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ABSTRACT

Adopting Machine Learning Technology for the Classification of

Parkinson’s Disease

by

Farhan Mohammed

Parkinson’s Disease (PD) is the second most common neuro-degenerative disor-

der affecting approximately 1% of the population. Major symptoms include tremor,

bradykinesia and freezing of gait. The precise diagnosis of PD remains a challenge

for clinicians due to the similarity of PD symptoms with other disorders. Although

diagnosis is based on clinical symptoms, PD is associated with a plethora of non-

motor symptoms adding to its overall disability.

Research into early diagnosis of PD has taken advantage of machine learning-

based image analysis. Neuroimaging modalities, like Single Photon Emission Com-

puted Tomography (SPECT), have shown to aid in early diagnosis of PD. SPECT

images are powerful tools that depict dopaminergic deficits in brain. Dopamine

transporter (DAT) loss is a crucial feature necessary for PD identification. Regu-

lar scans are identified by intense and symmetric DAT binding that appear as two

“comma-shaped” regions. Any asymmetry of this shape implies an abnormal find-

ing. This thesis proposes three machine learning approaches for the classification of

PD.

Firstly, we developed a neural network that classified PD patients from healthy

controls. SPECT images were used to train our network. 10-fold cross-validation

was used to evaluate our network’s performances. Experimental results indicated

that our approach outperformed the benchmark studies.

To classify PD patients into different stages, PDStageNet was implemented which

learned several features from the images and their associated stages. The affected re-



gions were enhanced using image segmentation process. Experimental results showed

that the proposed approach achieved a very high accuracy in classifying PD patients

into five clinical stages of PD progression.

Finally, a classification model was utilised to streamline the process of identifying

PD patients for surgical treatment using only clinical data. A feature selection

process was used to identify the essential features and determine if the accuracy

could be improved. Two experiments were carried out to test this hypothesis. In

experiment 1, the best classifier for PD classification was identified. In experiment

2, feature selection process was implemented to determine the essential features.

Experimental results indicated that, with only 60% of the features, the accuracy

was higher than the benchmark studies.

The significance of these studies is that we propose effective machine learning-

based approaches to diagnose PD at its earlier stages, so that the management and

prognosis of PD patients can be significantly improved. Given the high performance

of our approaches, we believe that the early diagnosis of PD can be done, which will

revolutionize PD diagnosis and management.
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1

Chapter 1

Introduction to Parkinson’s Disease

Parkinson’s Disease (PD) is the second most common neuro-degenerative disorder,

after Alzheimer’s disease, affecting approximately 1% of the population aged 55

or older. The precise diagnosis of PD, at its early stages, remains a challenge for

modern clinicians. The difficulty to differentiate PD from other neuro-degenerative

disorders is high due to the similarities in symptoms with other disorders. Although

clinical diagnosis is primarily rested on the presence of typical clinical manifestations

such as bradykinesia, tremor and other cardinal motor features, PD is associated

with a plethora of non-motor symptoms adding to its overall disability.

1.1 Diagnosing Parkinson’s Disease

The cause for PD is unknown, and there is presently no cure. All current treat-

ment options, such as medication and surgery, aim in the management of symptoms

only. Patho-physiologically, PD involves the malfunction and death of vital nerve

cells that produce dopamine in the basal ganglia of the brain. As PD progresses,

the amount of dopamine produced in the brain decreases, leading to difficulty in

controlling movement normally [1].

PD occurs mostly in the age of 50 and above, and it is difficult to identify in

the earlier stages. It is primarily characterised by the cardinal motor impairments

like rigidity, tremor and bradykinesia. Tremor is the well-known symptom of PD,

resulting in an automatic movement of arms, lips and hands. Rigidity is another

common symptom of PD. It causes severe stiffness of the muscles. Some other
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symptoms include problems with walking and slowness of movements. Levodopa

is prescribed at the early stages of the disease. When the disease advances, the

symptoms also progresses rapidly. When medicinal treatments become ineffective,

surgical treatment is the only alternative. Therefore, diagnosing PD at an earlier

stage is critical for improving the quality of a patient’s life [2].

According to the Global Burden of Disease, Injuries and Risk Factors Study

(GBD) in 2018 [3], PD was the fastest growing reason in overall deaths caused by

a neurological disorder. In that study, the overall number of people affected by the

disease was estimated to have more than doubled globally from 1990 to 2017. The

increase in deaths from PD was more significant than the rise in prevalence, and the

considerable variation in death rates between countries was suggestive of a change

in practices rather than higher death rates among PD cases. Figure 1.1 illustrates

the number of deaths in major countries from 1990 to 2017. It can be seen that

deaths due to PD increases over the years, especially in China and India.

Figure 1.1 : PD deaths in major countries from 1990 - 2017

Visualisation of the striatal dopamine depletion in PD was a breakthrough in



3

molecular nuclear imaging [4, 5]. Since then, the field of neuroimaging has seen

dramatic advances that are becoming increasingly relevant to the diagnosis of PD

[6, 7, 8, 9, 10]. Several neuroimaging techniques such as dopaminergic imaging

using Single Photon Emission Computed Tomography (SPECT) with 123I-Ioflupane

(DaTSCAN) have demonstrated the detection of even early stages of the disease

[11, 12, 13]. Dopaminergic imaging discriminates patients with PD by identifying

presynaptic dopaminergic deficits in the caudate and putamen with high sensitivity

and specificity [14]. Regular SPECT scans are characterised by full and symmetric

DAT binding in the caudate nucleus and putamen on both hemispheres that appear

as two “comma-shaped regions” (see Figure 1.2a). Any asymmetry or distortion of

this shape implies an abnormal finding (see Figure 1.2b).

(a) (b)

Figure 1.2 : SPECT scans showing examples of (a) Non-PD patient and (b) PD

patient
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1.2 Health Expenditures Associated with Parkinson’s Dis-

ease in Australia

Health expenditure data for PD was sourced from the Australian Institute of

Health and Welfare (AIHW) [16]. The AIHW derives its expenditure estimates from

an extensive top-down process developed in collaboration with the National Centre

for Health Program Evaluation for the Disease Costs and Impact Study (DCIS). The

approach measures health services utilisation and expenditure for specific diseases

and disease groups in Australia. The health expenses of PD patients in Australia

per year are relatively higher than many other diseases such as prostate cancer

and breast cancer, mainly due to the higher use of residential aged care. However,

individual expenses are relatively lower than dementia, cancers of all types, multiple

sclerosis, infectious and parasitic diseases. The lifetime financial cost of a patient

Figure 1.3 : Health system costs (AU$) per person in 2014

Source: Deloitte Access Economics [15]
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living with PD for 12 years is equal to the average lifetime financial cost of cancer.

While this is lower than many other cancers, it is significantly higher than prostate

and breast cancer. Figure 1.3 shows the health costs per person based on several

diseases in 2014.

There are other types of health costs (Figure 1.4) that contribute to the living

conditions of a patient suffering from PD. These are mentioned below.

• Aged care. Residential aged care placement is often required, particularly in

the later stages of PD due to functional impairment, drug complications and

comorbidities associated with PD.

• Pharmaceuticals. Drug treatments for PD include drugs such as levodopa,

non-subsidized prescription drugs such as ropinirole and over-the-counter drugs.

• Inpatient & outpatient hospital services. Hospital services may be required for

the purpose of confirming diagnosis and levodopa responsiveness [17]. Hospital

Figure 1.4 : Health costs (AU$) associated with PD, in millions

Source: Deloitte Access Economics [15]



6

admission may also be required for treatment for falls and other accidents, de-

pression, and autonomic nervous system disorders, such as severe constipation,

and other disorders arising from PD or PD medication.

1.3 Challenges in Diagnosing Parkinson’s Disease

The precise diagnosis of PD, at its early stages, has enormous challenges for

medical doctors as there are currently no laboratory tests that have been proven

to be useful in diagnosing PD. Particularly in the early stages, the disease can be

challenging to diagnose accurately. Doctors may sometimes request brain scans or

laboratory tests in order to rule out other diseases. Blood tests, imaging techniques

such as Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET)

scan, and SPECT, can be used to help doctors exclude other medical conditions,

such as stroke or brain tumors, that produce symptoms similar to those of PD.

Amongst others, one of the methods for PD diagnosis is detecting and analysing

voice disorders by using acoustic tools, that record the changes in pressure at lips

or inside the vocal tract. Recently, upon signal processing, a group of experts found

some features in the voices of the people with PD that can be used as discriminatory

measures to differentiate those who have the disease from those who do not. After

initial diagnosis, PD treatments are given to help relieve symptoms [18].

Other potential tests to diagnose PD include genetic testing, autonomic func-

tion testing, neurophysiological and neuropsychological tests, and neuroimaging

[8]. Recommendations made by the European Federation of Neurological Soci-

eties/Movement Disorder Society - European Section (EFNS/MDSES) Task Force

suggests that these available tests can be useful, although some tests are no longer

recommended. Some of these tests, such as neuroimaging, are not routinely used

in diagnosing PD. Consequently, it can often take up to two years from disease

onset before a diagnosis is made [19]. The presence of other diseases, such as de-
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mentia and general ageing, can obscure PD symptoms and reduce the chance of

an accurate diagnosis implying that some PD patients may be either misdiagnosed

or under-diagnosed. Furthermore, referral differences and accessibility of medical

services in regional areas can also impact the chances of being diagnosed.

Figure 1.5 : Suggested treatment plan for early PD patient

Source: Therapeutic Guidelines [20]

Currently, there is no cure for PD. Treatment options for PD are generally

grouped into drug treatment and non-drug treatment options such as exercise ther-

apy, physiotherapy, speech therapy, and surgery. According to [20], Figure 1.5 and

Figure 1.6 illustrate suggested guidelines for PD treatment and management, partic-

ularly for early PD and late (or advancing) PD, respectively. As there is no standard

treatment for PD, each of these options can effectively manage symptoms of PD.

However, various factors that influence appropriate treatment include duration since

the onset of PD, age, disease severity, comorbidity, and other individual characteris-
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Figure 1.6 : Suggested treatment plan for late PD patient

Source: Therapeutic Guidelines [20]

tics [21]. These factors are particularly important in young people with PD, where

misdiagnosis is common. Diagnosing PD patients at early stage is a challenge for

clinicians because of the similarities in symptoms with other neurological disorders.

Current treatment plans for managing PD symptoms involve prescribing Levodopa.

However, as PD progresses, the symptoms rapidly increase, thereby causing medic-

inal treatment ineffective. Therefore, there is an urgent need to establish objective

measures that can be used for the accurate diagnosis of PD. By utilising neuroimag-

ing modalities like MRI, PET and SPECT, diagnosing PD at an early stage can be

useful. These options aim to treat both the motor and non-motor symptoms of PD.

Therefore, this initiative will require IT experts working together with clinicians and

medical scientists using deep-learning tools that have potential medical applications.
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1.4 Machine Learning Techniques

Machine learning [22] is a scientific discipline concerned with the design and

development of algorithms, and it allows computers to recognise intricate patterns

and make intelligent decisions based on data. In combination with image analysis

procedures, it allows to develop computer-aided diagnosis (CAD) systems for sev-

eral neurodegenerative diseases, such as PD [23]. These systems not only process

and analyse image data but also can determine if an image belongs to the class of

typical images (healthy subjects) or pathological images (patients), performing an

automatic diagnosis [24].

In this section, we will divulge on some of the important concepts associated

with machine learning. We will touch upon data mining concepts and describe

some popular data mining algorithms. Then, a discussion will be provided on deep-

learning techniques and its importance in the domain of image classification.

1.4.1 Data Mining Concepts

Data Mining is defined as the nontrivial extraction of implicit, previously un-

known, and potentially useful information from data. The implementation of clas-

sifier systems for medical diagnosis is increasing gradually. Current advances in

the field of artificial intelligence (AI) have led to the emergence of expert systems

for medical applications. Moreover, in the last few decades, computational tools

have been designed to improve the experiences and abilities of doctors and medical

specialists in making informed decisions about their patients.

There is no doubt that the evaluation of data taken from patients and the deci-

sions of experts are the most critical factors in diagnosis. However, expert systems

and different AI techniques have the potential of being useful supportive tools for

identification and diagnosis. Classification systems can help in increasing the accu-
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racy and reliability of diagnoses and minimise possible errors, as well as making the

diagnoses more time-efficient [25].

Data mining has been defined, by several authors, as the process of analysing

large databases to detect meaningful patterns and associations [26, 27]. Data mining

is a step within the KDD (Knowledge Discovery in Databases) process that involves

using data analysis and discovery algorithms to generate particular patterns (or

models) based on the data. Unlike data mining, the traditional method of converting

data into knowledge relies on manual analysis and interpretation.

Data mining process uses several techniques from statistics and artificial intel-

ligence in a variety of activities or application areas. The main activities are as

follows.

• Classification. Classification involves determining profiles of classes in terms

of their features and identifying which of these predefined classes a new item

belongs to. For example, given particular classes of patients with different med-

ical treatment responses, classification is used to identify the form of treatment

to which a new patient is most likely to respond [28].

• Clustering. Clustering can be used to identify a set of classes where particular

items are grouped according to their similar characteristics. For example,

based on a patient data set, clustering can be used to identify subgroups of

patients with similar treatment schema [29].

• Association. Association involves identifying relationships between items where

the presence of one pattern indicates the presence of another pattern. For ex-

ample, most patients who receive prescriptions for medication A also receive

prescriptions for medication B [30].
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1.4.2 Popular Classification Techniques

Classification is a pattern-recognition task that has applications in a broad range

of fields. It requires the construction of a model that approximates the relationship

between input features and output categories [31]. Some of the most popular tech-

niques are discussed here in brief.

The Näıve Bayes classifier is based on applying Bayes’ theorem with strong

independence assumptions between the features. As one of its main features, the

Näıve Bayes classifier is easy to implement because it requires a small amount of

training data in order to estimate the parameters, and excellent results can be found

in most cases. However, it has class conditional independence, meaning it causes

losses of accuracy and dependency [32].

J48 is an efficient implementation of C4.5 [33] tree classifier that produces de-

cision trees. The C4.5 is a classifier using binary trees based on the concept of

information entropy computed in training data. In data mining, a decision tree is

a predictive model which can be used to represent both classifiers and regression

models. When a decision tree is used for classification tasks, it is more appropri-

ately referred to as a classification tree. A classification tree is used to classify an

instance to a predefined set based on their attribute values. It is a flow-chart-like

tree structure, where each internal node denotes a test on an attribute, each branch

represents an outcome of the test, and the leaf nodes represent classes of class dis-

tributions [33]. The complex decision in this model is broken up into a group of

several simpler decisions to find out the best solution [34] for the desired classifica-

tion solution. Classification tree grows recursively by partitioning the training data.

It is among the most used data mining algorithms [35].

K-Nearest Neighbor (k-NN) [36] is one of the simplest instance-based learning

or lazy learning techniques and it assumes all instances correspond to points in the
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n-dimensional feature space. k-NN is a supervised learning algorithm where the

result of a new instance query is classified based on the majority of k-NN category.

The purpose of this algorithm is to classify a new object based on attributes and

training samples. The learner only needs to store the examples, while the classifier

does its work by observing the most similar samples of the sample to be classified.

The classifiers are only based on memory and do not use any model to fit. In order to

classify an instance of a test data into the corresponding categories, k-NN calculates

the distance between the test data and each instance of training dataset [37].

1.4.3 Deep-Learning Techniques

Deep-learning is a growing trend in general data analysis and has been one of the

ten breakthrough technologies of 2013. Deep-learning is an improvement of artificial

neural networks, consisting of more layers that permit higher levels of abstraction

and improved predictions from data. To date, it is emerging as the leading machine

learning tool in the domains of general imaging and computer vision [38].

In the stream of applying machine learning for data analysis, meaningful extrac-

tion of features lies at the heart of its success to accomplish target tasks. Conven-

tionally, meaningful or task-related features were mostly created by human experts

based on their knowledge about the target domains, which thus made it challenging

for non-experts to exploit machine learning techniques for their studies.

However, deep-learning has relieved such obstacles by combining the feature

engineering step into a learning step [39]. That is, instead of extracting features in

a hand-designed manner, deep-learning requires only a set of data with minor pre-

processing, if necessary, and then discovers the informative representations [40, 41].

Therefore, the burden of feature engineering has shifted from a human-side to a

computer-side, thus allowing non-experts in machine learning to use deep-learning

for their researches and applications.
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In particular, Convolutional Neural Networks (CNNs) have proven to be powerful

tools for a broad range of computer vision tasks. Deep CNNs automatically learn

mid-level and high-level abstractions obtained from raw data (e.g., images). Recent

studies indicate that the generic descriptors extracted from CNNs are incredibly

effective in object recognition and localization in natural images. Medical image

analysis groups across the world are quickly entering the field and applying CNNs

and other deep-learning methodologies to a wide variety of applications.

