculated from (3.11). At micro scale shown in the

inset, the simulated w̄0(t) varies with the period of OFDM symbol To. This figure shows

both cyclostationary effect and the expectation in stationary analysis for the weighting

error function. The convergence curves of the residual interference power for two cases

of tap spacing in the first interference channel scenario are presented in Fig. 3.5. It is

seen that the simulated curves in both cases coincide with the theoretical ones calculated

from (3.12). The SI is canceled at a higher level when Ts spacing is utilized. The reason

is that modeling error for Ts spacing is zero whereas it is 7.508×10−11 for the Ts/2 case.

3.2 Single-Carrier and Multi-Carrier IBFD Systems

As can be seen from Section 3.1, the key to analyze the performance of the ALMS loop

is the weighting error function which can be derived from an integral equation. In
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this Section, the solution of the weighting error function is extended in a general case.

This general solution can be applied to investigate the performance of the ALMS loop

employed in any IBFD system. It is revealed that, due to the cyclostationary effects of

the transmitted signal, the weighting error function cannot converge to a stable value,

but it varies periodically. Consequently, there always exists an irreducible SI whose

power depends on the variation of the weighting error function. The solution is then

applied to compare the performance of the ALMS loop in a single-carrier system to

that in a multi-carrier such as an orthogonal frequency division multiplexing (OFDM)

system. It is shown that the convergence speed of the weighting error function is the

same in both cases and depends on the loop gain. However, the weighting error function

in the single-carrier system has a smaller variation than that in the OFDM case. The

irreducible interference suppression ratio lower bounds (ISRLB) are also derived for the

two systems respectively. Comparison between them shows that more SI cancellation

can be ultimately achieved for the single-carrier system.

3.2.1 Signal Models

Consider an IBFD system including a baseband part which can operate in either single-

carrier or OFDM mode and an RF part employing an ALMS loop. The transmitted RF

signal is expressed as x(t)= Re{X (t)e2π fc t} where fc is the carrier frequency, and X (t) is

the baseband equivalent which is further denoted as Xs(t) in the single-carrier mode and
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Xo(t) in the OFDM mode. Mathematically, Xs(t) and Xo(t) can be expressed as

Xs(t)=
∞∑

i=−∞
ai p(t− iTs) (3.15)

and

Xo(t)=
∞∑

n=−∞

∞∑
m=−∞

Nst/2∑
k=−Nst/2,k 6=0

ak,me j2π k
N (n−m To

Ts ) ·w
[
n−m

To

Ts

]
p(t−nTs) (3.16)

respectively, where ai, and ak,m are the i-th data symbol in the single-carrier system

and the data symbol on the k-th sub-carrier of the m-th OFDM symbol respectively;

Ts is the symbol period of the single-carrier system and also the sample period of the

OFDM system; To is the OFDM symbol period; Nst is the total number of data sub-

carriers; N is the number of samples in one OFDM symbol excluding cyclic prefix;

w[n] is the discrete windowing function applied to an OFDM symbol; and p(t) is the

pulse shaping function. The root mean square amplitude of the transmitted signal is

defined as VX =
√

1
T

∫T
0 E{|X (t)|2}dt , where E{.} stands for expectation; T is the period

of transmitted data symbol, i.e., Ts or To. The complex data symbols ai and ak,m are

assumed to be independent to each other in single-carrier and OFDM systems respec-

tively. The autocorrelation function of the transmitted baseband signal X (t) is defined as

Φ(t,τ)= E{X∗(t)X (t−τ)}. With the symbol independence assumption, the autocorrelation

functions of single-carrier and OFDM signals can be derived as

Φs(t,τ)=
∞∑

i=−∞
p∗(t− iTs)p(t−τ− iTs) (3.17)

and

Φo(t,τ)=
∞∑

l=−∞

∞∑
l′=−∞

Nst/2∑
k=−Nst/2,k 6=0

e− j2π k
N (l′−l) ·w[l]w[l′]g(t− lTs, (l

′ − l)Ts +τ) (3.18)

respectively, where g(t,τ) =
∞∑

m=−∞
p∗(t− mTo)p(t− mTo − τ). It is seen that Φs(t,τ) =

Φs(t+Ts,τ) and Φo(t,τ)=Φo(t+To,τ) for all t and τ. Therefore, both transmitted signals

Xs(t) and Xo(t) can be treated as wide-sense cyclostationary processes.

As presented in [9], the performance of the ALMS loop can be determined by the

weighting error function ul(t) = hl −wl(t)e j2π fc lTd whose expected value ūl(t) can be

derived as

ūl(t)= hl −
µα

K1K2

∫t

0
e−α(t−τ)

L−1∑
l′=0

ūl′(τ)Φ(τ, (l− l′)Td)dτ. (3.19)

This equation shows that the weighting error function not only depends on the loop para-

meters α, µ and K1K2 but also relates to the autocorrelation function of the transmitted
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signal, and thus the cyclostationary properties will have significant impact on the ALMS

loop performance.

3.2.2 General Solution of Weighting Error Function

It is very difficult to solve (3.19) in a general case. However, if the autocorrelation function

of the transmitted signal satisfies that

Φ(t,τ)=
V 2

X Φ̃(t,0), for τ= 0

0 for τ= integer multiples of Td

(3.20)

where Φ̃(t,0) is the normalized autocorrelation function, (3.19) can be simplified as

ūl(t)= hl −αµA2
∫t

0
e−α(t−τ)ūl(τ)Φ̃(τ,0)dτ (3.21)

where A2 =V 2
X /K1K2. Taking the differentiation with respect to t on both sides of ((3.21)),

we have

dūl(t)
dt

=µA2α2
∫t

0
e−α(t−τ)ūl(τ)Φ̃(τ,0)dτ−µαA2ūl(t)Φ̃(t,0)

=α
[
hl − ūl(t)

]
−µαA2ūl(t)Φ̃(t,0)

(3.22)

which can be further rearranged in the form of the ordinary differential equation (ODE),

i.e.,
dūl(t)

dt
+α

[
1+µA2Φ̃(t,0)

]
ūl(t)=αhl . (3.23)

The solution for the homogeneous form of the ODE, i.e., U ′(t)+α
[
1+µA2Φ̃(t,0)

]
U(t)= 0

can be found by rearranging it as

U ′(t)
U(t)

=−α
[
1+µA2Φ̃(t,0)

]
. (3.24)

Integrating both sides from 0 to t, we get lnU(t)=−α
∫t

0

[
1+µA2Φ̃(τ,0)

]
dτ+ lnU(0) so

that

U(t)=U(0)e
−α

∫t
0

[
1+µA2Φ̃(τ,0)

]
dτ

. (3.25)

Replacing U(0) by a function f (t), ūl(t)= f (t)e−α
∫t

0

[
1+µA2Φ̃(τ,0)

]
dτ is the solution for the

non-homogeneous form of the ODE. Taking the differentiation of ūl(t) and substituting

it into (3.23) we get f ′(t)=αhl e−α
∫t

0

[
1+µA2Φ̃(τ,0)

]
dτ. Therefore,

f (t)=αhl

∫t

0
eα

∫τ
0

[
1+µA2Φ̃(v,0)

]
dvdτ+C
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where C is any constant. The solution for ūl(t) is thus

ūl(t)=
[
αhl

∫t

0
eα

∫τ
0

[
1+µA2Φ̃(v,0)

]
dvdτ+C

]
e−α

∫t
0

[
1+µA2Φ̃(τ,0)

]
dτ

=
[
αhl

∫t

0
e−α(1+µA2)(t−τ)eαµA2 ∫τ

0

[
Φ̃(v,0)−1

]
dvdτ+Ce−α(1+µA2)t

]
e−αµA2 ∫t

0

[
Φ̃(τ,0)−1

]
dτ.

(3.26)

When αµA2 ∫τ
0 [Φ̃(v,0)−1]dv ¿ 1 and t À 1/α(1+µA2),∫t

0
e−α(1+µA2)(t−τ)eαµA2 ∫τ

0

[
Φ̃(v,0)−1

]
dvdτ≈ 1

α(1+µA2)
. (3.27)

Therefore, ūl(t) ≈
[

hl
1+µA2 +Ce−(1+µA2)t

]
e−µA2α

∫t
0

[
Φ̃(τ,0)−1

]
dτ. From the initial condition

that ūl(0)= hl we have C = hl
µA2

1+µA2 , and hence the final solution is

ūl(t)=
[
hl

1+µA2e−α(1+µA2)t

1+µA2

]
e−µA2αq(t) (3.28)

where q(t)=∫t
0
[
Φ̃(τ,0)−1

]
dτ.

Due to the cyclostationary properties of Φ̃(τ,0), we see that e−µαA2q(t) is a periodic func-

tion so that ūl(t) varies periodically. If there was no cyclostationary effect, the weighting

error function, denoted as ŭl(t), would have the expectation E{ŭl(t)}= hl
1+µA2e−α(1+µA2)t

1+µA2 ,

which would converge to a stable value hl
1

1+µA2 when t À 1/α(1+µA2). In this case the

residual SI could be further removed in the digital domain. However, the presence of

cyclostationary effect in the residual SI makes it impossible to be completely removed in

digital domain. Thus there always exists an irreducible interference whose power PI I is

determined by the variation between ul(t) and ŭl(t). The expected value of this variation

is denoted as ũl(t)= E{ul(t)− ŭl(t)}= hl
1

1+µA2 (e−µA2αq(t)−1) when t À 1/α(1+µA2). Since

E{|X |2}≥ |E{X }|2 for any random process X , the time averaged PI I is

PI I = A2

2

L−1∑
l=0

1
T

∫T

0
E

{∣∣ul(t)− ŭl(t)
∣∣2}dt

≥ A2

2

L−1∑
l=0

1
T

∫T

0

∣∣∣E{
ul(t)− ŭl(t)

}∣∣∣2dt = A2

2

L−1∑
l=0

1
T

∫T

0
|ũ(t)|2dt

= PI
1
T

∫T

0

[ 1
1+µA2 (e−αµA2q(t) −1)

]2
dt ≈ PI

1
T

∫T

0
[αq(t)]2dt

(3.29)

where PI = A2

2
∑L−1

l=0 |hl |2 is the normalized interference power. Based on the lower bound

of PI I , the irreducible interference suppression lower bound (ISRLB) defined as

ISRLB = PI
1
T

∫T
0 [αq(t)]2dt

PI
= 1

T

∫T

0
[αq(t)]2dt (3.30)
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can be used as a measure to compare the performance of the ALMS loop for different

types of the transmitted signal. Therefore, ISRLB is an important figure to be considered

in the cancellation design process. In the following section, we compare the performance

of the ALMS loop in a single-carrier system with that in a multi-carrier one to show the

impact of cyclostationary properties.

3.2.2.1 Single-Carrier Versus OFDM

To apply the above solution of the weighting error function of the ALMS loop to the two

systems, their respective autocorrelation functions are firstly examined. For a single-

carrier system with RRC pulse shaping function, it is shown in [9] that Φs(t,τ) satisfies

(3.20) with a closed-form as

Φs(t,τ)≈
V 2

X

(
2βs
π

cos2πt
Ts

+1
)
, for τ= 0

0, for τ= integer multiples of Ts

(3.31)

where βs is the roll-off factor of the RRC pulse shaping function. Hence, q(t) for the

single-carrier system is derived as qs(t)= Ts
βs
π2 sin2πt

Ts [9, Eq.(17)]. In case of the multi-

carrier system, an IEEE802.11a baseband is taken as an example. As proved in Section

3.1.2, the autocorrelation function of the OFDM signal has a closed form of a periodic

function of t whose period contains the continuous window w2(t), i.e.,

Φo(t, (l− l′)Td)≈
V 2

X
∑∞

m=−∞ w2(t−mTo), for l = l′

0, for l 6= l′
(3.32)

where w(t), 0 ≤ t ≤ To, is the normalized continuous windowing function, such that
1

To

∫To
0 w2(t)dt = 1. It means that Φo(t,τ) satisfies the condition (3.20). For the discrete

windowing function recommended in the IEEE802.11a standard [53], using the autocor-

relation function of the OFDM signal in Section 3.1.2, we have

qo(t)=



5(βo−1)
2(4−βo) t− 2βoTo

(4−βo)π sin( πt
T1

)+
βoTo

4π(4−βo) sin(2πt
T1

) 0≤ t < T1

5βo
4−βo

(t−To/2) T1 ≤ t < T2

5(βo−1)
2(4−βo) (t−To)+ 2βoTo

(4−βo)π sin(π(To−t)
T1

)

− βoTo
4π(4−βo) sin(2π(To−t)

T1
) T2 ≤ t < To.

(3.33)

From qs(t), qo(t), and (3.28) we can obtain the weighting error functions for the single-

carrier and OFDM systems as ūl,s(t) and ūl,o(t), respectively. To compare the performance
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Figure 3.6: (a) Normalized weight error; and (b) Normalized weight error variation with
the loop gain µA2 = 1000, αTs = 0.003, To = 80Ts, and βs =βo = 0.25 .

of the ALMS loop in the two systems, the convergence curve of the normalized weighting

error function ūl(t)/hl for the two cases under loop gain µA2 = 1000, αTs = 0.003 and

To = 80Ts are plotted in Fig. 3.6(a). The normalized variation ũl(t)/hl is presented in Fig.

3.6(b). The insets in Fig. 3.6 show a closer look for the ūl,s(t) and ũl,s(t), respectively.

From Fig. 3.6, it can be concluded that with the same loop gain µA2 and the RC

constant α, the convergence speeds of ūl,s(t) and ūl,o(t) are the same for both cases of

the transmitted signals. Moreover, both ūl,s(t) and ūl,o(t) do not converge to a stable

value, but they vary with periods Ts and To, respectively. In terms of variation, as shown

in Fig. 3.6(a), ũl,s(t) varies in a smaller range than ũl,o(t) does. Thus, the ISRLB of

the single-carrier system is expected to be smaller than that of the OFDM counterpart.

Substituting qs(t) and qo(t) into (3.15), we obtain the ISRLB for the single-carrier

and OFDM systems as ISRLBs = 1
2

(
αTs

βs
π2

)2, and ISRLBo = α2T2
oβ

2
o

(4−βo)2(1+βo)2

{
25
12 (1−βo)2 +

5βo
16π2 (81−55βo)

}
, respectively. Putting the ISRLBs and ISRLBo together in Fig. 3.7 as

functions of αTs and various values of the roll-off factors βs, βo, we see that, with the

same value of βs and βo except for βs = 0 and βo = 0, ISRLBs is much smaller than

ISRLBo. It means that when the ALMS loop has exactly the same tap spacing as the SI

channel, the SI in the single-carrier system can be suppressed to a much lower level than

that in the ODFM system. The reason is that the weighting coefficients of the ALMS loop

are affected by the autocorrelation function of the transmitted signal as analyzed. As the

period of an OFDM symbol is much longer than that of a data symbol in the single-carrier

33



CHAPTER 3. ALMS LOOP WITH DIFFERENT SIGNAL PROPERTIES

10-5 10-4 10-3

αTs

-150

-140

-130

-120

-110

-100

-90

-80

-70

IS
R

LB
 (d

B)

βo=0.1
βo=0.25

βo=0.5

βo=0.75
βo=1

βs=0.1
βs=0.25

βs=0.5

βs=0.75
βs=1

Figure 3.7: ISRLB of the two systems with various values of βs and βo.

system, the weight coefficients in the OFDM system vary more significantly.

Conclusion3.2.3

The general solution for the weighting error function is derived to reveal the significant

impacts of cyclostationary properties of the transmitted signal on the performance of the

ALMS loop. Applying this solution to both single-carrier and OFDM IBFD systems, it is

shown that, given the same loop gain and other parameters, the SI can be potentially

canceled more effectively to a smaller level of ISRLB in the single-carrier system than

that in the OFDM system due to the different cyclostationary properties of the trans-

mitted signals. Determining the ISRLB is an important consideration in the SIC design

process.

3.3 ALMS Loop with Deterministic Signal in FD SAR

3.3.1 Introduction

The combination of a full-duplex (FD) radio technique and continuous wave (CW) radar,

called generalized continuous wave synthetic aperture radar (GCW-SAR), has been

developed recently [54]. With GCW-SAR, the slow time sampling in azimuth direction

used in conventional pulsed SAR and frequency modulated (FM) CW SAR systems is
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no longer required and thus some intrinsic limitations, such as the minimum antenna

area constraint [55], can be removed. This new SAR concept enables the development

of future high resolution and wide swath remote sensing technologies. However, due to

the simultaneous transmitting and receiving operations, GCW-SAR also faces a severe

problem of SI. Therefore, SIC is a key issue to be addressed for realization of GCW-SAR.

The requirement of SIC for wireless FD systems can be achieved by three levels of

cancellation at propagation (or antenna), RF front-end, and digital domains [4]. However,

there are two main differences between SIC in GCW-SAR systems and that in FD

communication systems. Firstly, in a GCW-SAR system, a chirp signal is periodically

transmitted rather than a random signal as in the communication counterpart. As

a result, the behaviors of the cancellation circuits in GCW-SAR systems such as the

convergence and stabilization properties may be affected. Secondly, in the GCW-SAR

systems, digital domain cancellation may not be required as the residual SI does not

need to be lower than the noise floor level as in the FD communication system. The

reason is that the received signals in GCW-SAR can be considered as time delayed

transmitted signals. The useful received signals are the far-field reflections, whereas

the SI can be regarded as near field reflections which can be easily removed after image

compression. Therefore, for GCW-SAR, the antenna and RF domain SIC will be of a

significant importance since SIC is required to protect the ADC from being saturated by

the strong SI. As an example, a GCW-SAR system can have a similar configuration as in

a practical airborne FMCW-SAR system [56]. The transmit power is 18 dBm, and the

receiver noise floor is at -90 dBm. If the ADC in the receiver has the dynamic range of 60

dB, and the signal-to-interference ratio required for a normal FD operation is -45 dB,

the level of residual SI must be less than -90 - (-45) = -45 dBm. The SIC required can

be calculated by 18 - (-45) = 63 dB. Hence, about 70 dB of SIC must be achieved before

digitalized by the ADC.

Such 70 dB of SIC can be achieved by two steps of SIC in the propagation domain and

the RF domain. In the first step, the transmit and receive antennas are separated with a

distance to attenuate the level of SI as in [57]. For example, with the operating frequency

at 5 GHz, at least 25 dB of SI attenuation can be achieved when the transmit and receive

antennas are located at a distance of 100 mm or higher. The rest of the required SIC can

be obtained in the second step by employing the ALMS loop in the RF domain.

As proved in [9, 58, 59], the transmitted signal properties have a noticeable impact

on the performance of the ALMS loop. However, the analyses in these publications are

only conducted for the random signals in IBFD communication systems. Therefore, two
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questions that could be raised are whether the ALMS loop works with deterministic
signals, like in a GCW-SAR system, and if yes, how well it performs in this case.

To answer these questions, the performance of the ALMS loop in a GCW-SAR system

is evaluated with chirp signaling. A stationary analysis is applied to investigate the

average convergence behavior of the loop by deriving the ensemble and time averaged

weighting error function of the loop, which is the solution of an integral equation. It is

proved that the ALMS loop can also work with the chirp signal in the GCW-SAR by a

proper selection of the tap delay and number of taps in the loop. In particular, the tap

delay of the loop must be selected according to the bandwidth of the chirp signal to avoid

spectral overlapping. The number of taps in the loop is also constrained so that only one

period of the autocorrelation function of the chirp signal is involved in the solution of the

weighting error function. Simulation results show that about 45 dB SI suppression can

be achieved with the ALMS loop under the selected simulation parameters. Combined

with antenna separation, the total SI suppression requirement can be satisfied for a

practical GCW-SAR system. Hence, the contributions of this Section are twofold. Firstly,

it shows that the ALMS loop can work with both deterministic and random signals.

Secondly, it proves that 70 dB of SIC can be obtained by using antenna separation and

the ALMS loop in the RF domain with the given parameters. This level of SIC provides a

reference for future researches on GCW-SAR.

3.3.2 GCW-SAR Signal Model

Considering a GCW-SAR system, which employs the ALMS loop in the RF front-end as

in Fig. 2.9, the transmitted signal x(t) is defined as

x(t)=Re{X (t)e j2π fc t} (3.34)

where X (t) is the low-pass equivalent of the transmitted signal and fc is the carrier

frequency. In a conventional pulsed SAR system, a chirp signal pulse P(t) is transmitted,

and P(t) can be expressed as

P(t)= rect(
t
T

)e jπkr t2
(3.35)

where T is the pulse duration and kr is the chirp rate. However, in the GCW-SAR,

the chirp signal P(t) is transmitted periodically with the period of T, hence X (t) is

represented by X (t) = ∑∞
l=−∞VX P(t− lT) where VX is the root mean square amplitude

of the transmitted chirp signal, and it can be calculated by VX =
√

1
T

∫T
0 |X (t)|2dt . The
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load is normalized to 1 Ω so that the average power of X (t) is V 2
X . At the input of the

receiver, the received signal r(t) is a combination of the SI z(t), the reflected signal s(t)
from the target and the additive Gaussian noise n(t), i.e.,

r(t)= z(t)+ s(t)+n(t). (3.36)

The low-pass equivalents of these signals are denoted as Z(t), S(t), N(t), respectively.

The reflected signal S(t) is a sum of a number of transmitted signals with different delays

and attenuations, so that it can be modeled as

S(t)=
∫

σ(τ)X (t−τ)dτ (3.37)

where σ(t) represents the reflection coefficients which are related to the radar cross

sections of the surveyed area and their associated phases at the receiver antenna.

The GCW-SAR system is equipped with separated transmit and receive antennas,

and they are located at a distance of 100 mm. Hence, at least 25 dB of SI attenuation

can be achieved by the propagation loss [57]. In order to cancel the remaining SI, the

ALMS loop is employed. The structure of the ALMS loop in GCW-SAR systems is still

the same as that in IBFD communication systems. The weighting coefficient wl(t) of the

l-th tap is also obtained by

wl(t)=
2µα

K1K2

∫t

0
e−α(t−τ)[r(τ)− y(τ)]X (τ− lTd)e j2π fc(τ−lTd)dτ. (3.38)

The cancellation signal y(t) at the output of the ALMS loop is represented by

y(t)=Re
{L−1∑

l=0
w∗

l X (t− lTd)e j2π fc(t−lTd)}. (3.39)

The SI channel is modeled as a multi-tap filter so that the equivalent baseband

version Z(t) of the SI can be presented as Z(t) = ∑L−1
l=0 h∗

l X (t− lTd) where L is the

number of taps, and the tap delay of the SI channel is assumed to be equal to that in the

ALMS loop for convenience at the moment. More general modeling of the SI channel will

be discussed later in Section 3.3.4.

