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ABSTRACT

Supplying precise and comprehensive representation of an object by assembly of
pointclouds ultimately assists a robot in enhancing the reliability of its perception.
An efficient data acquisition approach is to steer a depth sensor in 3D space actively
to be positioned in the best (optimal) viewpoints to scan the desirable parts of the
object and then align (register) and integrate the captured scans effectively and

seamlessly to reconstruct a 3D model with high fidelity.

As the first contribution, we propose an optimization on a manifold approach to
find the optimal position and orientation (pose) of a depth sensor in continuous 3D
space. It has been demonstrated previously that precise measurement by a depth
sensor is achieved when it is gazing at the object perpendicularly. Accordingly, the
proposed terms of the objective function are to align the main axis of the depth sen-
sor towards parts of interest while also prioratising areas with higher task-relevant
information, such as curvature. The resulting poses achieved by this method con-
form to numerical and visual evaluations on several objects with a significantly less

computation compared to the-state-of-the-art .

Reconstructing objects with high fidelity necessitates dealing with a variety of
scenarios which can be differentiated in terms of temporal configurations and artic-
ulation of objects in the scene, namely rigidity or non-rigidity. Arguably the most
challenging scenario is where a single depth sensor is scanning a texture-less object
that is deforming non-rigidly. Under these conditions, apart from the computational
overhead, most of the mesh reconstruction methods fail to yield satisfactory results.
Moreover, there is not sufficient visual features on the surface to be extracted for

correspondence.

Given these limitations, this thesis, as the second contribution, proposes a non-
rigid registration for mesh-free and color-free pointclouds based on the soft partition-
ing concept. The soft patches (partitions) as the features are, then, equipped with

local descriptors to provide a metric for association. Assuming that the global defor-



mation of the object is the aggregation of local rigid transformations, this association
is refined by measuring the deviation of each potentially corresponding soft-patch
and its neighborhood from a rigidity metric defined by the As-Rigid-As-Possible
algorithm. The established local correspondences are assigned with transformations
that are subsequently propagated to the nearby points. Experimental results demon-
strate the capabilities of this framework in handling large deformations and highly

articulated objects.

Fusing the aligned pointclouds, a 3D model of the targeted object is incremen-
tally developed, and this model, coupled with the current scan, contributes to a
formulation for selecting the next region of interest leading to the next optimal
viewpoint. Unlike the conventional approaches regarding deformable objects (which
take a great model where the extent of the object is seen and then it deforms),
our proposed pipeline explores beyond the bounds of the current acquired frame
and reconstructed model and continuously evolves it leveraging an exploration and
exploitation strategy. The application of the devised framework for reconstruction
is demonstrated on rigid and non-rigid objects demonstrating high fidelity to the

original shape.
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