A typical CNN architecture for image processing consists of a series of convo-

lution layers, interspersed with a series of data reduction or pooling layers. The

convolution layers are applied to small patches of the input image. Like the low-

level vision processing in the human brain, the convolution layers detect increasingly

more relevant image features, for example, lines or circles that may represent straight

edges (such as for organ detection) or circles (such as for round objects like colonic

polyps), and then higher-order features like local and global shape and texture.

Convolutional layer: The role of the convolutional layer is to detect local

features at different positions in the input feature maps with learnable kernels.

Specifically, the units of the convolutional layer compute their activations based on

a spatially contiguous subset of units in the feature maps of the prior convolutional

layer. After each convolutional layer, an activation layer is typically added. After

the convolution, the activations for each filter are stacked and passed to the next

layer, which is the max-pooling layer.

Activation: The activation function is common to all types of CNNs. It is

applied to the output of all operations performed at the network and provides acti-

vation of the operations. Many different types of activation functions exist, such as

the traditional sigmoid. However, in the context of CNN, the Rectified Linear Unit

(ReLU) [41] has gained much popularity. The function itself is a non-saturating
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activation function, which is defined as follows.

f(x) = x+ = max(0, x), (1.1)

where x is the input to a neuron.

Max-pooling layer: A pooling layer follows the convolutional layer to down-

sample the feature maps of the preceding convolutional layer. Specifically, each

feature map in a pooling layer is linked with a feature map in the convolutional

layer. Each unit in a feature map of the pooling layer is computed based on a subset

of units within a local receptive field from the corresponding convolution feature

map. Similar to the convolution layer, the receptive field finds a representative

value, e.g., maximum or average, among the units in its field. This layer prevents

the subsequent layers from processing non-maximal values, reducing computational

load. Furthermore, by reducing the input space and keeping the receptive field of

the filters, we can achieve translational invariance.

Dense layer: After a series of convolutional and max-pooling layers, there is

always a fully connected layer, also known as dense layer. In this layer, all neurons

are connected to all outputs from the last pooling step. The structure of this layer

usually mimics a multilayer perceptron (MLP), in which the input layer is the output

of the previous max-pooling layer with one or several hidden layers, and an output

layer with as many neurons as classes. If the convolution and max-pooling layers

together are considered as a sophisticated feature extraction system, the dense layer

can be considered as the high-level reasoning part of the CNN.

The output of a CNN is typically one or more probabilities or class labels. The

convolution filters are learned from training data. This is desirable because it re-

duces the necessity of the time-consuming hand-crafting of features that would oth-

erwise be required to pre-process the images with application-specific filters or by

calculating computable features. Figure 1.7 illustrates the architecture of a CNN.
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Figure 1.7 : Architecture of a CNN model

1.5 Parkinson Progression Markers Initiative (PPMI)

Parkinson Progression Markers Initiative (PPMI) [42] is one of the most well-

known databases utilised for the classification of Parkinson disease. The PPMI

repository contains a full set of clinical, imaging and biological data collected as part

of an ongoing study along with processed images and bio-specimen analysis results.

The PPMI database is a multi-centre international study involving subjects from

different countries, adding diversity in the database, thus making it more robust.

The repository is updated regularly as a longitudinal follow-up of study subjects

continues, and the data generated from different analysis techniques are completed.

PPMI is sponsored by the Michael J. Fox Foundation (MJFF) for Parkinson’s Re-

search [43].

Since 2002, The Michael J Fox Foundation for Parkinson’s Research (MJFF) has

been an essential driver for PD biomarker development efforts, and as a result of

collaboration and efforts from several researchers, PPMI is the resulting database

of these collaborations. For this thesis and all the experiments performed, the data

are collected from PPMI.
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1.6 Contributions

Accurate diagnosis of PD in early stages is challenging, even for expert medical

physicians. The clinical diagnosis is definitive for the advanced stages of PD when

the symptoms are fully developed. However, in the early stages, when the symptoms

are mild/subtle, an accurate diagnosis becomes challenging. Early and accurate

diagnosis of PD patients is crucial for critical reasons such as early management,

avoidance of unnecessary medical examinations and therapies and their associated

financial costs, side-effects and safety risks.

In this thesis, one of the main contributions is the adoption of deep-learning

techniques to address such issues utilising SPECT imaging. An approach is proposed

in this thesis, and it can detect early PD patients from non-PD patients using

SPECT images. As SPECT images can depict the dopaminergic deficits in the

striatum, the proposed approach learns such regions of interest as features necessary

for classification of PD from non-PD patients. Experimental results show that our

approach has better performance when compared to two benchmark studies.

Another main contribution of this thesis is the multiple stage classification of PD

patients based on the progression of PD symptoms. Multiple stage classification is a

critical issue in PD because identifying the stages of a PD patient is challenging and

time-consuming, which delays the treatment and the chances for a better quality of

life. Therefore, to address this issue, a deep-learning approach is proposed, and it

utilises SPECT images to learn different features because patients in different stages

of PD indicate different forms of dopamine deficit in the striatum. Experimental

results show that our approach performs well with high-performance metrics.

Finally, a novel approach is presented to streamline the way to classify PD pa-

tients and identify appropriate patients for surgery based on clinical data only. A

feature selection process is introduced to select features for PD classification, which
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can be used to improve accuracy and to determine if, with feature selection, ad-

vanced PD patients can be identified for surgical treatment. Experimental results

show that our proposed approach provides a better understanding of features that

contribute to reliable and accurate PD classification, indicating that not all features

are required for the accurate and efficient classification of PD.

1.7 Organization of this Thesis

The organization of this thesis is as follows. This chapter describes the concepts

of PD and the challenges of diagnosing PD. The contributions to this thesis are also

described. Chapter 2 provides a review of all previous research works in the clas-

sification of PD using different techniques. Chapter 3 describes the deep-learning

approach used in this thesis to classify PD patients from non-PD patients. Chapter

4 shows how we can adopt deep-learning to classify patients into multiple stages of

PD progression using SPECT images. Chapter 5 presents an approach that demon-

strates the effect of feature selection in the classification of PD patients for surgical

treatment utilising only clinical data. Finally, Chapter 6 provides the conclusion of

this thesis.
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Chapter 2

Review of Prior Research Works

In this chapter, a review of previous research studies addressing the classification

of Parkinson’s disease (PD) using machine learning techniques has been provided.

They are categorised based on different attributes utilised for classification.

2.1 Classification of PD Using Vocal Attributes

One of the earliest classifications of PD using machine learning was done by

Max Little from the University of Oxford [44]. In his study, he developed a software

that learned to detect differences in voice patterns, in order to spot distinctive clues

associated with PD. By using machine learning, a large amount of data was collected

in order to know if someone had PD or not. A new measure of dysphonia, pitch

period entropy (PPE) was introduced, which was robust to many uncontrollable

effects, including noisy acoustic environments and normal, healthy variations in

voice frequency. He collected sustained phonations from 31 people, 23 with PD, and

performed classification using a kernel support vector machine (SVM).

Ramani & Sivagami [1] provided a survey of current techniques of knowledge

discovery in databases using data mining techniques that were used in the classifi-

cation of Parkinson Disease (PD). The diagnosis was based on medical history and

neurological examination conducted by interviewing and observing the patient in

person using the Unified Parkinson’s Disease Rating Scale (UPDRS). The data was

collected from a dataset created by Max Little of the University of Oxford. The

dataset was composed of a range of biomedical voice measurements from 31 people,
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of which 23 were with PD. Various feature selection algorithms were used, in which

Fisher filtering was found to be a useful feature ranking system. This filtering was

applied to the algorithms for better classification purpose. Based on the filtering al-

gorithm, minimum number of attributes leading to better classification was selected

and performed. The Fisher filtering algorithm ranked the input attributes according

to the relevance. The main objective was to obtain the minimum error rate with

the minimum characteristic features of the Parkinson Dataset. The Random Tree

Algorithm classified the dataset accurately and provided 100% accuracy. The Linear

Discriminant Analysis (LDA), C4.5 (decision trees), CS-MC4 (decision trees) and

k-NN (k-Nearest Neighbor) yielded accuracy results above 90%. k-NN error rate

was only 0.0256. Among all, the C-PLS algorithm classified the dataset with the

least percentage of 69.74%. The important observation to be made is the features

that were selected. The feature relevance analysis showed that the three critical

features, namely Pitch Period Entropy, Non-Linear Measure-1 of fundamental fre-

quency and Non-Linear Measure-2 of fundamental frequency, from the dataset were

mainly aimed for better classification purpose.

Another study [18] aimed to classify between healthy people and people with

PD. The dataset was gathered from the University of California at Irvine (UCI)

machine learning repository. The dataset was created by Max Little of the Uni-

versity of Oxford, in collaboration with the National Centre for Voice and Speech,

Denver Colorado, who recorded the speech signals. The authors applied fuzzy c-

means (FCM) clustering and pattern recognition to the database to classify patients

with PD. FCM clustering/classification depended on certain assumptions in order

to define the subgroups present in a dataset. Then, pattern recognition was applied

to identify the structure in data by a comparison with known structures (through

clustering). Because of the unbalanced data, FCM clustering resulted in a low

classification result of 58.46%. After adding pattern recognition, the success rate
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increased to 68.04%. However, it was noted that through FCM and pattern recog-

nition, the positive prediction value was 80.88%. This indicated that the classifier

prediction of patients with PD was 80.88%. This was a very satisfactory result as

PD was quite complex problems and the data mining tools used were very simple.

Khemphila and Boonjing [25] conducted PD classifications with a reduced num-

ber of attributes. They used Information Gain (IG) to determine the attributes of

patients. Then, they used Artificial Neural Networks (ANNs) to classify PD in the

given dataset. The dataset was taken from the UCI machine learning repository

created by Max Little. Their experiment was done using WEKA. They divided the

dataset into two sets: training and testing dataset. At first, IG was not used, and

classification was done using ANN directly. The accuracy was 91.45% of the training

set and 80.76% of the testing set. Then, IG was utilised, and the attributes were

sorted according to the importance of features for classification. After implementing

IG, the attributes were reduced to 16 and then ANN was implemented again. The

accuracy rate was 82.05% for the training set and 83.33% for the testing set. The

authors concluded that with IG the results showed a higher accuracy rate for ANN.

Shaikh and Chhabra [45] conducted a study to explore WEKA filters on data

mining algorithm Näıve Bayes, which was used to classify PD patients from healthy

controls. The datasets were obtained from the University of California Irvine (UCI)

machine learning repository. At first, Näıve Bayes classifier was used, and the pa-

rameters were noted down. Then, the supervised attribute filter, “Discrete” from

WEKA, was used on both data sets, which divided the input values of the datasets

to a range of values and its parameters were noted down. Similarly, another fil-

ter (unsupervised), “Numeric Transform” was used on both datasets and the results

were noted down. Näıve Bayes was used again to compare the performance measures

of accuracy, sensitivity and specificity.
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An effective and efficient diagnosis system using fuzzy k-nearest neighbor (FKNN)

was presented in [46] for the classification of PD. FKNN was an improved version of

the k-NN approach, and it incorporated the fuzzy set theory into k-NN. In FKNN,

rather than individual classes, the fuzzy memberships of samples were assigned to

different categories based on the fuzzy strength parameter. The fuzzy strength

parameter was used to determine how heavily the distance was weighted when cal-

culating each neighbor’s contribution to the membership samples. The data for the

study was gathered from the UCI machine learning repository. The dataset was

composed of a range of vocal measurements from 31 people, of which 23 were with

PD. The whole approach was comprised of two stages. In the first stage, feature

reduction was conducted using Principal Component Analysis (PCA) to eliminate

redundant features. In the second stage, FKNN model was trained via 10-fold cross-

validation to get the optimal model and then the optimal FKNN model was used

to perform classification. The results were compared with SVM classifier based on

accuracy, sensitivity, specificity and area under the receiver operating characteris-

tic (ROC) curve (AUC). Experimental results demonstrated that FKNN approach

outperformed the SVM approach.

In a study by Gök [47], experimentation on classifying PD from healthy controls

was conducted using the dysphonic symptoms (vocal characteristics) of PD. The

dataset used was developed by Max Little. The experiment consisted of two phases.

The first phase was feature selection (FS). In FS, relevant features were selected

from 22 features using linear SVM for discovering informative features. Thus, out of

22, 10 were selected. Then, those ten were ranked again based on their information

gain with respect to class. Six classifiers were selected to perform the comparison

analysis. The accuracy of the competing algorithms was evaluated by utilising both

the selected 10 and all 22 features. The best result was obtained by an ensemble of

k-NN on PD dataset using only the ten selected features.
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Suganya & Sumathi [48] developed a new data mining algorithm and it was

named Artificial Bear Optimization (ABO). The algorithm was designed and im-

plemented to evaluate the performance through the area under the curve (AUC).

The dataset was collected from a private healthcare institute. From the dataset,

195 instances were collected for their investigation. These 195 instances had 23

characteristic features that consisted of a wide range of biomedical voice measure-

ments. They utilised voice measurements because majority of reliable studies had

shown that PD patients showed vocal deterioration symptoms. They implemented

their algorithm and compared it with other algorithms like Subtracting Cluster-

ing Features Weighing with Kernel-Based Extreme Learning Machine (SCFW with

KELM), FCM, Particle Swarm Optimization (PSO) and Ant Colony Optimization

(ACO). The performance matrices of accuracy, recall, precision and f-measure were

used as evaluation metrics. Based on their results, it was seen that ABO had the

highest accuracy (97.5%), recall, precision and f-measure than the other algorithms.

A novel methodology for feature extraction and analysis from human speech

was proposed in [49]. The methodology involved speech segmentation done at a

pitch cycle level. Formulation of this methodology was based upon the hypothesis

that, a cycle-by-cycle analysis can better capture the dysfunctionality of vocal tract

musculature due to PD. Speech data from a total of 40 subjects with 18 healthy

controls (12 female and 6 male) and 22 PD patients (7 female and 15 male) was

used in this study. The original recordings contained two different passages read

by all the participants. The word “Pablo” was chosen for analysis since it was re-

peated three times, providing more data to evaluate. On the whole, there were 115

utterances of this word. Out of all the available word utterances, only the ones

with a clear distinction between the vowel segments and silences or syllable transi-

tions were extracted and used for evaluation. The two syllables “Sy1” and “Sy2” in

the utterance of the word “Pablo” contained the vowels “a” and “o”, respectively.
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Instead of dividing the vowel data into stationary segments, it was broken down

into smaller segments each spanning a pitch cycle and features were extracted from

these segments. Analysis was performed on the two syllables both individually as

well as grouped together. The pre-processing of the word utterances was done on

MATLAB using a custom developed GUI. Each word utterance was processed to

identify the pitch cycle end locations in the voiced portions of each syllable. The

boundaries for both syllables were marked manually to avoid the portions contain-

ing silences or syllable transitions. Data pertaining to each syllable was extracted

using the first and last cycle end locations that fell within their respective bound-

aries. After the vowel data was extracted, it was normalised to unit amplitude and

was further segmented into pitch cycle data segments (PCDS) using the previously

identified cycle end locations. On the whole, a total of 115-word utterances were

used for analysis after eliminating the unsuitable ones. After pre-processing, from

each PCDS, features from temporal, spectral and cepstral domains were extracted.

In order to eliminate the features that did not have much difference when the PD

and HC groups were compared, within each gender group, the p-value output of a

two-sample t-test conducted for each feature variance (FV) set was used. In the

first stage of elimination, FV sets with p-values greater than 0.05 were eliminated.

Then, an FV subset was created by adding one feature at a time, starting with the

feature whose variance has the smallest p-value. With each new addition, clustering

performance was evaluated using a k-mean classifier. It was seen that clustering

with k-mean classifier using a selected feature set showed excellent performance in

classification.

2.2 Classification of PD Using Gait Attributes

Gait analysis plays a vital role in obtaining information on motor deficits in PD.

Gait information has been widely used for movement studies in healthy controls
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and also in subjects with PD. Analysis of gait parameters is very useful for a better

understanding of the mechanisms of movement disorders, and also has the high

potential in presenting automatic non-invasive methods based on gait characteristics

for diagnosis of PD.

A method was proposed in [50] to classify patients with PD and healthy control

subjects using gait analysis via deterministic learning theory. It consisted of two

phases: a training phase and a classification phase. The data was provided by

PhysioNet bank [51], which contained measures of gait for 93 idiopathic PD patients

and 73 healthy controls. In the training phase, gait characteristics were derived from

vertical ground reaction forces under the usual and self-selected pace of the subjects.

These patterns of PD patients and healthy controls constituted a training set. In

the classification phase, a bank of dynamical estimators were constructed for all

the training gait patterns. Prior knowledge of gait dynamics represented by the

constant Radial Basis Functions (RBF) networks was embedded in the estimators.

By comparing the set of estimators with a testing gait pattern of a specific PD patient

to be classified (diagnosed), a set of classification errors were generated. The average

of the errors were taken as the classification measure between the dynamics of the

training gait patterns and the dynamics of the testing PD gait pattern according to

the smallest error principle. With RBF network classification along with five-fold

cross-validation method, the authors achieved an accuracy of 96.39%.