The weighting error function which shows the performance of the ALMS loop is

written as

ul(t)=hl −
µα

K1K2

∫t

0
e−α(t−τ)

[L−1∑
l′=0

ul′(τ)X∗(τ− l′Td)+S∗(τ)+N∗(τ)
]
X (τ− lTd)dτ. (3.40)
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3.3.3 Stationary Analysis

A stationary analysis is applied to evaluate the performance of the ALMS loop for the

GCW-SAR system. This requires that both ensemble expectation and time averaging

should be considered to derive the convergence behavior of the loop.

3.3.3.1 Weighting Error Function

Taking ensemble expectation of the above equation and assuming that the reflection

coefficients are random and very small so that the ensemble expectation E{S∗(τ)X (τ−
lTd)} is negligible in comparison with E{Z∗(τ)X (τ− lTd)}, we have

ūl(t)= hl −
µα

K1K2

∫t

0
e−α(t−τ)

L−1∑
l′=0

ūl′(τ)X∗(τ− l′Td)X (τ− lTd)dτ, (3.41)

where ūl(t) = E{ul(t)}. Eq. (3.38) implies that the ALMS loop starts at t = 0. In general,

the ALMS loop can start at any time instant t0, thus (3.41) can be re-written as

ūl(t+ t0)=hl −
µα

K1K2

∫t+t0

t0

e−α(t+t0−τ)
L−1∑
l′=0

ūl′(τ)X∗(τ− l′Td)X (τ− lTd)dτ. (3.42)

Defining τ′ = τ− t0, we have

ūl(t+ t0)=hl −
µα

K1K2

∫t

0
e−α(t−τ′)

L−1∑
l′=0

ūl′(τ′+ t0)X∗(τ′+ t0 − l′Td)X (τ′+ t0 − lTd)dτ′.

(3.43)

Taking time average over one period T of ūl(t+ t0) with respect to the starting time t0,

we obtain the ensemble and time averaged weighting error function ¯̄ul(t) defined as

¯̄ul(t)=
1
T

∫T

0
ūl(t+ t0)dt0

=hl −
µα

K1K2T

∫T

0

∫t

0
e−α(t−τ′)

L−1∑
l′=0

ūl′(τ′+ t0)X∗(τ′+ t0 − l′Td)X (τ′+ t0 − lTd)dτ′dt0.

(3.44)

Since α is very small, ūl(t) changes slowly and it can be seen as a constant in one period

of T, i.e., ūl(t+ t0) ≈ ¯̄ul(t), thus (3.44) can be written as

¯̄ul(t)= hl −µα

∫t

0
e−α(t−τ′)

[L−1∑
l′=0

¯̄ul′(τ′)
1

K1K2T

∫T

0
X∗(τ′+ t0 − l′Td)X (τ′+ t0 − lTd)dt0

]
dτ′

= hl −µα

∫t

0
e−α(t−τ′)

L−1∑
l′=0

¯̄ul(τ′)Φ((l− l′)Td)dτ′

(3.45)
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where Φ((l− l′)Td) is the normalized autocorrelation function of the transmitted signal

defined by

Φ(τ)= 1
K1K2T

∫T

0
X∗(t)X (t−τ)dt. (3.46)

To solve (3.45), we need to find the closed-form equation of the normalized autocorrelation

function.

3.3.3.2 Autocorrelation Function of Transmitted Signal

Since X (t) is a periodic function with the period T, Φ(τ) is also periodic with the period

T. Hence, the autocorrelation function can be expressed as Φ(τ) = ∑∞
l=−∞ A2ΦP (τ+ lT)

where A2 = V 2
X /K1K2 and ΦP (τ) is the autocorrelation function of P(t) defined as:

ΦP (τ)= 1
T

∫T

0
P∗(t)P(t−τ)dτ

= 1
T

∫T

0
rect(

t
T

)rect(
t−τ

T
)e− jπkr t2

e jπkr(t−τ)2 dt

= 1
T

∫T

0
rect(

t
T

)rect(
t−τ

T
)e jπkr(−2tτ+τ2)dt.

(3.47)

Obviously, ΦP (τ) = 0 if τ < −T and τ > T. For 0 ≤ τ ≤ T, ΦP (τ) is found as

ΦP (τ)= T −|τ|
T

sinc(πkrτ(T −|τ|)). (3.48)

ΦP (τ) is plotted in Fig. 3.8.
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Figure 3.8: The autocorrelation function of P(t) with chirp rate kr = 2.5×1012.
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3.3.3.3 Solution of Weighting Error Function

From Φ(τ), (3.45) can be solved using the matrix form as in [9, pp. 7-8].

¯̄u(t)=h−µα

∫t

0
e−α(t−τ)Φ ¯̄u(τ)dτ (3.49)

where ¯̄u(t)= [ ¯̄u0(t) ¯̄u1(t) · · · ¯̄uL−1(t)]H , h= [h0 h1 · · · hL−1]H , and

Φ=


Φ(0) Φ(−Td) · · · Φ(−(L−1)Td)

Φ(Td) Φ(0) · · · Φ(−(L−2)Td)
...

...
. . .

...

Φ((L−1)Td) Φ((L−2)Td) · · · Φ(0)

.

It can be seen from the matrix Φ that, each row of Φ consists of L samples of

Φ(τ) with sampling rate of 1/Td. From the Nyquist theorem, in order to avoid spectral

overlapping, it is required that 1/Td ≥ 2B
2 , where B/2 is the maximum frequency of the

chirp signal with the bandwidth B (B = krT). Therefore, the tap delay of the ALMS loop

must be selected as Td = 1
nB where n is integer, and n ≥ 1. In addition, the number

of taps L also has to be limited so that (L−1)Td ≤ T. This condition ensures that

only one period of Φ(τ) is involved in deriving ¯̄u(t). From these conditions, the solution

for the weighting error functions derived in [9] can be applied to the chirp signal. In

particular, the matrix Φ is decomposed as Φ = QΛQ−1 where Q is the orthonormal

modal matrix whose columns are the L eigenvectors of Φ, and Λ is a diagonal matrix

whose diagonal includes L eigenvalues λl of Φ. Noted that λl are related to the loop gain

A2 as
∑L−1

l=0 λl = LΦ(0) = LA2. Using eigenvalue decomposition, ¯̄u(t) is solved in [9] as

¯̄u(t)=Qdiag
{ 1

1+µλl
+ µλl

1+µλl
e−(1+µλl )αt

}
Q−1h. (3.50)

In order to evaluate the level of cancellation, the power of the residual SI is derived as

PRI(t)= 1
K1K2

Ē{[z(t)− y(t)]2}

= 1
K1K2

Ē
{[

Re
{
Z(t)−

L−1∑
l=0

[h∗
l −u∗

l (t)]X (t− lTd)
}
e j2π fc t

]2}
= 1

2K1K2
Ē

{∣∣∣Z(t)−
L−1∑
l=0

h∗
l X (t− lTd)

∣∣∣2}+ 1
2K1K2

Ē
{∣∣∣L−1∑

l=0
u∗

l (t)X (t− lTd)]
∣∣∣},

(3.51)

where Ē{.} denotes combined ensemble and time averaging.

In Section 2.3.3.1, the SI channel is modeled as L taps with the same tap delay as

in the ALMS loop so that Z(t)−∑L−1
l=0 h∗

l X (t− lTd) = 0. However, in practice the SI
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signal is better expressed by Z(t) = ∫∞
−∞ h∗(τ)X (t−τ)dτ where h(t) is an arbitrary SI

channel impulse response. In this case, the modeled tap coefficients hl can be obtained

by minimizing the normalized modeling error expressed as

ε2 = 1
K1K2

Ē
{∣∣∣Z(t)−

L−1∑
l=0

h∗
l X (t− lTd)

∣∣∣2}. (3.52)

Applying the principal of orthogonality, that is Ē
{[

Z(t)−∑L−1
l′=0 h∗

l X (t− l′Td)
]
X (t− lTd)

}
=

0, the normalized modeling error is derived in [9] as

ε2 =
∫∞

−∞

∫∞

−∞
h∗(τ)h(τ′)Φ(τ−τ′)dτdτ′−hHΦh. (3.53)

Substituting (3.50) and (3.52) into (3.51), the normalized power of residual SI can be

found as

PRI(t)= 1
2
ε2 + 1

2
hHQdiag

{ λl

(1+µλl)2 + 2µλ2
l

(1+µλl)2 e−(1+µλl )αt

+ µ2λ3
l

(1+µλl)2 e−2(1+µλl )αt − λ̄e−2(1+µλl )αt
}
Q−1h.

(3.54)

3.3.3.4 Discussion

1. When applied to a GCW-SAR system where the transmitted signal is deterministic,

the ALMS loop behaves similarly as in a FD communication system where the

transmitted signal is random. The weighting error functions ¯̄u(t) converge to

Qdiag
{

1
1+µλl

}
Q−1h when t → ∞. The convergence speed is driven by the loop gain

µA2 and the LPF parameter α.

2. The above analyses are valid when the ALMS loop parameters satisfy two con-

straints of the tap delay Td ≤ 1/B and the number of taps L, i.e., (L−1)Td ≤ T.

These conditions are essential for practical system design.

3.3.4 Simulation Results

The simulations are performed for the GCW-SAR with the following parameters. The

transmitted chirp signal has the period T of 40 µs, and its power is 20 dBm with 1 Ω load.

The chirp rate is set with kr = 2.5×1012 Hz2 so that its bandwidth B = krT = 100 MHz.

In the ALMS loop, the dimensional constants of the multipliers are set as K1K2 = 0.001V 2

so that A = 10. Another loop gain µ is selected as µ = 10. The LPF parameter α is set
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Figure 3.9: The residual SI power in the first scenario for Td = 1/nB, with n = 1, 2 and
L = 4, 8, respectively.

as 5×10−5sec−1. The tap delay is chosen as Td = 1
nB with n = 1, 2, and the number of

taps are L = 4 and L = 8, respectively.

In the first scenario, the SI channel is selected with the delays being multiples of

Th = 1/B, for example h(t) = 10
−25
20 {[

p
2

2 −0.5 j]δ(t)−0.4δ(t−2Th)+0.3δ(t−4Th)}. It

means that the ALMS loop has the same tap delay with the SI channel so that the

modeling error is zero. The simulated and theoretical residual SI powers are presented

in Fig. 3.9 for two cases of tap delay with n = 1, 2 and L = 4, 8, respectively. It is seen

that the level of cancellation given by the ALMS loop can be more than 60 dB in case of

Td = 1/B.

In the second scenario, the delays of the SI channel are fractional of Th, for instance,

h(t) = 10
−25
20 {[

p
2

2 −0.5 j]δ(t)−0.4δ(t−0.9Th)+0.3δ(t−3.3Th)}. The simulation results are

presented in Fig. 3.10. In this case, the modeling error has a significant impact on the

performance of the ALMS loop. Particularly, the modeling error in case of Td = 1/B is

up to 4×10−3. Hence, the level of cancellation in this scenario is much lower than that

in the first scenario for the same Td = 1/B. However, with the finer tap delay in the loop

(Td = 1/2B, L = 8), the modeling error is reduced to 3.1525×10−5. Hence, the level of

cancellation is more than 45 dB which satisfies the requirement of SIC for the GCW-SAR

system.

42



3.3. ALMS LOOP WITH DETERMINISTIC SIGNAL IN FD SAR

1000 2000 3000 4000 5000
t/T

10 -6

10 -4

10 -2

10 0

N
or

m
al

iz
ed

 R
es

id
ua

l I
nt

er
fe

re
nc

e 
Po

w
er

n=1, Theoretical
n=1, Simulated
n=2, Theoretical
n=2, Simulated

Figure 3.10: The residual SI power in the second scenario for Td = 1/nB with n = 1, 2,
and L = 4, 8, respectively.

3.3.5 Conclusion

The stationary analysis is applied to investigate the behavior of the ALMS loop for the

chirp signal in a GCW-SAR system. Analysis and simulation results show that the ALMS

loop works with the deterministic chirp signal in an imaging radar system as well as

the random information bearing signal in a wireless communication system. It can be

concluded that for the given loop gain, when the tap delay in the loop is properly selected,

the level of cancellation more than 45 dB can be achieved. Together with the attenuation

in the propagation domain by employing a distance between the transmit and receive

antennas, the level of SI can be suppressed up to 70 dB at the input of the ADC. Future

works about GCW-SAR can refer to this level of SIC to investigate the impacts of the

residual SI.
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4
FREQUENCY DOMAIN CHARACTERIZATION AND

PERFORMANCE BOUNDS OF ALMS LOOP

4.1 Introduction

The spectra of residual SI obtained from experiment results in [9] show that the ALMS

loop enhances the SI at the two edges of the signal spectrum. However, this phenomenon

has not yet been analyzed and its impact on the SIC performance is not fully understood.

In addition, as further studied in [58, 59], the properties of transmitted signals have

significant impacts on the performance of the ALMS loop, but the roles of the tap delay

and the number of taps in the loop in regards to the SIC performance have not been

considered. As we all know, as long as the total level of SIC achieved in the propagation

and RF domains is sufficient to allow the received signal to be digitized within the ADC’s

dynamic range, the SIC performance in the RF stage does not show the real impact

on the performance of information detection since further optimal receiver algorithms

including matched filtering and equalization will be performed in the digital domain.

Therefore, it would make more sense to consider the performance of the ALMS loop

in the digital domain after the matched filter. However, the analyses on ALMS loop

performance in [9, 58, 59] are all conducted at the RF stage.

To overcome the aforementioned shortcoming, in this chapter, the performance of the

ALMS loop is analyzed by evaluating the ISRs in both analog and digital domains in

the receiver chain. In particular, the ISRs before and after the matched filter are firstly
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derived by a steady state analysis, and eigenvalue decomposition is then performed to

derive the frequency domain presentation of the ALMS loop. It is proved that although

the ALMS loop has an effect of amplifying the frequency components of the residual SI at

the edges of the signal spectrum, this effect is significantly reduced by the matched filter,

leading to a much lower ISR at the output of the matched filter. Hence, unlike [9], the real

effect of the ALMS loop on the SI suppression should be considered after the matched

filter in the digital domain instead of before it in the analog domain. Furthermore, the

lower bounds of ISRs in both analog and digital domains are derived to characterize

the performance of the ALMS loop with regards to the transmitted signal property, the

loop gain, the tap spacing, and the number of taps. From the relationship among these

parameters, the full potential of SIC given by the ALMS loop can be determined.

Contributions of this chapter are twofold. First, it characterizes the phenomenon of

frequency component enhancement produced by the ALMS loop to the residual SI, and

proves mathematically that the matched filter reduces this enhancement, leading to a

significant improvement of ISR in the digital domain. Second, the lower bound of ISR

given by the ALMS loop in the digital domain derived in this chapter allows the designer

to determine the expected level of suppression from the parameters of the transceiver

and the cancellation circuit. More importantly, this expected level can be achieved by

adjusting the remaining parameters when others are under constraints.

The rest of this chapter is organized as follows. Section 4.2 describes the system

architecture and the signal models and performs the steady state analysis to find the

expressions of ISRs in both analog and digital domains. In Section 4.3, the ISRs are

analyzed in the frequency domain and their lower bounds are derived respectively.

In Section 4.4, simulations are conducted to verify the theoretical findings. Finally,

conclusions are drawn in Section 4.5.

4.2 Steady State Analysis of ALMS Loop

4.2.1 Signal Models

Considering an IBFD system employing the ALMS loop for SIC in the radio frequency

domain as in Fig. 4.1. In this chapter, the analyses are only conducted with single-carrier

signalling for the simplicity. Therefore, the signal models are described as follows. The

transmitted signal x(t) at the output of the power amplifier (PA) is modeled as x(t) =
Re{X (t)e j2π fc t} where fc is the carrier frequency, and X (t) is the baseband equivalent
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Figure 4.1: The ALMS loop structure.

which can be mathematically modeled as

X (t)=
∞∑

i=−∞
aiVX p(t− iTs) (4.1)

where ai is the i-th complex data symbol, Ts is the symbol interval, VX is the root mean

square (RMS) value of the transmitted signal, and p(t) is the pulse shaping function

with unit power 1
Ts

∫Ts
0 |p(t)|2dt = 1. The transmitted data symbols ai are assumed to be

independent of each other, i.e., E{a∗
i ai′}=

 1, for i = i′

0, for i 6= i′
where E{.} stands for ensemble

expectation. The average power of X (t) is defined as 1
Ts

∫Ts
0 E{|X (t)|2}dt = V 2

X over 1 Ω

load. Due to the IBFD operation, at the input of the receiver, there are presences of the SI

z(t), the desired signal s(t), and the additive Gaussian noise n(t), i.e., r(t)= z(t)+s(t)+n(t).
The baseband equivalents of these signals are denoted as R(t), Z(t), S(t) and N(t)
respectively. The cancellation signal y(t) is combined from the L taps as

y(t)= Re
{L−1∑

l=0
w∗

l (t)X (t− lTd)e j2π fc(t−lTd)
}
. (4.2)

Assume that the SI channel is modeled as an L-stage multi-tap filter where each tap

has a coefficient h∗
l and delay Td. Hence, the baseband equivalent of the SI z(t) can be

expressed as Z(t)=∑L−1
l=0 h∗

l X (t− lTd).

47



CHAPTER 4. FREQUENCY DOMAIN CHARACTERIZATION AND PERFORMANCE
BOUNDS OF ALMS LOOP

The performance of the ALMS loop is represented by the weighting error function

defined as ul(t)= hl −wl(t)e j2π fc lTd . As derived in [9, Eq.(11)], ul(t) can be expressed as

ul(t)= hl −
µα

K1K2

∫t

0
e−α(t−τ)

[L−1∑
l′=0

ul′(τ)X∗(τ− l′Td)+S∗(τ)+N∗(τ)
]

X (τ− lTd)dτ. (4.3)

4.2.2 Steady State Analysis

4.2.2.1 Steady State of Weighting Error Function

Now the steady state analysis is applied to derive the residual SI power and the ISR at

the output of the ALMS loop. The system is assumed to be steady after an initial start-

up so that all the weighting coefficients are in their converged values. Both ensemble

expectation and time averaging denoted as Ē{.} are used to evaluate the random processes

involved in this analysis. The normalized autocorrelation function of the transmitted

signal is defined by

Φ(τ)= 1
K1K2

Ē{X∗(t)X (t−τ)}

= 1
K1K2Ts

∫Ts

0
E{X∗(t)X (t−τ)}dt

= V 2
X

K1K2Ts

∫∞

−∞
p∗(t)p(t−τ)dt

= A2

Ts

∫∞

−∞
p∗(t)p(t−τ)dt

(4.4)

where A2 = V 2
X /K1K2 = Φ(0) is the normalized power of the transmitted signal. To

simplify (4.3), assuming that the transmitted signal is independent of the desired signal

and the additive Gaussian noise, i.e., Ē{S∗(t)X (t−τ)}= 0 and Ē{N∗(t)X (t−τ)}= 0 for all

τ. Performing both ensemble expectation and time averaging and applying the above

assumptions to (4.3), we have

¯̄ul(t)= hl −µα

∫t

0
e−α(t−τ)

L−1∑
l′=0

¯̄ul′(τ)Φ((l− l′)Td)dτ, (4.5)

or, in matrix form
¯̄u(t)=h−µα

∫t

0
e−α(t−τ)Φ ¯̄u(t)dτ (4.6)

where ¯̄ul(t)= Ē{ul(t)}, ¯̄u(t)= [ ¯̄u0(t), ¯̄u1(t) . . . ¯̄uL−1(t)]H , h= [h0, h1, . . . ,hL−1]H , and

Φ =


Φ(0) Φ(−Td) · · · Φ(−(L−1)Td)

Φ(Td) Φ(0) · · · Φ(−(L−2)Td)
...

... . . . ...

Φ((L−1)Td) Φ((L−2)Td) · · · Φ(0)

. When t → ∞, ¯̄u(t) converge to
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their steady-state values ¯̄u so that ¯̄u(t) can be taken out of the integral in (4.6). It is also

noted that α
∫t

0 e−α(t−τ)dτ
∣∣∣
t→∞ → 1. Therefore, (4.6) becomes

¯̄u=h−µΦ ¯̄u (4.7)

and hence
¯̄u= (IL +µΦ)−1h. (4.8)

4.2.2.2 Interference Suppression Ratios

ISR is an important metric to evaluate the performance of the cancellation circuit. In

this subsection, the closed-form equations of ISRs before and after the matched filter are

derived in the analog domain and digital domain, respectively.

ISR in analog domain: After SIC, the normalized power of residual SI v(t)= z(t)−y(t)
is derived as

Pv(t)= 1
K1K2

Ē
{
[z(t)− y(t)]2

}
= 1

K1K2
Ē

{[
Re

{[
Z(t)−

L−1∑
l=0

(h∗
l −u∗

l (t))X (t− lTd)
]
e j2π fc t

}]2}
= 1

2K1K2
Ē

{∣∣∣Z(t)−
L−1∑
l=0

(h∗
l −u∗

l (t))X (t− lTd)
∣∣∣2}

= 1
2K1K2

Ē
{[L−1∑

l=0
u∗

l (t)X (t− lTd)
L−1∑
l′=0

ul′(t)X∗(t− l′Td)
]}

= 1
2

Ē
{L−1∑

l=0

L−1∑
l′=0;l′ 6=l

u∗
l (t)Φ

(
(l− l′)Td

)
ul′(t)+Φ(0)

L−1∑
l=0

|ul(t)|2
}

= 1
2

¯̄uH(t)
[
Φ−Φ(0)IL

] ¯̄u(t)+ 1
2
Φ(0)

L−1∑
l=0

¯̄u2
l (t)

(4.9)

where ¯̄u2
l (t) = Ē{|ul(t)|2} is the time-averaged mean square value of ul(t). From (4.3),

following the steps shown in Appendix B in [9], when
d ¯̄u2

l (t)
dt = 0, ¯̄u2

l (t) satisfies the

equation

(1+µA2)
L−1∑
l=0

¯̄u2
l (t)= Re{ ¯̄uHh}−µ ¯̄uH(Φ− A2IL) ¯̄u. (4.10)

Substituting (4.8) to (4.10), we have

L−1∑
l=0

¯̄u2
l (t)=hH(IL +µΦ)−2h (4.11)
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and the steady state power of the residual interference is obtained from (4.9) as

Pv = 1
2

hH(IL +µΦ)−1Φ(IL +µΦ)−1h. (4.12)

If there was no cancellation, the normalized SI power would be

Pz = 1
K1K2

Ē
{
[z(t)]2}

= 1
K1K2

Ē
{[

Re
{L−1∑

l=0
h∗

l X (t− lTd)e j2π fc t
}]2}

= 1
2K1K2

Ē
{L−1∑

l=0
h∗

l X (t− lTd)
L−1∑
l′=0

hl′ X∗(t− l′Td)
}

= 1
2K1K2

L−1∑
l=0

L−1∑
l′=0

h∗
l Ē

{
X (t− lTd)X∗(t− l′Td)

}
hl′

= 1
2

L−1∑
l=0

L−1∑
l′=0

h∗
l Φ

(
(l− l′)Td

)
hl′ =

1
2

hHΦh.

