
 

 

Abstract— This paper encompasses a detailed review of 

state-of-the-art swarm-based algorithms with a focus on their 

applications along with a discussion on the merits and 

limitations of each algorithm. Further, a recently developed 

Advanced Particle Swarm Optimization (APSO) algorithm 

was compared with the different state-of-the-art-swarm-

based algorithms through solving an electromagnetic inverse 

problem. Results showed that the APSO algorithm has 

outperformed the other algorithms. This research provides a 

scientific guideline for the comparison of different swarm-

based algorithms and their utilization regarding specific 

applications. 
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I. INTRODUCTION  

Evolution has been the constant drive in the course of this 

planet’s history which has enabled many animal species to 

accomplish complicated tasks by learning from their 

environment, building resilience, and adapting.  Examples 

of such evolutionary capabilities are multiple but some 

specific ones which revolve around animal social behavior 

include flocks of birds, colonies of ants, and bees in their 

hives. These examples profoundly explain the concept of 

Swarm Intelligence (SI) and stigmergy, where the 

collective movement of these species improves their 

mechanism to explore complicated spaces, this is achieved 

without any central command and just by following local 
rules by the agents. The results from this technique help the 

swarm achieve much more as compared to the sum of 

individual actions. Swarm Intelligence (SI) has been the 

focal point of numerous researchers belonging to diverse 

backgrounds of research. SI is defined as “The emergent 

collective intelligence of groups of simple agents” [1]. SI is 

the cumulative intelligence demeanour of self-formulated 

and dispersed systems such as an artificial group of simple 

agents. Examples of SI include a) nest building, b) food 

hunting c) unified clustering and d) categorization of the 

insects. The two principal concepts that are essential 
parameters of the SI are self-management and labour 

allocation. Self-management is the capability of an order to 

independently allocate its resources in a useful manner. 

Eric et al. established that self-management depends upon 

four main characteristics i.e.: negative feedback, positive 

feedback, variations, and frequent communication[2]. The 

positive and negative feedbacks aid in maintaining 

equilibrium and expansions. Variations are, however, 

usually used only for haphazardness. Frequent 

communication takes place when swarms communicate 

amongst each other restricting to their search areas. The 

other important characteristic of SI is the allocation of 
labour, which is illustrated as carrying out many feasible 

and simple tasks by entities. This is how individuals 

grouped as working together through the swarm can deal 

with intricate problems. The remaining of the paper is 

structured as follows. In Section II the problems associated 

with the SI algorithms are examined, section III defines the 

parameters of an algorithm, section IV explained in detail 

various SI algorithms. In Section V, 23 test benchmark 

functions are used to evaluate the performance of the basic 

SI algorithms. An electromagnetic inverse problem is 
solved to demonstrate the performance of the APSO 

algorithm. Section VI summarizes the main points. 

II. ONGOING CHALLENGES IN SI COMPUTATION: 

 Despite the acclamations and accomplishments of SI, 

some issues remain unaddressed. The focus is on five of 

these issues: the disparity between practice and theory, 

categorization, regulating boundaries, large scale problems, 

and selection of algorithms, which are highlighted in this 

paper. 

A. The disparity between Practise and Theory: 

SI computation pertains to a substantial gap when it comes 

to considering practice and theory. The reason is still not 
understood why but metaheuristic algorithms, when 

applied to real-life problems run exquisitely.  However, 

excluding GA, PSO, and simulated annealing, favorable 

results about metaheuristic algorithms cannot be found. 

Subsequently, leading to disinclined advancement or real-

life application algorithms can be assessed in three crucial 

ways: dynamical systems, Markov chains, and complexity 

theory. Contrarily, metaheuristic algorithms, despite being 

less complex tend to resolve highly intricate problems [3].  

B. Categorizations and Terms used for Algorithms: 

Various approaches have been employed to categorize 
optimization techniques. The number of iterations and the 

number of agents’ dependent techniques are the two most 

widely used approaches. The second approach (number of 

agents dependent) is further be classified into types: 

multiple agents and a single agent.  Simulated Annealing 

Algorithm (SA) is an example of the single-agent method 

having a zigzag trajectory; however, Particle Swarm 

Optimization (PSO), ant colony, and Cockroach Swarm 

Optimization (CSW) are population-based techniques. 

These methods frequently have multiple agents, work 

together in a nonlinear method, and a subcategory of that is 

known as SI-based method. PSO and fish swarm, for 
instance, are swarm-based methods and stimulated by 

swarming behavior of birds, fish, and/or by SI in common. 

The other approach for algorithm classification is by 

classifying the main procedure of the algorithm i.e. how the 

algorithm works. For instance, deterministic algorithms 

produce the same output for a given input no matter how 

many times the computer executes the program.  Newton 
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Raphson and hill-climbing approaches are examples of a 

deterministic algorithm. Conversely, if randomness is 

introduced in the algorithm then it is known as the 

evolutionary, metaheuristic, heuristic, or stochastic 

method. For instance, PSO is a stochastic method or 

metaheuristic technique. The other term that has been used 

more frequently in classifying the algorithms is based on 

the mobility of the algorithm that is locally or globally 

search. Local search algorithms usually converge toward a 

local optimum, not essentially towards the global optimum, 
these methods are usually deterministic and have no 

capability of escaping the local optima [4]. Alternatively, 

for a given problem the usual practice is to find out the 

global optimum. Local search techniques are incapable to 

find out a global optimum, therefore, the global search 

methods are the best choice.  