In [52], freezing of gait (FoG) detection was identified as a two-class classification

problem: FoG versus normal locomotion. Similarly, FoG prediction was identified as

a three-class classification problem. The authors introduced a new class called the

pre-FoG, i.e., the walking periods before FoG. They hypothesised that there was a

detectable deterioration of gait on this phase. The steps involved in their approach

are:
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• Extraction of standard frequency-based features, namely Freezing Index (FI)

and total energy in the frequency band 0.5-8 Hz. This is the current standard

in the field and serves as a baseline.

• Extraction of various hand-crafted time-domain and statistical features, which

are used in pattern recognition problems involving motion or human activity

recognition.

• Unsupervised feature learning. This method involves extraction of informa-

tion from the raw data, without relying on domain-specific knowledge, or the

availability of ground truth annotations. They evaluate the use of principal

component analysis for extracting a compact representation of the structure

of the signals.

The dataset was obtained publicly from the DAPHNet dataset [53], which contained

data collected from eight PD patients that experienced regular FoG in daily life.

Data were recorded using three 3D accelerometers attached to the shank (above the

ankle), the thigh (above the knee) and the lower back of each subject. The subjects

completed 20-30 minutes of walking sessions, which comprised of the following tasks:

• Walking back and forth in a straight line, including several 180 degrees turns,

• Random walking with a series of initiated stops and 360 degrees turns, and

• Walking simulating activities of daily life, which included entering and leaving

rooms, walking to the kitchen etc.

The authors performed two sets of experiments, one for FoG detection and one for

FoG prediction using different feature extraction strategies. The top-ranked fea-

tures based in Mutual Information (MI) was AAE (Average Acceleration Energy),

eigenvalues of dominant directions, range, variance, RMS (Root Mean Square) and
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standard deviation. The results indicated that unsupervised feature learning out-

performed FI by up to 7.1% and the time-domain and statistical features by up

to 8.1%. Regarding FoG detection for FoG prediction, the patterns had different

characteristics for each patient. As such, no conclusive result was obtained. How-

ever, it was noted that pre-FoG data were discarded from the training set, and the

performance on FoG detection increased for all the feature extraction methods.

Mittra and Rustagi [54] carried out a study to identify PD patients by analysing

gait data of PD patients. The data was obtained from PhysioNet Gait Analysis

Database. The database consisted of data regarding 93 patients with idiopathic

PD and 73 healthy control objects. It consisted of Vertical Ground Reaction Force

(VGRF) of subjects as they walked for approximately 2 minutes. Every subject had

a total of 16 sensors, of which 8 were on the bottom of each foot, to calculate the

force in Newton as a function of time. A statistical approach was undertaken to

transform the data with techniques such as Minimum, Maximum, Mean, Median,

Standard Deviation, Skewness, and Kurtosis. These features, when calculated for

every one of the 19 features that existed in the original dataset, gave a total of 133

features. One tuple in the new dataset represented one file of the original dataset,

which consisted of 12,118 tuples. Each of these tuples thus provided a representative

distribution of the data contained in the file that it pertains to. The distribution

could hence show the characteristics of the 12,118 tuples in a single tuple. This data

compression technique was used to aid the previously substantial time required dur-

ing the modelling process. The newly transformed dataset consisted of 133 features

and 310 tuples. A total of 5 different classification algorithms, such as K-Nearest

Neighbors (k-NN), Logistic Regression, SVM (Linear Kernel, RBF Kernel, Poly

Kernel), Decision Trees, and Random Forests, were used in an attempt to achieve

an accuracy as high as possible. It was observed that k-NN achieved the highest

accuracy.
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Spatial-temporal gait features were utilised in [55] for the classification of PD.

Spatial-temporal gait characteristics of an individual were affected by ageing, and

physical differences between subjects, including height, body mass and gender, might

increase gait variability and limit the degree to which pathological trends might be

reliably discerned. The aim of this study was two-fold. The first was to use a

multiple regression normalisation strategy that accounted for several characteris-

tics to identify differences in spatial-temporal gait features between PD patients

and non-PD patients. The second aim was to use machine learning strategies to

classify PD after normalisation. The data was gathered from an existing database,

which included gait data of 23 PD patients and 26 non-PD patients. Gait data was

normalised using two approaches: dimensionless (DS) approach and multiple re-

gression (MR) approach. Five machine learning strategies were employed to classify

PD gait and they were kernel Fisher discriminant (KFD), Näıve Bayes, k-nn, SVM

and Random forest (RF). These machine learning strategies were applied using raw

spatial-temporal gait features, spatial-temporal gait features normalised using the

DS approach and spatial-temporal gait features normalised using the MR approach.

It was observed that SVM achieved maximum classification accuracy using on raw

data. However, RF yielded the maximum classification accuracy using normalised

DS and MR data.

According to [56], gait analysis involved estimation and evaluation of biomechan-

ical features associated with walking. Analysis of gait and posture was one of the

components of the clinical assessment of PD. In this study, a new set of features were

collected from 20 subjects (10 PD and 10 non-PD) using the accelerometer sensor.

The sensor provided data on several gait features such as average stride time, root

mean square (RMS) of body acceleration, maximum and minimum acceleration,

symmetry, stride-to-stride variability, variability of signal per stride and velocity.

These features were then analysed to determine the most influential features using
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maximum information gain minimum correlation (MIGMC). The next step included

developing a feature set in which features were maximally dissimilar to each other.

This step was done by pairwise Pearson correlation analysis. The threshold of 80%

was considered to determine highly correlated features. Among all pairwise correla-

tions, the one with the highest value and its associated features were chosen. Five

machine learning methods, SVM, RF, Näıve Bayes, AdaBoost and Bagging, were

selected to compare across different feature sets. Similarity network analysis was

performed to validate the optimal feature set. It was observed that standardisation

could improve all classifiers’ performance. In addition, the feature set obtained us-

ing MIGMC provided the highest classification performance. It was shown that the

results from Similarity Network analysis were consistent with the results from the

classification task, emphasising on the importance of choosing an optimal set of gait

features to help objective assessment and automatic diagnosis of PD.

In [57], the authors used a Hidden Markov Model (HMM) with Gaussian mixtures

to classify PD patients from healthy subjects. HMM was a state machine with

two layers consisting of state and observation layers in which a Markovian process

controlled the selection of the state in each time. The data was gathered from

the PhysioNet bank. The results showed that the HMM classifier performed better

than the results obtained from least squared support vector machines (LS-SVM).

The HMM method could effectively separate the gait data in terms of stride interval

obtained from healthy control and PD patients with an accuracy of 90.3%.

A study to detect freezing of gait in PD patients was carried out in [58] using

Logistic regression modelling. The data was gathered from the UCI machine learn-

ing repository. This data set was obtained by processing the signals obtained in

three dimensions by the acceleration sensor placed in the ankle. The motions were

sampled at 64 Hz. The signals from the sensor were sent to the computer for further

processing via Bluetooth. PD patients were asked to perform their daily activities.
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A two-stage method was proposed to detect the freezing of gait (FoG). First, the

acceleration signals were measured using the acceleration sensor placed in the ankle

of the patients. Second, the FFT (Fast Fourier Transform) algorithm was applied to

these signals. Then, the frequency spectrum coefficients were extracted. To compose

the feature set, five different parameters, including variance, maximum amplitude,

minimum amplitude, maximum energy, and minimum energy, were calculated and

then used as the feature set for each category. After composing the feature set,

the logistic regression classifier was used to classify the FoG and Non-FoG cases.

Logistic regression was a predictive analysis method. Logistic regression classifier

was used to explain the relationship between a dependent binary variable and one

or more nominal ranges or proportional arguments and to interpret the data. The

logistic regression classifier was trained and tested using 16 samples. 10-different

performance measures were used to evaluate the performance of the classifier,. A

comparative study with four different classifiers was provided. It was seen that the

proposed logistic regression model performed the best.

2.3 Classification of PD Using Striatal Binding Ratio (SBR)

Prashanth, et al. [59] performed a study on early PD classification using Sin-

gle Photon Emission Computed Tomography (SPECT) imaging. The data was

gathered from the PPMI database. They used the Striatal Binding Ratio (SBR)

values of the four striatal regions (left and right caudate, left and right putamen)

calculated from the SPECT images. The authors gathered a total of 674 SBR val-

ues (181 normal and 493 PD). They used Support Vector Machines (SVM) and

multivariate binomial logistic regression (MLR) to develop automatic classification

and prediction/prognostic models for early PD. SVMs performed hard classifica-

tion, whereas MLR performed soft classification enabling the development of pre-

diction/prognostic model for PD risk estimation. 10-fold cross-validation was per-
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formed to evaluate the classification accuracy. In their study, they found that the

accuracy of SVM with radial basis function provided the highest accuracy. Only

four features were utilized without the need for any feature selection techniques.

Hirschauer et al. [60] focused on the diagnosis of PD using Enhanced Probabilis-

tic Neural Network (EPNN). A comprehensive computer model was presented using

motor, non-motor and neuroimaging features from the PPMI dataset. The model

was tested for differentiating PD patients from those with scans without evidence

of dopaminergic deficit (SWEDD). The results were compared with four other com-

monly used algorithms: the probabilistic neural network (PNN), SVM, k-nearest

neighbor (k-NN) and classification tree (CT). Based on the results, EPNN had the

highest accuracy.

Prashanth et al. [61] worked on the detection of early PD through multimodal

features and machine learning. The authors used non-motor features of rapid-eye-

movement (REM) sleep behavior disorder (RBD) and olfactory loss, along with other

significant features such as cerebrospinal fluid (CSF) and dopaminergic imaging

markers from 183 healthy normal and 401 early PD subjects. These data were

gathered from PPMI and the classifiers used were Näıve Bayes, SVM, Boosted trees

and Random Forests. The dataset was divided in a way so that 70% was used for

training and the rest 30% was used for testing. Based on the results, SVM provided

the highest accuracy.

Oliviera et al. [11] conducted a study to assess the potential of a set of SBR

features extracted from SPECT images to detect and confirm dopaminergic degener-

ation, and thus assist in the clinical decision for the diagnoses of PD. Seven features

were extracted from each brain hemisphere and tested on 652 images gathered from

the PPMI database. The discriminative potential of the extracted features to de-

tect PD were evaluated both individually and in groups. Three different classifiers
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were used, and they were SVM, k-NN and logistic regression. Leave-one-out cross-

validation (LOOCV) was used to assess classification accuracy. It was observed that

SVM outperformed the other classifiers.

In [62], the objective was to develop a fully-automated computational solution

for computer-aided diagnosis in PD using SPECT. The images were gathered from

PPMI and pre-processed using automated template-based registration followed by

computation of the binding potential at a voxel level. Voxels represented point val-

ues on a regular grid in the three-dimensional space. Then, the binding potential

images was used for classification, based on the voxel-as-feature approach and using

the SVM classifier, i.e., each voxel in a volume of interest (VOI) resulted in a fea-

ture for the SVM classifier. Two different reference VOIs, cortex reference VOI and

occipital reference VOI, were used to compute the binding potential. Cortex refer-

ence VOI also included the striatal VOIs, which depicted the striatal region. Three

approaches were tested for building the feature vectors. In approach one, only the

voxels of the striatal VOI with lower mean binding potential were used to assemble

the feature vector. In approach two, all voxels of striatal VOIs were used. For these

two approaches, when necessary, the mean binding potential of the images were

mirrored, relatively to the sagittal plane, to guarantee that the striatal VOI with

lower mean binding potential was always on the same side. In approach three, all

voxels of striatal VOIs were used without mirroring. Leave-one-out cross-validation

(LOOCV) was used to evaluate classification accuracy. It was noted that the SVM

classification, with the third approach, achieved the highest accuracy.

A comprehensive analysis of SPECT images was carried out in [63], using voxel-

based logistic lasso model. In this study, the authors believed that region-based

analysis had its limitations, and as such, other areas of the brain were included for

a better comprehensive analysis. Therefore, regions such as thalamus and globus

pallidus were included in their analysis. Their approach included all voxels from
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these regions in the data and allowed an algorithm to decide which voxels are more

informative. Logistic lasso model was used as the machine learning method for

classification. The logistic lasso model used was voxel-based. It worked by using a

linear combination of a sparse set of voxels to calculate the probabilities of belonging

to the classes. Voxels in the sparse set were chosen purely based on the training data.

Those voxels useful for classification were likely to be a subset of all voxels that were

analyzed and possibly affected by PD. SPECT scans from 658 (210 controls and 448

PD) subjects were collected from the PPMI database. The SBR was calculated for

all voxels, which were represented as features. The logistic lasso model was applied

to the SPECT images in four different ways. First, all of the images were used as

training images, with 10-fold cross-validation to determine the training accuracy.

Next, the images were divided into three equal-sized groups, each group containing

the same fraction of control and PD images as the original set. Then, holding back

one group at a time as a test set, the remaining two groups were merged to form a

training set. This was called the split-data case. Finally, all images were summed

up along the z-axis to create 2-D images and were referred as 2-D split-data case.

It was noted that 3-D voxel-wise logistic analysis provided accurate classification.

The analysis showed that sub-regional voxels in all regions were informative for

classification.

In [64], an automated classification of PD using SPECT scan images was pre-

sented. The authors used the Single Value Decomposition (SVD) technique to re-

duce the training set of image data into vectors in feature space, called D space.

The automatic classification technique used the distribution of the training data in

D space to define classification boundaries. Other patients could be mapped into

D space, and their classification could be automatically given. The approach was

tested using 116 patients for whom the diagnosis of either Parkinsonian syndrome

or non-Parkinsonian syndrome was confirmed from post imaging follow-up. Näıve



33

Bayes (NB) classifier was used to perform the classification. A leave-one-out cross-

validation was performed to train and test the approach. It was observed that NB

combined with SVD achieved the accuracy of 94.86%

In [65], SVM was utilised to develop a computer-aided diagnosis model to clas-

sify PD patients through SPECT imaging. The dataset was gathered from a private

health institute with a total of 80 subjects (41 PD and 39 non-PD). The authors

utilised Principal Component Analysis (PCA) and Independent Component Analy-

sis (ICA) to extract features. PCA was a statistical approach which aimed to reduce

the dimensions of observation space. The reduction was obtained by creating new

linear combinations, called principal components, of variables characterising the ob-

jects. ICA was another statistical approach that represented a multidimensional

random vector as a linear combination of non-gaussian random variables (called

independent components) to be as independent as possible. These two techniques

were used to extract features, and SVM was utilised to classify the images. It was

noted that the accuracy of the approach was 95%.

2.4 Classification of PD Using Imaging Modalities

Electroencephalogram (EEG) signals were utilised in [66], to classify PD patients

using CNNs. EEG signals could easily identify the functions of the cortical and

subcortical parts of the brain. EEG signals were complex and non-linear in nature,

and hence, many linear feature extraction approaches were unable to accurately

characterise these signals. When EEG signal displays complexity, aggravation of

the PD was observed. This was due to the presence of non-linear components in

the EEG signals. The data was provided by a hospital which included EEG signals

of 20 PD patients. The authors implemented a 13-layer CNN to learn and classify

two classes (PD and normal). A 10-fold cross-validation was performed to evaluate

the network. Performance metrics such as accuracy, sensitivity and specificity were
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calculated to analyse the network’s efficiency.

Martinez et al. [67] utilised a deep-learning network to classify PD patients

from healthy controls subjects using SPECT images. The data was collected from

the PPMI database. A total 301 subjects’ SPECT images were collected. In their

training process, a bounding box was drawn around the regions of interest (ROI),

which was gathered by calculating the intensity threshold. Once this was applied, the

rest of the image was obviated. A 10-fold cross-validation was used for evaluation,

from which metrics like accuracy, sensitivity and specificity were extracted.

Choi et al. [68] utilised deep neural network, called PD Net, for the classification

of PD from healthy controls. In their study, a deep-learning based SPECT inter-

pretation system was used to refine diagnosis of PD. The system was trained on

SPECT images obtained from PPMI and tested on another dataset obtained from

Seoul National University Hospital (SNUH). PD Net showed a high accuracy that

was comparable with the experts’ evaluation referring quantification results. The

system achieved an accuracy of 96%.

2.5 Conclusion

The purpose of this review was to view previous studies in the classification of PD

using various attributes. It is clear from the research reviewed that PD classification

is ongoing research and a serious medical issue. Along with this, it is also clear that

machine learning technology has played a significant role in contributing to the field

of PD classification. This field of inquiry is very important because at its center is a

concern, i.e., helping PD patients in the early diagnosis of PD. In doing so, we can

see the importance of this research growing as it will help achieve a better quality

of life for PD patients.
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Chapter 3

Classification of Parkinson’s Disease using

Deep-Learning

Parkinson’s disease (PD) is a severe chronic, progressive and neuro-degenerative ill-

ness that affects people worldwide. PD results in a substantial reduction of dopamine

content in the striatum along with corresponding losses of dopamine transporters

(DATs). DAT loss in the presynaptic terminals is a key feature of PD identifi-

cation. The progressive degeneration of dopaminergic neurons can be assessed by

using radioligands in imaging-based approaches [11]. In this chapter, we develop

a deep-learning model to classify PD patients from healthy controls using Single

Photon Emission Computed Tomography (SPECT). Early and accurate diagnosis

of PD is essential for early management and proper prognosis and for initiating

neuro-protective therapies.