(4.13)

Therefore, ISR before the matched filter in the analog domain, denoted as ISRa, is

determined by

ISRa = Pv

Pz
= hH(IL +µΦ)−1Φ(IL +µΦ)−1h

hHΦh
. (4.14)

ISR in digital domain: After down-converted to baseband, the residual SI, denoted

as V (t), is expressed as

V (t)= Z(t)−Y (t)

=
L−1∑
l=0

h∗
l X (t− lTd)−

L−1∑
l=0

w∗
l (t)X (t− lTd)e− j2π fc lTd

=
L−1∑
l=0

u∗
l (t)X (t− lTd).

(4.15)

After the matched filter with the impulse response p∗(−t), the filtered version of V (t) is

obtained as

Ṽ (t)=V (t)∗ p∗(−t)=
L−1∑
l=0

u∗
l (t)X̃ (t− lTd) (4.16)

where ∗ stands for a linear convolution operation and

X̃ (t)= X (t)∗ p∗(−t) (4.17)
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is the filtered version of the transmitted baseband signal. Similarly, the steady normal-

ized power of the filtered residual SI is calculated as

PṼ = 1
K1K2

Ē
{|Ṽ (t)|2}

= 1
K1K2

Ē
{L−1∑

l=0
u∗

l (t)X̃ (t− lTd)
L−1∑
l′=0

ul′(t)X̃∗(t− l′Td)
}

=
L−1∑
l=0

L−1∑
l′=0,l 6=l′

¯̄u∗
l (t)Θ

(
(l− l′)Td

)
¯̄ul′(t)+Θ(0)

L−1∑
l=0

¯̄u2
l (t)

= ¯̄uH(t)(Θ−Θ(0)IL) ¯̄u(t)+Θ(0)
L−1∑
l=0

¯̄u2
l (t)

=hH(IL +µΦ)−1Θ(IL +µΦ)−1h

(4.18)

where Θ(τ)= 1
K1K2

Ē
{
X̃ (t)X̃∗(t−τ)

}
and Θ=


Θ(0) Θ(−Td) · · · Θ(−(L−1)Td)

Θ(Td) Θ(0) · · · Θ(−(L−2)Td)
...

... . . . ...

Θ((L−1)Td) Θ((L−2)Td) · · · Θ(0)


are the normalized autocorrelation function of X̃ (t) and the corresponding autocorrelation

matrix, respectively.

Meanwhile, if there was no cancellation, the steady normalized SI power after the

matched filter would be

PZ̃ = 1
K1K2

Ē
{|Z(t)∗ p∗(−t)|2}

= 1
K1K2

Ē
{∣∣L−1∑

l=0
h∗

l X̃ (t− lTd)
∣∣2}

=
L−1∑
l=0

L−1∑
l′=0

h∗
l Θ((l− l′)Td)hl′

=hHΘh.

(4.19)

Therefore, the ISR after the matched filter in the digital domain, denoted as ISRd, is

ISRd = PṼ

PZ̃
= hH(IL +µΦ)−1Θ(IL +µΦ)−1h

hHΘh
. (4.20)
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4.3 Frequency-Domain Analysis of Residual SI

4.3.1 Eigen-Decomposition of Autocorrelation Matrices

The L×L matrix Φ can be decomposed as Φ=QΛQ−1 where Q is the orthonormal modal

matrix whose columns are the L eigenvectors of Φ and Λ=


λ0 0 · · · 0

0 λ1 · · · 0
...

... . . . ...

0 0 · · · λL−1

 is the

spectral matrix whose main diagonal elements are the L eigenvalues of Φ. When LTd is

sufficiently large, the autocorrelation matrix Φ can be approximated as a circulant matrix

Φ̃ composed of a periodic autocorrelation function Φ̃(τ)=∑∞
l=−∞Φ(τ+ lLTd). As proved

in [60], the circulant matrix Φ̃ can be decomposed as Φ̃=FSXF−1 where F is the discrete

Fourier transform (DFT) matrix of order L, F =


1 1 · · · 1

1 e− jω1 · · · e− j(L−1)ω1

...
... . . . ...

1 e− jωL−1 · · · e− j(L−1)ωL−1

 with

ωk = 2πk
L ,k = 0,1, . . . ,L−1, SX = diag{SX (e jω0),SX (e jω1), . . . ,SX (e jωL−1)}, and SX (e jωk ) are

obtained by taking the DFT of Φ̃(lTd), i.e.,

SX (e jωk )=
L−1∑
l=0

Φ̃(lTd)e− jωk l (4.21)

for k = 0,1, . . . ,L−1, which are the L samples of the normalized power spectrum SX (e jω)

of the transmitted signal sequence X (nTd) uniformly spaced about the unit circle. It

means that when L is sufficiently large, the eigenvalues λk can be approximated as the

power spectrum samples SX (e jωk ). To confirm this approximation, the eigenvalues λk

are compared with the power spectrum SX (e jωk ) as below.

Suppose that the transmitter employs a root raised cosine pulse shaping filter. The

autocorrelation function Φ(t) is a raised cosine pulse, which has the frequency response

P( f )=


Ts for 0≤ | f | < 1−β

2Ts

Ts
2

[
1+cos

(
πTs
β

( f − 1−β

2Ts
)
)]

for 1−β

2Ts
≤ | f | ≤ 1+β

2Ts

0 for | f | > 1+β

2Ts

(4.22)

where β is the roll-off factor. Hence, the normalized power spectrum of X (t) is A2P( f ).

With the sampling period Td, the relationship between SX (e jω) and P( f ) can be expressed
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Figure 4.2: (a) Raised cosine spectrum; (b) SX (e jω); (c) SX (e jωk ) versus eigenvalues λk,
with L = 256, A2 = 100, β= 0.2, Td = Ts/2, Ts = 1.

as

SX (e jω)= 1
Td

∞∑
n=−∞

A2P(
ω

2πTd
− n

Td
). (4.23)

If Td ≤ Ts/(1+β), there will be no spectral overlapping and hence

SX (e jω)= A2

Td
P(

ω

2πTd
), for −π<ω<π. (4.24)

Fig. 4.2 shows the raised cosine spectrum P( f ), SX (e jω), SX (e jωk ), and properly

ordered λk for L = 256, A2 = 100, β= 0.2, and Td = Ts/2 where Ts is normalized to 1. We

see that λk are very close to SX (e jωk ).

The same approximation can also be applied to the autocorrelation matrix Θ, i.e.,

it is close to a circulant matrix Θ̃ when L is sufficiently large. In this case, Θ̃ can be decom-

posed as Θ̃=FSX̃ F−1 where SX̃ = diag
{
S X̃ (e jω0),S X̃ (e jω1), . . . ,S X̃ (e jωL−1)

}
; S X̃ (e jωk ) for k =

0, . . . ,L − 1 are the L spectrum components obtained by taking DFT of Θ̃(lTd) with

Θ̃(τ)=∑∞
l=−∞Θ(τ+ lLTd), and S X̃ (e jω)= A2

Td
P2( ω

2πTd
) for −π<ω<π.
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4.3.2 Frequency Domain Characterization of ALMS Loop

From the above decomposition, (4.14) and (4.20) can be simplified as

ISRa = hHF(IL +µSX )−1F−1FSX F−1F(IL +µSX )−1F−1h
hHFSX F−1h

=
hHFdiag

{
SX (e jωk )[

1+µSX (e jωk )
]2

}
F−1h

hHFdiag{SX (e jωk )}F−1h

=

∑L−1
k=0 |H(eiωk )|2 SX (e jωk )[

1+µSX (e jωk )
]2∑L−1

k=0 |H(eiωk )|2SX (e jωk )
,

(4.25)

and

ISRd = hHF(IL +µSX )−1F−1FSX̃ F−1F(IL +µSX )−1F−1h
hHFSX̃ F−1h

=
hHFdiag

{
SX̃ (e jωk )[

1+µSX (e jωk )
]2

}
F−1h

hHFdiag{S X̃ (e jωk )}F−1h

=

∑L−1
k=0 |H(e jωk )|2 SX̃ (e jωk )[

1+µSX (e jωk )
]2∑L−1

k=0 |H(e jωk )|2S X̃ (e jωk )

(4.26)

where H(e jωk ) is the frequency response of the SI channel. It can be seen from (4.25)

and (4.26) that, in the frequency domain, the residual SI can be decomposed into

two components. The first component is the frequency response of the SI channel

H(e jωk ). The second component in (4.25) (i.e., in the analog domain before the matched

filter) is a frequency dependent attenuation factor introduced by the ALMS loop as

Fa(e jω)= SX (e jω)[
1+µSX (e jω)

]2 . Also, in (4.26), the second component in the digital domain after

the matched filter is a frequency dependent attenuation factor determined by both the

ALMS loop and the matched filter as Fd(e jω)= SX̃ (e jω)[
1+µSX (e jω)

]2 . Therefore, the residual SI

before and after the matched filter can be analyzed in the frequency domain by comparing

their second components. Fa(e jω) and Fd(e jω) with various values of β are plotted in Fig.

4.3, respectively.

Fig. 4.3 reveals that the ALMS loop has an effect of amplifying the frequency com-

ponents of the residual SI leading to a peak at the edge of the signal spectrum. As a

result, the ISR in the analog domain before the matched filter is higher when the roll-off

factor is larger. However, this effect is significantly reduced by the matched filter as

the peak no longer exists in Fd(e jω). Hence, the ISR will be significantly improved in
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Figure 4.3: Frequency dependent attenuation factors with various values of β, L = 256,
A2 = 100, Td = Ts/2.

the digital domain. It also means that the effect of the signal spectrum on ISR reduces

significantly when it is considered in the digital domain. Therefore, it is concluded that

the performance of the ALMS loop evaluated in the digital domain after the matched

filter rather than in the analog domain as in [9] makes more sense to the IBFD system.

4.3.3 Performance Lower Bounds

The ISRs discussed in Section 4.3.1 are valid for a given SI channel. To derive the lower

bounds of ISRs over random realizations of SI channels, defining the average ISRs in the

analog domain and digital domain, respectively as

ISRa = Eh{Pv}
Eh{Pz}

=

∑L−1
k=0 Eh

{|H(e jωk )|2} SX (e jωk )[
1+µSX (e jωk )

]2∑L−1
k=0 Eh

{|H(e jωk )|2}SX (e jωk )
,

=

∑L−1
k=0

SX (e jωk )[
1+µSX (e jωk )

]2∑L−1
k=0 SX (e jωk )

(4.27)
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and

ISRd = Eh{PṼ }
Eh{PZ̃}

=

∑L−1
k=0 Eh

{|H(e jωk )|2} SX̃ (e jωk )[
1+µSX (e jωk )

]2∑L−1
k=0 Eh

{|H(e jωk )|2}S X̃ (e jωk )

=

∑L−1
k=0

SX̃ (e jωk )[
1+µSX (e jωk )

]2∑L−1
k=0 S X̃ (e jωk )

(4.28)

where Eh{.} denotes expectation over the SI channel and Eh{|H(e jωk )|2} is a constant

for SI channels with independent and zero-mean tap coefficients (see Appendix A.1).

Clearly, ISRa and ISRd can be purely examined by the spectrum components SX (e jωk )

and S X̃ (e jωk ). To find the closed-form equation of ISRa and ISRd, letting L →∞, the

discrete components SX (e jωk ) and S X̃ (e jωk )) can be replaced by the continuous power

spectra SX (e jω) and S X̃ (e jω), respectively. The lower bounds of ISRa and ISRd are

obtained as

ISRLBa = ISRa|L→∞ =
1

2π
∫2π

0
SX (e jω)[

1+µSX (e jω)
]2 dω

1
2π

∫2π
0 SX (e jω)dω

=
1

2π
∫π
−π

SX (e jω)[
1+µSX (e jω)

]2 dω

1
2π

∫π
−π SX (e jω)dω

=

∫1/2Td
−1/2Td

A2P( f )[
1+µ A2

Td
P( f )

]2 d f

∫1/2Td
−1/2Td

A2P( f )d f
,

(4.29)

and

ISRLBd = ISRd|L→∞ =
1

2π
∫2π

0
SX̃ (e jω)[

1+µSX (e jω)
]2 dω

1
2π

∫2π
0 S X̃ (e jω)dω

=
1

2π
∫π
−π

SX̃ (e jω)[
1+µSX (e jω)

]2 dω

1
2π

∫π
−π S X̃ (e jω)dω

=

∫1/2Td
−1/2Td

A2P2( f )[
1+µ A2

Td
P( f )

]2 d f

∫1/2Td
−1/2Td

A2P2( f )d f

(4.30)

respectively. Assuming the raised cosine transmitted signal spectrum, the closed-form

ISRLBa and ISRLBd in (4.29) and (4.30) are found (see Appendix A.2) as

ISRLBa = 1+β(
p

a+1 −1)
(1+a)2 , (4.31)

and

ISRLBd =
1+β

[
2(a+1)2

a2

(
1− 1p

a+1
− a

p
a+1

2(a+1)2

)
−1

]
(1+a)2(1−β/4)

.
(4.32)
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where a =µA2Ts/Td. It is obvious from these lower bounds that in the ideal case (β= 0)

the ultimate level of cancellation is ISRLBu = 1/(1+ Ts
Td

µA2)2. Comparison between

ISRLa and ISRLBd with three example values of a is presented in Fig. 4.4. From (4.27),

(4.28), (4.31), (4.32), and Fig. 4.4, some important observations are derived as below.

1. The level of cancellation given by the ALMS loop is determined by the loop gain

µA2, the roll-off factor β the tap delay Td, and the number of taps L. It means

that the expected level of cancellation can be achieved by either increasing the loop

gain µA2 or reducing the tap delay Td. However for the latter case, larger number

of taps L is required so that LTd is sufficiently large and ISRa can approach its

lower bound.

2. ISRLBa increases significantly as the roll-off factor increases. As shown in Fig.

4.4, ISRLBa for β= 1 is about 10 dB higher than that for β= 0.1. However, the

difference in ISRLBd is only about 3 dB over the whole range of β. This indicates

that the matched filter significantly reduces the effects of the roll-off factor and the

impact of the spectrum of the transmitted signal becomes negligible in the digital

domain.

The first observation is a crucial conclusion for system design because it allows the

designer to determine these parameters based on the expected level of cancellation given

by the ALMS loop. Furthermore, understanding the relationship among these factors

also allows the flexibility in designing the cancellation circuit. For example, if the power
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of the system is limited, i.e, the gain of the ALMS loop is not high enough, the level of

cancellation can still be achieved by a finer tap spacing. In case the size of the ALMS

loop is constrained, the loop gain must be increased. The second observation once again

states that the performance of the ALMS loop must be considered in the digital domain,

and the best level of cancellation given by the ALMS loop is ISRLBd.

4.4 Simulation Results

To verify the analytical results presented in Section 4.3, simulations are conducted in

MATLAB for a single-carrier IBFD system which uses QPSK modulation and symbol

duration Ts = 20 ns. The pulse shaping filter and the matched filter are both root raised

cosine pulses with the roll-off factor β. The transmitted power is set to 0 dBm over 50 Ohm

load. The transmitted power over 1 Ohm load is found by 0 dBm+10log10(50)= 17 dBm.

Hence, the mean squared amplitude of the transmitted signal for 1 Ohm load is calculated

by V 2
X = 2×10(17−30)/10 = 0.1 V 2. The LNA in the receiver is selected with the gain of

µ = 10. The ALMS loop has the tap spacing Td = Ts/2 and the number of taps L. The

multiplier constants in all the taps are the same and are selected as K1K2 = 0.001 V 2.

Therefore, the gain of the ALMS loop is µA2 = 10× (0.1/0.001) = 1000. By considering

propagation loss between Tx and Rx antennas, the SI power is set to 25 dB lower than

the transmitted signal power.

In the first simulation, the SI channel is chosen as h(t) = 10
−25
20 {[

p
2

2 − 0.5 j]δ(t)−
0.4δ(t−0.9Ts)+0.3δ(t−3.3Ts)}, which means that the delays of the reflected paths are

fractional of Ts. The ALMS loop has L = 8 taps with Ts/2 tap spacing. Both pulse shaping

filter and matched filter have the roll-off factor of β= 0.5. The power spectrum densities

(PSDs) of the baseband equivalent of the SI Z(t), the residual SI in the analog domain

V (t), and the residual SI in the digital domain after the matched filter Ṽ (t) are presented

in Fig. 4.5. It is seen that there are two peaks at the edges of the V (t). However, these

peaks are removed in the spectrum of Ṽ (t). This simulation confirms the analyses in

Section 4.3.2.

In the second simulation, the SI channel has L propagation paths whose coefficients

hl are all independent and have a normal distribution with zero-mean. The power

delay profile of the channel has an exponential distribution with the root mean square

delay spread σ = LTs/4. The ISRs at each point of the roll-off factor β for different

values of L are calculated and averaged out over 1000 iterations. The simulated ISRa,

ISRd and their corresponding lower bounds ISRLBa, ISRLBd are presented in Fig.

58



4.5. CONCLUSION

-50 0 50
Frequency (MHz)

-140

-120

-100

-80

-60

-40

-20
PS

D
 (d

Bm
/M

H
z)

Figure 4.5: PSDs of the SI Z(t), residual SI V (t), and residual SI after the matched filter
Ṽ (t) with β= 0.5, µA2 = 1000, Td = Ts/2, and L = 8.

4.6 for different values of L. The inset shows a closer look of ISRd. Clearly, when L is

larger, ISRa and ISRd are closer to their lower bounds, respectively. This is because

the autocorrelation matrix can be well approximated to a circulant matrix and the

summation in (4.27) and (4.28) approaches the integration when L is sufficiently large.

Note that in our analyses, the SI channel is assumed to have the same number of paths

as in the ALMS loop. As a result, the SI channels with small number of taps are much

shorter compared to those with larger number of taps. Therefore, ISRa with smaller

L go beyond the lower bound with infinite L. However, the matched filter reduces the

effects of the SI channel so that ISRd are still bounded by ISRLBd.

4.5 Conclusion

In this chapter, the residual SI powers and the ISRs of an ALMS loop in both analog and

digital domains of an IBFD system have been derived using the steady state analysis.

The expression of the ISR in the time domain is then converted into the frequency domain

by eigenvalue decomposition. From the frequency domain presentation, it is proved that

the matched filter has an effect of reducing the peak frequency response of the ALMS

loop so that the problem of frequency component enhancement caused by the ALMS loop

to the residual SI can be significantly reduced in the digital domain. The corresponding
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lower bounds of ISRs in both analog and digital domains have also been derived from

frequency domain expressions. Comparison between these lower bounds shows that

the performance of the ALMS loop should be considered in the digital domain and it is

determined by four factors, namely, the loop gain µA2, the tap delay Td, the number of

taps L, and the roll-off factor β. The finding of these lower bounds allows the designer to

determine the desired level of cancellation given by the ALMS loop. It also provides a

room to trade off among these factors to achieve the level of cancellation within given

constraints.
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5
ALMS LOOP WITH IQ IMBALANCE

5.1 Introduction

The studies on the behaviors of the ALMS loop published in [9, 58, 59, 61] are all

conducted under the perfect I/Q imbalance-free condition of the loop. However, since I/Q

imbalances always exist in the modulators and demodulators used in the ALMS loop,

it is important to examine how these I/Q imbalances impact on the loop performance,

which is the main motivation of this Chapter. To the best of the author’s knowledge, little

work has been published in the literature considering this problem. Instead, most of

the publications investigate the impact of I/Q imbalances appearing in the transceivers

[62–66].

In this chapter, the ALMS loop proposed in [9] with frequency independent I/Q

imbalances will be investigated in both single-carrier and OFDM FD systems. Firstly, the

effect of I/Q imbalance on the loop gain is examined and compensated by adjusting the

gains at other points in the loop. Secondly, the effect of I/Q imbalance on the cancellation

performance is derived and quantified. Due to I/Q imbalance, the level of SIC given

by the ALMS loop is degraded and can be presented by a degradation factor (DF).

However, by averaging over random realizations of the SI channel, the DF is shown to

be insignificant even under severe amplitude and phase errors. In addition, an upper

bound of the DF is also derived so that the maximum possible level of degradation can

be analytically determined for a given I/Q imbalance condition. Hence, the contributions

of this chapter are threefold. Firstly, it provides an analytical means to investigate
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the impacts of the I/Q imbalance on the performance of the ALMS loop. Secondly, it

proves the robustness of the ALMS loop as an effective SIC architecture against practical

imperfections. Finally, it derives a closed-form DF upper bound which is critical from the

system design perspective. This upper bound provides a reference for evaluating the SIC

performance in the RF domain and also determining how much compensation should

be gained from other SIC stages such as propagation domain suppression and digital

domain cancellation to satisfy the overall SIC requirement.

The rest of this chapter is organized as follows. In Section 5.2, the system architecture

and the signal models are described. Then, the effects of I/Q imbalance on the loop gain

and cancellation performance are investigated in Section 5.3. In Section 5.4, theoretical

findings are verified by simulation results. Finally, conclusions are drawn in Section 5.5.

5.2 System Architecture and Signal Models

5.2.1 In-Band Full-Duplex Transceiver with ALMS Loop

Consider an FD transceiver terminal whose RF part is illustrated in Fig. 5.1. Owing to the

FD operation, the received signal r(t) is contaminated by a strong SI signal emitted from

the local transmitter. In order to mitigate this SI, an ALMS loop is employed to generate a

cancellation signal y(t) and subtract it from the received signal at the input of the receiver.

The ALMS loop, which comprises L taps, processes complex signals using I/Q structures.

At the l-th tap, the looped-back signal is multiplied with the delayed transmitted signal

using an I/Q demodulator. LPFs at the output of the demodulator act as integrators to

synthesize the weighting coefficients wl(t), l = 0,1, . . . ,L−1. These weighting coefficients

then modulate the same delayed transmitted signal at the modulator. The cancellation

signal y(t) is generated by combining the outputs of all the taps. After subtracting the

reference signal from the received signal r(t), the residual signal is amplified by the LNA

and looped-back to the input of every tap.

Signal models are expressed as follows. The RF transmitted signal x(t) is expressed as

x(t)=Re{X (t)e j2π fc t}, where fc is the carrier frequency; X (t) is the low-pass equivalent.

