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IPK Isopentenyl phosphate kinase

Irr Isopentenyl diphosphate

MCT 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase
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Thesis Abstract

Diatoms are a large group of eukaryotic microalgae that arose through secondary endosym-
biosis and are renowned for their wide ecological distribution. Diatoms have genetically
diversified their physiology, metabolism and natural products, while adapting to dynamic
environments. Among these metabolic products are an expanded repertoire of phytos-
terols, a class of essential terpenoids that are involved in the regulation of membrane dy-
namics, signalling, and membrane-bound protein functions in higher plants, algae, fungi,
and vertebrates. Phytosterols are considered a marker of eukaryotic life and have been used
to identify and date evolutionary events. They are also useful natural products due to their
wide range of biological applications. The principal therapeutic and nutraceutical proper-
ties of phytosterols include cholesterol-lowering, anti-inflammatory and anti-diabetic ac-
tivities. The global phytosterol market by 2013 was US$ 300 million and it is growing at
about 7-9% per annum. In order to meet this demand, diatom microalgae are proposed as
an alternative source of natural products.

The function, distribution and biosynthesis of sterols is well characterised and conserved
in model animal, plant and fungal organisms. However, the biological role and metabolism
of the high diversity of sterols produced by diatoms is not well understood. To establish
diatoms as a suitable platform for phytosterols production, in this PhD project we provide
insight into key aspects of sterol compounds from diatoms: i) The response of sterol levels
to changes in environmental conditions, ii) The reconstruction of the sterol biosynthesis
pathways of multiple diatom species, and iii) Genetic investigations and engineering of
diatoms to alter sterol product profiles.

In Chapter 1, I provide an updated review of the phytosterol repertoire in diatoms, in-
cluding the biology and regulation of sterol biosynthesis according to the latest primary
studies, and new genetic approaches by which the productive metabolisms of these organ-
isms can be further optimised.

In the first data chapter, Chapter 2, I investigated the occurrence of different sterol types
in twelve different diatom species, as well as the effect of temperature reduction and
changes in salinity on the sterol contents of three model diatoms. In Chapter 3, I exper-
imentally examined the sterol biosynthesis pathways of three divergent diatom species,
using empirical biochemical profiling and comparative ‘omics. This Chapter experimen-
tally explored hypotheses with regard to what extent the sterol biosynthesis pathways
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of three diatom species are conserved, and where each of these has diverged to produce
different phytosterols. This study introduces in-depth multi-species analyses in order to
compare and contrast the biosynthesis pathways of distantly related species. The results
expand our understanding of sterol biosynthesis in diatoms, including a new model for
cholesterol synthesis in diatoms.

Finally, in Chapter 4, I implemented and performed genetic engineering technologies to
test the extent to which natural sterol levels can be rationally manipulated in the diatoms
Thalassiosira pseudonana and Phaeodactylum tricornutum. Three different genetic targets were
chosen, including i) The overexpression of a rate-limiting enzyme in sterol biosynthesis,
HMGR, and ii) the expression of a N-terminal truncated HMGR and introduction of a het-
erologous squalene epoxidase enzyme from the microalgae Nannochloropsis oceanica.

This thesis is structured with one introduction chapter (Chapter 1), currently pub-
lished as a review, three data Chapters (Chapters 2 to 4), each written in the form of a
journal manuscript for peer-review and a conclusion Chapter (Chapter 5). At the time of
thesis submission, all chapters, except conclusion chapter, have been either published,
are under peer-review, or in final draft for submission.

The overarching aim of this research project was to investigate and optimise the produc-
tion of bioactive sterols in diatoms for commercial applications. This project first investi-
gated the diversity and differential production of sterols by several diatom species under
different growth conditions. Inhibitors of the key enzymes in the sterol metabolic path-
way will then be used to identify relevant intermediate compounds in the biosynthesis of
sterols. Finally, enzymes responsible for the synthesis of sterol compounds will be genet-
ically targeted for metabolic engineering of the selected diatom species. The specific aims
of this project were:

Aim 1: Characterise the sterols produced under different environmental

conditions by several diatoms strains.
Objectives:

o Identify the most abundant sterols produced by diatoms growing in enriched medium.

e Determine the sterols produced under different culture conditions.

Hy: Sterol production does not vary according to diatom strain and culture conditions.
H,: Sterol production varies according to diatom strain and culture conditions.

Aim 2: Identify enzymes and genes putatively involved in the sterol
biosynthesis pathway

Objectives:

XX
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e Identify target intermediate compounds in the metabolic pathway of sterols using
chemical inhibitors.

e Assemble a general sterol biosynthesis pathway to identify genetic targets for the
enhanced production of sterol compounds.

Hy: Inhibition of enzymes involved in the sterol metabolic pathway of diatoms does not
result in the production of phytosterol intermediate compounds

H): Sterol biosynthesis inhibitors will not differently affect the sterol profiles of different
diatom species

Aim 3: Genetically engineer diatoms to probe and optimise the
production of sterols

Objectives:
e Genetically over-express biosynthetic enzymes to increase production of sterols.

o Genetically up-regulate and/or disrupt native enzymes and/or regulatory genes to
alter or increase production of sterols.

Hy: It is not possible to transgenically alter the sterol products or amounts of diatoms;
the natural levels are strictly balanced and regulated

H,: Genetic modification of enzymes participating in the sterol pathway of diatoms leads
to alteration of sterol profiles.

In summary, this project addressed the following research questions:

e What is the effect of different growth conditions on the sterols produced by diatoms?

e Which are the principal intermediate compounds in the sterol metabolic pathway,
and which enzymes participate in their formation?

e Does genetic engineering or disruption of genes involved in sterol biosynthesis alter
the production of phytosterols by diatoms?

XX1
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