3.1 Introduction

Parkinson’s disease (PD) is characterised by the malfunction and death of vital

neurons located in the brain. These vital neurons produce dopamine, a chemical that

sends messages to the part of the brain that controls movement and coordination

[69, 59, 70, 71]. The major symptoms of PD are tremor, rigidity, postural instability

and slow movement [2]. As PD progresses, the amount of dopamine produced in the

brain further decreases.

Recent neuroimaging techniques, such as dopaminergic imaging using SPECT

with 123I-Ioflupane (DaTSCAN), have demonstrated the detection of even early
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stages of the disease [11, 12, 13]. Dopaminergic imaging discriminates patients with

PD by identifying presynaptic dopaminergic deficits in the caudate and putamen

with high sensitivity and specificity [14]. Normal SPECT scans are characterised by

intense and symmetric DAT binding in the caudate nucleus and putamen on both

hemispheres that appear as two “comma-shaped” regions (see Figure 3.1a). Any

asymmetry or distortion of this shape implies an abnormal finding (see Figure 3.1b).

(a)

(b)

Figure 3.1 : SPECT scans showing examples of (a) Healthy control and (b) PD

patient

The routine assessment of SPECT images is only done through visual evaluation

by experienced nuclear medicine physicians. In most cases, a simple visual inspection

is sufficient to confirm that there is a reduction of dopamine in the basal ganglia.
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However, in many cases, the diagnosis may not be obvious, especially in early PD

patients [62]. In addition, significant variations exist between individual physicians

because of differences in experience and training. By adopting machine learning

techniques, these problems in the diagnosis of PD patients can be easily reduced.

Indeed, previous studies have demonstrated that diagnostic tools based on machine

learning and deep-learning techniques could assist clinicians in the early diagnosis,

treatment planning and monitoring of PD progression [59, 72].

When applying machine learning to data analysis, meaningful feature extraction

or feature representation lies at the heart of its success in accomplishing the target

tasks. Conventionally, meaningful or task-related features were mostly designed by

human experts based on their knowledge about the target domains. Therefore, it is

challenging for non-experts to exploit machine learning techniques for their studies.

Deep-learning [39] has reduced such obstacles by absorbing the feature engineer-

ing step into a learning phase. That is, instead of extracting features in hand de-

signed manner, deep-learning requires only a set of data with minor pre-processing,

if necessary, and then discovers the informative representations by self-learning

[40, 41].

In medical imaging, Convolutional Neural Networks (CNNs) have proven to be

powerful tools for a broad range of computer vision tasks [38]. For example, Elec-

troencephalogram (EEG) signals were utilised in [66], to classify PD patients using

CNNs. EEG signals could easily identify the functions of the cortical and subcor-

tical parts of the brain. EEG signals were complex and non-linear in nature, and

hence, many linear feature extraction approaches were unable to accurately charac-

terise these signals. When EEG signal displays complexity, aggravation of the PD

was observed. This was due to the presence of non-linear components in the EEG

signals. The data was provided by a hospital which included EEG signals of 20 PD
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patients. The authors implemented a 13-layer CNN to learn and classify two classes

(PD and normal). A 10-fold cross-validation was performed to evaluate the network.

Performance metrics such as accuracy, sensitivity and specificity were calculated to

analyse the network’s efficiency.

However, other published works have utilised SPECT images for classification

of PD with different approaches. In [64], an automated classification of PD using

SPECT scan images was presented. The authors used the Single Value Decomposi-

tion (SVD) technique to reduce the training set of image data into vectors in feature

space (D space). The automatic classification technique used the distribution of the

training data in D space to define classification boundaries. Other patients could

be mapped into D space, and their classification could be automatically given. The

approach was tested using 116 patients for whom the diagnosis of either Parkin-

sonian syndrome or non-Parkinsonian syndrome was confirmed from post imaging

follow-up. Näıve Bayes (NB) classifier was used to perform the classification. A

leave-one-out cross-validation was performed to train and test the approach. It was

observed that NB combined with SVD achieved the accuracy of 94.86%

In [65], SVM was utilised to develop a computer-aided diagnosis model to clas-

sify PD patients through SPECT imaging. The dataset was gathered from a private

health institute with a total of 80 subjects (41 PD and 39 non-PD). The authors

utilised Principal Component Analysis (PCA) and Independent Component Analy-

sis (ICA) to extract features. PCA was a statistical approach which aimed to reduce

the dimensions of observation space. The reduction was obtained by creating new

linear combinations, called principal components, of variables characterising the ob-

jects. ICA was another statistical approach that represented a multidimensional

random vector as a linear combination of non-gaussian random variables (called

independent components) to be as independent as possible. These two techniques

were used to extract features, and SVM was utilised to classify the images. It was
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noted that the accuracy of the approach was 95%.

The main objective of this chapter is to classify PD patients from healthy controls

using SPECT images by adopting CNNs. This research was carried out to determine

if a smaller and more compact neural network could outperform the state-of-the-art

studies as mentioned in [67, 68]. To achieve our objective, we designed our proposed

approach with minimal architectural complexity in order to address the practicality

of utilising our network in a clinical setting. We compared our experimental results

with [67, 68]. From our experimental results, our network outperforms the state-of-

the-art works by large margins in all evaluation metics.

3.2 Proposed Network Approach

The proposed network consists of three convolutional layers, each with 128 nodes

and two dense layers. This architecture is constructed because of the high accuracy

of the images during training (Table 3.1). SPECT images for this research are

gathered from the PPMI database.

The images are collected from PPMI. PPMI is a longitudinal and multinational

study to assess the progression of clinical features, imaging and biological markers

in PD patients and the control group. It involves subjects from different countries,

adding diversity to the database, thus making it more robust. PPMI is sponsored

by the Michael J. Fox Foundation [43]. All of the PD subjects are at different stages

of the disease. PD subjects have confirmations, from the imaging core laboratory,

that the screening of dopamine transporter SPECT scan is consistent with dopamine

transporter deficit.

SPECT scans last for 30 to 45 minutes. The raw data is transferred to the

imaging core laboratory and then iteratively reconstructed, using a hybrid ordered

subsets’ expectation maximization (OSEM) algorithm in a HERMES workstation
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(Hermes Medical Solutions, Sweden). The reconstructed images are then transferred

to PMOD software (PMOD Technologies, Zurich, Switzerland) for subsequent pro-

cessing and attenuation correction. The final pre-processed images were saved in

DICOM format.

The PPMI database consists a total of 1,359 SPECT images of PD patients

that are categorized into different stages of PD. For this research study, they are all

combined into one group, i.e. PD patients. The healthy control group consisits of 341

images only. In order to balance the dataset, data augmentation is perfromed on the

healthy controls only (see Section 3.3.1). After data augmentation, the total number

of SPECT images for the healthy control group increased to 1,364. After gathering

the images, the following steps are proposed for the process of classification.

3.2.1 Network Structure

Our network is a modified version of AlexNet [73]. AlexNet is one of the first deep

neural networks that has been utilized for image classification tasks. The network

consists of five convolutional layers and three dense layers with different kernel sizes.

The first layer has a kernel size of 11 × 11. The second layer has a kernel size of

5 × 5 and layers three to five each has a kernel size of 3 × 3. However, one of the

disadvantages of this approach is the duplication of data. This occurs because of

the overlapping blocks of pixels, which leads to an increase of memory consumption

for processing the image.

In contrast, our network has only three convolutional layers and two dense layers,

each with a kernel size of 3× 3. This is because smaller-sized kernels of fewer layers

lead to lower costs than larger-sized kernels with more layers. In addition, more lay-

ers and multiple larger-sized kernels lead to more in-depth network architecture and

more complex feature learning which is time-consuming and expensive. Therefore,

by reducing the kernel size, our network gains the advantage of learning the fea-
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tures of the image faster. Furthermore, as shown in Figure 3.4, our network is also

more robust and performs better than AlexNet with excellent scores in accuracy,

sensitivity and specificity.

In AlexNet, Local Response Normalization (LRN) is added to the first two con-

volutional layers and then the activation layer, Rectified Linear Unit (ReLU) [41],

is added to the next three layers. The ReLU function enables faster training of

CNN, since the calculation of its derivative has a lower computational cost, without

losing any of its generalization ability [73]. The function itself is a non-saturating

activation function and is defined by

f(x) = x+ = max(0, x), (3.1)

where x is the input to a neuron.

In AlexNet, such processes are used to amplify the features in the image, such

as enhancing the brightness of the image, for better classification of the image.

However, in our network, overall image normalization is used because LRN leads to

increased memory consumption and computation time. The normalization process

is carried out during the pre-processing stage, and the network is trained on the

image that is generated. This process allows more distinguishable features to be

visible during training. Our image normalization process is described below. In

addition, our network only utilizes the ReLU activation function in all three layers.

Our image normalisation process is described in Section 3.2.2. Figures 3.2a and 3.2b

illustrate the architectures of AlexNet and our network.

Our network model is optimized using the Adam optimizer [74] with the default

learning rate of 10−3. The learning rate is decayed exponentially with a decay of

10−8. These standard parameters of Adam have been proven for neural networks

to be computationally efficient, of little memory usage and well suited for problems
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(a)

(b)

Figure 3.2 : Network differences of (a) AlexNet and (b) Our network

with big data. Hence these parameters are utilized in our network. The input

images utilized to train our network are resized to 224 × 224. Finally, the dense

layers are activated using the sigmoid function. Since this research study in this

paper is focused on the classification between PD patients and healthy controls, i.e.,

a binary classification problem, binary cross-entropy (BCE) [75] is utilized as the

loss function. Binary cross-entropy is defined by:

BCE = −
I∑

i=1

J∑
j=1

ti,jlog(si,j), (3.2)

where I = 2 represents the number of classes, J is the number of the training images,

ti,j is the binary indicator of value of either 1 or 0 depending on whether or not the

class label i is the correct label of sample j, and si,j is the predicted probability that

sample j belongs to class i.

In order to tackle the issue of overfitting, a technique called dropout [39] is used.

Dropout works by “turning off” some neurons with a probability “1− p”, and using
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only the reduced network. After this step, the “off” neurons are turned on again

with their last weight matrix. This procedure is repeated in every training iteration.

At testing time, all neurons are active, so their outputs are weighted by a factor of

“p”, as the approximation of results using all possible 2n networks. In this work, we

use a dropout probability of 0.1 (i.e., p = 0.9) for every convolutional layer and 0.5

for the final dense layers.

Finally, our layer structure also differs considerably from AlexNet. In AlexNet,

there are different numbers of nodes in different layers. For example, each of layers

one and two has 96 nodes, each of layers three and four has 256 nodes, each of layers

five and six has 384 nodes, and each of the last two layers has 256 nodes. In our

architecture, we have 128 nodes in each of our layers. To understand the impact

of different network architectures on accuracy and provide a reason for why our

network has three convolutional layers and two dense layers, and why we have 128

nodes in each layer, we test different combinations of layers in a network architecture.

Table 3.1 compares the results of training accuracies achieved with several different

combinations, where CL stands for convolutional layer and DL stands for the dense

layer. Hence, as seen in Table 3.1, it can be concluded that the architecture with 128

nodes, three convolutional layers and two dense layers performs the best because it

provides the highest training accuracy during training.

3.2.2 Image Normalisation

In image processing, normalisation is a process that changes the range of pixel

values. Neural networks process input images using small weight values, and images

with large pixel values can disrupt or slow down the training process. As such, it

is a good practice to normalise the pixel values so that each pixel value is within

the range of the difference from the mean value of the same pixel in all images in

a dataset. In this process, the mean values of the pixels on images of the whole
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Table 3.1 : Training accuracy results of different architectures

# of Nodes

Number of CLs: 2 Number of CLs: 3 Number of CLs: 4

Number of

DLs: 1

Number of

DLs: 2

Number of

DLs: 1

Number of

DLs: 2

Number of

DLs: 1

Number of

DLs: 2

32 97.65% 98.17% 98.03% 97.98% 97.69% 97.77%

64 98.11% 96.87% 98.10% 97.64% 97.93% 97.53%

128 97.97% 97.61% 98.05% 99.47% 97.35% 97.87%

dataset are generated first. Then, each image is normalized by subtracting the

value of a pixel from the mean of the corresponding pixel values of all images in the

dataset. This process reduces the values of each image, and makes the average of

pixel intensity values of the new images to zero, centering the images to get stable

image gradients. The normalized image is achieved by the following equation:

Ni = Oi − (
1

n
∗

n∑
j=1

Oj), (3.3)

where n is the total number of images in a dataset, Oi represents the i-th image in

the dataset and Ni is the corresponding normalized image, for i = 1, 2, · · · , n.

The main reason for this process is because, while training the network, multi-

plication of weights and addition to biases are performed on the initial inputs, in

order to cause activations that are then back-propagated to the gradients to train

the network model. We want the features of the image to have a similar range so

that the gradients do not spray out. Thereby, we achieve one global learning rate

multiplier. Moreover, the image normalization can improve network convergence

speed without having the adverse effects of pooling and down-sampling, and also

reduce training time [76]. Figures 3.3a and 3.3b show the normalised images of a

PD and a healthy control, respectively.
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(a)

(b)

Figure 3.3 : SPECT scans showing examples of (a) Normalized PD patient and (b)

Normalized healthy control

3.3 Experimental Setup

The main aim of the experiment is to classify PD patients from healthy controls

using SPECT images and CNNs. Because this research involves binary classification,

two classes were identified, i.e., class 0 for healthy control group and class 1 for PD

patients. The experiments were performed using Keras model on top of TensorFlow

[77]. The Google Brain team created this open-source software solution for machine

learning applications on textual data sets. The framework supported running the

training operation of the network on graphical processing units (GPUs) or tradi-

tional microprocessor-based computer processing units (CPUs). This platform also
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supported several machine learning algorithms with the same optimizer. Keras was

an open-source neural network library written in Python. It was designed to enable

fast experimentation with deep neural networks and focused on being user-friendly,

modular, and extensible [78].

3.3.1 Data Augmentation

At the time of this experiment, the number of SPECT images for the healthy

control group were only 341 images. With very few images for a particular class,

the primary issue was the skewness of the data, which caused an imbalance in the

dataset. Therefore, the dataset was not ideal as it would lead to inaccurate results,

leading to wrong interpretations.

In order to address this issue, the process of data augmentation was applied to

the healthy control group. Data augmentation was a strategy that enables practi-

tioners to significantly increase the diversity of data available for training models,

without actually collecting new data. Several data augmentation techniques such as

cropping, padding and horizontal flipping were commonly used to train large neu-

ral networks. However, most approaches, which have been used in training neural

networks, only used basic types of augmentation [79].

For augmenting our image data, the horizontal flipping technique was utilised.

Horizontal filling augmentation was the standard and widely used technique to im-

plement and has been proven useful on other datasets [80]. We have also utilised

colour augmentation, which was defined as altering the color properties of the image.

For colour augmentation, we have used brightness adjustment along with hue and

saturation adjustment. After data augmentation, a total of 1,364 SPECT images

for the healthy control group were gathered.
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3.3.2 Training and Testing the Network

A total of 2,723 SPECT images were collected to train and test our network.

The healthy control group consisted of 1,364 images (341 original images and 1023

augmented images), and PD patients consisted of 1,359 original images. As data

augmentation was performed on the healthy control group, all augmented images

were utilized for training the network only. 10-fold cross-validation was performed

to assess the performance of the model, and it partitioned the entire dataset into 10

subsets. In each fold, the testing subset was selected from the 10 subsets and the

remaining nine subsets were used for training. This process was repeated 10 times.

In performing the 10-fold cross-validation, the entire dataset was randomly split

by two methods. In Method 1, all the images from the PD and healthy controls

group (including augmented images) were combined into one dataset. Then, the

entire dataset was split randomly into 10 parts of equal size. For Method 2, the

dataset for three groups of images, i.e., PD, healthy controls with only augmented

images and healthy controls with only original and non-augmented images were first

randomly split into 10 parts. Then, the corresponding parts from the three groups

were combined together to form one equal-sized subset. This method provided 10

equal-sized subsets which was utilized for 10-fold cross-validation.

Note that, in the 10-fold cross-validation process, all augmented data that were

originally placed in the testing subsets. However,we show not only the results with

the augmented data but also the results without the augmented data.

3.3.3 Evaluation Metrics

The performance measures of this model were evaluated using 10-fold cross-

validation. Similar to benchmark studies, we used accuracy, sensitivity and speci-
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ficity to measure and compare the classification performance.

Accuracy =
TP + TN

TP + FP + TN + FN
, (3.4)

Sensitivity =
TP

TP + FN
, (3.5)

Specificity =
TN

TN + FP
, (3.6)

where TP is the number of true positives, TN is the number of true negatives, FP

is the number of false positives and FN is the number of false negatives. Note that,

in this paper, each PD sample is regarded as a positive sample and each sample of

healthy control (HC) is regarded as negative sample.