Assuming that the baseband part of this FD transceiver can operate in either single-

carrier or multi-carrier such as OFDM modes. Therefore, X (t) is denoted as X (t)= Xs(t)
and X (t)= Xo(t) in the single-carrier and OFDM modes, respectively. Xs(t) and Xo(t) are
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Figure 5.1: The ALMS loop structure.

modeled as

Xs(t)=
∞∑

i=−∞
ai q(t− iTs) (5.1)

and

Xo(t)=
∞∑

n=−∞

∞∑
m=−∞

Nst/2∑
k=−Nst/2,k 6=0

ak,me j2π k
N (n−m To

Ts )w
[
n−m

To

Ts

]
q(t−nTs) (5.2)

respectively, where ai, and ak,m are the i-th data symbol in the single-carrier system

and the data symbol on the k-th sub-carrier of the m-th OFDM symbol respectively; Ts is

the symbol period of the single-carrier system and also the sample period of the OFDM

system; To is the OFDM symbol duration; Nst is the total number of data sub-carriers;

N is the number of samples in one OFDM symbol excluding cyclic prefix; w[n] is the

discrete windowing function applied to an OFDM symbol; and q(t) is the pulse shaping

function. The complex data symbols ai and ak,m are assumed to be independent to each

other in both single-carrier and OFDM systems, i.e.,

E{a∗
i ai′}=

 1, for i = i′

0, for i 6= i′
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and

E{a∗
k,mak′,m′}=

1, for k = k′,m = m′

0, for k 6= k′,m 6= m′.

where E{.} stands for ensemble expectation. The root mean square amplitude of the trans-

mitted signal is defined as VX =
√

1
T

T∫
0

E{|X (t)|2}dt where T is the period of transmitted

data symbol, i.e., Ts or To.

At the input of the receiver, the received signal r(t) is a combination of the SI z(t),
the signal of interest s(t), and the additive white Gaussian noise (AWGN) n(t), i.e.,

r(t)= z(t)+ s(t)+n(t)=Re
{[

Z(t)+S(t)+N(t)
]
e j2π fc t

}
where Z(t), S(t) and N(t) are the low-pass equivalents of these signals respectively. For

the ease of derivation, the SI channel is modeled as an L tapped delay line filter with

tap delay Td as in the ALMS loop, i.e.,

Z(t)=
L−1∑
l=0

h∗
l X (t− lTd) (5.3)

where h∗
l , l = 0,1, . . .L−1, are the SI channel coefficients.

5.2.2 I/Q Imbalanced Signal Models

It can be seen from the architecture that the ALMS loop processes the complex signals

directly in the analog domain and hence the quadrature demodulators and modulators

are required in the loop. Assuming that the I/Q imbalances of the demodulators and

modulators are frequency-independent, and hence the phase shifters in the demodulators

and modulators have constant amplitudes ρ1 and ρ2 as well as phase errors θ1 and θ2,

respectively. Note that the microstrip traces in the two branches of each tap are also

assumed to have the same length so that the phase shift caused by the signal traces is

negligible or can be absorbed into the phase errors θ1 and θ2. Considering the demodula-

tor of the first tap, the complex transmitted signal, denoted as x1(t) and presented at the

demodulator, can be modeled as x1(t)= x1,I(t)+ jx1,Q(t) where x1,I(t) and x1,Q(t) are the

real transmitted signals at the I-branch and Q-branch respectively, and expressed as

x1,I(t)=Re
{
X (t)e j2π fc t}= 1

2
[
X (t)e j2π fc t + X∗(t)e− j2π fc t]

x1,Q(t)=Re
{
ρ1X (t)e j(2π fc t−π/2−θ1)}= Im

{
ρ1X (t)e j(2π fc t−θ1)}

= 1
2 j

[
ρ1X (t)e j(2π fc t−θ1) −ρ1X∗(t)e− j(2π fc t−θ1)].

(5.4)
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Hence, the complex signal x1(t) is represented, in terms of the baseband equivalent X (t),
as

x1(t)= x1,I(t)+ jx1,Q(t)

= 1+ρ1e− jθ1

2
X (t)e j2π fc t + 1−ρ1e jθ1

2
X∗(t)e− j2π fc t.

(5.5)

At the l−th tap, the product of x1(t− lTd) and the looped-back signal is filtered by the

LPF to attain the weighting coefficient, denoted as wl(t), which can be derived as [9, 67]

wl(t+ t0)= 2µα

K1K2

t+t0∫
t0

e−α(t+t0−τ)[r(τ)− y(τ)]x1(τ− lTd)dτ (5.6)

where K1 and K2 are the dimensional constants of the multipliers in the demodulator

and modulator respectively, 2µ is the gain of the LNA, α= 1/RC is the decay constant

of the resistor-capacitor LPF with resistance R and capacitance C, and 0≤ t0 < T is an

initial starting time. Similarly, the complex signal x2(t), presented in the modulator, can

be expressed as

x2(t)= 1+ρ2e− jθ2

2
X (t)e j2π fc t + 1−ρ2e jθ2

2
X∗(t)e− j2π fc t. (5.7)

Hence, the cancellation signal y(t) at the output of the ALMS loop can be expressed as

y(t)=Re
{L−1∑

l=0
w∗

l (t)x2(t− lTd)
}
. (5.8)

For simplicity, denoting ηi = 1+ρ i e− jθi

2 and ξi = 1−ρ i e jθi

2 , for i = 1,2. From (5.6) and (5.7),

y(t) can be further expressed as

y(t)=Re
{L−1∑

l=0
w∗

l (t)
[
η2X (t− lTd)e j2π fc(t−lTd) +ξ2X∗(t− lTd)e− j2π fc(t−lTd)

]}
. (5.9)

Clearly, the cancellation signal is affected by the I/Q imbalances at both modulators and

demodulators.

5.3 Effects of I/Q Imbalance

5.3.1 Impact on Loop Gain

It has been proved in [9, 58, 59] that the loop gain, which is jointly determined by

the LNA gain, the transmitted signal amplitude and the dimensional constants of the
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multipliers in the modulator and demodulator, plays a vital role in the performance of

the ALMS loop. The loop gain G is defined as

G = Vy

Vd
(5.10)

where Vy and Vd are the RMS voltages of the cancellation signal at the output and the

residual SI signal at the input of the ALMS loop (before the LNA), respectively. From

the loop architecture, when no I/Q imbalance presents, the loop gain G is calculated as

G = Vy

Vd
=

2µVdVx
K1

Vx
K2

Vd
= 2µV 2

x

K1K2
(5.11)

where Vx is the RMS voltage of the RF signal x(t).
Since the I/Q imbalance causes the errors in phase and amplitude of the signals, it

also impacts the total loop gain. The loop gain in the case of the I/Q imbalance, denoted

as G′, can be calculated as

G′ = Vy

Vd
=

2µVdVx1
K1

Vx2
K2

Vd
= 2µVx1Vx2

K1K2

(5.12)

where Vx1 and Vx2 are the RMS voltages of the I/Q imbalanced RF transmitted signals at

the demodulator and modulator, respectively. The signal powers Px and Pxi (for i = 1,2)

are derived as

Px =V 2
x = 1

T

T∫
0

E{x2(t)}dt = 1
2T

T∫
0

E
{|X (t)|2}dt

Pxi =V 2
xi
= 1

2T

T∫
0

E
{∣∣∣ηi X (t)e j2π fc t +ξi X∗(t)e− j2π fc t

∣∣∣2}dt

= 1
2T

T∫
0

E
{[

ηi X (t)e j2π fc t +ξi X∗(t)e− j2π fc t][η∗i X∗(t)e− j2π fc t +ξ∗i X (t)e j2π fc t]}dt

= 1
2T

T∫
0

E
{
(|ηi|2 +|ξi|2)|X (t)|2 +2Re

{
ηiξ

∗
i X2(t)e j4π fc t

}}
dt.

(5.13)

Since E{X2(t)}= 0 for any zero mean complex random process X (t), we have

Pxi =
(|ηi|2 +|ξi|2)

2T

T∫
0

E
{|X (t)|2}dt

= (|ηi|2 +|ξi|2)Px.

(5.14)
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Figure 5.2: The loop gain ratio versus amplitude.

Therefore, the effect of I/Q imbalance on the loop gain can be represented by

G′ =
√

(|η1|2 +|ξ1|2)(|η2|2 +|ξ2|2)G

= 1
2

√
(1+ρ2

1)(1+ρ2
2)G.

(5.15)

It is seen that the change on the loop gain is a function of the amplitudes of the phase

shifters in the demodulators and the modulators only. Assuming that the phase shifters

in the demodulators and modulators have the same amplitudes, i.e., ρ1 = ρ2 = ρ, the ratio

G′/G = 1+ρ2

2 over a range of ρ is presented in Fig. 5.2. From this figure, the amplitude

errors may contribute to the loop gain (ρ > 0 dB) or reduce the loop gain (ρ < 0 dB). The

variation of the loop gain can be compensated accordingly by changing the gain at other

stages in the loop such as the LNA.

5.3.2 Impact on Cancellation Performance

In this section, the impact of I/Q imbalance on the cancellation performance of the ALMS

loop is investigated. In order to analyze the impact of I/Q imbalance under the same loop

gain, the gain of the LNA 2µ can be scaled to 2µ′ with µ′ = 2µ√
(1+ρ2

1)(1+ρ2
2)

. The following

derivation will be conducted with this adjustment of the LNA gain. The residual SI

power in case of the ALMS loop with I/Q imbalance is compared to that in the perfect

case of no I/Q imbalance. In this analysis, the ALMS loop is considered in the steady

state, i.e., all the weighting coefficients are converged to their stable values. Therefore,
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Figure 5.3: The normalized autocorrelation function of the transmitted signals.

both ensemble expectation and time averaging, denoted as Ē{.}, are applied to evaluate

all the processes. The normalized autocorrelation functions of the transmitted signal,

denoted as Φ(τ), is defined as

Φ(τ)= 1
K1K2

Ē{X∗(t)X (t−τ)}

= 1
K1K2T

T∫
0

E{X∗(t)X (t−τ)}dt.
(5.16)

Denoting A2 = V 2
X /K1K2, Φ(0) = 1

K1K2T
∫T

0 E{|X (t)|2}dt = A2, which is the normalized

power of the transmitted signal. Fig. 5.3 demonstrates the normalized autocorrelation

functions of the single-carrier signal ΦS(τ) and OFDM signal ΦO(τ) with A2 = 100. In

this plot, q(t) is a root-raised cosine (RRC) function in the single-carrier case and raised

cosine (RC) function for the OFDM case. The windowing function for the OFDM signal is

the one recommended in IEEE 802.11a. All pulse shaping filters and windowing function

have the roll-off factor β= 0.25.

Defining the residual SI signal as d(t) = z(t)− y(t), using the signal models in (5.3)
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5.3. EFFECTS OF I/Q IMBALANCE

and (5.8), and denoting ul(t)= hl − (η∗2wl(t)+ξ2w∗
l (t))e j2π fc lTd , d(t) can be expressed as

d(t)= z(t)− y(t)=Re
{L−1∑

l=0
h∗

l X (t− lTd)e j2π fc t
}

−Re
{L−1∑

l=0
w∗

l (t)
[
η2X (t− lTd)e j2π fc(t−lTd) +ξ2X∗(t− lTd)e− j2π fc(t−lTd)

]}
= 1

2

[L−1∑
l=0

u∗
l (t)X (t− lTd)e j2π fc t +

L−1∑
l=0

ul(t)X∗(t− lTd)e− j2π fc t
]

=Re
{L−1∑

l=0
u∗

l (t)X (t− lTd)e j2π fc t
}
.

(5.17)

It means that the residual SI of the ALMS loop is determined by the weighting error

function ul(t). The normalized residual SI power, denoted as Pd(t), can be determined as

Pd(t)= 1
K1K2

Ē{|d(t)|2}. (5.18)

Substituting (5.17) into (5.18), after some manipulations (see Appendix A.3) and let

t →∞, Pd(t) converges to its steady-state

Pd = 1
2

¯̄uH
Φ ¯̄u (5.19)

where

Φ=


Φ(0) Φ(−Td) · · · Φ(−(L−1)Td)

Φ(Td) Φ(0) · · · Φ(−(L−2)Td)
...

... . . . ...

Φ((L−1)Td) Φ((L−2)Td) · · · Φ(0)

 is the L×L autocorrelation matrix

and ¯̄u= [ ¯̄u0 . . . ¯̄uL−1]T is the vector of the steady-state weighting error functions. From

the solution of the weighting error function (see Appendix A.4), ¯̄u is expressed as

¯̄u=
[
(IL +k1Φ)−|k2|2EΦ(IL +k∗

1Φ)−1E−1Φ
]−1[

h−k2EΦ(IL +k∗
1Φ)−1h∗

]
(5.20)

where IL is the identity matrix of order L; k1 =µ′(η1η
∗
2+ξ∗1ξ2

)
, and k2 =µ′(η∗2ξ1+η∗1ξ2

)
are

constants representing the I/Q imbalance errors; E =


1 0 · · · 0

0 e j4π fcTd · · · 0
...

... . . . ...

0 · · · 0 e j4π fc(L−1)Td

;

and h= [h0 h1 . . .hL−1]T is the channel coefficients of L paths.
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When there is no I/Q imbalance, i.e., ρ1 = ρ2 = 1,θ1 = θ2 = 0, thus k1 = µ,k2 = 0, we

have ¯̄u= (IL +µΦ)−1h. Note that the autocorrelation matrix can be decomposed as Φ=
QΛQ−1 where Q is the orthonormal modal matrix whose columns are the L eigenvectors

of Φ and Λ=


λ0 0 · · · 0

0 λ1 · · · 0
...

... . . . ...

0 0 · · · λL−1

 is a diagonal spectral matrix, and λl , l = 0, . . . ,L−1,

are L eigenvalues of Φ. In this case, the residual SI is calculated as

P0 = 1
2

hH(IL +µΦ)−1Φ(IL +µΦ)−1h

= 1
2

hHQ(IL +µΛ)−1Q−1QΛQ−1(IL +µΛ)−1Q−1h

= 1
2

hHQdiag
{ λl

(1+µλl)2

}
Q−1h

(5.21)

where diag{ λl
(1+µλl )2

}, l = 1, . . . ,L, is an L×L diagonal matrix whose main diagonal elements

are λ1
(1+µλ1)2 , . . . , λL

(1+µλL)2 . It is seen that P0 is the same as the result derived in [9, Eq.

(37)]. From (5.19) and (5.21), when there are I/Q imbalances present, we will see that

I/Q imbalances of the modulators and demodulators not only lead to the change of the

residual SI power, but also result in the involvement of the carrier frequency in the

performance of the ALMS loop.

To quantify the impact of I/Q imbalance on the level of cancellation, the degradation

factor DF is defined as

DF = 10log10
Pd

P0

= 10log10
¯̄uH

Φ ¯̄u

hHQdiag
{

λl
(1+µλl )2

}
Q−1h

.
(5.22)

From (5.20) and (5.22), in addition to the I/Q imbalance, the DF is also related to other

factors such as the SI channel h, the transmitted signal properties (shown in Φ), and

the carrier frequency of the transmitted signal (shown in the matrix E). Therefore,

two questions can be raised at this point. First, what is the DF on average over many
realizations of the SI channel? Second, what is the possible maximum level of the DF?

The latter is very important as it provides an analytical upper bound useful for the

system design. These two questions are addressed as follows.
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(a) (b)

Figure 5.4: DF versus amplitude and phase errors with different β for L = 8 and (a)
fc = 2432 MHz and (b) fc = 5200 MHz.

5.3.2.1 Averaged Degradation Factor

To evaluate the overall impact of the SI channel in the DF, defining an averaged

degradation factor DF as

DF = 10log10
Eh{Pd}
Eh{P0}

(5.23)

where Eh{.} stands for expectation over the SI channel.

Assuming that proper propagation domain suppression has been performed so that

the SI mainly comes from multi-path reflections. All the coefficients of the SI channel

which includes L propagation paths are independent and Gaussian distributed with

a zero mean. An exponential distribution is chosen for the power delay profile of the

channel. Its root mean square delay spread is selected as σ = LTs/4. The transmitter

has symbol duration Ts = 20 ns. The ALMS loop has the tap delay Td = Ts/2. When

operating in the multi-carrier mode, the parameters of the transmitted OFDM signal

are selected following the IEE802.11a standard. For simplicity, assuming that the phase

shifters in the modulators and demodulators have the same degree of imperfections, i.e.,

ρ1 = ρ2 = ρ and θ1 = θ2 = θ. Fig. 5.4 and Fig. 5.5 present DF obtained by averaging over

10000 realizations of the SI channel over a range of the amplitude (−3 dB ≤ ρ ≤ 3 dB)

and phase error (−5◦ ≤ θ ≤ 5◦) for the systems with carrier frequencies of 2432 MHz and

5200 MHz, respectively. These two carrier frequencies are chosen as examples because

they are common worldwide IEEE 802.11 frequency bands. In Fig. 5.4, βs and βo stand

for the roll-off factors of the pulse shaping filter and the windowing function in the
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(a) (b)

Figure 5.5: DF versus amplitude and phase errors with different L for β= 0.25 and (a)
fc = 2432 MHz and (b) fc = 5200 MHz.

single-carrier and OFDM basebands, respectively. In Fig. 5.5, all the roll-off factors are

fixed at β= 0.25 and DF is calculated for different number of taps L in the ALMS loop.

From these figures, some observations are drawn as follows.

1. DF is more impacted by the amplitudes than the phase errors. It is seen that DF
is almost stable over the whole range of θ for a given value of ρ.

2. When θ = 0 and ρ = 1, DF = 0 dB, i.e., there is no I/Q imbalance.

3. Signal properties (β and fc) have more influence on DF than the number of taps in

the loop.

4. DF does not exceed 1.5 dB for most of the cases. It is slightly greater than 1.5 dB

when βs ≥ 0.75. However, these conditions unlikely happen in practice.

It can be concluded that, considering the average effect of the SI channel, the ALMS

loop is resilient to its frequency-independent I/Q imbalance. This resilience can be ex-

plained as follows. The ALMS loop is designed to minimize the level of the residual SI

power. The adaptive adjustment of the weighting coefficients ensures that the ALMS

loop always works at its optimized condition. Therefore, the impact of the I/Q imbal-

ance occurred in the ALMS loop on the SIC performance is not serious as that of the

I/Q imbalance occurred in the signal transmission path on the information detection

performance.
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5.3.2.2 Upper Bound of Degradation Factor

From the system design perspective, it is essential to estimate the level of degradation of

SIC given by the ALMS loop under a given condition of I/Q imbalance. This degradation

of SIC in the RF domain can be compensated at other stages such as propagation domain

attenuation or digital domain cancellation. Therefore, the upper bound of the degradation

factor, denoted as DFu, is derived as follows.

In the ideal case when the roll-off factor of the pulse shaping filter is zero, the tap

delay Td can be chosen as Td = Ts. In this case, the autocorrelation matrix Φ is a

diagonal matrix and all of its eigenvalues are equal, i.e., λ0 = λ1 = ·· · = λL−1 = λ̄ = A2.

Therefore, from (5.20), the weighting error functions ¯̄u becomes

¯̄u=
[
(IL +k1Φ)−|k2|2EΦ(IL +k∗

1Φ)−1E−1Φ
]−1[

h−k2EΦ(IL +k∗
1Φ)−1h∗

]
=

[
(1+k1A2)− |k2|2A4

1+k∗
1 A2

]−1[
h− k2A2

1+k∗
1 A2 Eh∗

]
= κ

[
(1+k∗

1 A2)h−k2A2Eh∗
] (5.24)

where κ=
[
1+2Re{k1}A2 + (|k1|2 −|k2|2)A4

]−1
. Substituting (5.24) into (5.19), we have

Pd = 1
2
κ2A2

[
(1+k1A2)hH −k∗

2 A2hTE−1
][

(1+k∗
1 A2)h−k2A2Eh∗

]
= 1

2
κ2A2

[
(1+2Re{k1}A2 + (|k1|2 +|k2|2)A4)

L−1∑
l=0

|hl |2

−2
{∣∣k∗

2 A2(1+k∗
1 A2)

∣∣L−1∑
l=0

|hl |2 cos(−4π fclTd +2φhl +φk)
}] (5.25)

where φhl and φk are the phases of the SI channel coefficient hl and the complex number

k∗
2 A2(1+k∗

1 A2), respectively. Since −1≤ cos(x)≤ 1 for any angle x and Re{z}≤ |z| for any

complex number z, we have the upper bound of the residual SI power as

Pd ≤ 1
2
κ2A2

[
(1+2Re{k1}A2 + (|k1|2 +|k2|2)A4)

L−1∑
l=0

|hl |2 +2
{∣∣k∗

2 A2(1+k∗
1 A2)

∣∣L−1∑
l=0

|hl |2
}]

≤ 1
2
κ2A2

[
1+2(|k1|+ |k2|)A2 + (|k1|2 +2|k1k2|+ |k2|2)A4

]L−1∑
l=0

|hl |2

= 1
2
κ2A2[1+ (|k1|+ |k2|)A2]2

L−1∑
l=0

|hl |2.

(5.26)
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Under the same condition, P0 is found to be P0 = A2

2(1+µA2)2
∑L−1

l=0 |hl |2. Therefore, DFu can

be found as

DFu = 10log10

1
2κ

2A2[1+ (|k1|+ |k2|)A2]2 ∑L−1
l=0 |hl |2

A2

2(1+µA2)2
∑L−1

l=0 |hl |2

= 10log10

[
1+ (|k1|+ |k2|)A2]2(1+µA2)2

[1+2Re{k1}A2 + (|k1|2 −|k2|2)A4]2 .

(5.27)

Assuming that µA2 is very large so that 1/µA2 ≈ 0, and by dividing both numerator and

denominator in (5.27) by (µA2)4, we have

DFu = 10log10

(|k1|+|k2|)2
µ2

( |k1|2−|k2|2
µ2 )2

. (5.28)

Let the phase shifters in the modulators and demodulators have the same degree of

imperfections, i.e., ρ1 = ρ2 = ρ and θ1 = θ2 = θ. Substituting the definition of k1,k2 and

µ′ = 2µ/(1+ρ2) into (5.28), we have

DFu = 10log10

µ2
(
1+ρ2+

p
1−2ρ2 cos2θ+ρ4

)2

(1+ρ2)2µ2

(µ
2[(1+ρ2)2−(1−2ρ2 cos2θ+ρ4)]

(1+ρ2)2µ2 )2

= 20log10
(1+ρ2)

(
1+ρ2 +

√
1−2ρ2 cos2θ+ρ4

)
4ρ2 cos2θ

.

