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ABSTRACT

MODELLING AND SIMULATION OF MULTIPLE GALLOPING

QUADRUPEDAL DYNAMICS

by

Md Imam Hossain

The work presented in this dissertation is comprised of three distinct parts. Namely
data modelling and analysis for galloping quadruped dynamics, numerically mod-
elling race track path design, and numerically simulating multiple galloping quadrupeds
race dynamics. Fundamentally, all the parts are interlinked to one another at the
level of searching for dynamics stability of galloping quadrupeds. A holistic approach
was taken for information synthesising, ranging from data acquisition to modelling
and simulation. The dissertation presents an overview of the current progress in the
field, approaches the problem by linking information from modelling, then derives
numerical solutions to come to conclusions.

Data modelling demonstrated greyhound galloping gait performance and existing
race track design conditions. The techniques utilised for data gathering and analysis
allowed effective retrieval of diverse information. Racing greyhound galloping gait
performance was verified including speed, acceleration, yaw rate, stride frequency,
stride length and paw dynamics. Also, reviewing of existing tracks revealed track
designs limitations.

Data modelling showed that trajectory dynamics could significantly influence race
dynamics stability. Thus, methods were derived for modelling and designing gal-
loping greyhound ideal path trajectory between a straight and curve track path
segments. To do this, clothoid and algebraic curved segments were numerically gen-
erated using a sequential vector transformation method that allows the inclusion of
greyhound kinematic parameters. And an equation was derived to model suitable
clothoid segments which represents greyhound kinematic parameters and boundary
conditions of a track. Finally, results from race data modelling and past injury data
are also provided to support transition curve segments improving the dynamics and
safety of racing greyhounds while reducing injuries.

A race simulation platform was created which emulates greyhound racing. The race
simulation explained various aspects of race dynamics affecting overall dynamical
outcomes. Results were derived for yaw rate, speed, and the congestion pattern
through numerical modelling race simulations. The simulation results presented are
also correlated to actual race data to validate modelling performance and reliability.
The fundamental tasks carried out include the development of a numerical model for
greyhound veering and race-related supporting models. The results from race simu-



lations showed circumstances causing unstable conditions and relationships between
various race factors.

Finally, this project is useful as it is being applied to optimising quadrupeds racing
track design. It could also be used in various other fields such as analysing and
numerical modelling and simulation of games, animations and multi-body dynamical
physical systems.

This dissertation was supervised by Professor David Eager and Dr Paul Walker
within the School of Mechanical and Mechatronic Engineering.

Keywords: Quadruped Racing, Quadruped Kinematics, Galloping Dynamics, Nu-
merical Simulation, Numerical Modelling, Rigid Body Dynamics, Path Smoothing,
Injury Prevention, Animal Welfare.
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