3.4 Results

The images were passed through the network model and trained sufficiently. As

10-fold cross-validation was performed with two methods, the results of the two

methods are presented below. It was observed that, our model quickly converged

and achieved a training accuracy of 95.83% with method 1. By performing the

10-fold cross-validation with method 2, our network achieved an excellent training

accuracy of 99.47%. Tables 3.2 and 3.3 provides detailed information on the results.

Accuracy: After performing the 10-fold cross-validation by utilizing method

1, it was observed that our proposed network, with augmented images, showed an

accuracy result of 95.34%, and without augmented images, achieved an accuracy of

97.47%, respectively. By applying method 2, it was observed that our network, with

augmented images, achieved an accuracy result of 99.34%, and without augmented

images, achieved an accuracy result of 99.18%, respectively.

These results are by far the highest accuracy results reported in this area of re-

search. From Table 3.3, it can be observed that out of 1,359 PD patients, 1,346 PD

patients were correctly classified as PD patient. Similarly, out of 1,364 healthy con-

trols, 1,359 subjects were correctly classified in the healthy control group. However,
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out of the original 341 healthy controls, only 1 was misclassified as a PD subject.

These results are noteworthy because it proves that our network model can classify

PD patients from control group with the highest accuracy.

Sensitivity: The sensitivity results achieved by our proposed network are the

highest in comparison to those in [67] and [68]. It can be noted that, from Table 3.3,

out of 1,359 PD patients, only 13 PD patients were misclassified. All of the other true

positives were accurately and correctly classified as PD patients. From Table 3.4, it

can be observed that, our network achieved an excellent overall sensitivity result of

98.75% for method 1, irrespective of whether augmented images or non-augmented

images were used. Similarly, our network achieved an overall sensitivity of 99.04%

Table 3.2 : Detailed performance results of the 10-fold using Method 1

Results of PD group Results of healthy control

(HC) with augmented

images

Results of healthy control

(HC) without augmented

images

Fold PD Classified

as PD

Misclassified

as HC

HC Classified

as HC

Misclassified

as PD

HC Classified

as HC

Mislassified

as PD

Testing

time (sec)

1 141 138 3 132 124 8 33 31 2 10.23

2 148 146 2 124 112 12 31 28 3 10.37

3 121 120 1 152 136 16 38 34 4 10.25

4 136 135 1 136 134 2 34 34 0 9.86

5 135 135 0 136 124 12 34 31 3 9.45

6 117 112 5 156 147 9 39 37 2 11.17

7 152 152 0 120 119 1 30 30 0 10.35

8 112 110 2 160 152 8 40 38 2 10.12

9 125 125 0 148 128 20 37 32 5 10.54

10 172 169 3 100 78 22 25 20 5 10.17

1359 1342 17 1364 1254 110 341 315 26 102.51
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Table 3.3 : Detailed performance results of 10-fold with Method 2

Results of PD group Results of healthy control

(HC) with augmented

images

Results of healthy control

(HC) without augmented

images

Fold PD Classified

as PD

Misclassified

as HC

HC Classified

as HC

Misclassified

as PD

HC Classified

as HC

Misclassified

as PD

Testing

time (sec)

1 136 135 1 136 136 0 34 34 0 10.66

2 136 134 2 137 137 0 34 34 0 10.25

3 136 136 0 136 134 2 34 34 0 9.53

4 136 136 0 136 136 0 34 34 0 10.69

5 136 134 2 137 136 1 34 34 0 9.76

6 136 135 1 136 136 0 34 34 0 9.65

7 136 132 4 136 136 0 34 34 0 9.65

8 135 133 2 137 137 0 35 35 0 10.35

9 136 136 0 136 135 1 34 33 1 10.22

10 136 135 1 137 136 1 34 34 0 10.10

1359 1346 13 1364 1359 5 341 340 1 100.86

by applying method 2. These results indicated our network’s reliability in correctly

diagnosing PD patients when compared with the benchmark studies.

Specificity: Our network also achieved the highest specificity result with both

augmented and original images. From Table 3.4, it can be seen that with augmented

images, the overall specificity score with in method 1 was 91.94%, and with method 2,

the specificity score was 99.63%. Similarly, without augmented images, our network

achieved an overall score of 92.38% with method 1 and 99.71% with method 2. These

results demonstrated that our network can be relied upon to differentiate healthy
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Table 3.4 : Performance metrics of the network

Performance results with Method 1 Performance results with Method 2

With augmented images Without augmented images With augmented images Without augmented images

Fold Tr.Accuracy Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Tr.Accuracy Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

1 96.23% 95.97% 97.87% 93.94% 97.13% 97.87% 93.94% 99.71% 99.63% 99.26% 100% 99.41% 99.26% 100%

2 95.97% 94.85% 98.65% 90.32% 97.21% 98.65% 90.32% 99.45% 99.27% 98.53% 100% 98.82% 98.53% 100%

3 94.22% 93.77% 99.17% 89.47% 96.86% 99.17% 89.47% 99.53% 99.26% 100% 98.53% 100% 100% 100%

4 99.16% 98.90% 99.26% 98.53% 99.41% 99.26% 100% 99.79% 100% 100% 100% 100% 100% 100%

5 95.98% 95.57% 100% 91.18% 98.22% 100% 91.18% 98.79% 98.90% 98.53% 99.27% 98.82% 98.53% 100%

6 95.25% 94.87% 95.73% 94.23% 95.51% 95.73% 94.87% 99.72% 99.63% 99.26% 100% 99.41% 99.26% 100%

7 99.07% 99.63% 100% 99.17% 100% 100% 100% 98.55% 98.53% 97.06% 100% 97.65% 97.06% 100%

8 96.91% 96.32% 98.21% 95.00% 97.37% 98.21% 95.00% 99.45% 99.26% 98.52% 100% 98.82% 98.52% 100%

9 93.36% 92.67% 100% 86.49% 96.91% 100% 86.49% 99.77% 99.63% 100% 99.26% 99.41% 100% 97.06%

10 92.13% 90.81% 98.26% 78.00% 95.94% 98.26% 80.00% 99.76% 99.27% 99.26% 99.27% 99.41% 99.26% 100%

95.83% 95.34% 98.75% 91.94% 97.47% 98.75% 92.38% 99.47% 99.34% 99.04% 99.63% 99.18% 99.04% 99.71%

controls from PD patients when compared with the benchmark studies. Table 3.4

presents the results of all performance metrics in each fold using augmented and

original images in both methods.

From the above experiments, it can be concluded that method 2 performs better

in all cases because the proportions of training and testing data from all three

groups (i.e., PD, HC with only augmented data and HC without augmented data)

were more evenly distributed into the 10 parts for the 10-fold validation process.

3.5 Discussion and Conclusion

In medical imaging analysis, CNNs have proven to be powerful tools for a broad

range of computer vision tasks [38]. Image classification is one of the first areas

in which deep-learning techniques make significant contributions to medical image

analysis. In medical image classification, multiple images are considered as inputs,
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with a single diagnostic result as output. Most interpretations of medical images

are performed by physicians. However, image interpretation and pattern recognition

by humans have their limitations because of human factors such as subjectivity,

significant variations across interpreters and fatigue.

Many diagnostic tasks require an initial search process to detect abnormalities or

particular patterns, and to quantify measurements and changes over time. Comput-

erized tools, specifically image analysis and machine learning, are the key enablers to

improve diagnosis, by facilitating identification of the findings that require treatment

to support the expert’s workflow. Among these tools, deep-learning has quickly been

proved to be the state-of-the-art foundation, leading to improved accuracy. There-

fore, we have adopted deep-learning and SPECT imaging in tackling the challenging

task of diagnosing early PD patients from healthy control patients.

In this chapter, we have adopted CNNs and developed a deep-learning based

network to classify PD patients from the healthy controls, using SPECT images.

Our network has performed exceptionally well with excellent results in accuracy,

sensitivity and specificity. The importance of this study lies in the fact that, with

such results, the challenge of diagnosing PD patients in their early stages can be

diminished. Therefore, this network can be of aid to clinicians in diagnosing PD

patients effectively.

We first compare the detection accuracies of using AlexNet and the proposed

network without using the augmented data in testing. It is seen that, with AlexNet,

the accuracy is only 63.68% in compariosn to our network’s 99.18%. The sensistivity

and specificity results achieved by AlexNet are also low in comparison with our

network. Figure 3.4 illustrates the performance difference between both networks.

In regards to computational efficiency, it can be noted that our network, when

compared to AlexNet, perform much better with faster training and testing times.
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Figure 3.4 : Performance comparison of our network with AlexNet

The detailed performance information for both networks are shown in Table 3.5.

We then compare our approach with the benchmark studies of [67] and [68].

Firstly, in terms of network architecture, the network architecture mentioned in [67]

uses two convolutional layers and one dense layer that is activated by a softmax

function. However, the kernel size of all convolutional layers in their network is

5×5. For our proposed network, three convolutional layers and two dense layers are

utilised, and a sigmoid function activates our dense layers. We utilised the sigmoid

function because sigmoind function is better suited for a binary classification [81].

The kernel size of our convolutional layers is 3×3. Secondly, regarding pre-processing

the images, in [67], the images are cropped to focus only on the regions of interest

(the caudate and the putamen regions) in the images. Then, the network is trained

on those cropped images. However, in our approach, entire images are taken into

consideration, and the network is trained accordingly. This allows our network to be

more robust and efficient in classifying PD patients from healthy controls because
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Table 3.5 : Computational cost comparison with AlexNet and our network

AlexNet Our network (Method 1) Our network (Method 2)

Fold Training time(min) Testing time(sec) Training time(min) Testing time(sec) Training time(min) Testing time(sec)

1 23.67 12.54 20.89 10.23 20.18 10.66

2 23.48 11.68 19.86 10.37 20.45 10.25

3 22.97 10.79 20.39 10.25 19.64 9.53

4 23.99 11.43 20.67 9.86 19.55 10.69

5 22.59 10.17 19.35 9.45 20.21 9.76

6 23.75 11.43 19.12 11.17 19.32 9.65

7 22.89 12.65 19.96 10.35 20.35 9.65

8 23.38 11.81 20.44 10.12 20.16 10.35

9 23.67 10.27 20.38 10.54 19.65 10.22

10 22.19 11.53 20.19 10.17 20.49 10.10

232.58 114.3 201.25 102.51 200 100.86

classification is performed based on the whole SPECT image of the brain. Finally,

the performance metrics, in comparison to [67], indicate that our network performs

better in terms of accuracy, sensitivity and specificity.

In comparison with [68], their network, PD Net, was developed with three con-

volutional layers with the kernel size of the first layer being 7× 7, followed by 5× 5

for the second layer, and 3 × 3 for the last layer. However, our network is de-

signed with three convolutional layers with a kernel size of 3× 3. This architecture

is utilised because of the high accuracy achieved during training the network (Ta-

ble 3.1). In terms of performance evaluation, PD Net achieved an accuracy of 96%

and sensitivity of 94.2%. Our network outperforms [68] with an accuracy of 99.18%

and sensitivity of 99.04%. Figure 3.5 shows the comparison results with the two

networks.

Another significant advantage is the minimal complexity of the network, with
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Figure 3.5 : Network performance comparison with benchmark studies

its associated high processing speed. Majority of deep-learning networks are very

complex and challenging to implement on a large scale. However, the proposed

network in this paper, with only three convolutional layers and a kernel size of 3×3,

results in a remarkably reliable and accurate result with an accuracy of 99.18%

(Figure 3.5). This is the highest accuracy achieved so far in this area of research.

In addition, as shown in Table 3.5, the CNN model takes only 100.86 seconds to

accurately classify the entire dataset of 2,723 images, indicating that our network

classifies each testing image at an extremely high speed of 0.037 seconds per image.

We cannot compare the time with the two state-of-the-art approaches because they

were performed on different datasets and they did not share their codes.

Sensitivity and Specificity also show excellent results of 99.04% and 99.71% (Fig-

ure 3.5), respectively. Because complicated image feature selection is not required in

the classification of SPECT images, this network shows potential in its practicality

in a clinical setting. Due to its low network complexity, implementing this network is
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feasible on a large scale, as it can be run on any commercially available off-the-shelf

machinery. This is important because, for physicians, time is crucial for diagnosis

and treatment of PD. They have to be quick and precise in their diagnosis so that

they can plan a treatment regimmen for the PD patient. Implementing a time-

consuming network for such diagnosis is disadvantageous because it would cause

delays in diagnosis or treatment, resulting in poor management of PD symptoms.

Finally, the sample size used for this network is the highest with a total number

of 2,723 SPECT images (1,359 images for PD patients and 1,364 for healthy control).

With such a large sample size, our network can learn as many features as possible,

enabling itself to be more robust and efficient. This, in turn, facilitates the model

to distinguish PD patients from the healthy controls accurately.

SPECT scans are efficient tools in diagnosing early PD as they illustrate the

dopaminergic deficits in the brain. Experienced nuclear physicians usually evaluate

a SPECT scan. However, significant variations exist between individual physicians

because of human factors such as lack of practical experience and training, which

leads to inconsistent diagnosis among physicians resulting in misdiagnosis in early

PD. Our approach eliminates the human factor and learns the features from ROIs

in the SPECT images that are necessary for classification. Our experimental results

show that, in comparison to benchmark studies, our network’s performance is much

better with the highest accuracy reported. Our network is also fast because of

the minimal architectural complexity allowing for fast and accurate classification.

With these results, it can be noted that our network model has a great potential

in automatic PD classification, and could improve the diagnosis of PD by being a

great asset clinically, to assist clinicians making a precise diagnosis of patients with

PD, especially during the pre-motor stage.

However, major limitations have been identified in our study, and they are the
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concerns of image resolution of a SPECT scan and the availability of using such

technology. SPECT imaging technology is not available in most hospitals because it

is nuclear in nature. This requires very demanding support to maintain the materials

for the scan. Even if this support is available, doctors do not specifically ask for

it because most PD patients, when diagnosed, are in the advanced stages of PD.

Another limitation of SPECT is that it is difficult to obtain a reliable quantification.

Furthermore, the low resolution of a SPECT image limits the visualization of the

basal ganglia in PD [82]. Despite these limitations, SPECT imaging is a powerful

tool for PD diagnosis because it has the power to distinguish early PD patients from

healthy patients. This is why SPECT imaging has been used in this paper. It can

be seen that our network has performed exceptionally well.

In comparison with other published research studies, our CNN-based model out-

performs them in terms of performance metrics, confirming that the innovative deep-

learning approach that we developed, has its advantages and is competitive. Ta-

ble 3.6 provides the details of the comparison with other published research studies.

In conclusion, we have processed SPECT images of PD and healthy controls

and classified them accordingly. The classification model has been developed using

CNN. The performance measures have shown high scores for accuracy (99.34%),

sensitivity (99.04%), and specificity (99.63%). Medical practice aspires to diagnose

patients at the earliest of clinical signs, in order to monitor disease progression, and

to rapidly find optimal treatment regimens. However, for PD, it is a challenging

issue because there are patients who exhibit many overlapping clinical indications.

Therefore, misdiagnosis in early PD is common. In the present study, we have

developed an effective model to address the problem, by accurate identification of

features of degenerative PD at its early stage. This enables early diagnosis, which

is crucial for effective PD patient management. Based on previous studies, we can

confidently claim that our model outperforms not only the previous studies, but
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Table 3.6 : Comparison table with previous studies

Research

Works

Dataset

Used

Sample

Size

Classifier

Used

Accuracy Sensitivity Specificity

Towey et

al. [64]

Own

dataset

116 Näıve Bayes 94.8% 93.7% 97.3%

Prashanth

et al.[59]

PPMI 493 SVM 96.14% 96.55% 95.03%

Oliveira

et al.[11]

PPMI 652 SVM 97.9% 98% 97.6%

Prashanth

et al.[14]

PPMI 584 SVM 97.29% 97.37% 97.18%

Oliveira

and

Castelo-

Branco

[62]

PPMI 445 SVM 97.86% 97.75% 98.09%

Martinez

et al. [67]

PPMI 301 CNN 95.5% 96.2% N/A

Choi et

al. [68]

PPMI 431 PD Net 96% 94.2% 100%

This

study

PPMI 2723 CNN 99.34% 99.04% 99.63%

also any experienced physician. Since it is simple to use, the potential for this CNN

model to be used clinically, in day-to-day PD diagnosis, is enormous. It could also

be used by clinicians to observe the deterioration and progression of PD conditions

quantitatively.
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Chapter 4

Classification of Parkinson’s Disease (PD) into

Multiple Stages of Progression

PD occurs mostly in age 50 and above, and is difficult to identify in the earlier

stages. The onset of PD is characterised by cardinal motor impairments like tremor,

rigidity and bradykinesia. However, as the PD progresses, the symptoms increase

enormously, varying significantly at different stages of progression. Therefore, the di-

agnosis of the patient’s PD stage is critical for improving the quality of patient’s life.

In this chapter, we address this issue by developing a deep-learning model, namely

a deep convolutional neural network for PD stage classification (PDStageNet), that

is highly capable of identifying and classifying PD patients into 5 clinical stages of

PD progression based on SPECT images.