(5.29)

Fig. 6 presents DFu calculated from (5.29) as a function of ρ and θ. It is seen that DF
is mainly determined by the amplitudes, while it is almost the same over the range of

phase errors. Hence, when selecting the modulators and demodulators for the ALMS

loop, it is better to choose those with small amplitude errors. In addition, in the worst

scenarios when ρ =±3 dB, DFu is about 3.5 dB only. This 3.5 dB deterioration of SIC

can be compensated at other stages such as propagation domain suppression and digital

domain cancellation.

5.4 Simulation Results

In this section, simulations are performed to justify the theoretical results shown in

Section 5.3. The FD system with configuration as in Fig. 5.1 is employed with QPSK

modulation and Ts = 20 ns. When operating in the multi-carrier mode, the OFDM symbol

of duration To = 80Ts is generated from 64-point IFFT with cyclic prefix added. The
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Figure 5.6: DF versus amplitude and phase errors when β= 0 and Td = Ts.

OFDM symbols are then passed through the IEEE 802.11a windowing function and

the RC pulse shaping filter before sending to the RF front-end. All the roll-off factors

of the pulse shaping filter and windowing function are β = 0.25. The RF transmitted

signal has power of 0 dBm over a 50 Ohm load or 0dBm+10log10(50)= 17 dBm over 1

Ohm load. Hence, the RMS voltage of the (baseband) transmitted signal for 1 Ohm load

can be found as V 2
X = 2×10(17−30)/10 = 0.1 V 2. The ALMS loop has 8 taps with the tap

spacing Td = Ts/2. The demodulators and modulators in all taps have the same multiplier

constants which are selected as K1K2 = 0.001 V 2. Due to the separation of the transmit

and receive antennas, the SI power at the input of the receiver is attenuated 25 dB

compared to the transmitted signal power. The channel impulse response presented in [9,

Fig. 10] is adopted in this Chapter for simulation. Accordingly, the SI channel includes

three paths and is modeled as h(t)= 10
−25
20

{
[
p

2
2 −0.5 j]δ(t)−0.4δ(t−Ts)+0.3δ(t−3Ts)

}
,

i.e., the delays of reflected paths are multiples of Ts. The LNA in the receiver is designed

so that its gain can be varied in order to compensate for the change of the total loop gain.

In case of no I/Q imbalance, the LNA gain 2µ is selected as 26 dB, i.e., µ= 10.

The modulators and demodulators in the ALMS loop are chosen such that their phase

shifters have the same I/Q imbalance parameters as ρ1 = ρ2 = ρ = 3 dB,θ1 = θ2 = θ = 5◦.
Due to these imperfections, the OFDM transmitted signals presented at the modulators

and demodulators are illustrated in Fig. 5.7. To compare the performance under the

same loop gain, the LNA gain is adjusted to µ′ = 2µ/(1+ρ2)= 6.6772 when I/Q imbalance

present at the ALMS loop.

Fig. 5.8(a) and Fig. 5.9(b) show the simulated results (blue curves) in comparison
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Figure 5.7: The complex signals x1(t) and x2(t) with ρ1 = ρ2 = 3 dB,θ1 = θ2 = 5◦.
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Figure 5.8: Residual SI powers in single-carrier system with ρ1 = ρ2 = 3 dB,θ1 = θ2 = 5◦

and (a) fc = 2432 MHz and (b) and fc = 5200 MHz.

to the theoretical results for carrier frequencies of fc = 2432 MHz and fc = 5200 MHz,

respectively. The green-dashed line is the theoretical residual SI power (cf. (5.19)) for

the case of the ALMS loop with I/Q imbalance. The red line is the residual SI power (cf.

(5.21)) for the case of the ALMS loop under an I/Q imbalance-free condition. It can be

seen from these figures that the convergence of the simulation results (blue curves) to the

theoretical results (green-dashed lines) confirms the steady state analysis. In addition,

the gaps between the green-dashed lines and the red lines in these figures show the
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Figure 5.9: Residual SI powers in OFDM system with ρ1 = ρ2 = 3 dB,θ1 = θ2 = 5◦ and (a)
fc = 2432 MHz and (b) fc = 5200 MHz.

DF of 0.6894 dB ( fc = 2432 MHz) and 2.426 dB ( fc = 5200 MHz) in the single-carrier

case and 1.7242 dB ( fc = 2432 MHz) and 0.8067 dB ( fc = 5200 MHz) in the OFDM case,

respectively for the given SI channel. Note that the difference in the levels of DFs in

these cases does not show the trend of DF versus carrier frequency and transmitted

signal properties, but they are calculated from (5.22) for a specific SI channel and carrier

frequencies.

5.5 Conclusion

In this chapter, the effects of frequency-independent I/Q imbalances in the ALMS loop

have been investigated. It is shown that I/Q imbalance leads to the loop gain variation

and reduces the level of SIC provided by the ALMS loop. While the change in the loop

gain can be simply compensated by adjusting the gain at other stages inside the loop, the

degradation in the level of SIC is proved to be insignificant over numerous observations

of the SI channels. The upper bound of this degradation is also derived so that the

maximum level of deterioration can be estimated under a given degree of imperfections.
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ALMS LOOP FOR IN-BAND FULL-DUPLEX MIMO

SYSTEMS

6.1 Introduction

The next generation wireless communication systems will leap forward the data trans-

mission performance in many aspects such as higher data rate, lower round-trip latency,

and less power consumption [68]. To achieve these objectives, many disruptive technolo-

gies have been developed, including IBFD and massive MIMO transmission [69, 70].

With IBFD operation, a transceiver can simultaneously transmit and receive signals

in the same frequency band so that the throughput can be doubled compared to its

half-duplex counterpart [71]. Massive MIMO is promising because it can support many

users by using beamforming technique with increased spectral and energy efficiencies.

Naturally, combining IBFD with massive MIMO can further improve spectral efficiency

[72] and reduce the round-trip latency in networks requiring two-way relay channels

[73].

However, it is very challenging to mitigate SI in IBFD MIMO systems due to the

complexity of the SI channels. In particular, in an N×N antenna IBFD MIMO system, at

each receive (Rx) chain, there are presented SIs caused by the cross-talks from N trans-

mit (Tx) antennas. One advantage of MIMO systems is that beamforming techniques

can be used to exploit spatial suppression in IBFD MIMO systems [23, 24, 74–77]. To

further mitigate the level of SI, analog domain cancellation should be used. Among many
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different approaches, a multi-tap canceller has been proved as a promising structure for

SIC in IBFD single antenna systems [9, 39, 40, 78]. This is because the transmitted RF

signal is utilized in this structure so that it can also mitigate the Tx noise and nonlinear

distortions of the transmitter [10]. However, if a cancellation circuit is used for each pair

of Tx and Rx antennas, an N×N antenna IBFD MIMO system will need N2 cancellation

circuits [78]. Therefore, some strategies of using analog cancellation circuits have been

introduced in the literature to reduce the number of cancellers [45, 78–80]. However,

the multi-tap structures used in these publications require channel state information

(CSI) and digital signal processing (DSP) to synthesize the weighting coefficients in

each tap. As a result, such IBFD MIMO has to operate in the half-duplex mode when

estimating the SI channel. In addition, since the optimization depends on the cross-talk

between each pair of co-located Tx and Rx antennas, the complexity of DSP algorithms

increases quadratically with the size of IBFD MIMO systems [78]. The increase of DSP

complexity results in larger digital hardware resources such as field programmable gate

array (FPGA) and higher power consumption. As an example, DSP computations for 16

cancellation circuits in a 4×4 IBFD MIMO system will consume up to 80 W [78].

Unlike the multi-tap structures mentioned above, the ALMS loop presented in [9] is

an adaptive filter without any DSP involvement. Instead, a simple Resistor-Capacitor

(RC) LPF is utilized to synthesize the weighting coefficients for each tap. The behaviors

of the ALMS loop in different IBFD single antenna systems have been presented in

[9, 58, 59, 61, 67, 81]. Obviously, adopting the ALMS loop for SIC in IBFD MIMO systems

can significantly reduce the complexity of DSP at RF front-end.

In this chapter, a beam-based SIC structure which employs ALMS loops as the

adaptive filters for SI mitigation is proposed for IBFD massive MIMO systems. Since

the transmitted signal power per antenna in IBFD massive MIMO systems is low, all

Tx chains can be assumed to be linear. In this case, the SI at the receiver side can be

considered as a linear combination of the transmitted beam signals for K users. As a

result, instead of using N cancellers to cancel the SI from N Tx antennas for each receive

antenna, only K adaptive filters are sufficient. Since K ¿ N, the number of cancellation

circuits is significantly reduced. The contributions of this chapter are summarized as

follows.

• A mathematical model of the SI in IBFD beamforming MIMO systems is derived,

which shows that the SI to each receive antenna is a linear combination of the

transmitted beam signals. This model suggests that the reference signals can be

the linear combinations of the beam signals rather than using all transmitted
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signals.

• By employing the ALMS loop which does not require the CSI for tuning its weight-

ing coefficients, the proposed structure can save significant FPGA resources and

hence reduce energy consumption.

• The problem of generating the reference signals from transmitted beam data is

comprehensively investigated. In particular, the reference signals can be gener-

ated by employing additional transmit chains. In this way, given that the all the

adaptive filters in the proposed beam-based analog SIC structure have the same

configuration of the ALMS loop, the ISR calculated across all the receiver chains is

the same as that in the single antenna system. To further reduce the complexity of

the proposed structure, a novel method is proposed to select the reference signals

for the ALMS loops from available transmitted signals. The reference signal selec-

tion method not only reduces the hardware complexity, but also enhances the level

of cancellation given by the ALMS loops.

The rest of this chapter is organized as follows. The proposed beam-based cancellation

architecture for IBFD MIMO systems and signal models are described in Section 6.2. In

Section 6.3, stationary analysis is presented to evaluate the performance of the proposed

structure with the reference signals generated by additional transmit chains. Section

6.4 shows a method to select the reference signals from transmitted signals. Finally,

conclusions are drawn in Section 6.5.

Notation: Boldface lowercase and boldface capital letters (e.g., a and A) are used

to indicate vectors and matrices, respectively. AT and AH denote the transpose and

Hermitian transpose of A, respectively, and ⊗ is the Kronecker product. diag{λi}, i =
1, · · · , MKL, is used to denote an M×K×L diagonal matrix whose main diagonal elements

are λ1, · · · ,λMKL. IM represents the identity matrix of order M. E{.} stands for the

ensemble expectation operation, and C is the complex set.

6.2 Principle of Beam-Based Analog SIC

6.2.1 Beam-Based SIC

Consider an IBFD MIMO digital beamforming system with N Tx and M Rx antennas as

shown in Fig. 6.1. The transmitted data symbols for K directions, denoted as sk(i), i =
−∞, . . . ,∞,k = 1, . . . ,K , are multiplied with the corresponding array vector a(θk) before
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Figure 6.1: Proposed beam-based analog SIC structure.

added together and transmitted by N Tx chains. The vector of RF transmitted signals at

N antennas is expressed as

x(t)=Re
{
X(t)e j2π fc t

}
(6.1)

where X(t)= [X1(t) · · · XN(t)]T is the baseband equivalent vector. X(t) can be expressed

as

X(t)=AS(t)=


a0(θ1) · · · a0(θK )

... . . . ...

aN−1(θ1) · · · aN−1(θK )




S1(t)
...

SK (t)

 (6.2)

where an(θk)= e jn 2π
λ d sinθk , n = 0, . . . , N−1, is the array vector of the beam at direction θk,

d is the distance between antenna elements, Sk(t)=∑∞
i=−∞ sk(i)p(t− iTs) is the low-pass

equivalent of the transmitted signal for the k-th user, sk(i) is the complex data symbol

whose interval is Ts, and p(t) is the pulse shaping filter. In the rest of this chapter, the

following assumptions are applied.

1. Transmit data for all directions are independent, i.e.,

E{sk(i)∗sk′(i′)}=
 1, for k = k′ and i = i′

0, for k 6= k′ or i 6= i′
. (6.3)

2. All Tx and Rx chains are linear and have the same configuration. The gain of the

power amplifier is absorbed into the pulse shaping filter.
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Due to the IBFD operation, at the inputs of M Rx chains, there are M SI signals

caused by N transmitted antennas, denoted as

z(t)=Re{Z(t)e j2π fc t}=Re
{
[Z1(t), . . . , ZM(t)]T e j2π fc t

}
.

Assuming that the SI channel between a pair of co-located Tx and Rx antennas includes

L paths, and the transmitted signal in the l-th path is delayed by lTd, l = 0, . . . ,L−1,

where Td is the time delay between two adjacent paths. The baseband equivalents of all

of the SI signals can be represented as

Z(t)= [Z1(t) · · ·ZM(t)]T =
L−1∑
l=0

HH(l)AS(t− lTd) (6.4)

where H(l)=


h1,1(l) · · · h1,M(l)

... . . . ...

hN,1(l) · · · hN,M(l)

 is the N ×M coefficient matrix at the l-th path of

all SI channels.

It can be seen from (6.4) that the vector Z(t) is a linear combination of all basis

vectors S(t−lTd), l = 0, . . . ,L−1. The concept of beam-based cancellation is that the vector

of cancellation signals can be obtained by a linear transformation of the same basis

S(t− lTd), l = 0, . . . ,L−1. This concept leads to two important points in the construction

of the cancellation structure. Firstly, multi-tap adaptive filters to approximate all the SI

channels should be used. Secondly, the reference signals for the cancellation circuit should

be generated from the K beam signals. As illustrated in Fig. 6.1, at the input of the m-th

Rx chain, K adaptive filters (AFm,k,k = 1, . . . ,K) are employed to correspondingly modify

the K reference signals xr,k(t),k = 1, . . . ,K . The outputs of the K adaptive filters are added

together to generate the cancellation signal ym(t), M = 1, · · · , M. If each adaptive filter also

has L taps with the tap delay Td, the vector of cancellation signals y(t)= [y1(t), . . . , yM(t)]T

is represented by

y(t)=Re
{L−1∑

l=0
WH(l, t)xr(t− lTd)

}
(6.5)

where W(l, t)=


w1,1(l, t) · · · w1,M(l, t)

... . . . ...

wK ,1(l, t) · · · wK ,M(l, t)

 is the weighting coefficient matrix at the l-th

tap of all adaptive filters, and xr(t)= [xr,1(t), . . . , xr,K (t)]T is the vector of reference signals

generated from beam signals sk(i),k = 1, . . . ,K .
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Figure 6.2: ALMS loop for beam-based cancellation structure.

6.2.2 ALMS Loop

As mentioned in Section 6.1, all adaptive filters can be implemented by ALMS loops as

presented in Fig. 6.2. From the concept of beam-based cancellation, at the m-th Rx chain,

K ALMS loops are employed to generate the cancellation signal. Operation of the ALMS

loop is described as follows. Each ALMS loop has L taps in which each tap includes a

tap delay, a quadrature demodulator, LPFs, and a quadrature modulator. The ALMS

loop has two inputs for the reference and the looped-back signals and one output for the

cancellation signal. For simplicity, the losses caused by power splitters for both reference

and looped-back signals are normalized to one. Considering the k-th ALMS loop, at the

l-th tap, the delayed reference signal xr,k(t− l)Td), l = 0, · · · ,L−1, is multiplied by the

looped-back signal at the demodulator. The outputs of this demodulator are then filtered

by the RC LPFs to obtain the weighting coefficients wk,m(l, t) which will modulate a copy

of the delayed reference signal xr,k(t− lTd) at the modulator. The outputs of all L taps

are added together before combined with the outputs of other ALMS loops to generate

the cancellation signal ym(t) which is used to cancel the SI zm(t) at the input of the m-th

Rx chain. The residual signal is amplified and looped-back to the inputs of all ALMS

loops.

The receive signal at the m-th Rx chain, denoted as rm(t), includes the desired

signal from the remote end sm,r(t), the SI from N co-located transmitters zm(t) and

the additive Gaussian noise nm(t), i.e., rm(t) = zm(t)+ sm,r(t)+ nm(t) = Re
{
[Zm(t)+

Sm,r(t)+ Nm(t)]e j2π fc t} where Zm(t),Sm,r(t) and Nm(t) are the low-pass equivalents

of these signals, respectively. Without loss of generality, we assume that the trans-

mitted data Sk(t),k = 1, . . . ,K , Sm,r(t), and Nm(t),m = 1, . . . , M, are all independent.
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From [9, Eq. (5)], the vector of weighting coefficients at the m-th Rx chain wm(l, t) =
[w1,m(l, t), . . . ,wK ,m(l, t)]T , l = 0, . . . ,L−1, is obtained by

wm(l, t+ t0)= 2µα

K1K2

∫t+t0

t0

e−α(t−τ)[rm(τ)− ym(τ)]Xr(τ− lTd)e j2π fc(τ−lTd)dτ (6.6)

where K1 and K2 are the dimensional constants of the multipliers inside the demodu-

lators and modulators, respectively, 2µ is the gain of the LNA, α = 1/RC is the decay

constant of the LPF with resistance R and capacitance C, Xr(t) is the vector of baseband

equivalents of the reference signals, and 0≤ t0 < Ts is an initial starting time.

6.3 Stationary Analysis

In this section, stationary analysis is applied to analyze the performance of the proposed

structure. Strictly speaking, the signals in a digital communication system demonstrate

cyclostationary properties [9]. Stationary analysis performs time averaging on the signals

over one symbol duration Ts so that the system performance at macro scale can be

tractably evaluated. Therefore, for stationary analysis, both ensemble expectation and

time averaging (over one Ts) operations, denoted as Ē{.}, are applied to evaluate the

random processes. From the assumptions in Section 6.3, the normalized auto-correlation

functions of the transmitted signals Sk(t),k = 1, . . . ,K , are defined as

Φk,k′(τ)= 1
K1K2

Ē
{
S∗

k(t)Sk′(t−τ)
}=

Φ(τ) for k = k′

0 for k 6= k′
(6.7)

where Φ(τ)= 1
K1K2Ts

∫Ts
0 p∗(t)p(t−τ)dt.

6.3.1 Cancellation Performance

The cancellation performance of the proposed structure can be presented by the interfer-

ence suppression ratio (ISR) which is the ratio between the total residual SI power Pd(t)
after cancellation and the total SI power Pz across all Rx chains. Denoting the residual

signal at the m-th Rx chain as dm(t)= zm(t)− ym(t), ISR is defined as

ISR(t)= Pd(t)
Pz

(6.8)

where Pd(t) =∑M
m=1 Pdm(t) and Pz =∑M

m=1 Pzm . In this evaluation, we evaluate the per-

formance of the proposed structure under one realization of the SI channels but with
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random transmitted data symbols. Therefore, Pz does not change over the time. Mean-

while, the residual SI power is a function of time to show the convergence property of all

ALMS loops. When the SI channels vary, the weighting coefficients of all ALMS loops

will adapt accordingly. To derive ISR(t), Pz and Pd(t) are calculated as follows.

6.3.1.1 Total SI power

In general, the SI signal at the m-th Rx chain can be expressed as

Zm(t)=
N∑

n=1

∫∞

−∞
h∗

n,m(τ)Xn(t−τ)dτ (6.9)

where hn,m(τ) as a function of time variable is the actual SI channel between the n-th Tx

and m-th Rx antenna. The total normalized (to K1K2) SI power across all M Rx chains

is calculated as

Pz =
M∑

m=1

1
K1K2

Ē{z2
m(t)}=

M∑
m=1

1
2K1K2

Ē{|Zm(t)|2}

= 1
2K1K2

M∑
m=1

N∑
n=1

N∑
n′=1

∫∞

−∞

∫∞

−∞
h∗

n,m(τ)Ē{Xn(t−τ)X∗
n′(t−τ′)}hn′,m(τ′)dτdτ′

= 1
2K1K2

M∑
m=1

N∑
n=1

N∑
n′=1

∫∞

−∞

∫∞

−∞
h∗

n,m(τ)Φ(τ−τ′)anaH
n′hn′,m(τ′)dτdτ′

(6.10)

where an is the n-th row of the matrix A.

The ALMS loop is designed based on the assumption that the SI channel can be

approximated as a L-stage filter, i.e.,

Zm(t)=
N∑

n=1

∫∞

−∞
h∗

n,m(τ)Xn(t−τ)dτ≈
N∑

n=1

L−1∑
l=0

h∗
n,m(l)Xn(t− lTd). (6.11)

Therefore, the vector hn,m(l), l = 0, . . . ,L−1,n = 1, . . . , N, can be found by minimizing the

following modeling error

ε2
m = 1

K1K2
Ē

{∣∣∣ N∑
n=1

∫∞

−∞
h∗

n,m(τ)Xn(t−τ)dτ−
N∑

n=1

L−1∑
l=0

h∗
n,m(l)Xn(t− lTd)

∣∣∣2}. (6.12)

Geometrically, Xn(t− lTd),n = 1, · · · , N, and l = 0, · · · ,L−1, can be seen as an orthogonal

basis in the space CN×L. From the principle of orthogonality, the modeling error is

minimized when h∗
n,m(l)Xn(t− lTd) are the projections of Zm(t) on CN×L, i.e.,

Ē
{

Xn(t− lTd)
[ N∑

n′=1

∫∞

−∞
hn′,m(τ)X∗

n′(t−τ)dτ−
N∑

n′=1

L−1∑
l′=0

hn′,m(l′)X∗
n′(t− l′Td)

]}
= 0 (6.13)
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for n = 1, . . . , N and l = 0, . . . ,L − 1. After some manipulations and extensions for M
Rx chains (see Appendix A.5), we find the vector of modeled channel coefficients h =
[h1,1(0), . . .h1,1(L−1), . . .hN,M(0) . . .hN,M(L−1)]T as

h= [INM ⊗Φ]−1


∫∞
−∞Φ(−τ)h1,1(τ)dτ

...∫∞
−∞Φ((L−1)Td −τ)hN,M(τ)dτ

 (6.14)

where Φ=


Φ(0) Φ(−Td) · · · Φ(−(L−1)Td)

...
... . . . ...

