$C02047: Doctor\ of\ Philosophy$

CRICOS Code: 00099F Subject Code: 33875 December 2019

Machine Learning based Information Forensics from Smart Sources

Amber Umair

School of Electrical and Data Engineering Faculty of Engg. & IT University of Technology Sydney NSW - 2007, Australia

Machine Learning based Information Forensics from Smart Sources

A thesis submitted in partial fulfilment of the requirements for the degree of

 $\begin{array}{c} \text{Doctor of Philosophy} \\ & in \\ \text{Computer Systems} \end{array}$

bу

Amber Umair

to

School of Electrical and Data Engineering
Dr. Priyadarsi Nanda
University of Technology Sydney
NSW - 2007, Australia

December 2019

ABSTRACT

We live in a world that connects, socializes and interacts using internet. Humans generate tons of information on daily basis, according to Forbes 2.5 quintillion bytes of data is created each day in year 2018. The data creation pace is continuously accelerating with the growth of the Internet of Things (IoT). Extensive social media usage fuels data creation which is primarily generated from mobile phones. In the present scenario, data is the asset and this asset is extremely vulnerable. In our research work we utilized these data sources to aid digital forensics investigation. Due to our technology engulfed lifestyle, we leave a lot of information about ourselves during our routine activities. These traces are used by the wrongdoers for their vicious objectives but also these traces can be used by investigators to understand any incident and to penalize the delinquents. Forensics investigators face challenges with a huge amount of data during investigations. Whether the data source is an online social network, a smart phone or an IOT based environment, huge amount of data adds complexity and delay to forensics investigation. To contribute to the forensics investigation we propose the use of machine learning for forensics data analysis. Forensics investigation is a three-phase process including data acquisition, data analysis and presentation. Our research focuses on the first two phases of the forensics investigation cycle i.e. data collection and data analysis. This thesis discusses following research achievements:

- 1. Data acquisition from smart sources for forensic information especially for IoT
- 2. Machine learning based data analysis to extract forensic artefacts
- 3. IoT forensics framework(acquisition and analysis phase) implementation

This thesis is segmented based on the three data sources for data analysis namely online social networks, smart phones and sensor-based networks (IoT). Using IoT based data this thesis proposes a scheme SACIFS(Smart aged care information forensics) for IoT forensic feature extraction and data analysis of elderly patients monitored in a nursing home environment. We developed our machine learning model based on Support Vector Machine to detect an incident and highlight relevant forensic artefacts. We used smart phone data in Digital Forensic Intelligence Analysis Cycle framework to identify strongly connected contacts during triage phase. We classified the contacts of a smart phone user with respect to their closeness, extracted from the data features from Facebook messenger. Moreover, utilizing publically available Online Social Network, we analysed multiple tools to collect, analyse and visualize data from Facebook pages and groups.

AUTHOR'S DECLARATION

Amber Umair declare that this thesis, submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Electrical and Data Engineering, Faculty of Engineering and Technology at the University of Technology Sydney, Australia, is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This document has not been submitted for qualifications at any other academic institution. This research is supported by the Australian Government Research Training Program.

Production Note:

SIGNATURE: Signature removed prior to publication.

[Amber Umair]

DATE: 28th December, 2019

PLACE: Sydney, Australia

DEDICATION

To my beloved Parents, my loving Husband Umair and my kids Abdullah and Anabia

ACKNOWLEDGMENTS

oremost I would like to thank Allah, the sustainer, who kept me going through the highs and lows of this journey and made it achievable for me. He undoubtly is the source of light for me in every aspect of life.

I would like to express my deepest gratitude to my supervisor, Professor Priyadarsi Nanda for accepting me into the Phd. program and giving me the honor of being one of his research students. Prof. Nanda's guidance, patience, and continuous support were essential to the completion of this thesis and to my formation as a researcher. His unmatched knowledge and invaluable feedback immensely helped me go forward in my research. I am greatly indebted to him for helping me get through the difficult times I had during my research. I feel very lucky to have worked with Prof. Nanda without whom this thesis would have only been a dream. I would like to thank my Co-supervisor Professor Xiangjian He, who always provided his valueable and expert feedback on my work. His support, co-operation, and generosity thoughout the research tenure is truely undeniable.

I also wish to thank all of my colleagues and friends from the School of Electrical and Data Engineering at the University of Technology Sydney. Specifically, I would like to thank Upasana, Ashish, Annie, Amjad and Nisha for creating a friendly atmosphere in the group and assisting me in whatever manner possible. Many thanks to all the administrative staff at the School of Electrical and Data Engineering, especially Thomas, Eryani and Aprillia who helped me with administrative issues. I also acknowledge Chandranath Adak (UTS) for providing this thesis template to all HDR students and easing the thesis preparation procedure.

I am eternally grateful to my loving and supportive husband, lovely kids, beloved parents and parents in law for their sacrifices, prayers, encouragements, and endless love. Without their everyday support, I would have not been able to reach this stage. I sincerely dedicate this thesis to them. Words cannot express my gratitude and appreciation for their unwavering support and kindness throughout this journey.