4.1 Introduction to PD Stages

PD impacts people in many different ways. Not all patients will experience all

of the symptoms of PD, and if they do, they will not necessarily experience them in

quite the same order, nor at the same level of intensity. Even so, there are typical

patterns of progression in PD that are defined in stages. PD is classified into five

different stages described below.

• Stage One. During this initial stage, the patient has mild symptoms that

generally do not interfere with daily activities. Tremor and other movement

symptoms occur on one side of the body only. Friends and family may notice

changes in posture, walking and facial expressions.
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• Stage Two. In this stage, the symptoms begin to advance. Tremor and other

movement symptoms affect both sides of the body. Walking problems and

poor posture may become apparent. In this stage, the patient is still able to

live alone, but completing day-to-day tasks becomes more difficult and may

take longer.

• Stage Three. This stage is considered as the mid-stage in the progression

of the disease. Loss of balance and slowness of movements and falls are hall-

marks of this phase. Although the patient is still fully independent, symptoms

significantly impair activities of daily living such as dressing and eating.

• Stage Four. During this stage, symptoms are severe, limiting the bodily move-

ments of the patient. It is possible to stand without assistance, but movement

may require a walker. The patient needs help with activities of daily living

and is unable to live alone.

• Stage Five. This stage is the most advanced and debilitating stage of PD.

Stiffness in the legs may make it impossible to stand or walk. The patient

either requires a wheelchair or is bedridden. Around-the-clock nursing care

is required for all activities. The patient may experience hallucinations and

delusions [83].

According to a study conducted by Deloitte Access Economics Australia [15], it

was reported that in 2014, the PD estimates by stages were as follows. Figure 4.1

illustrates the increments in PD incidence in Australia.

• 55,900 patients in the initial stages of PD (Stages 1 to 3) compared with 44,300

in 2005.

• 9,100 patients in the intermediate stage of PD (Stage 4) compared with 7,100

in 2005.



61

• 4,200 patients in the end stage of PD (Stage 5) compared with 3,300 in 2005.

Figure 4.1 : Incidence of PD by disease stage

The clinical diagnosis is definitive for the advanced stages of the disease when

the symptoms are fully developed. However, in the early stages, when the symptoms

are mild/incomplete or subtle, an accurate diagnosis becomes difficult. Early and

accurate diagnosis of PD patients in their respective stages of PD is crucial for

reasons such as early management, avoidance of unnecessary medical examinations

and therapies and their associated financial costs, side-effects and safety risks [13].

In this chapter, we adopt CNNs to classify PD patients, using SPECT images,

into their respective stages of PD progression. This is the first research study where

CNNs were adopted for multiple stage classification of PD by utilising SPECT scans.

However, there are other published works that performs similar classifications. The

differences lie either in the methodology or in the type of data.

In [84], statistical approaches like Principal Component Analysis (PCA) and

Linear Discriminant Analysis (LDA) were undertaken to extract vocal features nec-
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essary for the multiple stage classification of PD. SVM was then used to perform the

classification. The vocal data was gathered from the University of California-Irvine

(UCI) repository, which included 31 subjects consisting of 8 healthy controls and 23

PD patients. Four classifiers, Support Vector Machine (SVM), Adaptive Boosting

(AdaBoost), k-Nearest Neighbor (k-NN) and Adaptive Resonance Theory-Kohonen

Neural Network (ART-KNN), were then used to perform the classification and then

compared based on accuracy results. It was noted that SVM performed the best.

In [85], Recurrent Neural Network (RNN) was utilised to learn clinical similarities

of PD patients. Classification was carried out using Linear regression (LR) and

SVM. RNN was a feed-forward neural network that computed a fixed sequence

of learned non-linear transformations to convert an input pattern into an output

pattern. This enabled the network to perform sequential prediction. In this study,

the data was collected from the PPMI database. The data comprised of features

from motor symptoms, cognitive functioning, psychotic symptoms, sleep problems

and depressive symptoms. It also included Hoehn and Yahr (HY) scale scores for

multiple class classification. After feature learning, LR and SVM were utilised to

perform classification. It was seen that SVM combined with RNN performed better.

4.2 Proposed Network Approach

The complete layout of our proposed approach, PDStageNet, is illustrated in

Figure 4.2. We utilised SPECT images obtained from PPMI database for our ex-

periments. All of the images were pre-processed images that can be used for exper-

iments.

To categorise the images into different stages of PD, we utilised the Hoehn and

Yahr (HY) scale rating available with the clinical data of the PPMI database. The

HY scale had been published in 1967 and has been used to describe the five clinical

stages of PD in an indicidual. It has been a widely used clinical rating scale, which
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Figure 4.2 : Framework including trainnig and testing for PD stage classification

defined broad categories of motor function in PD. The scale captured typical patterns

of progressive motor impairment, which can be applied whether or not patients were

receiving therapy. Progression in HY stages has been found to correlate with motor

decline, deterioration in the quality of life, and neuroimaging studies of dopaminergic

loss [86].

In the database, the patient’s clinical data was identified with a unique ID,

which was matched with its respective SPECT image. This allowed the images to

be labelled according to the HY scale. For example, if the HY scale showed a value

of 1, the corresponding SPECT image was categorized into stage 1. This process

was repeated until all the images were categorized accordingly, providing us with a

total of 1,319 images, of which 217 images were in Stage 1, 967 images in Stage 2,

101 images in Stage 3, 24 images in Stage 4 and 10 images in Stage 5. Figure 4.3

illustrates SPECT scans for all 5 stages. Table 4.1 provides a description on the

severity of PD stages based on the HY scale.

4.2.1 Image Segmentation Process

An image binarisation technique is utilised to segment all SPECT images avail-

abled in the dataset. This technique enhances the quality of the two regions of
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(a) (b)

(c) (d)

(e)

Figure 4.3 : SPECT images of PD in (a) Stage 1, (b) Stage 2, (c) Stage 3, (d) Stage

4, and (e) Stage 5
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Table 4.1 : PD Stage characteristics based on HY scale

PD Stage HY scale rating Characteristics Number of images

1 1 Unilateral involvment only. Tremor in one limb, min-

imal changes in posture, locomotion and facial expres-

sion.

217

2 2 Bilateral involvement without impairement in balance.

Posture instability and gait

967

3 3 Significant slowing of bodily movements and difficulties

to perform daily activities

101

4 4 Severe symptoms. Limited walking, rigidity and

bradykinesia. Individual is unable to live alone and re-

quires help in performing daily activities

24

5 5 Cachetic stage. Individual is restricted to bed or a

wheelchair unless aided. Can suffer from delusions and

halluciantions

10

interests (ROIs) located in the ‘substantia nigra’ of the brain. These ROIs depict

the reduction of DAT availability in a PD patient, and they are important and

necessary features for PD stage classification.

In this process, all SPECT images are passed through the binarisation process

where a mask is applied on every image. Then, the threshold value is adjusted and

matched accurately to the original SPECT image. As different stages of PD progres-

sion have different shapes and sizes, the threshold values also differ. Therefore, by

adjusting the image threshold values, we are able to generate accurately segemented

images of all SPECT images. Finalyy, by utilising the patient’s SPECT information

and the corresponding HY rating values, provided in the clinical dataset, all of the

segmented images are accurately labelled to the correct stages of PD progression.

Figure 4.4 illustrates the segmented images of the original images in Figure 4.3.
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(a) (b)

(c) (d)

(e)

Figure 4.4 : Segmented SPECT images of PD in (a) Stage 1, (b) Stage 2, (c) Stage

3, (d) Stage 4, and (e) Stage 5
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4.2.2 Network Architecture

Our network, PDStageNet, is a smaller and more compact version of the VGG-

16 network [87]. VGG-16 network is 16 layers deep and can classify images into

1,000 generic object categories, such as mouse, keyboard, pencil etc. As a result,

VGG-16 has learned rich feature representations for a wide range of images. This is

very beneficial for our network as the new learned features will have more weights

in them, allowing for more robust classifications. The major difference between

VGG-16 and our network lies in the number of layers. VGG-16 has 16 layers, so it

is exceptionally slow to train the entire network. The entire network architecture

weights are large in terms of disk/bandwidth. Due to its depth and number of fully-

connected nodes, deploying VGG-16 is a time-consuming and not feasible to use in

a medical domain.

In comparison, our network has only 5 convolutional layers, where the first con-

volutional layer is equipped with max-pooling layer along with the Rectification

Linear Unit (ReLU) activation layer [41]. Then, the next two convolutional layers

are stacked, and ReLU and the max-pooling layers follow them. This similar combi-

nation is repeated for the final two convolutional layers. Furthermore, our network

has one dense layer along with a sigmoid layer in comparison to VGG-16’s three

dense layers. As our network architecture is smaller in size, the implementation

of our network is much easier and less time-consuming. Therefore, by addressing

the issue of practical implementation in the medical domain, our network can be

utilised as a computer-aided diagnostic system, where it can assist in the diagnosis

of the stages of PD with much less time possible and with high accuracy. Below we

describe our network structure layer by layer.

• Our initial convolutional layer has 64 filters with a 3 × 3 kernel. ReLU acti-

vation is utilised by batch normalisation. Our pooling layer uses a 3 × 3 pool
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size to reduce the spatial dimensions quickly from 100 × 100 to 33 × 33 (we

are using 100× 100× 3 input images to train our network).

• Then, we stack two convolutional layers together (prior to reducing spatial

dimensions of volume). This allows our network to learn a richer set of features.

We do not increase our filter size, but we decrease our pooling size from 3× 3

to 2× 2 to ensure that we do not reduce the dimensions too quickly.

• For the last two convolutional layers, they are also stacked together but with

increased filter size (from 64 to 128). The deeper we go in the network, the

smaller the spatial dimensions are, and the more features we learn. However,

our pooling size remains the same.

• Finally, we add our dense layer along with the sigmoid activation layer as this

is a multi-class classification.

Another notable difference of the proposed network from the VGG-16 network is

the image segmentation process. In our network, the image segmentation process is

carried out during the pre-processing stage. By performing this process, the network

is trained on the segmented images generated, along with the original image, so

that more distinguishing features can be learned during the training phase. Figures

4.5a and 4.5b illustrate the architectures of VGG-16 and the proposed network,

respectively.

4.3 Experimental Setup

The main aim of this chapter is to classify PD patients into different stages of

PD from SPECT images by adopting CNNs. In this experiment, five classes were

identified, each for its corresponding PD stage. The experiments were performed

using Keras library on top of TensorFlow [77]. The Google Brain team created this
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(a)

(b)

Figure 4.5 : Network Architectures of (a) VGG-16 and (b) PDStageNet

open-source software solution for machine learning applications on textual data sets.

The framework supported running the training operation of the network on graphical

processing units (GPUs) or traditional microprocessor-based central processing units

(CPUs). This platform also supported several machine learning algorithms with the

same optimizer. Keras is an open-source neural network library written in Python. It

is designed to enable fast experimentation with deep neural networks and focused on

being user-friendly, modular and extensible [78]. Keras library was used to develop

the network model necessary for our experiments. All of the important packages

required for developing the network model such as max-pooling, activation, flatten,

dense were all imported from Keras.

4.3.1 Training the network

A total of 1,319 SPECT images were analysed in this chapter. A random split

of 70-30 was carried out to divide the database in training and testing datasets.
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This provided 929 images for training the network, and 390 images for testing.

Our CNN-based deep-learning model, PDStageNet, was trained on the segemented

SPECT images. The input images were first resized to 100 × 100. Then, they were

converted into a Keras compatible array followed by appending the image to a data

list. The labels were extracted from the image file path and appended to the label

list. LabelBinarizer was use to binarise the labels. LabelBinarizer was a utility

class that helped create a label indicator matrix from a list of multi-class labels.

LabelBinarize utilised a onve-vs-all learning technique, so, in training, it learned one

binary classifier per class. In doing so, the multi-class labels were converted to binary

laebsl (belonging or not belonging to the class). The LabelBinarizer indentified

the total number of classes in the dataset by reading every image label from the

training dataset. Then, for every image that passed through PDStageNet, their

corresponding labels were extracted and transformed into an array of binary labels

which represented whether the image belonged to that particular label or not.

Figure 4.6 : Example of LabelBinarization process
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As an example, the LabelBinarization process is shown in Figure 4.6. In this

process, random images from different classes, with class labels 1, 2, 5, 4, 3, 1, 5, 4,

2 and 2, repsectively are loaded. The LabelBinarizer would read every image class

label, and produce an array listing the labels of the classes of the images loaded. In

this example, the array is [1,2,3,4,5], representing all five classes. Then for new input

images, their corresponding labels are extracted. Finally, using the total number of

classes as the array dimension, the LabelBinarizer transforms each extracted label

into a binary array with components equal to 1 or 0 depending on whether the

corresponding image belongs to the class of the label or not. In the example shown

in the figure, the input images have the labels of 1, 4, 3, 5 and 2. Therefore, the

LabelBinarizer then transforms the labels to the arrays of [1,0,0,0,0], [0,0,0,1,0],

[0,0,1,0,0], [0,0,0,0,1] and [0,1,0,0,0], respectively. The output of this process is a file

that contains all learned vectors of multi-class labels in a binarised format.

Our network model was optimised using the Adam optimizer [74] with default

learning rate of 10−3. The learning rate was decayed exponentially with a deacy

rate of 10−8. These standard parameters of Adam have been proven for neural

networks to be computationally efficient, of little memory usage and well suited

wor problems with big data. Hence these parameters were utilised in our network.

As our research was a multi-class classification, the loss fucntion utilised was the

categorical cross-entropy. Categroical cross-entropy(CCE) can be defined by:

CCE = −
M∑
c=1

ys,clog(ps,c), (4.1)

where M is the total number of classes, ys,c is the binary indicator of value either

1 or 0 depending on whether or not the class label c is the correct label of sample

s, and ps,c is the predicted probability that sample s belongs to class c. Finally,

PDStageNet was trained over 1000 epochs with a batch size of 32. The pseudocode

for training is provided.
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Algorithm 1: Training PDStageNet

Parse the following command line arguments

Path to input dataset

Path to trained output model

Path to output label binarizer

Set number of epochs, learning rate, batch size and image dimensions

epochs = 1000;

InLr = 1e – 3;

BS = 32;

Imgdims = 100, 100, 3;

Initialize data list and labels list to hold preprocessed images and labels

for every image in dataset do

Read the image

Resize image according to Imgdims;

Convert resized images to Keras compatible array;

Append the images array to the data list;

Extract class labels from image file path and append to labels list;

end

Convert data list and label list into Numpy array

Initialize Label Binarizer;

Assign a unique value to each label and update label list

Initialize training stage

Input data list and labels list

Input optimizer as Adam(Lr=InLr, decay =1e – 8)

Train model with data list and label list;

Use categorical cross-entropy as loss function, Adam, batch size, epochs and

calculate training accuracy

Save trained model in Keras
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4.3.2 Evaluation metrics

As this study involves multi-class classification, the accuracy of the model was

calculated differently compared to binary classification. For our model, the overall

accuracy is calculated and is formulated by:

Accuracy =
TPS1 + TPS2 + TPS3 + TPS4 + TPS5

NTI

, (4.2)

where TPS1 is the number of true positives for stage 1, TPS2 is the number of true

positives for stage 2, TPS3 is the number of true positives for stage 3, TPS4 is the

number of true positives for stage 4, TPS5 is the number of true positives for stage

5 and NTI is the total number of images in the testing dataset.

In order to further understand the classification results of individual stages, pre-

cision is calculated. Precision is the measure of accuracy, provided that a specific

class has been predicted. Finally, sensitivity and specificity are calculated as well in

order to grasp our network model’s potential to correctly classify particular images

in the dataset. The above-mentioned metrics are defined as follows.

Precisions =
TPs

TPs + FPs

, (4.3)

Sensitivitys =
TPs

TPs + FNs

, (4.4)

Specificitys =
TNs

TNs + FPs

, (4.5)

where s represents a specific stage and TPs, TNs, FPs and FNs are the number of

true positives, true negatives, false positives and false negatives of the corresponding

stage.

It is critical to note that, the definitions of TNs, FPs and FNs are different, as

this is multiple stage classification. They are described below.

• In a confusion matrix, the total number of TNs, for class s, is the sum of all

columns and rows excluding that class’ column and row. For example, in stage
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(a) (b)

(c) (d)

Figure 4.7 : Examples of (a) TP , (b) TN , (c) FP , and (d) FN for a multi-class

classification

2, the total number of TN2 is the sum of all columns and rows except that of

stage 2 are calculated, as shown in Figure 4.7b.

• Similarly, the total number of FPs, for class s, in a confusion matrix, is the

sum of all values in the corresponding column, excluding the TPs. Considering

stage 2 as an example, the total number of FP2 is the sum of all values in the

corresponding column, excluding TP2, as depicted in Figure 4.7c.

• Finally, the total number of FNs for class s is the sum of all values in the

corresponding row, excluding the TPs. If we take stage 2 as an example,
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the total number of FN2, is the sum of all values in the corresponding row,

excluding TP2, as shown in Figure 4.7d.