Φ((L−1)Td) Φ((L−2)Td) · · · Φ(0)

 is the auto-correlation ma-

trix of the transmitted signals. Therefore, when calculating the signal power using the

SI channel model, we need to take into account the total modeling error, denoted as ε,

derived in Appendix A.5 as

ε2 =
M∑

m=1
ε2

m =
M∑

m=1

N∑
n=1

N∑
n′=1

∫∞

−∞

∫∞

−∞
h∗

n,m(τ)Φ(τ−τ′)anaH
n′hn′,m(τ′)dτdτ′−hH[IM ⊗Θ]h

(6.15)

where h= [IM ⊗ (AH ⊗IL)]h, and Θ= IK ⊗Φ. Hence, the total normalized SI power at all

M Rx chains can also be calculated as

Pz = 1
2
ε2 + 1

2
hH[IM ⊗Θ]h. (6.16)

6.3.1.2 Residual SI power

Following the same steps above, the power of the residual SI at the m-th Rx chain can be

calculated as

Pdm(t)= 1
K1K2

Ē{[zm(t)− ym(t)]2}= 1
2K1K2

Ē{|Zm(t)−Ym(t)|2}

= 1
2K1K2

Ē
{∣∣∣[Zm(t)−

L−1∑
l=0

hH
m(l)X(t− lTd)

]+
L−1∑
l=0

[
hH

m(l)X(t− lTd)−wH
m(l, t)e− j2π fc lTd Xr(t− lTd)

]∣∣∣2}
(6.17)

where hm(l),wm(l) are the m-th column vectors of the matrices H(l),W(l), respectively,

Xr(t)=ArS(t) is the low-pass equivalent of K reference signals selected from X(t), and

Ar ⊂ A is a K ×K matrix obtained from A. Since Xr(t) is a subset of X(t), from the
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principle of orthogonality, Pdm(t) can be rewritten as

Pdm(t)= 1
2
ε2

m + 1
2K1K2

Ē
{∣∣∣L−1∑

l=0

[
hH

m(l)A−wH
m(l, t)e− j2π fc lTd Ar

]
S(t− lTd)

∣∣∣2}. (6.18)

Denote um(l, t)= [um,1(l, t), . . . ,um,K (l, t)]T =AHhm(l)−AH
r wm(l, t)e j2π fc lTd as the vector

of weighting error functions, which shows the difference between the channel coefficients

of the l-th tap in the SI channel and the weighting coefficients of the same tap in the K
ALMS loops at the m-th Rx chain. The expression of Pdm(t) becomes

Pdm(t)= 1
2
ε2

m + 1
2K1K2

Ē
{∣∣∣L−1∑

l=0
uH

m(l, t)S(t− lTd)
∣∣∣2}

= 1
2
ε2

m + 1
2K1K2

Ē
{L−1∑

l=0
uH

m(l, t)S(t− lTd)
L−1∑
l′=0

SH(t− l′Td)um(l′, t)
}

= 1
2
ε2

m + 1
2

L−1∑
l=0

L−1∑
l′=0
l′ 6=l

¯̄uH
m(l, t)Θ((l− l′)Td) ¯̄um(l′, t)+ 1

2
Φ(0)

L−1∑
l=0

K∑
k=1

¯̄u2
m,k(l, t)

= 1
2
ε2

m + 1
2

¯̄uH
m(t)Θ ¯̄um(t)+ 1

2
Φ(0)

[L−1∑
l=0

K∑
k=1

¯̄u2
m,k(l, t)− ¯̄uH

m(t) ¯̄um(t)
]

(6.19)

where ¯̄um(l, t) = Ē{um(l, t)} and ¯̄u2
m,k(l, t) = Ē{u2

m,k(l, t)}. Hence, the total residual SI

power of all M Rx chains is represented by

Pd(t)=
M∑

m=1
Pdm(t)

= 1
2
ε2 + 1

2
¯̄uH(t)[IM ⊗Θ] ¯̄u(t)+ 1

2
Φ(0)

[ ∑
m,k,l

¯̄u2
m,k(l, t)− ¯̄uH(t) ¯̄u(t)

] (6.20)

where ¯̄u(t)= [ ¯̄u1,1(0, t), . . . , ¯̄u1,1(L−1, t), . . . , ¯̄uM,K (L−1, t)]T . Therefore, we need to derive

the weighting error function vector ¯̄u(t) and
∑

m,k,l
¯̄u2

m,k(l, t) to calculate the residual SI

power.

Substituting the definition of the weighting error function into (6.6), after some

multiplications (see Appendix A.6), we have the equation that the expected weighting

error function vector should satisfy

¯̄u(t)=h−µα

∫t

0
e−α(t−τ)Ψ ¯̄u(τ)dτ (6.21)

where Ψ= IM ⊗ [
(B⊗ IL)Θ

]
with B=AH

r Ar. It is seen that (6.21) has the same form as

that in the single antenna case [9, Eq. (26)]. Following similar steps shown in [9], the
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solution of the expected the weighting error function vector is obtained as

¯̄u(t)=Qdiag
{ 1

1+µλi
+ µλi

1+µλi
e−(1+µλi)αt

}
Q−1h,∑

m,k,l

¯̄u2
m,k(l, t)=hHQdiag

{ 1
(1+µλi)2 + 2µλi

(1+µλi)2×

e−(1+µλi)αt + (µλi)2e−2(1+µλi)αt

(1+µλi)2 − e−2(1+µλ̄)αt
}
Q−1h

(6.22)

where λi, i = 1, . . . , M×K ×L, are the eigenvalues of Ψ and Q is the orthonormal modal

matrix whose columns are the M×K ×L eigenvectors of Ψ, and λ̄=Φ(0).

From (6.16) and (6.20), we obtain the ISR as

ISR(t)= Pd(t)
Pz

=
ε2 + ¯̄uH(t)[IM ⊗Θ] ¯̄u(t)+ λ̄

[ ∑
m,k,l

¯̄u2
m,k(l, t)− ¯̄uH(t) ¯̄u(t)

]
ε2 +hH[IM ⊗Θ]h

.

(6.23)

Eq. (6.23) represents the performance of the proposed structure at time instance t. We

can see that when t À 1
α(1+µλ̄) , all the ALMS loops will converge to their stable state. In

this case, ¯̄u(t)→ ¯̄u=Qdiag
{

1
1+µλi

}
Q−1h and

∑
m,k,l

¯̄u2
m,k(l, t)→ ¯̄uH ¯̄u, (6.23) becomes

ISR = ISR(t)|tÀ 1
α(1+µλ̄)

= ε2 + ¯̄uH[IM ⊗Θ] ¯̄u
ε2 +hH[IM ⊗Θ]h

.
(6.24)

From (6.24), when M = N = K = 1 corresponding to an IBFD single antenna system,

(6.24) becomes [9, Eq. (39)]. It means that the ALMS loop in the IBFD single antenna

system is a special case of this beam-based cancellation structure. Hence, the properties

of the ALMS loop presented in [9, 58, 59, 61, 81], such as the interference suppression

lower bound and convergence speed, are also applicable in this case. It can also be seen

from (6.22) and (6.24) that, apart from the parameters of the ALMS loops employed in the

adaptive filters, the performance of this beam-based analog SIC structure also depends

on the reference signals whose impact is represented by the matrix B incorporated in Ψ.

The problem of generating the reference signals is studied in the next Section.
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Figure 6.3: Beam-based analog SIC with auxilary transmit chains.

6.4 Reference Signals Generation

6.4.1 Using Additional Transmit Chains

6.4.1.1 The Structure

The easiest way to generate the reference signals from the transmitted beam data is

employing additional transmit chains. As shown in Fig. 6.3, K auxiliary Tx chains whose

configurations are the same as those in the main Tx paths, are used to up-convert the Tx

beam data into reference signals.

In this case, x(t)=S(t), so that B= IK , Ψ= IM ⊗Θ= IMK ⊗Φ, (7.3) becomes

ISR =
ε2 +hHQdiag{ λi

(1+µλi)2
}Q−1h

ε2 +hHQdiag{λi}Q−1h
. (6.25)

From the property of the Kronecker product, since the eigenvalues of IMK are all one,

λi, i = 1, . . . , MKL, are M×K replica of the eigenvalues of Φ. Therefore, (6.25) gives the

same result as [9, Eq. (39)] in single antenna systems. It means that if additional Tx

chains were employed to generate the reference signals for the M×K ALMS loops, the

SIC performance would be the same as that of the ALMS loop in a single antenna IBFD

system.
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Figure 6.4: The averaged and converged interference suppression ratio.

In order to confirm the above analyses, the ISR calculated in (6.25) is evaluated over

many realizations of the SI channel using the averaged interference suppression ratio

ISR = Ēh{ISR} where Ēh stands for expectation over the SI channel. Fig. 6.4 presents

ISR obtained by averaging over 1000 realizations of the SI channel whose coefficients

are assumed to be independent and have Gaussian distribution with zero mean. We can

see that ISR is almost stable with different number of transmit and receive antennas as

well as the number of beams. It means that the beam-based cancellation architecture

works as expected and the level of SI mitigation can be determined by the performance

of the adaptive filters.

6.4.1.2 Simulation Results

The simulations are then performed for beamforming IBFD MIMO systems with the

distance between antenna elements is selected at a half of wave-length. The QPSK mod-

ulated data symbols for all beams have duration of Ts = 20 ns and the carrier frequency

is fc = 5 GHz. The transmit chains in both main paths and auxiliary paths employ root-

raised cosine filters with roll-off factors β= 0.25. The power of the transmitted signal per

antenna is 0 dBm, and the multiplier dimensional constants are K1K2 = 0.001 V 2. The

LNA gain 2µ in all the receiver chains is selected as µ= 10. The ALMS loop is designed

with L = 8 taps and the tap delay is selected as Td = Ts/2. The SI channel between a pair

of transmit and receive antenna is modeled with L = 8 taps and the propagation delay of

each tap is the same as that in the ALMS loop. The propagation losses of all SI channels

are set to be 25 dB.
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Figure 6.5: Normalized SI and residual SI powers for (a) 8×8 IBFD MIMO systems and
(b) 2 beams IBFD MIMO systems.

In the first simulation, an 8×8 IBFD MIMO system is simulated with two cases of

the number of beams K = 2 and K = 4. In the second simulation, the number of beams is

fixed at K = 2 for a 4×4 and 8×8 IBFD MIMO systems. The SI powers and residual SI

powers in the first and second simulations are plotted in Fig. 6.5 (a) and (b), respectively.

From these figures, the theoretical results match the simulated results in all cases

which confirm the theoretical analyses presented in Section 6.4.1.1. We can also see that

the level of the SI power increases with the number of beams and transmit antennas.

However, the ISRs in all cases are almost the same at t = 8000Ts.

6.4.2 Selecting from Transmitted Signals

6.4.2.1 The Structure

The structure in Fig. 6.3 is still complicated with the auxiliary Tx chains required.

To further reduce the hardware complexity, the reference signals from N Tx signals

can be chosen as shown in Fig. 6.6. Since no additional Tx chain is employed in this

structure, a new factor affecting its performance is how to select the reference signals

from N transmitted signals. A method to select the reference signals from N Tx signals

is proposed as follows. From (7.3), the performance of the proposed structure can be

represented by the weighting error function vector ¯̄u. The smaller ¯̄u is, the lower ISR will

be obtained. From the definition of ¯̄u, the problem of reference signal selection can be

stated as how to select a K ×K matrix Ar from the given N ×K matrix A to minimize ¯̄u.
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Since both AHhm(l) and AH
r wm(l, t)e j2π fc lTd result in two vectors in the same space CK ,

the solution of this problem always exist. However, as wm(l, t) is unknown, it is unable

to find the solution using conventional least square approach. Instead, an algorithm is

proposed to find a sub-optimal solution as follows.

Defining Ω=Qdiag
{

1
1+µλi

}
Q−1, i = 1, . . . , M×K×L, from ¯̄u=Ωh, we see that Ω is the

transformation matrix of vector h, and |det(Ω)| is the scaling factor of this transformation.

As an example, Fig. 6.7 shows the transformation from h to ¯̄u when they are in the two

dimensional space. The area of the rectangular defined by ¯̄u (blue) is equal to that of the

rectangular defined by h (green) multiplied by |det(Ω)|. Therefore, Ar can be selected

based on |det(Ω)|. From det(Ω)=
M×K×L∏

i=1

1
1+µλi

, Ar can be found if the eigenvalues of the

h

h1

h2

¯̄u

¯̄u1

¯̄u2

Figure 6.7: Transformation from h to ¯̄u.
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matrix Ψ satisfy that DΩ = |
M×K×L∏

i=1
(1+µλi)| is maximized. The solution found in this

way is sub-optimal because there may be several selections of Ar that give the same

DΩ, and ISR is determined by the modulus of ¯̄u rather than its volume. However, this

is a simple method and the solution will always be found even though A may not be

full ranked. The algorithm to select the reference signals is given in Algorithm 1 and

is described as follows. Since Ar is formed by a combination of K rows from N rows in

the matrix A, there are
(N

K
)

possible selections which are indexed as Rind. Ar and Ψ

are then constructed, and DΩ is calculated for all
(N

K
)
. The sub-optimal Ar is found if it

gives the highest DΩ. In Fig. 6.6, Algorithm 1 can be run in the reference signal selection

block in the digital domain. From the users’ beam angle information and transmitted

signal autocorrelation matrix, the reference signals are determined and then connected

to the cancellation circuits by the corresponding RF switches.

Algorithm 1 Selection of reference signals
1: procedure FIND(Ar)
2: Input A,Φ.
3: Number of selections: NoS = (N

K
)
.

4: Possible combinations of N rows of A: Rind = ([1:N]
K

)
.

5: for n = 1 to NoS do
6: Generate Ar from A: Ar =A(Rind(n), :);
7: Compute Ψ and its eigenvalues λi;

8: Compute DΩ(n)=
M×K×L∏

i=1
(1+µλi);

9: end for
10: Find the maximum of DΩ

11: Optimal reference signals found!
12: end procedure

As an example, consider an 8×8 beamforming IBFD systems with 4 distinguished

beams at angles θk = kπ/8,k = 1, . . . ,4. All SI channels have 8 paths each with the path

delay being the same as the tap delay in the ALMS loops. From 8 transmitted signals,

there are 70 possible selections of the reference signals. Figure 6.8(a) presents the

geometric mean of DΩ calculated for all possible selections of Ar as well as the case of

Ar = IK . It is seen that the maximum of DΩ appears at n = 22 and n = 30. Ar constructed

at either these two positions is acceptable because the difference of ISRs given by them

is negligible as can be seen in Fig. 6.8(b). It is also worth noting that the optimal selection

of the reference signals in the proposed structure provides higher level of cancellation

than the case with additional Tx chains. This is because the beamforming matrix has
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Figure 6.8: (a) Geometric mean of DΩ and (b) ISR for all possible selections of Ar

an impact on the autocorrelation function of the transmitted signals so that the level of

cancellation can be improved.

6.4.2.2 Simulation Results

Simulations are performed to illustrate the behaviors of the proposed cancellation

structure. In all simulations, an 8×8 beamforming IBFD MIMO system communicates

with four users at angles of θk = kπ/8,k = 1, . . . ,4. The antenna elements are spaced at

30 mm which is a half of the wave-length of the transmitted carrier frequency fc = 5

GHz. Data for all users are independent and QPSK modulated with symbol duration of

Ts = 20 ns. In all Tx chains, root-raised cosine pulse shaping filters with roll-off factor

β= 0.25 are employed. The power of the transmitted signal per antenna is 0 dBm for 50

Ohm load. The transmitted signals at the outputs of 8 antennas are labeled from 1 to 8

for reference signal selections. On the receiver side, the LNA gain 2µ in each Rx chain

is selected as µ= 10. The ALMS loops are designed with L = 8 taps equally spaced at

Td = Ts/2. The multiplier dimensional constants are set at K1K2 = 0.001 V 2. The LPF

parameter of all ALMS loop is chosen as αTs = 1.7655×10−5 which is the same as that

in [9]. The propagation losses of all SI channels are set to be 25 dB. In the first two

simulations, the reference signals are chosen based on Algorithm 1, which are coupled at

the outputs of Tx chains 1, 3, 5 and 8.

In the first simulation, the SI channel between a pair of Tx and Rx antennas is

modeled with L = 8 paths and the multipaths have arbitrary delays. Specifically, the delay
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Figure 6.9: SI channel impulse response h2,4(t) (top) and modeled tap coefficients h2,4(l)
(bottom) for (a) arbitrary and (b) Td spaced delay between multipaths.

of the l-th path is chosen as (l−1.5+ rand)Td where rand is an uniformly distributed

random number between 0 to 1. It means that the maximum delay experienced by the SI

signals is limited to be smaller than LTd which is the delay range covered by the ALMS

loops. Fig. 6.9(a) presents the impulse response (top) and the modeled tap coefficients

(bottom) of the SI channel from the fourth transmit antenna to the second received

antenna. The modeling error calculated from (6.15) in this case is 0.002. In the second

simulation, the SI channels for all pairs of Tx and Rx antennas are modeled to have the

same number of paths and path delays as those in the ALMS loop so that the modeling

error is zero. The channel impulse response and the modeled channel coefficients for the

same SI channel in the first simulation are presented in Fig. 6.9(b).

Results of these two simulations are presented in Fig. 6.10. It can be seen in both

simulations that the simulated results match the theoretical ISR(t) (obtained from

(6.23)) and hence confirm the analyses presented in Section 6.3. Due to the modeling

error in the first simulation, the level of cancellation given by the ALMS loops is about 5

dB less than that in the second simulation. However, a level of 38 dB cancellation is still

achieved.

In the third simulation, the reference signals are selected from the first four trans-

mitted signals while the SI channels are modeled in the same way as in the second

simulation. The simulation result for this case is presented in Fig. 6.11. It is seen that

even though the ALMS loop has exactly the same tap delay as in the SI channel, the

performance of the ALMS loop is worse than that in the first simulation. These results
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Figure 6.10: Interference suppression ratio under (a) arbitrary delay interference channel
and (b) Td spaced interference chanel.
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Figure 6.11: Interference suppression ratio with the worst reference signals.

demonstrate the importance of the selection of reference signals on the performance of

the ALMS loop.

The complexity and performance of the proposed structure are compared with those of

some other existing RF domain cancellation methods [45, 78, 79, 82, 83] as summarized

in Table 6.1. In this comparison, the complexity of each work includes the analog circuits,

the requirement of CSI, and the involvement of DSP for tuning the cancellation circuits.

The performance of these methods in terms of ISR is also provided for information and

reference purpose since these IBFD MIMO systems have different number of antennas
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Table 6.1: Comparison with existing methods for IBFD MIMO

Complexity
ISR Comments

Analog circuits DSP CSI (dB)

[24] O(ML) Involved Required 40 3×3 MIMO

[28] O(MNL) Involved Required 40 2×2 MIMO

[29], [38], [39] O(M)+MUX/DEMUX Involved Required N/A 4×4 MIMO

Proposed O(MKL) No No 38-42 8×8 MIMO

and transmission bandwidths. In addition, some baselines [45, 82, 83] present the sum-

rate rather than ISR. As can be seen in Table 6.1, all other baselines require DSP and

CSI for tuning analog cancellation circuits.

6.5 Conclusion

In this chapter, a novel beam-based analog SIC architecture has been proposed, which

significantly reduces both hardware and signal processing complexities conventionally

required for SI mitigation in IBFD MIMO systems. Considering interference at the

receiver side as a linear combination of the data transmitted from all beams, it has

proved that the number of adaptive filters at each Rx chain is reduced to the number

of transmitted beams rather than as high as the number of Tx antennas. Further,

different methods of generating reference signals have been investigated. Apart from

using additional Tx chains, a novel method has been proposed to select the optimized

reference signals for the adaptive filters from the Tx antennas. Stationary analysis shows

that, the level of SIC given by the proposed structure is higher than that obtained by

employing ALMS loops for the same number of adaptive filters with reference signals

generated by additional Tx chains.
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7
ALMS LOOP - A PRACTICAL PERSPECTIVE

7.1 Introduction

The analyses shown in the previous chapters reveal all the properties of the ALMS

loop in different applications. However, these results are only confirmed by simulations

in MATLAB, rather than by hardware experiments. In addition, although the ALMS

loop has a simple structure, its implementation using off-the-shelf components is still a

challenging task. For example, the multipliers with a high conversion gain required in

the loop are not available for RF signals.

Therefore, this chapter focuses on the practical perspective of the ALMS loop. In

particular, the implementation of various RF multi-tap adaptive filters for SI cancellation

published in the literature is firstly reviewed. Then, a practical structure of the ALMS

loop is proposed, and a prototype of the loop is implemented to provide experimental

results. Contributions of this chapter are summarized as follows.

• A comprehensive review on the implementation of the state-of-the art adaptive

filters for the RF domain cancellation in IBFD radios is presented.

• A practical structure of the ALMS loop for its future applications is proposed.

Although adaptive filters employing the least mean square algorithm in the analog

domain had been implemented as in [84, 85], they are for low frequency (lower

than 1 MHz) applications only. Based on the proposed structure, a prototype of the
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ALMS loop including two taps in an IBFD system at the carrier frequency of 2.4

GHz is implemented.

• For the first time, experimental results are provided to validate the theoretical

analyses in our previous publications. Measured results show that 39 dB and 33 dB

of SI mitigation can be achieved by the prototype in the system with 20 MHz and

50 MHz bandwidths, respectively. From the parameters of the components used in

the prototype, the level of cancellation can be verified by the analytical formula

of interference suppression ratio provided in [61]. Considering the degradation

factor given in [81], the practical results agree with the theoretical ones. The level

of cancellation is also measured with different roll-off factors of the pulse shaping

filter to confirm the analyses shown in [59]. Finally, the prototype is evaluated

with a 20 MHz-bandwidth OFDM signal to confirm that the ALMS loop works

well in both single-carrier and multi-carrier signaling systems as mentioned in

[58, 59, 81].

The remainder of this chapter is organized as follows. Section 7.2 reviews some

related works. In Section 7.3, the practical structure of the ALMS loop is proposed,

and the implementation of the prototype using off-the-shelf components is described.

In Section 7.4, experimental results are presented. Finally, Section 7.5 concludes the

chapter.

7.2 Related Works

7.2.1 Analog Multi-Tap Adaptive Filters

As indicated in the introduction, the RF domain cancellation is an essential step to

mitigate the SI. The authors in [10] pointed out that among different approaches in

the RF domain cancellation, multi-tap adaptive filters are able to cancel the transmit

noise and nonlinear distortion components since they utilize the transmitted signal to

generate the cancellation signal. A generalized structure of this approach is depicted in

Fig. 7.1. Since the SI channel includes multi-paths, this approach aims to mimic the SI

channel by a multi-tap structure. Each tap includes a delay line and a mechanism to

independently modify the amplitude (by an attenuator) and phase (by a phase shifter) of

the delayed reference signal. The outputs of all the taps are combined together before

canceling the SI at the input of the receiver.
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Figure 7.1: Multi-tap adaptive filter structure.