LIST OF PUBLICATIONS

RELATED TO THE THESIS:

- 1. Online Social Network Information Forensics Tools analysis and a survey of how cautious facbook users are.
 - A. Umair, P. Nanda and X. He, "Online Social Network Information Forensics: A Survey on Use of Various Tools and Determining How Cautious Facebook Users are?," 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney, NSW, 2017, pp. 1139-1144. doi: 10.1109/Trustcom/BigDataSE/ICESS.2017.364
- 2. User Relationship Classication of Facebook Messenger Mobile Data using WEKA Umair A., Nanda P., He X., Choo KK.R. (2018) User Relationship Classification of Facebook Messenger Mobile Data using WEKA. In: Au M. et al. (eds) Network and System Security. NSS 2018. Lecture Notes in Computer Science, vol 11058. Springer, Cham
- 3. SACIFS: Smart Aged Care Information Forensics System using Machine-Learning (To be submitted to a suitable journal)

TABLE OF CONTENTS

Li	st of	Public	cations	ix
Li	st of	Figure	es	xv
Li	st of	Tables	5	xvii
1	Intı	roduct	ion	1
	1.1	Introd	duction	. 1
	1.2	Resea	arch Core Components:	. 3
		1.2.1	Data Acquisition methods	. 3
		1.2.2	Research Work Scope:	. 9
		1.2.3	Research Challenges and Contribution:	. 9
		1.2.4	Thesis Organisation:	. 10
2	Lite	erature	e Review	13
3	Dig	ital so	cial information dissemination and analysis	19
	3.1	Backg	ground	. 20
	3.2	Onlin	e Social Network Tools Analysis	. 22
	3.3	Tools	Comparison	. 28
	3.4	Faceb	ook Usage Survey	. 29
	3.5	Concl	usion and Future Work	. 33
4	Mac	chine 1	Learning Based Relationship Classification and Forensics	;
	Ana	lysis		35
	4.1	Backg	ground	. 36
	4.2	Case	Studies	. 37
		4.2.1	Android Device Case Study	. 37
		4.2.2	iOS Device Case Study	. 40

TABLE OF CONTENTS

	4.3	Machi	ne Learning based Data Analysis With Weka	43			
		4.3.1	Option 1: Classifiers with K- fold cross validation(K=100, 150, 199):	46			
		4.3.2	Option 2: Classifiers With Split Data (50%, 66%, 80%)	47			
		4.3.3	Option 3: Classifiers With Test Data	47			
	4.4	Conclu	usion and Future Work	48			
5	SAC	CIFS: S	mart Aged Care Information Forensics System using Machine-				
	Lea	rning		49			
	5.1	Backg	round	50			
	5.2	Relate	ed work	52			
	5.3	Resea	rch Problem and Data Collection	55			
		5.3.1	Research Problem	55			
		5.3.2	Research Scenario and Assumptions	55			
		5.3.3	Feature Selection Module	57			
		5.3.4	Algorithm Implementation	57			
		5.3.5	Data Collection	57			
	5.4	Propos	sed Model and Research Methodology	58			
		5.4.1	Feature Selection Module	59			
		5.4.2	Training Module	62			
		5.4.3	Testing Module	63			
	5.5	Concl	usion	69			
6	Dee	ep Learning					
	6.1	Deep 1	Learning using Multilayer Perceptron (MLP) for relationship classi-				
		ficatio	n	72			
	6.2	Relate	ed Work	73			
	6.3	Data (Classification with MLP	74			
	6.4	Concl	usion	76			
7	Con	clusio	n and Future Works	79			
	7.1	Conclu	usions	79			
	7.2	Futur	e Research Directions	81			
A	App	endix		83			
	A.1			83			
	A.2			83			
	A .3			83			

Bibliography 85

LIST OF FIGURES

F	FIGURE Pa	age
1.1	Research Core Components	3
3.1	Relationship Strength Between Users On The Basis Of Emails Exchanged	22
3.2	Example For Elements Fetched With Social Snapshot Of Depth=2. [50]	23
3.3	Page Like Network By Gephi	26
3.4	Facebook Usage Device	30
3.5	Actions Of Users After Adding A New Friend	31
3.6	Check-In Option Usage	31
3.7	Awareness Of Users About Checking What Information Is Taken From Their	
	Profile	32
4.1	Case Study Test Bed Setup	38
4.2	GT-i9300 Memory Partitions	40
4.3	User's Birthday	41
4.4	User Contact's Birthday	41
4.5	Private Facebook Messages	41
4.6	Facebook Status Update And Comments	42
4.7	WIFI And Connectify Details	42
4.8	iPhone Analyzer	43
4.9	iPhone Analyzer Call Details	44
4.10	Random Tree And J48 Tree	46
5.1	Proposed Model	56
5.2	Proposed Model	59
5.3	Effect of Feature Selection On Algorithms	68
6.1	Single Neuron	73
6.2	MLP Performance Analysis With Varying Layers And Neurons	75

LIST OF FIGURES

6.3	Accuracy Of MLP w.r.t Layers And Neurons	76
6.4	MultiLayer Perceptron With Layers=4 And Neuron=4	76

LIST OF TABLES

	TABLE	Page
3.1	Comparison of Tools for Online Social Network Information Analysis	. 28
3.2	Group / Page Data Analysis	. 29
3.3	User Data Analysis	. 29
3.4	Survey Respondents' Occupation Status	. 30
3.5	Survey Respondents' Cautiousness	. 32
4.1	Experimental Setup	. 38
4.2	Attribute Details	. 45
4.3	Test Option 1: With K- fold Cross Validation(K=100, 150, 199)	. 47
4.4	Test Option 2: With Split Data (50%, 66%, 80%)	. 48
4.5	Test Option 3: With Test Data	. 48