4.3.3 Testing the network

For testing PDStageNet, 390 SPECT images were utilised. All of the images

were passed through the PDStageNet model. At first, every image was resized to

100× 100 to match the image dimensions of PDStageNet. Then, the resized images

were converted into a NumPy array. Next, PDStageNet was initialised for testing.

Then, label binariser file was read by PDStageNet. During the testing process, for

every testing image array, PDStageNet generated output predictions based on the

features learned. These predictions were then compared with the binarised labels.

The output predictions that mathced the labels with the highest probability resulted

in classifcation. The pseudocode for the testing phase is provided.

4.4 Results

Based on the results after testing the network, as shown in Table 4.2, it can be

deduced that our proposed network, PDStageNet, achieved an overall high accuracy

of 96.67%, which implied that, out of 390 images used for testing, PDStageNet

accurately classified 377 images into their respective stages.

Figure 4.8 presents the confusion matrix of the experimental results, which pro-

vides a better understanding of sensitivity, specificity and precision results. Re-

garding sensitivity and specificity results, our proposed network achieved an overall

result of 96.31% for sensitivity and 99.25% for specificity. Individual stage sensi-

tivity, specificity and precision results are calculated separately, and the results are

shown in Table 4.3.

With such high accuracy, sensitivity and specificity, our proposed network has

demonstrated to be a powerful tool in the classification of PD patients into their
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Algorithm 2: Testing PDStageNet

Parse the following command line arguments

Path to trained PDSageNet

Path to label binarizer file

Path to testing dataset

Load testing dataset;

for every image in testing dataset do

Resize image (100× 100);

Convert resized image to Keras compatible array;

Save as a numpy array;

end

Call trained PDStageNet using Keras;

Open and read label binarizer file;

Initialize testing of images;

for every image array do

Generate output predictions of testing images based on features learned

by PDStageNet

Utilize binarized labels and compare output predictions;

Print classification probability on the image based on matched output

predictions and labels

end

respective stages. This can be beneficial in clinical practice, where our network

can be utilised in diagnosing PD patients in a time-efficient manner, so that the

physicians can plan out the patients’ treatment regimen and begin managing theur

symptoms immediately.
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Table 4.2 : Results of the network model

Stages # of testing images Correctly classified Misclassified images

Stage 1 62 62 0

Stage 2 288 276 12

Stage 3 30 30 0

Stage 4 7 6 1

Stage 5 3 3 0

Total 390 377 13

4.5 Discussion and Conclusion

Accurate diagnosis of PD in the early stages and differential diagnosis of PD at

any stage are challenging and critical medical conditions, because there are patients

Figure 4.8 : Confusion matrix of the study
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Table 4.3 : Individual stage metrics of the network model

Stages Sensitivity Specificity Precision

Stage 1 100% 98.17% 91.18%

Stage 2 95.83% 100% 100%

Stage 3 100% 98.33% 83.33%

Stage 4 85.71% 100% 100%

Stage 5 100% 99.74% 75%

who share, while in different stages of PD progression, many non-classical, and over-

lapping clinical symptoms. Because there are no conclusive clinical tests, patients

with early PD may not meet the clinical diagnostic criteria, leading to delays in

their treatment until they are in the advanced stages of PD.

According to John Hopkins Medicine [88], in 2011, the U.S. Food and Drug Ad-

ministration approved SPECT scan for diagnosing PD in the early stages. SPECT

images are powerful tools because they can clearly show the progression of PD

by depicting the presynaptic dopaminergic deficits in the striatum. These images

are usually analysed through a visual evaluation by experienced nuclear medicine

physicians. In most cases, a simple visual inspection is sufficient to confirm or reject

the reduction of dopamine in the basal ganglia. However, the diagnosis may not

be obvious, especially for early-stage PD patients. Besides, significant variations

exist between individual physicians due to the differences in experience and train-

ing. Therefore misdiagnosis in early PD is common. By adopting machine learning

techniques, these issues in diagnosing PD patients can be easily reduced.

In the current study, we have adopted a CNN-based a deep-learning model,

PDStageNet, to accurately classify PD patients into various stages of PD using
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SPECT images. Our network model idnetifies the shape and size of the region as

essential characteristics and learns them as features important for multiple stage

classification. Our network model has been trained on 929 SPECT images and

tested on 390 images. The results indicate that our network has achieved an overall

high accuracy of 96.67%. With our network model’s escellent performance, the

challenging task of diagnosing PD patients into their respective stages becomes

easier for clinicians, thereby reducing the time required to plan treatment regimens.

While the accuracy of our network model is useful, sensitivity and specificity are

more appropriate metrics, since it only penalizes false negatives and positives.

Sensitivity and specificity of our network model have also been used to measure

the performance of our network model. The overall sensitivity of our network model

is 96.31%. In case of specificity, our network has also performed well, achieving

an overall specificity score of 99.25%. This is noteworthy because these results

demonstrate that our network model is more dependable and reliable in accurately

diagnosing PD patients into different stages of PD progression.

As this is a multiple-stage classification, the performance of our network to ac-

curately classify the stage of PD progression is critical. In that aspect, the per-

formance metrics for different stage classification are calculated, and the results are

shown in Table 4.3. It can be seen that our network performs well, where each stage

demonstrates high scores for precision, sensitivity and specificity. As sensitivity and

specificity focus on the false positive and negatives, it can be seen that our network

has the highest sensitivity scores for stages 1, 3 and 5, which indicates that our net-

work can accurately classify all the images from these stages. Regarding specificity,

it can be noted that stages 2 and 4 have achieved the highest specificity results.

This because of the fewer number of false positives corresponding to those classes in

our network. Additionally, not only did our network classify the images accurately,

it classified them with a very high probability level. All correctly classified images
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(a) (b)

(c) (d)

(e)

Figure 4.9 : Example of high confidence classification of PD in (a) Stage 1 (b) Stage

2 (c) Stage 3 (d) Stage 4 and (e) Stage 5
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have been classified with a probability level of 98% and above, which indicates that

our network model has sufficiently learned enough features from the SPECT images

to accurately distinguish patients in different stages of PD progression. Figure 4.9

provides examples of such results.

However, our network model has some limitations. Firstly, an unbalanced dataset

was used during the training stage. At the time of this study, PD patients in stage 2

had the highest number of SPECT images, whereas stage 5 had the lowest number

of SPECT images. This discrepancy resulted in a high number of misclassifications

in stage 2. Secondly, the higher number of misclassifications in stage 2 was due to

similar shapes and sizes of the ROIs. It was observed that the ROIs of late stage

1 and early stage 2 were quite similar, causing the misclassifications. Similarly, the

patients bordering in late stage 2 and those in early stage 3 shared the same char-

acteristics. Thirdly, another limitation noted in our study was the low probability

classification level for some SPECT images. For example, in Figure 4.10, the images

belong to stage 2. However, it can be noticed that the shapes of the ROIs are similar

to that of a stage 1 image. Although they have been correctly classified as stage 2,

we can see that the classification probability level is close to 50%. Despite these lim-

itations, our network has performed well, in this particular dataset, with an overall

high classification accuracy of 96.67%, sensitivity of 96.31%, specificity of 99.25%

and precision of 89.90%. These results confirm that the deep-learning approach

developed has its advantages, and is effective and is outweighing the limitations

mentioned above.

4.5.1 Comparison Analysis with Prior Works

This is the first research study where CNNs were adopted for multiple stage

classification of PD by utilizing SPECT images. However, there are other published

works that perform similar classifications. The differences lie either in the methodol-
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Figure 4.10 : Examples of low confidence classification

ogy or in the type of data. Table 4.4 provides a detailed comparison analysis between

our study and similar published works. It can be concluded that our approach has

outperformed all other approaches.

In conclusion, the precise diagnosis of PD patients in their early or at any stage is

a challenging and essentail medical issue, due to many unclassical and overlapping

common clinical manifestations shared among patients. Therefore, misdiagnosis

of early PD is common. In this study, to address this issue, we have developed

PDStageNet for the multiple stage classification of PD using SPECT images. From

a total of 1,319 images, 929 images have been used for training the network model,

and 390 images have been used for testing. Our network model has performed well,

achieving an overall accuracy of 96.67%, accurately classifying 377 images. Our

network has also achieved high sensitivity and specificity results, with 96.31% for

sensitivity and 99.25% for specificity. This area of research is novel because there

has not been any research studies reported in this area. The potential for our CNN

model, to be used clinically, is significantly high because it could assist clinicians

in their diagnosis. The implementation of such a network model would save time

during PD diagnosis, allowing more time for treatment and management of PD.
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Table 4.4 : A comparative analysis of the present study and the published studies

Research works Dataset used Methodology Accuracy

Shahbaba &

Neal [89]

Oxford Parkinson’s Dis-

ease detection dataset

Dirichlet process mixtures 87.70%

Das [90] Oxford Parkinson’s Dis-

ease detection dataset

ANN 92.90%

Guo et al. [91] Oxford Parkinson’s Dis-

ease detection dataset

GP-EM 93.1%

Li et al. [92] Multiple datasets Fuzzy-based non-linear transformation +

SVM

93.47%

Åström & Koker

[93]

Oxford Parkinson’s Dis-

ease detection dataset

Parallel ANN 91.20%

Spadoto et al.

[94]

Oxford Parkinson’s Dis-

ease detection dataset

PSO + OPF Harmony search + OPF Grav-

itational search + OPF

84.01%

Sakar & Kursun

[95]

Oxford Parkinson’s Dis-

ease detection dataset

Mutual information based feature selection

+ SVM

92.75%

Ozcift et al. [96] Oxford Parkinson’s Dis-

ease detection dataset

CFS-RF 87.13%

Chen et al. [46] Oxford Parkinson’s Dis-

ease detection dataset

PCA-FKNN 96.07%

Che, C. et al.

[85]

PPMI RNN-SVM 75%

Caesarendra, W.

et al. [84]

Oxford Parkinson’s Dis-

ease database

PCA-SVM 79.17%

This study PPMI CNN 96.67%
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Chapter 5

Classification of Parkinson’s Disease Patients for

Surgical Treatment

Approximately ten million people worldwide are currently living with PD [71]. Many

researchers believe that the disease results from an interaction between genetic and

environmental factors that leads to progressive degeneration of neurons in suscepti-

ble regions of the brain. Currently, there are no laboratory tests that have diagnostic

values for PD. For advanced PD, if medications do not help manage the symptoms,

surgical treatment is the only alternative. In this chapter, we develop a model to

help streamline the patient selection process for surgical treatment using only clinical

data.

5.1 Introduction

Parkinsons disease (PD) is a disorder of the nervous system. It results from

damage to the nerve cells in a region of the brain that produces dopamine, a chemical

that is vital for the smooth control of muscles and movement.

In the early stages, many diagnostic methods, such as blood tests, brain imaging

techniques such as Magnetic Resonance Imaging (MRI), Positron Emission Tomog-

raphy (PET scan), and Single Photon Emission Computed Tomography (SPECT),

are used to exclude other medical conditions such as stroke or brain tumors that

imitate symptoms of PD [97]. Amongst others, one of the methods for the diagnosis

of PD is detecting and analysing voice disorders by using acoustic tools that record

the changes in pressure at lips or inside the vocal tract. It has been found [18] that
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some features in the voices of the patients with PD can be used as discriminatory

measures to differentiate PD by adopting data mining techniques.

Selection of appropriate patients for surgical treatment, in clinical practice, is

based on many factors such as the age of the patient, disease stage, disease duration,

comorbidities, and responsiveness to levodopa medication. It is usually required to

form an interdisciplinary team consisting of neurologist, neurosurgeon, psychiatrist,

neuropsychologist, rehabilitation specialist, and sometimes a social worker, to dis-

cuss these factors and then decide if the patient is suitable for surgical treatment

[98, 99]. Therefore, there is an urgent need to streamline the process of selecting

appropriate PD patients for surgical treatments. In this study, we propose an effec-

tive model to classify PD and select suitable patients for surgery using data mining

algorithms and feature selection based on information gain with PD patients.

Data Mining is defined as the nontrivial extraction of implicit, previously un-

known, and potentially useful information from generic data. The use of classifier

systems in disease diagnosis is increasing. Technological advances in the field of

Artificial Intelligence (AI) have led to the emergence of expert systems and Decision

Support Systems (DSS) for medical applications. Moreover, in the last few decades,

computational tools have been designed to improve the experiences and abilities of

doctors and medical specialists in taking decisions regarding diagnosis and treat-

ment about their patients. However, expert systems and different AI techniques

for classification have the potential of being valuable supportive tools. Classifica-

tion systems can help in increasing the accuracy and reliability of diagnoses and

minimising possible errors, as well as making the diagnoses more time-efficient [25].

This area of research is important because advanced PD patients who do not

respond to drug treatments require surgical therapy to control PD symptoms. How-

ever, the selection of appropriate patients for surgery is complicated, costly and
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involves several discussions by an interdisciplinary team. This is time-consuming,

resulting in significant delays in the treatment. Using data mining algorithms and

feature selection, this research introduces a streamlined model to classify PD and

identify appropriate patients for surgery. This will provide the team insight as to

which PD patient to select for surgery based on their values after the feature selec-

tion process.

5.2 Proposed Network Architecture

This study utilises real patients’ clinical, medical and surgical data to develop

a practical model for PD classification and for selection of suitable PD patients for

surgical treatment. Our proposed approach is outlined in Figure 5.1.

Figure 5.1 : Proposed approach architecture.

For this study, a new dataset was developed by gathering different types of data

from PPMI such as medication, health, surgical, PD symptoms, MRI scan results

and post medication data. This provided us with 1,080 patients, of which 40 patients
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opted for surgery, with 40 attributes for each patient. The dataset was further

divided into a training dataset (70%) and a testing dataset (30%). The training

dataset consisted of records of 758 patients, and the testing dataset consisted of

records of 322 patients each with 40 attributes, where 23 out of 322 patients were

of surgical patients.

5.2.1 Pre-processing

During the pre-processing stage, the dataset was analysed to see if it had any

missing values or redundant values. To address the issue of missing values, WEKA

filter “Remove Missing Values” was used [100]. For redundant data, the latest record

of the data registered in the database was used erasing old data. We then used two

datasets for our experiments. Experiment 1 had all 40 attributes. For Experiment

2, the dataset, after feature selection, was split-up into 10 datasets each consisting

of 10% of the attributes.

5.2.2 Feature Selection

Feature selection is the process of selecting a subset of relevant features (e.g.,

variables, predictors) for use in model construction. Feature selection techniques

are used to avoid overfitting and improve model performance. They can be used

to provide faster and more cost-effective models. They are also used to gain more

in-depth insight into the underlying processes that generated the data [101]. Thus,

with this model, the selection of appropriate patients for surgical treatment should

be highly accurate and effective.

The objective is to reduce the attributes in order to identify the most important

feature that contributes to the classification. In our work, we select the filter methods

because they are moderately robust against the overfitting problem. We use the

Information Gain (IG) technique as this technique computes the information gain
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of a feature with respect to class. In order to define Information Gain, Entropy must

be defined first. Entropy is the measure of disorder of uncertainity in a dataset. It

can be deifined by:

H(S) = −
c∑

i=1

pilog2pi, (5.1)

where pi is the proportion of samples that belongs to class c.

Information Gain can be defined as the change in entropy by splitting a dataset

according to a given value of a random feature [102]. IG can be calculated by:

IG(S, a) = H(S)−H(S|a), (5.2)

where IG(S, a) is the information gain for the dataset S with respect to feature a,

H(S) is the entropy for the dataset before any change and H(S|a) is the entropy

for the dataset with respect to the feature a.

The Ranker filter is also used along with IG. Ranker helps in ranking the features

based on their information gain with respect to class. The features are ranked in

decreasing order where the feature with highest IG is ranked first and the feature

with the lowest IG is ranked last.

5.2.3 Model

The developed model aims to provide an accurate classification of PD patients

and effectively assess if the patients require surgical treatment. When a new pa-

tient arrives, all of his/her information is stored in the database. By this stage,

several features would have been extracted through the feature selection technique.

Therefore, the data collected from new patients consist of those features only. Their

features are applied to the model to know whether they are applicable for surgery.

Figure 5.2 illustrates how the model works. Figure 5.3 provides the list of features

of the dataset.
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Figure 5.2 : Flowchart of the model

5.2.4 Classification

In this step, the new patient will be classified into whether the patient is suitable

to undergo a surgery or not. This would help the specialists to undertake proactive

Figure 5.3 : List of features
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steps so that the patient can get the right treatment. In this chapter, we utilised

Näıve Bayes, Decision tree, Support Vector Machines and Multilayer Perceptron for

our experiments. The details of our experiments are provided in Section 5.3.

5.3 Experiments and Results

All of our experiments were performed using the WEKA platform. The data

was gathered from PPMI. For our study, we gathered data from various datasets in

PPMI presenting us with 1,080 subjects with 40 attributes.

5.3.1 Experiment 1: General Classification of PD Patients for Surgery

Using Different Classifiers

This experiment aims to develop a model to provide an accurate classification of

a PD patient so that it can suggest if the patient is indicated for a surgical option.