Table 7.1: Comparison of existing multi-tap adaptive filters

# of taps Delay line Tap weight control ISR (dB) Bandwidth (MHz)

[8] 8 Microstrip trace FPGA 45 80

[39] 2 Anaren IC Down converter + Integrator 33 20

[38] 4 Coaxial cable FPGA 21.6 20

[40] 8 Microstrip trace FPGA 38 20

Although analog multi-tap adaptive filters are similar in principle, they are imple-

mented in different ways, especially in the mechanism to tune the amplitude and phase of

the reference signal. Some prototypes of analog multi-tap adaptive filters are compared in

Table 7.1. This comparison focuses on the implementation aspect of these structures. The

performance aspect represented by the ISR is for reference only since these prototypes

are evaluated and designed for IBFD systems with different transmission bandwidths

at different transmit powers. It can be seen that most of these cancellers [8, 38, 40]

require DSP performed by FPGA to synthesize the weighting coefficients for the tuning

mechanism. The authors in [39] employed down-converters to calculate the weighting

coefficients in the baseband by integrator. In addition, the delay line can be implemented

by either integrated circuits (IC) [39], microstrip traces [8, 40], or coaxial cables [38].

One advantage of the IC delay line is that it can provide a long delay time comparable to

microstrip traces and coaxial cables in a compact size. It is also worth noting that, with
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Table 7.2: Summary of publications on ALMS loops

Signalling Findings Methods
[9] single-carrier ISR vs. loop gain & β Cyclostationary & stationary

[58] Multi-carrier ISR vs. windowing function Cyclostationary & stationary
[59] Single & multi-carrier ISRLB vs. β Cyclostationary
[67] Chirp signal Tap delay design for deterministic signal Stationary
[61] single-carrier ISRLB in analog and digital domains Stationary
[81] Single & multi-carrier Degradation factor vs. I/Q imbalance Stationary

only two taps, the level of RF domain cancellation can reach 33 dB in a 20 MHz IBFD

system as in [39].

7.2.2 ALMS Loop

Table 7.2 summarizes some publications on the ALMS loop. In [9], the ALMS loop is

firstly introduced and its performance related to the loop gain and the roll-off factor β of

the pulse shaping filter is presented through cyclostationary and stationary analyses.

Then, the performance of the ALMS loop with different transmitted signal properties

is analyzed in [58, 59, 67]. Furthermore, in [61], the loop gain, roll-off factor, tap delay

and number of taps are all considered. It is shown that when LTd is sufficiently large,

the level of cancellation will approach an ISRLB, defined as the lower bound of the ratio

between the residual SI power after cancellation and the SI power without cancellation

and given by

ISRLB = 1+β(
p

a+1 −1)
(1+a)2

(7.1)

where a =µ
V 2

X
K1K2

Ts
Td

and β is the roll-off factor of the pulse shaping filter. From (7.1), it is

seen that high-gain multipliers are generally required to achieve the lower ISRLB. Fi-

nally, the impacts of in-phase/quadrature (I/Q) imbalances of the quadrature multipliers

on the level of cancellation are evaluated in [81]. In particular, a degradation factor of the

level of cancellation caused by I/Q imbalances is determined over a range of amplitude

and phase errors of the quadrature multipliers.

However, all these findings are only based on theoretical analyses and verified by

simulations in MATLAB. A prototype, therefore, is necessary to obtain practical results

to validate these theoretical findings. In the next section, a practical structure of the

ALMS loop is proposed using discrete components.
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Figure 7.2: Output spectra of (a) a multiplier or a modulator with an LPF and (b) an
unfiltered modulator.

7.3 Implementation of ALMS loop

Although the ALMS loop structure is simple, it is still challenging to be implemented

using off-the-shelf components. In particular, the high-gain quadrature multipliers in the

ALMS loop are unavailable in the RF range. Therefore, quadrature demodulators and

modulators combined with amplifiers are adopted to replace the ideal multipliers. How-

ever, this replacement faces some new problems. Firstly, unlike an ideal multiplier which

can accept any signal in its frequency range, a modulator/demodulator normally requires

a single tone with a stable amplitude as a local oscillation (LO) signal. In addition, the

multipliers in the ALMS loop are assumed to have a high conversion gain, which is not

normally applicable to modulators/demodulators. Therefore, when a modulator and a

demodulator are used in the ALMS loop, the reference signal should be provided to their

LO ports. Then, a variable gain amplifier is used at these ports to ensure an adequate

level of the LO signal. The low conversion gain of the modulator/demodulator can be

compensated by an amplifier after combining all the outputs of the taps. Another problem

is that, while a multiplier is a linear device, a modulator/demodulator is nonlinear [86].

This means the output of the latter includes some odd harmonics of the carrier frequency

as shown in Fig. 7.2(b). If an LPF is used following the modulator/demodulator, these

harmonics can be removed and the modulator/demodulator can produce the same output

spectrum as that of an ideal multiplier as shown in Fig. 7.2(a) [86]. In the structure of

the ALMS loop (cf. Fig. 2.9), the LPFs are not only used to synthesize the weighting

coefficients, but also eliminate the odd harmonics at the output of the demodulator. As
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Figure 7.3: A practical structure of the ALMS loop.

for the modulator, since its output will be amplified by an amplifier, the harmonics at the

output of the modulator will also be attenuated if the cut-off frequency of this amplifier

is suitably selected (see Section 7.3 for more details).

As can be seen in Fig. 2.9, many power splitters are required to split and combine

signals. Therefore, Wilkinson dividers are used for both splitters and combiners. The

subtractor at the input of the receiver can also be implemented by a Wilkinson divider

with a phase shifter, which makes an 180 degree phase shift to the cancellation signal.

However, one problem with the Wilkinson divider is that it is a lossy component. Hence,

a variable gain amplifier should be used at the input of the RF port of each demodulator

to compensate this loss.

The implementation structure of a 2-tap ALMS loop is presented in Fig. 7.3. Due to

the presence of the aforementioned extra components, the loop gain of this structure now

can be calculated as

G =µ
V 2

LO

K1K2
GO (7.2)

where VLO is the root-mean square amplitude of the reference signal at the LO ports

of the modulators and demodulators and GO is the power gain of the amplifier at the

output of the cancellation circuit after compensating the losses of the phase shifter and

the power combiner. Therefore, the interference suppression ratio, denoted as ISR, given
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Figure 7.4: Prototype of the ALMS loop and a part of the receiver.

by the prototype can be expected to be

ISR ≤ (1+a′)2

1+β(
p

a′+1 −1)
(7.3)

where a′ =G Ts
Td

. Note that ISR here is defined as the ratio between the power of the SI

without cancellation and that of the residual SI after cancellation.

The prototype of the ALMS loop is designed and fabricated on Roger 4350B printed

circuit board material with all surface mount devices as shown in Fig. 7.4. Since this

prototype is implemented to demonstrate the ALMS loop and validate the theoretical

results, it is designed in a versatile form so that it can have one to four taps. The amount

of delay for each tap can also be changed by cascading multiple delay lines. Therefore,

the size of the prototype is 20 cm × 13 cm. In fact, when the ALMS loop is optimized for

a specific IBFD system, its size will be much smaller. The dimension of the ALMS loop

can be further minimized if it is manufactured in an analog IC.

Detailed descriptions of the components in the ALMS loop are provided as follows.

The delay line of the second tap is chosen as Td = 4 ns (DL4 RN2 Technologies). In

each tap, the demodulator (Analog Devices ADL5382) and the modulator (ADL5373) are

selected for the first and the second multiplier pairs, respectively, because they both have

a quadrature structure with differential outputs/inputs for the ease of interfacing. In

addition, these components have a very small level of I/Q imbalances, which are less than
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0.3 degree in phase imbalance and 0.07 dB in amplitude imbalance. Therefore, according

to [81], the level of cancellation will be only degraded by about 0.3 dB (cf. Fig. 6 in [81]).

Both ADL5382 and ADL5373 require a 0 dBm LO signal so that VLO is calculated as

VLO =
√

2PLOR =
√

2×10(0+17−30)/10 = 0.3166 V, (7.4)

where 17 dB is added to convert the power with a 50 Ohm load to that of an 1 Ohm

load. From the ADL5382 datasheet, its conversion gain is 3.5 dB at 2.4 GHz if PLO = 0

dBm. Since the conversion gain is defined by the ratio between the output power and

the input power at the RF port, the dimensional constant K1 can be calculated as

K1 = 0.3166/10(3.5/20) = 0.2116 V. In case of ADL5373, the output power will be 5 dBm if

the baseband input voltage is 1.4 V and PLO = 0 dBm. Therefore, K2 is found as

K2 = 1.4×0.3166p
2×10(5+17−30)/10

= 0.7873 V (7.5)

All the power splitters/combiners are Anaren PD2328J5050S2HF which have only

0.5 dB insertion loss. The phase shifter MACOM MAPS-010143 is used along with a

power combiner to form the subtractor. The variable gain amplifier (VGA Analog Devices

ADL5330) is used since its gain can be changed by a controlled voltage which is adjusted

by a potentiometer. In addition, the operating frequency of this VGA is from 10 MHz to 3

GHz only, thus the odd harmonics at the outputs of modulators will be attenuated. The

ADL5330 at the output of the cancellation circuit is set to have a 22 dB gain. Due to the

losses caused by the power combiner (0.5 dB) and the phase shifter (4.5 dB), GO is 17 dB.

Fig. 7.4 also shows a part of the receiver including the power combiner of the sub-

tractor and a LNA (MACOM MAAL - 011078), which can provide a 22 dB gain at 2.4

GHz. After the LNA, a power divider is used to provide the loop-back signal and the

residual SI signal for measurements. Since the power splitter causes a 0.5 dB loss at

each output, the LNA gain in the loop is 21.5 dB, i.e., µ= 5.9425. From these parameters

and Eq. (7.2), the loop gain of the prototype can be determined as G = 20.1, or 26.06 dB.

7.4 Measurement Results

7.4.1 Measurement Setup

In order to evaluate the performance of the prototype, a measurement setup is built as

shown in Fig. 7.5. An arbitrary waveform generator (Keysight M8190A) is used as a

transmitter. Since one channel of the M8190A has two outputs which can generate the
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Figure 7.5: The measurement setup.

same signals, one of them can be used for the transmitter, and the other is used for the

reference signal. In all the tests, the transmitted signal is configured at 2.4 GHz carrier

frequency and set at the highest power level of -7.75 dBm. A 2.4 GHz rod antenna is

connected directly to one output of M8190A while the other port provides the reference

signal for the cancellation circuit. The receive antenna is located at a distance of 75

mm to the transmit antenna. Since the cancellation circuit and the receiver are not

electromagnetically shielded, they are located away from the transmitter to reduce the

interference to their microstrip lines.

The signal from the receive antenna is connected to one port of the power combiner,

while the cancellation signal is connected to the other port. After subtraction, the residual

signal is amplified by the LNA and fed into a power splitter, which provides the loop-back

signal to the cancellation circuit. The other port of the power splitter is connected to the

signal analyzer (Keysight PXA N9030A) for measurements.

7.4.2 Measurement Results

7.4.2.1 Measurement with different bandwidths

The level of cancellation given by the prototype is evaluated using the transmitted

signals with different bandwidths in the single-carrier IBFD system. Transmitted data

is modulated with quadrature phase shift keying (QPSK) and then filtered by the RRC
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Figure 7.6: Measurement results for 20 MHz bandwidth.

pulse shaping filter before up-converted to the RF frequency. The first measurement

is conducted with a 20 MHz transmit signal in which the data symbol period is set

to Ts = 62.5 ns (i.e., β = 0.25). Fig. 7.6 shows the level of cancellation given by the

prototype in this case. Marker 1 indicates the difference between the signal power in

20 MHz bandwidth measured at 2.4 GHz of Trace 1 and that of Trace 2. Clearly, a

cancellation level of 39.23 dB is achieved by the prototype. In the second measurement,

the transmitter is set to 50 MHz bandwidth, i.e., Ts = 25 ns and β= 0.25. The results

of this test are depicted in Fig. 7.7. It is seen that a cancellation level of 39.23 dB is

achieved in this case.

These experimental results can be used to validate the theoretical results presented

in [61] and [81]. Given the symbol period, the parameter a′ is determined as 314.06

and 125.625 in the 20 MHz and 50 MHz systems, respectively. Hence, the maximum

levels of ISR expected by the ALMS loop calculated from Eq. (7.3) in these two cases are

42.82 dB and 36.53 dB, respectively. Considering I/Q imbalances of the demodulators and

modulators, the maximum levels of cancellation will degrade by about 0.3 dB [81], i.e.,

42.52 dB and 36.23 dB, respectively. This means that the level of cancellation achieved

in the prototype is about 3 dB lower than these analytical maximum levels. This is

justifiable because the maximum level of cancellation can only be achieved when the

number of taps and tap delay in the loop satisfy the condition that LTd covers the

maximum path delay of the SI channel.
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Figure 7.7: Measurement results for 50 MHz bandwidth.

7.4.2.2 Measurement with Different Signal Properties

In this test, the effect of transmitted signal spectrum on the ALMS loop performance

is evaluated. Firstly, the roll-off factor of the pulse shaping filter in the transmitter is

configured with different values while the symbol period of the transmit data is fixed

at Ts = 62.5 ns. Fig. 7.8 depicts the results of the third test. Measurement results show

that the level of cancellation is 39.23 dB, 38.10 dB, and 37.0 dB when the roll-off factor

is 0.25, 0.5, and 0.75, respectively. The decrease of ISR with the increased roll-off factor

confirms the analyses shown in [61] and [59].

In the last test, the performance of the ALMS loop with a multi-carrier signal is

considered. The transmitter is configured to transmit the OFDM signal based on the

IEEE 802.11 a/g format over a bandwidth of 20 MHz. As shown in Fig. 7.9, the level

of cancellation in this case is also about 39 dB, which is the same as that in the single-

carrier system. It means that the ALMS loop works well with both single-carrier and

multi-carrier signalling schemes as concluded in [58, 59, 81].

7.5 Conclusion

This chapter presents a practical structure and implementation of the ALMS loop using

off-the-shelf components. The measurement results show that 39.23 dB and 32.91 dB
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Figure 7.8: Cancellation performances with different roll-off factors.

Figure 7.9: Cancellation performances with OFDM signal.

of SI mitigations can be achieved by the prototype for IBFD systems with 20 MHz and

50 MHz bandwidths, respectively. The experimental results with different values of the

roll-off factor of the transmit pulse shaping filter also prove that the level of cancellation

is affected by the roll-off factor of the pulse shaping filter as analyzed in our previous

publications. Finally, the experiment with the IEEE 802.11 a/g OFDM signal proves

that the ALMS loop performs well with both single-carrier and multi-carrier signalling
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schemes. The proposed ALMS loop implementation structure provides a useful practical

solution for IBFD communication applications.
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CONCLUSION AND FUTURE WORK

8.1 Conclusion

In-band full-duplex transmission is one of the key technologies for future wireless

communications due to its great advantages in doubling throughput, avoiding collisions,

and reducing round-trip latency. A fundamental problem of IBFD systems is SI which

prevents the receiver from the signal of interest. To mitigate the SI to below the level of

noise floor, numerous approaches have been proposed in three stages namely propagation,

RF, and digital domains. Among them, ALMS loop is a promising structure to cancel the

SI in the RF domain without any requirements of DSP and CSI.

This research aims at adopting the ALMS loop for any IBFD systems. Therefore,

the impact of transmitted signal properties has firstly investigated in Chapter 3. It

has shown that the ALMS loop can work with both single-carrier and multi-carrier

signallings. By applying cyclostationary analysis, it has realized that the weighting error

function will not converge to a stable value but it always varies in a range which depends

on the loop gain, the roll-of factor of the transmit pulse shaping and the symbol duration.

Due to this variation, the interference will not be canceled completely, but there exist

an irreducible interference. Therefore, under the same condition of the ALMS loop, the

SI can be potentially canceled to a lower level compare to that in OFDM systems. The

reason is that the symbol duration in single-carrier system is much smaller than that in

the multi-carrier counterpart. In addition, the ALMS loop can work with both random

bearing signals as in communication systems and deterministic signals in SAR systems.
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A design suggestion is provided for the case of deterministic signals. The work conducted

in Chapter 3 is published in my journal publication [5] and conference publications [8,9].

This thesis also successfully characterizes the behavior of the ALMS loop in the

frequency domain by applying eigenvalue decomposition. The property of the ALMS loop

in amplifying the high frequency components at the edge of the residual SI spectrum

is revealed in the RF domain. However, the peaks of the residual SI spectrum will be

removed by the matched filter so that the level of cancellation will be much higher when

considered in the digital domain. Furthermore, this analysis also leads to the derivation

of the interference suppression ratio lower bounds in both RF and digital domains. This

is an essential tool to estimate the level of cancellation given by the ALMS loop from

its parameters. The work conducted in Chapter 4 is published as listed in my journal

publication [4].

The problem of I/Q imbalance in the structure of the ALMS loop is considered in

Chapter 5. By incorporating the amplitude and phase errors of the quadrature multipliers

into the signal models, the impact of I/Q imbalances on the loop gain has been determined

and compensated by adjusting the gain at other point of the loop. However, even the loop

gain is compensated, I/Q imbalance still deteriorates the cancellation performance of the

ALMS loop which can represented by a degradation factor. Evaluating the degradation

factor shows that the ALMS loop is robust to its frequency-independent I/Q imbalance.

In addition, an upper bound of the degradation factor is derived to estimate the level

of compensation should be achieved from other means of SIC. The work conducted in

Chapter 5 is published as listed in my journal publication [3].

To adopt the ALMS loop for IBFD MIMO systems, a beam-based analog SIC structure

has been proposed to significantly reduce the hardware complexity from a square number

of Tx antennas (assumed to be equal to that of Rx antennas) to linear scaled number

of Tx beams. The fundamental of this structure is that the SI at each Rx antenna can

be seen as a linear transformation of the beam signal. Hence, the cancellation signal

generated by adaptive filters is another transformation of the same source. As a result,

the number of adaptive filters at each receiver chain is reduced to the number of Tx

beams. In addition, two ways of generating the reference signals for the adaptive filters

have been presented. The first way is employing additional Tx chains to up-convert the

beam data into RF reference signals. The second way is choosing them from available Tx

signals.A novel selection algorithm is proposed for the second way to avoid increasing

hardware complexity in the first way. The work conducted in Chapter 6 is published as

listed in my journal publication [1] and conference publication [7].
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Finally, a practical structure of the ALMS loop is proposed in Chapter 7 to overcome

the challenges in implementation of the ALMS loop using off-the-shelf components. A

prototype with two taps is then developed based on the proposed structure to obtain some

experimental results. Firstly, the levels of cancellation achieved by the prototype in IBFD

systems with 20 MHz and 50 MHz bandwidths are about 39 dB and 33 dB, respectively

which are justifiable with the theoretical values calculated from the formulae provided

in Chapter 4 and Chapter 5. Then, the experiments with different roll-off factors of the

pulse shaping filter and an OFDM signal confirm the analyses in Chapter 3. The work

conducted in Chapter 7 is published as listed in my journal publication [2] and conference

publication [6].

Through this study, it is concluded that the ALMS loop can be applied for any

IBFD systems. The estimation tools obtained through theoretical analyses are critical for

system design while the practical structure can be a reference for future implementations

of the ALMS loop.

8.2 Future Work

This study has proved the potential applications of the ALMS loop for SIC in vari-

ous IBFD systems. Future research directions may include developing complete IBFD

systems and adopting the ALMS loop for other applications.

To develop a complete IBFD system, several research problems will need to be

tackled. Firstly, the noise performance of the ALMS loop should be investigated. This

thesis focuses on the achievable level of cancellation given by the ALMS loop in different

scenarios. Since signal to noise ratio is crucial for all receivers, evaluating the noise

properties of the ALMS loop is necessary to design the receiver. Secondly, to sufficiently

mitigate the SI power to below the level of noise floor, a combination of the ALMS

loop with other approaches in the propagation domain and the digital domain should

be studied. Thirdly, prototyping a complete IBFD single antenna system with a wider

bandwidth and a higher transmit power should also be considered. Fourthly, future

works will be the consideration of SIC for IBFD hybrid beamforming MIMO systems

and derivation of an optimal precoding matrix that enhances both SIC and beamforming

performance. Additionally, the behaviors of the ALMS loop in IBFD MIMO systems with

different transmitted baseband signals may also investigated, such as those proposed in

[87, 88], and with different wireless network topologies [89, 90]. Finally, to minimize the

physical size and increase the potential applications of the ALMS loop, an integrated

115



CHAPTER 8. CONCLUSION AND FUTURE WORK

circuit form of the ALMS loop should be developed.

Another research direction is to adopt the ALMS loop for other applications. Since

the ALMS loop is an adaptive filter which is purely implemented in the RF domain, it

can potentially be applied in applications which require adaptive processing in the RF

front-end. In that case, the structure of the ALMS loop may be adjusted to suit with the

target requirements.

116



A
P

P
E

N
D

I
X

A
APPENDIX

A.1 Proof of Constant Eh{H(e jωk)}

For SI channels with independent and zero-mean tap coefficients, it can be proved that

Eh{H(e jωk )} is a constant for all k = 0,1, . . . ,L−1 as follow.

Eh{|H(e jωk )|2}= Eh

{L−1∑
l=0

hl e
− j2πkl

L
L−1∑
l′=0

h∗
l′ e

j2πkl′
L

}
=

L−1∑
l=0

L−1∑
l′=0

Eh
{
hlh∗

l′
}
e
− j2πk(l−l′)

L . (A.1)

Since the SI channel tap coefficients are independent with zero-mean, Eh
{
hlh∗

l′
} = 0

for l 6= l′. Therefore, Eh
{|H(e jωk )|2}=∑L−1

l=0 Eh{|hl |2} for all k = 0,1, . . . ,L−1 which is the

mean power of the SI channel.

A.2 Derivation of ISRLBa and ISRLBd

A.2.1 ISRLBa

From
∫ 1+β

2Ts

− 1+β
2Ts

P( f )d f = 1 and Td ≤ Ts
1+β

, (4.29) can be simplified as

ISRLBa =

∫1/2Td
−1/2Td

A2P( f )[
1+µ A2

Td
P( f )

]2 d f

∫1/2Td
−1/2Td

A2P( f )d f
= 2

∫ 1+β
2Ts

0

P( f )[
1+µ A2

Td
P( f )

]2 d f . (A.2)
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Substituting P( f ) from (4.22) into (A.2), we have

∫ 1+β
2Ts

0

P( f )[
1+ µA2

Td
P( f )

]2
d f =

∫ 1−β
2Ts

0

Ts[
1+µA2 Ts

Td

]2 d f

+
∫ 1+β

2Ts

1−β
2Ts

Ts
2

[
1+cos

(
πTs
β

( f − 1−β

2Ts
)
)]

{
1+µA2 Ts

2Td

[
1+cos

(
πTs
β

( f − 1−β

2Ts
)
)]}2 d f .