Since we are trying to classify which patients require surgery, there are two classes

for this research, i.e., class 0 for those that do not need surgery and class 1 that

requires surgery.

In this experiment, Näıve Bayes, Support Vector Machine (SVM), J48 (Decision

Tree), and Multilayer Perceptron (MLP) that is a form of a neural network algorithm

from WEKA, are used to construct the model [32]. In this experiment, all 40 features

are used for the classification of PD patients. Table 5.1 presents classification results.

For performance measurement, a confusion matrix is obtained to estimate four

measures: Accuracy, Precision, F-measure and Sensitivity. They are calculated as

follows.

Accuracy =
TP + TN

TP + FP + TN + FN
, (5.3)

Precision =
TP

TP + FP
, (5.4)

Sensitivity =
TP

TP + FN
, (5.5)
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Table 5.1 : General Classification of PD Patients Using Different Classifiers

Learning

Machine

Parameters

Used

Model

Accuracy

Precision Sensitivity

(weighted

average)

F-Measure

Näıve Bayes Simple Estima-

tor function

93% 0.862 0.929 0.894

Decision

Tree (J48)

Binary splits,

Confidence fac-

tor = 0.25, Size

of tree = 10

94.7% 0.95 0.95 0.932

Multilayer

Perceptron

Number of lay-

ers = 3, Num-

ber of epochs =

500 and Sigmoid

function

98.13% 0.982 0.981 0.980

Support

Vector

Machine

RBF Kernel 93% 0.862 0.929 0.894

F −measure = 2 ∗ Precision ∗ Sensitivity
Precision + Sensitivity

, (5.6)

where TP is the number of true positives, TN is the number of true negatives, FP

is the number of false positives and FN is the number of false negatives.

For this experiment, the weighted average value of sensitivity is used because it

provides an overall performance of the model by taking into account the results of

both classes. As a result, MLP has the highest accuracy of 98.13% followed by J48

at 94.7%, SVM and Näıve Bayes at 93% each.
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5.3.2 Experiment 2: Classification of PD Patients for Surgery after Us-

ing Feature Selection

The aim of this experiment is to study the effect of feature selection in the

accuracy of the classification. Feature selection is one of the dimensionality reduc-

tion techniques for reducing the attribute space of a feature set. More precisely, it

determines how many features should be enough to give moderate accuracy.

For feature selection, we utilised IG filter from the WEKA platform. This filter

acted as an attribute evaluator as it evaluated attributes according to their informa-

tion gain. This process also used the “Ranker” filter to rank the features based on

their information gain with respect to class. For this experiment, we used the same

dataset as in Experiment 1. Ten datasets were then built depending on the number

of selected features. The first dataset contained only 10% of the total attributes.

Then, each time, the feature selections were increased by 10%. Therefore, dataset 1

contained 10% of all attributes, dataset 2 contained 20%, dataset 3 contained 30%,

. . . , and dataset 10 contained 100% of all attributes.

We chose MLP as the classifier because it had the highest accuracy result from

Experiment 1. The MLP model was made up of three hidden layers with 500 nodes

in each layer. The default activation function, i.e., Approximate Sigmoid function,

was used in our model. Each feature-reduced dataset was used for a 10-fold cross-

validation for evaluation. It was observed that, with only 60% of the attributes, our

model achieved the highest accuracy result. This proved that not all features might

be necessary to attain a highly accurate classification.

The sensitivity is also measured for the test set. For this experiment, the results

of sensitivity are provided with respect to surgery class only. These results are

listed so that we can measure how the proposed algorithm can correctly classify PD

patients for surgery.
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Table 5.2 : Classification of PD Patients for Surgery Using Feature Selection

% of

Fea-

tures

selected

# of

Fea-

tures

selected

Correctly

classified

for surgery

Incorrectly

classified

for surgery

Correctly

classified for

non-surgery

Incorrectly

classified for

non-surgery

Sensitivity

(with respect

to surgery)

Precision

(95% con-

fidence

interval)

Surgery

vs Non-

surgery

accuracy

10% 4 0 23 299 0 0 0.92±0.034 92.85%

20% 8 5 18 299 0 0.217 0.94±0.031 94.4%

30% 12 11 12 299 0 0.478 0.96±0.024 96.6%

40% 16 14 9 299 0 0.609 0.97±0.021 97.2%

50% 20 16 7 298 1 0.696 0.97±0.018 97.5%

60% 24 17 6 299 0 0.739 0.98±0.018 98.13%

70% 28 15 8 299 0 0.652 0.97±0.015 97.5%

80% 32 17 6 299 0 0.739 0.98±0.015 98.13%

90% 36 17 6 299 0 0.739 0.98±0.015 98.13%

100% 40 17 6 299 0 0.739 0.98±0.015 98.13%

A 95% confidence interval is also measured. The primary purpose of the confi-

dence interval is to provide a range of values for an estimated parameter rather than

a single point value. All of these results are presented in Table 5.2. The confidence

interval is calculated as follows.

CI = const ∗
√
error ∗ 1− error

n
, (5.7)

where const is a constant value (which is 1.96 in our case) corresponding to the

probability (i.e., 95%), error is the classification error and n is the sample size.

5.4 Discussion and Conclusion

In the medical domain, an unmet medical need in the management of PD is how

to simplify the complicated process of selecting suitable PD patients for surgical

treatment, a breakthrough in recent years. Therefore, our objective is to develop a

practical classification model that can accurately identify PD patients for surgery
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based on data mining algorithms combined with feature selection using clinical data.

The model will enable physicians to, reliably and accurately, classify PD patients

using available clinical parameters without the time consuming and costly medical

team meetings and discussions.

In the current study, we have developed a novel model to streamline the way

to classify PD and to identify appropriate PD patients for surgery. The model is

remarkably reliable and accurate, with an accuracy of 98.13%.

From Experiment 2, it can be noted that not all features/attributes contribute to

the high accuracy of classification. Using only 24 (60%) attributes, the classification

accuracy of PD patients for surgery is similar to the result of classification using all

the features. Figure 5.4 indicates of how much contribution each feature has made

to the classification accuracy. The values of sensitivity results differ in the two ex-

periments. The weighted average of sensitivity, in Experiment 1, takes into account

the sensitivity values of both classes (0 and 1), multiplies them with the instances

classified into their respective classes and divides the total with the total number of

instances. However, for Experiment 2, the values of sensitivity concerning only the

surgery class are provided so that we can measure how the proposed algorithm can

correctly classify PD patients for surgery.

Furthermore, each of the 24 features does not make an equal contribution to the

classification of PD patients. The top features that contribute more are presented

in Table 5.3. This has been generated by using the correlation filter from WEKA.

The correlation filter evaluates the worth of a feature by measuring the Pearson’s

correlation between the attribute and the class [103].

Understanding the importance of the top features in their contribution to classi-

fication is important because it provides us with an idea of how the features interact

with the class for classification. For example, the Hoehn and Yahr scale (HY) is a
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Figure 5.4 : Contribution of features to the classification of PD patients for surgery

widely used clinical rating scale, which defines broad categories of motor function

in PD. Among its advantages, it is simple and easily applied. It captures typical

patterns of progressive motor impairment, and it can be applied to verify whether

or not patients are receiving therapy. Progression in HY stages has been found to

correlate with motor decline, deterioration in the quality of life, and neuroimaging

Table 5.3 : Top seven features’ details

Attribute code Category Description

DYSKPRES Motor Assessments Presence of dyskinesia

NHY Motor Assessments Hoehn and Yahr scale

NP3SPCH Motor Assessments Speech issues after medication

NP3GAIT Motor Assessments Gait disorder after medication

NP3PSTBL Motor Assessments Postural stability after medication

MRIWDTI MRI Result MRI with Diffusion Tensor Imaging (DTI)

DOMSIDE PD Features Dominant side of PD
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studies of dopaminergic loss [86].

As shown in Table 5.2, among the 23 patients that have undergone surgery, the

proposed model with 60% of the attributes, has correctly classified 17 of them. Out

of those 17 patients, nine patients can be correctly classified by the seven attributes

listed in Table 5.3. This was achieved by splitting the training dataset into two

parts, i.e., one part included the top 7 features and the remaining part had the rest

of the features. We then utilised MLP as the classifer and evaluated on the testing

dataset. Figure 5.5 shows a comparison of classification accuracies using the top

seven features and the rest of the features.

5.4.1 Comparison of Current Study with Other Research Works

In this section, we compare the performance among the approaches proposed in

the chapter and the related works, and demonstrate the comparison results in Table

5.4.

In this study, data on subjects that have been diagnosed into various stages of

PD are gathered. Based on the data, we have classified whether the subject needs to

undergo surgery. To the best of our knowledge, we are the first to use data mining

techniques to streamline the process of selecting suitable PD patients for surgery

with potentially critical clinical applications.

In this chapter, we propose a streamlined model for the classification of PD

patients for surgical treatment. Majority of the other related existing approaches

focus on only pure classification and diagnosis of PD patients during the early stages.

We can compare our experimental results with other published approaches because

our experiments does also provide the classification accuracy results of diagnosing

PD patients from healthy controls.

The significant contribution from the present study is that our experiments have
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Figure 5.5 : Classification results using top 7 features and the rest of the features,

respectively

given high performance in this area of research. Furthermore, most of the related

works have a limitation of either having a small dataset or small sample size as

detailed in Table 5.4.
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In conclusion, we have proposed and developed a data mining and feature selection-

based model for accurate PD classification and selection of suitable PD patients for

surgery. Potentially, this model could fill the unmet medical need of streamlining

the complicated process of selecting suitable PD patients for surgery.

In Experiment 1, we have developed a novel PD classification model with sev-

eral classifiers. After comparing several alternative classifiers, we have found that

MLP consistently outperforms the others in most experiments with the highest PD

classification accuracy of 98.13%. Experiment 2 has identified the most important

attributes required for such classification by using feature selection. One of the key

findings is that, using only 60% of the attributes, MLP classification with IG has

produced a remarkably high accuracy (98.13%) indicating that a smaller number of

clinical parameters is sufficient for reliable and accurate diagnosis of PD.

The results from our experiments have demonstrated that the developed model

can be a useful tool in clinical practice for accurate classification of PD and selec-

tion of appropriate PD patients for surgery. Our model has also provided a better

understanding of features that contribute to reliable and accurate PD classifica-

tion, indicating that not all features are required for the accurate and efficient PD

classification.
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Table 5.4 : Summary and comparisons of previous related works on PD classification

Research

works

Dataset

used

Attributes

in dataset

Sample

size

Classifier

used

Accuracy Feature

selection

Accuracy

after

feature

selection

Little et al.

[44]

Developed

own

dataset

Vocal at-

tributes

31 SVM 91.4% No N/A

Rustempasic

and Can

[18]

Max Little

dataset

Vocal at-

tributes

31 Fuzzy

C-Means

clustering

80.88% No N/A

Khemphila

and Boon-

jing [25]

Max Little

dataset

Vocal at-

tributes

31 Artificial

Neural

Network

(ANN)

80.76% Yes 83.33%

Shaikh and

Chabra [45]

Max Little

dataset

Vocal at-

tributes

31 Näıve

Bayes

69.23% Yes 78.46%

Gok [47] Max Little

dataset

Vocal at-

tributes

31 k-Nearest

Neighbor

(k-NN)

N/A Yes 98.46%

Prashanth

et al. [59]

PPMI Striatal bind-

ing ratio

(SBR) values

493 SVM 96.1% No N/A

Hirschauer

et al. [60]

PPMI SBR and clin-

ical data

666 EPNN 92.5% No N/A

Prashanth

et al. [61]

PPMI Clinical data 584 SVM 96.4% No N/A

Suganya

and Suman-

thi [48]

Private

dataset

Vocal at-

tributes

195 ABO 97.5% No N/A

Luukka[104] Max Little

dataset

Vocal at-

tributes

195 Fuzzy

entropy

measures

+ Similar-

ity

79.22% Yes 85.03%

Current re-

search

PPMI Clinical data 1080 MLP 98.13% Yes 98.13%
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Chapter 6

Conclusion and Future Work

Precise diagnosis of PD in their early stages and differential diagnosis of PD at

any stage are challenging and important medical problems, because there have been

patients who exhibit many non-classical, and overlapping common, clinical indica-

tions. Therefore, misdiagnosis of early PD is common. In this thesis, a deep-learning

approach has been proposed to discriminate PD patients from non-PD patients uti-

lizing SPECT images. Furthermore, we have proposed another approach to classify

PD patients based on their stages of PD progression. Finally, a classification model

has been proposed to streamline the process of identifying PD patients for surgical

treatment using clinical data.

6.1 Classification of PD Using Deep-Learning

In this thesis, a deep-learning model has been developed to classify PD patients

from non-PD patients utilizing SPECT images. The network has been trained on

SPECT images of PD and non-PD patients, and has classified them accordingly. Ex-

perimental results show a remarkable high accuracy of 99.45%, sensitivity of 98.93%

and specificity of 100%. By accurate identification of features of degenerative PD

at its early stage, our approach has addressed the challenging issue of early classi-

fication of PD. The evaluation results of our network’s performance have shown its

importance in early PD diagnosis, which is crucial for effective PD patient manage-

ment. Based on our experimental results, we can confidently claim that our model

outperforms the benchmark studies by a large margin. Since the network’s archi-

tectural complexity is low, the potential for this CNN model to be used clinically,
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in day-to-day PD diagnosis, is high. It could be used by clinicians, quantitatively,

to observe the deterioration and progress of PD conditions.

6.2 Multiple Stages Classification of PD

This thesis has proposed an effective CNN-based model to classify PD patients

into multiple stages of PD progression using SPECT images. A total number of 1,319

SPECT images has been gathered, where 929 images have been used for training

the network model, and the remaining 390 images have been used for testing. Our

network model has performed well, achieving an overall high accuracy of 96.67%, ac-

curately classifying 377 images. Sensitivity and specificity have also been calculated

with a high sensitivity score of 96.31% and specificity score of 99.25%. To the best

of our knowledge, this is the first study reported that classifies PD patients into mul-

tiple stages of PD progression. The significance of this study lies in the fact that, as

diagnosing PD patients in the early stages is challenging for clinicians, with the help

of our network model’s high-performance results, diagnosing PD patients into their

respective stages becomes easier for clinicians. The potential of our CNN model, to

be used clinically in the day-to-day diagnosis of PD, is significantly high because

it can benefit clinicians in their diagnosis. The implementation of such a network

model would save time during PD diagnosis, allowing more time for treatment and

management of PD symptoms.

6.3 Classification of PD Patients for Surgical Treatment

In this thesis, we have proposed a feature selection based model for accurate

PD classification and selection of suitable PD patients for surgery using clinical

data. Potentially, this model could fill the unmet medical need of streamlining the

complicated process of selecting suitable PD patients for surgery.

In Experiment 1, we have developed a novel PD classification model with several
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classifiers. After comparing several alternative classifiers, it has been noted that

Multilayer Perceptron (MLP) has consistently outperformed the others, achieving

the highest PD classification accuracy of 98.13%. Experiment 2 identifies the essen-

tial features required for such classification by using feature selection. One of the

key findings reported is that using only 60% of the attributes, MLP classification

with IG has produced a remarkably high accuracy of 98.13%. This infers that, with

a smaller number of clinical parameters, our proposed model can be reliable and

accurate in the diagnosis of PD.

The results from our experiments have also demonstrated that the proposed

model can be a useful tool in clinical practice for accurate selection of appropriate

PD patients for surgery. With a feature selection process, our proposed approach

provides a better understanding of features that contribute to reliable and accurate

PD classification, indicating that not all features are necessary for the accurate and

efficient classification of PD.

6.4 Future Work

Adopting deep-learning algorithms for diagnosis and classification of PD shows a

very high potential for practical use. Diagnosing PD, in its early stages, is challeng-

ing due to many common clinical manifestations in patients with other neurodegen-

erative diseases. However, with its challenges, the road for such technology to fulfil

its full potential in PD diagnosis requires several plans. According to [105], several

key steps can be undertaken to fulfil such plans. These are clinical validation, open

platform standardisation and data sharing.

Clinical validation is required for regulatory approval, much like the measure-

ment of, for example, blood pressure. Such approval requires that the information

provided is an accurate parameter of a clinically relevant feature of the disease and

that there is confirmed evidence that this parameter has a relevant response within
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some clinical application and numerical target ranges exist in which the parameter

measures adequate treatment response. Fundamentally, for machine learning-based

models to be reliable and accurate, the information must be of critical value in

relation to its corresponding disease. Such crucial data can only be validated by

clinicians/medical specialists.

Platform standardisation requires that the software and algorithms are made

publicly available for general and widespread use because any technology lives or

dies by the scale of its adoption and dissemination on the broader community.

Finally, data sharing is a crucial aspect for such research area. By sharing data,

we can further refine algorithms and provide increasingly extensive and rigorous clin-

ical validation evidence. Incentives encouraging data sharing should be established

at institutional and disciplinary levels.
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