(A.3)

Denoting a =µA2 Ts
Td

and x = πTs
β

( f − 1−β

2Ts
), (A.3) becomes

∫ 1+β

2Ts

0

P( f )[
1+ µA2

Td
P( f )

]2
d f = 1−β

2(1+a)2 + β

π

∫π

0

1
2 (1+cosx)[

1+ a
2 (1+cosx)

]2 dx. (A.4)

Defining t = tan(x/2) so that cosx = 1−t2

1+t2 and dx = 2dt
1+t2 , we have

∫π

0

1
2 (1+cosx)[

1+ a
2 (1+cosx)

]2 dx = 2
∫∞

0

1
(t2 +a+1)2 dt

= 2
p

a+1
(a+1)2

∫∞

0

1[
( tp

a+1
)2 +1

]2 d(
tp

a+1
)

= π

2

p
a+1

(a+1)2 .

(A.5)

Substituting (A.5) into (A.4), the ISRLBa is obtained as in (4.31).

A.2.2 ISRLBd

Following the same steps as above, ISRLBd is derived as

ISRLBd =

∫1/2Td
−1/2Td

A2P2( f )[
1+µ A2

Td
P( f )

]2 d f

∫1/2Td
−1/2Td

A2P2( f )d f

=

∫ 1+β
2Ts

0
P2( f )[

1+µ A2
Td

P( f )
]2 d f

∫ 1+β
2Ts

0 P2( f )d f
.

(A.6)
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Substituting P( f ) from (4.22) into (A.6) as well as applying the substitution of x =
πTs
β

( f − 1−β

2Ts
) and then t = tan(x/2), we have

∫ 1+β

2Ts

0

P2( f )[
1+aP( f )

]2 d f = Ts(1−β)
2(1+a)2 + Tsβ

π

∫π

0

1
4 (1+cosx)2[

1+ a
2 (1+cosx)

]2 dx

= Ts(1−β)
2(1+a)2 + Tsβ

π

∫∞

0

1
(1+t2)2

(1+a 1
1+t2 )2

2
1+ t2 dt

= Ts(1−β)
2(1+a)2 + Tsβ

π

∫∞

0

2
(t2 +a+1)2(t2 +1)

dt.

(A.7)

Note that 2
(t2+a+1)2(t2+1) can be split as

2
(t2 +a+1)2(t2 +1)

= 2
a2

[
1

(1+ t2)
− 1

(t2 +a+1)
− a

(t2 +a+1)2

]
. (A.8)

Therefore, by substituting (A.8) into (A.7), we obtain

∫ 1+β
2Ts

0

P2( f )
(1+aP( f ))2 d f = Ts(1−β)

2(1+a)2 + Tsβ

π

π

a2

[
1− 1p

a+1
− a

p
a+1

2(a+1)2

]
= Ts

2(1+a)2

{
1+β

[
2(a+1)2

a2

(
1− 1p

a+1
− a

p
a+1

2(a+1)2

)
−1

]}
.

(A.9)

The derivation of
∫ 1+β

2Ts
0 P2( f )d f is expressed as

∫ 1+β
2Ts

0
P2( f )d f = Ts

1−β

2
+ Tsβ

4π

∫π

0
(1+cosx)2dx

= Ts

2
(1−β/4).

(A.10)

From (A.9) and (A.10), ISRLBd is obtained as in (4.32).
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A.3 Derivation of Residual SI Power

Substituting (5.17) into (5.18), we have

Pd(t)= 1
K1K2

Ē
{∣∣∣Re

{L−1∑
l=0

u∗
l (t)X (t− lTd)e j2π fc t

}∣∣∣2}
= 1

4K1K2
Ē

{[L−1∑
l=0

u∗
l (t)X (t− lTd)e j2π fc t +

L−1∑
l=0

ul(t)X∗(t− lTd)e− j2π fc t
]

·
[L−1∑

l′=0
ul′(t)X∗(t− l′Td)e− j2π fc t +

L−1∑
l′=0

u∗
l′(t)X (t− l′Td)e j2π fc t

]}
= 1

2

L−1∑
l=0

L−1∑
l′=0,l′ 6=l

¯̄u∗
l (t)Θ((l− l′)Td) ¯̄ul′(t)+

1
2
Θ(0)

L−1∑
l=0

Ē
{
|ul(t)|2

}
+ 1

2K1K2
Ē

{
Re

[L−1∑
l=0

u∗
l (t)X (t− lTd)

L−1∑
l′=0

u∗
l′(t)X (t− l′Td)e j4π fc t

]}
.

(A.11)

Further assuming that the L paths of the SI channel are independent and hence, ul(t)
and ul′(t) can be considered to be independent for l 6= l′, (A.11) becomes

Pd(t)= 1
2

L−1∑
l=0

L−1∑
l′=0,l′ 6=l

¯̄u∗
l (t)Θ((l− l′)Td) ¯̄ul′(t)+

1
2
Θ(0)

L−1∑
l=0

Ē
{∣∣ul(t)

∣∣2}
+ 1

2K1K2
Ē

{
Re

[L−1∑
l=0

(u∗
l (t))2X2(t− lTd)

]}
.

(A.12)

Since E{X2}= 0 for any zero mean complex random process X , we have

Ē
{

Re
[L−1∑

l=0
(u∗

l (t))2X2(t− lTd)
]}

= 0.

In addition, from the fact that E{|X |2} ≥ |E{X }|2 for any random process X , hence

Ē
{|ul(t)|2

}≥ | ¯̄ul(t)|2. Therefore,

Pd(t)≥ 1
2

L−1∑
l=0

L−1∑
l′=0,l′ 6=l

¯̄u∗
l (t)Θ((l− l′)Td) ¯̄ul′(t)+

1
2
Θ(0)

L−1∑
l=0

| ¯̄ul(t)|2

= 1
2

L−1∑
l=0

L−1∑
l′=0

¯̄u∗
l (t)Θ((l− l′)Td) ¯̄ul′(t).

(A.13)

It is also worth noting that the equality happens when t →∞ as ul(t) converges to its

steady-state value as shown in [9, Eq. (30) and Eq. (35)]. Hence, by letting t →∞, we

obtain the steady-state Pd as in (6.20).
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A.4 Solution of Steady-State Weighting Error
Function

Following the steps presented in [9, 61, 67] to derive the weighting error functions, and

substituting the models of r(t), y(t), x1(t), and x2(t) into (5.6), we have the expression of

wl(t) as

wl(t+t0)=

2µα

K1K2

t+t0∫
t0

e−α(t+t0−τ)
{

1
2

([
Z(τ)+S(τ)+N(τ)

]
e j2π fc t + [

Z∗(τ)+S∗(τ)+N∗(τ)
]
e− j2π fc t

)

− 1
2

(L−1∑
l′=0

w∗
l′(t)

[
η2X (t− l′Td)e j2π fc(t−l′Td) +ξ2X∗(t− l′Td)e− j2π fc(t−l′Td)]

+
L−1∑
l′=0

wl′(t)
[
η∗2 X∗(t− l′Td)e− j2π fc(t−l′Td) +ξ∗2 X (t− l′Td)e j2π fc(t−l′Td)])}

·
[
η1X (τ− lTd)e j2π fc(τ−lTd) +ξ1X∗(τ− lTd)e− j2π fc(τ−lTd)

]
dτ

= µα

K1K2

t+t0∫
t0

e−α(t+t0−τ)
{[L−1∑

l′=0
(hl′ − [η∗2wl′(τ)+ξ2w∗

l′(τ)]e j2π fc l′Td )∗X (τ− l′Td)

+S(τ)+N(τ)
]
e j2π fcτ+

[L−1∑
l′=0

(hl′ − [η∗2wl′(τ)+ξ2w∗
l′(τ)]e j2π fc l′Td )X∗(τ− l′Td)

+S∗(τ)+N∗(τ)
]
e− j2π fcτ

}[
η1X (τ− lTd)e j2π fc(τ−lTd) +ξ1X∗(τ− lTd)e− j2π fc(τ−lTd)

]
dτ.

(A.14)

After filtering out by the LPF, the signal components centered about frequency 2 fc will

be eliminated. Therefore, (A.14) becomes

wl(t+ t0)= µ′α
K1K2

t+t0∫
t0

e−α(t+t0−τ)
{[L−1∑

l′=0
u∗

l′(τ)X (τ− l′Td)+S(τ)+N(τ)
]
ξ1X∗(τ− lTd)e j2π fc lTd

+
[L−1∑

l′=0
ul′(τ)X∗(τ− l′Td)+S∗(τ)+N∗(τ)

]
η1X (τ− lTd)e− j2π fc lTd

}
dτ.

(A.15)

Assuming that the signal of interest and the AWGN are independent of the transmitted

signal, i.e., E{S∗(t)X (t−τ)} = 0 and E{N∗(t)X (t−τ)} = 0 for all τ and taking ensemble
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expectation of the two sides of the above equation, we have

w̄l(t+ t0)= µ′α
K1K2

t+t0∫
t0

e−α(t+t0−τ)
{[L−1∑

l′=0
ū∗

l′(τ)E
{
X (τ− l′Td)X∗(τ− lTd)

}]
ξ1e j2π fc lTd+

[L−1∑
l′=0

ūl′(τ)E
{
X∗(τ− l′Td)X (τ− lTd)

}]
η1e− j2π fc lTd

}
dτ

(A.16)

where w̄l(t)= E{wl(t)} and ūl(t)= E{ul(t)}. Defining τ′ = τ− t0, we have

w̄l(t+ t0)= µ′α
K1K2

t∫
0

e−α(t−τ′)
{[L−1∑

l′=0
ū∗

l′(τ
′+ t0)E

{
X (τ′+ t0 − l′Td)X∗(τ′+ t0 − lTd)

}]

·ξ1e j2π fc lTd +
[L−1∑

l′=0
ūl′(τ′+ t0)E

{
X∗(τ′+ t0 − l′Td)X (τ′+ t0 − lTd)

}]
η1e− j2π fc lTd

}
dτ′.

(A.17)

Taking time average over one symbol period T of w̄l(t+ t0) with respect to the starting

time t0, we obtain the ensemble and time averaged weighting coefficients as in (A.18).

¯̄wl(t)=
1
T

T∫
0

w̄l(t+ t0)dt0

= µ′α
K1K2T

T∫
0

t∫
0

e−α(t−τ′)
{[L−1∑

l′=0
ū∗

l′(τ
′+ t0)E

{
X (τ′+ t0 − l′Td)X∗(τ′+ t0 − lTd)

}]
ξ1e j2π fc lTd

+
[L−1∑

l′=0
ūl′(τ′+ t0)E

{
X∗(τ′+ t0 − l′Td)X (τ′+ t0 − lTd)

}]
η1e− j2π fc lTd

}
dτ′dt0.

(A.18)

Since α is very small, ūl(t) changes slowly and it can be seen as a constant in one symbol

period of T, i.e., ūl(t+ t0) ≈ ¯̄ul(t) = 1
T

∫T
0 ūl(t+ t0)dt0 which is the ensemble and time

averaged weighting error function ul(t). Thus (A.18) is expressed as

¯̄wl(t)=µ′α
t∫

0

e−α(t−τ′)
{[L−1∑

l′=0

¯̄u∗
l′(τ

′)Θ((l′− l)Td)
}]

ξ1e j2π fc lTd

+
[L−1∑

l′=0

¯̄ul′(τ′)Θ((l− l′)Td)
}]

η1e− j2π fc lTd

}
dτ′.

(A.19)
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Substituting (A.19) into the definition of the weighting error function and using the

property of the normalized autocorrelation function Θ(τ)=Θ(−τ), we have

¯̄ul(t)= hl −µ′α
t∫

0

e−α(t−τ)
L−1∑
l′=0

Θ((l− l′)Td)

·
[(

η∗2ξ1 +η∗1ξ2
)

¯̄u∗
l′(τ)e j4π fc lTd + (

η1η
∗
2 +ξ∗1ξ2

)
¯̄ul′(τ)

]
dτ

(A.20)

or in the matrix form

¯̄u(t)=h−µ′α
t∫

0

e−α(t−τ)
[(

η∗2ξ1 +η∗1ξ2
)
EΘ ¯̄u∗(τ)+ (

η1η
∗
2 +ξ∗1ξ2

)
Θ ¯̄u(τ)

]
dτ. (A.21)

When t →∞, ¯̄u(t) converges to its steady-state value ¯̄u so that it can be moved outside

the integral in (A.21). Since α
∫t

0 e−α(t−τ)dτ
∣∣∣
t→∞ → 1, (A.21) becomes

¯̄u=h−µ′
[(

η∗2ξ1 +η∗1ξ2
)
EΘ ¯̄u∗+ (

η1η
∗
2 +ξ∗1ξ2

)
Θ ¯̄u

]
, (A.22)

or

[
IL +µ′(η1η

∗
2 +ξ∗1ξ2

)
Θ

] ¯̄u+µ′(η∗2ξ1 +η∗1ξ2
)
EΘ ¯̄u∗ =h. (A.23)

Taking complex conjugation on two sides of (A.23) and noting that Θ∗ =Θ and E∗ =E−1,

we have

[
IL +µ′(η∗1η2 +ξ1ξ

∗
2
)
Θ

] ¯̄u∗+µ′(η2ξ
∗
1 +η1ξ

∗
2
)
E−1Θ ¯̄u=h∗. (A.24)

From (A.23) and (A.24), we have a set of equations (IL +k1Θ) ¯̄u+k2EΘ ¯̄u∗ =h

k∗
2E−1Θ ¯̄u+ (IL +k∗

1Θ) ¯̄u∗ =h∗
(A.25)

where k1 =µ′(η1η
∗
2 +ξ∗1ξ2

)
and k2 =µ′(η∗2ξ1 +η∗1ξ2

)
. From the second equation in (A.25),

we can expressed ¯̄u∗ as

¯̄u∗ = (IL +k∗
1Θ)−1[h∗−k∗

2E−1Θ ¯̄u
]
. (A.26)

Substituting (A.26) into the first equation in (A.25), we obtain the solution for the

weighting error functions as in (5.20).
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A.5 Derivation of Modeling Error

From (6.13), we have
N∑

n′=1

∫∞

−∞
hn′,m(τ)Ē

{
Xn(t− lTd)X∗

n′(t−τ)
}
dτ−

N∑
n′=1

L−1∑
l′=0

hn′,m(l′)Ē
{
Xn(t− lTd)X∗

n′(t− l′Td)
}= 0

(A.27)

for n = 0, . . . , N, and l = 0, . . . ,L−1. Substituting Xn(t)= anS(t) where an = [an,1, . . . ,an,K ]

is the n-th row vector of A into (A.27), we get
N∑

n′=1

∫∞

−∞
hn′,m(τ)anĒ

{
S(t− lTd)SH(t−τ)

}
aH

n′dτ

−
N∑

n′=1

L−1∑
l′=0

hn′,m(l′)anĒ
{
S(t− lTd)SH(t− l′Td)

}
aH

n′
}= 0.

(A.28)

From E{Sk(t)Sk′(t−τ)}= 0 for k 6= k′, (A.28) becomes
N∑

n′=1

[∫∞

−∞
hn′,m(τ)Φ(lTd −τ)anaH

n′dτ−
L−1∑
l′=0

hn′,m(l′)Φ((l− l′)Td)anaH
n′

]
= 0. (A.29)

Therefore, ∫∞

−∞
hn,m(τ)Φ(lTd −τ)dτ=

L−1∑
l′=0

hn,m(l′)Φ((l− l′)Td), (A.30)

or, in the matrix form
∫∞
−∞Φ(−τ)hn′,m(τ)dτ

...∫∞
−∞Φ((L−1)Td −τ)hn′,m(τ)dτ

=Φ


hn′,m(0)dτ

...

hn′,m(L−1)dτ

 . (A.31)

Extend (A.31) to the full form of N×M channel, the vector of modeled channel coefficients

h is found as

h=


h1,1(0)

...

hN,M(L−1)

= [INM ⊗Φ]−1


∫∞
−∞Φ(−τ)h1,1(τ)dτ

...∫∞
−∞Φ((L−1)Td −τ)hN,M(τ)dτ

 . (A.32)

The modeling error for SI channels from N Tx antennas to the m-th Rx antenna is

calculated by

ε2
m = 1

K1K2
Ē

{∣∣∣ N∑
n=1

∫∞

−∞
h∗

n,m(τ)Xn(t−τ)dτ−
N∑

n=1

L−1∑
l=0

h∗
n,m(l)Xn(t− lTd)

∣∣∣2}
= 1

K1K2
Ē

{[ N∑
n=1

∫∞

−∞
h∗

n,m(τ)Xn(t−τ)dτ−
N∑

n=1

L−1∑
l=0

h∗
n,m(l)Xn(t− lTd)

]
·
[ N∑

n′=1

∫∞

−∞
hn′,m(τ′)X∗

n′(t−τ′)dτ′−
N∑

n′=1

L−1∑
l′=0

hn′,m(l′)X∗
n′(t− l′Td)

]}
.

(A.33)
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From (A.27), (A.33) becomes

ε2
m =

N∑
n=1

N∑
n′=1

∫∞

−∞

∫∞

−∞
h∗

n,m(τ)Φ(τ−τ′)anaH
n′hn′,m(τ′)dτdτ′

−
N∑

n=1

N∑
n′=1

L−1∑
l′=0

∫∞

−∞
h∗

n,m(τ)Φ(τ− l′Td)anaH
n′hn′,m(l′)dτ

=
N∑

n=1

N∑
n′=1

∫∞

−∞

∫∞

−∞
h∗

n,m(τ)Φ(τ−τ′)anaH
n′hn′,m(τ′)dτdτ′

−
N∑

n=1

N∑
n′=1

L−1∑
l′=0

L−1∑
l=0

h∗
n,m(l)Φ((l− l′)Td)anaH

n′hn′,m(l′)

=
N∑

n=1

N∑
n′=1

∫∞

−∞

∫∞

−∞
h∗

n,m(τ)Φ(τ−τ′)anaH
n′hn′,m(τ′)dτdτ′−hH

m[A⊗IL]Θ[AH ⊗IL]hm

(A.34)

where hm = [h1,m(0), . . . ,hN,m(L−1)]T .

A.6 Derivation of Weighting Error Functions

From (6), we have

wm(l, t+ t0)= 2µα

K1K2

∫t+t0

t0

e−α(t+t0−τ)Re
{[

Dm(τ)+Sm,r(τ)+Nm(τ)
]
e j2π fcτ

}
·Xr(τ− lTd)e j2π fc(τ−lTd)dτ

= µα

K1K2

∫t+t0

t0

e−α(t+t0−τ)
{[

Dm(τ)+Sm,r(τ)+Nm(τ)
]
e j2π fcτ

+ [
D∗

m(τ)+S∗
m,r(τ)+N∗

m(τ)
]
e− j2π fcτ

}
Xr(τ− lTd)e j2π fc(τ−lTd)dτ

(A.35)

where Dm(t) = ∑L−1
l=0 hH

m(l)X(t− lTd)−∑L−1
l=0 e− j2π fc lTd wH

m(l, t)Xr(t− lTd) is the low-pass

equivalent of the residual SI signal dm(t)= zm(t)− ym(t). Substituting X(t)=AS(t) and

Xr(t) = ArS(t) into the expression of Dm(t) and noting that Dm(t) is a scalar function

(hence DT
m(t)= Dm(t)), we obtain

D∗
m(t)=

L−1∑
l=0

SH(t− lTd)[AHhm(l)−AH
r e j2π fc lTd wm(l, t)]. (A.36)

Substituting (A.36) into (A.35), after some multiplications and noting that signal compo-

nents centered about the frequency 2 fc are eliminated by the LPF whose bandwidth is
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assumed to be very narrow compared to fc, we get

wm(l, t+ t0)= µα

K1K2

∫t+t0

t0

e−α(t+t0−τ)
{L−1∑

l′=0
SH(τ− l′Td)[AHhm(l′)−AH

r e j2π fc l′Td wm(l′,τ)]

+S∗
r (τ)+N∗(τ)

}
Ar e− j2π fc lTd S(τ− lTd)dτ.

(A.37)

Multiplying both sides of (A.37) with AH
r e j2π fc lTd and defining B=AH

r Ar, we have

AH
r e j2π fc lTd wm(l, t+ t0)= µα

K1K2

∫t+t0

t0

e−α(t+t0−τ)
{L−1∑

l′=0
SH(τ− l′Td)

[
AHhm(l′)−

AH
r e j2π fc l′Td wm(l′,τ)

]
+S∗

r (τ)+N∗(τ)
}

BS(τ− lTd)dτ.

(A.38)

Substituting the definition of um(l, t) = AHhm(l)−AH
r e j2π fc lTd wm(l,τ) into (A.38), we

have

um(l, t+ t0)=AHhm(l)− µα

K1K2

∫t+t0

t0

e−α(t+t0−τ)
[L−1∑

l′=0
SH(τ− l′Td)um(l′,τ)

+S∗
r (τ)+N∗(τ)

]
BS(τ− lTd)dτ.

(A.39)

Taking ensemble expectation on two sides of (A.39) and assuming that all the transmitted

signals are independent to the received signals and noise, we have

ūm(l, t+ t0)=AHhm(l)− µα

K1K2

∫t+t0

t0

e−α(t+t0−τ)
L−1∑
l′=0

BS(τ− l′Td)SH(τ− lTd)ūm(l′,τ)dτ.

(A.40)

Taking time average over one symbol period Ts of ūm(l, t+ t0) with respect to the starting

time t0, we obtain

¯̄um(l, t)=AHhm(l)−µα

∫t

0
e−α(t−τ)

L−1∑
l′=0

BΘ((l− l′)Td)ūm(l′,τ)dτ (A.41)

where Θ((l − l′)Td) = Φ((l − l′)Td)IK . In derivation of (A.41), ūm(l, t) is assumed to

change slowly and it can be seen as a constant during Ts, i.e., ūm(l, t+ t0) ≈ ¯̄um(l, t) =
1

Ts

∫Ts
0 ūm(l, t+ t0)dt0. Eq. (A.41) can be rewritten in the full form of L-taps as

¯̄um(t)= (AH ⊗IL)hm −µα

∫t

0
e−α(t−τ)[(B⊗IL)Θ

] ¯̄um(τ)dτ. (A.42)
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Expanding (A.42) to all M Rx chains, we obtain the expected weighting error function

vector as

¯̄u(t)= [IM ⊗ (AH ⊗IL)]h−µα

∫t

0
e−α(t−τ)

{
IM ⊗ [

(B⊗IL)Θ
]} ¯̄u(τ)dτ. (A.43)

Denoting Ψ= IM ⊗ [
(B⊗IL)Θ

]
and h= [IM ⊗ (AH ⊗IL)]h, we obtain the final equation of

¯̄u(t) as in (6.21).
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