C.  Impact on the parameters refinement :  

 Every metaheuristic method has certain characteristics for 

obtaining the optimal performance which ultimately 

defines the efficiency of the method. The most important 

issue is to set the appropriate value of these parameters 
along with the tuning of these parameters to get the 

maximum efficiency of the method. The fine-tuning of 

these parameters is a difficult optimization problem itself. 

To solve this issue, two types of methods are available in 

the literature. The first technique is to use a hit and trial 

method in which different values are tested one by one for 

the main parameters. Once an appropriate value is 

determined it is set for the more test by applying on the 

same problem or a larger scale problem. The second 

method is to use one technique to refine the parameters of 

the other technique. The dependency of one algorithm to 
another makes this approach an open research area for the 

researchers. 

D.  Need for Practical and Large-Scale Problems: 

For solving the real-world problems, SI techniques are 

effective. However, only for those applications having a 

very few or moderate numbers of design variables. From 

the current literature, it is revealed that the focus is only on 

problems having moderate or hundreds of design variables. 

It is hard to find any application with several hundred 

variables [4]. On the other hand, linear programming solves 

problems having around millions of design variables. As a 

result, it is still an open research area that how to use SI 
techniques on a large scale as well as practical problems. 

Along with that issue, another problem is the use of the 

methodology. Because one algorithm is effective for 

solving a smaller problem, but it fails to solve a large-scale 

problem. Other key parameters include computational cost, 

memory capacity, and computing resources that require 

special attention as well. 

E.  Correct selection of the Algorithms  

Despite all the literature available it is still hard to decide 

which algorithm gives the best result for a given problem. 

There are no clear standards or procedures to choose an 
algorithm, although there are detailed guidelines on how to 

use a method and what kinds of problems they can solve. 

As a result, the problem of choosing an algorithm is still 

there. 

III.  EXPLORATION OF THE INCANTATION FOR 

OPTIMIZATION 

A. Basic Principle of an Algorithm 

 Algorithms are mathematically a method that produces 

outputs for given inputs. For a given problem all the 

algorithms generate a solution “at+1” at the current iteration 

“t” from a known solution “at”. 

𝑎𝑡+1 = 𝛼(𝑎𝑡 , 𝑏(𝑡))                                                              (1) 

where at+1  is a new solution vector of at, for a given 

solution α is a nonlinear mapping, if the algorithm B has 

“n” parameters b(t)=(b1, b2,…, bn) which is time-dependent 

and can, therefore, be tuned.  

B.  What is the Best Algorithm?  

For an ideal algorithm, it is anticipated to get the best 
solution from the initially assumed solution in a single step. 

Therefore, the minimum computational effort is required. 

Alternatively, it can be said that the best method is the one 

that can give the solution of a given problem in a single 

iteration only. The question arises here that whether any of 

such a method exists already. The answer is yes for a very 

precise kind of a problem that is quadratic convex 

problems. Newton Raphson (NR) approach is used for root 

finding. NR is used for finding the roots of 𝑓(𝑥)  =  0. For 

any maximize or minimize the problem the function has to 

fulfill the main condition𝑓′(𝑥)  =  0, so it became an 

optimization problem for finding the roots of 𝑓′(𝑥). NR 

technique gives the following iteration formula:  

𝑥𝑖+1 = 𝑥𝑖 −
𝑓′(𝑥𝑖)

𝑓′′(𝑥𝑖)
                                                                (2) 

NR is an ideal method for solving the quadratic functions 
that are also convex. However, the real-world problems are 

neither quadratic nor convex they are highly nonlinear. 

Therefore, the search for finding the best algorithm is still 

attracting researchers.  

C. Features of an  Algorithm: 

There are two main properties of an algorithm which are 

discussed below: 

a) Randomization Approach  

One of the most effective methods is to randomly initialize 

all the population for the metaheuristic algorithms. This 

approach is easy to implement and proficient for most of 

the algorithms. Besides that, randomness can be used to the 
different components of the algorithm and several 

probability distributions can be used such as Levy 

distributions, Gaussian, and uniform distributions. 

Randomization is effective for global search methods. 

Understandably, it is still an open debate that how to 

introduce the randomness in an algorithm without reducing 

the convergence rate of the algorithm.  

b) Diversification and Intensification  

For any metaheuristic algorithm, diversification and 

intensification are the two main elements. Diversification 

is also known as exploration aims to discover the search 
area more comprehensively and support to produce varied 

solutions. Intensification is also known as exploitation, and 



 

 

it helps to obtain improved solutions by using the local 

information in the search process. Determining an 

equilibrium between exploration and exploitation is the key 

factor for any metaheuristic algorithm. Since an increase in 

the exploration helps the algorithm to convergence faster 

but it leads to the premature convergence to a locally 

optimal point or even a wrong solution. On the contrary, an 

increase in the exploitation will enhance the probability of 

finding the global solution; however, it reduces the 

convergence rate. Therefore, a steady transition between 
exploitation and exploration is required.  Moreover, only 

exploration and exploitation are not sufficient. An 

appropriate strategy is needed during the search process to 

select the best solutions. “Survival of the fittest” (i.e. to 

keep updating the recent best solution obtained so far) is 

the most common method. Moreover, certain elitism is 

generally utilized to confirm that the best solutions are not 

lost and should be passed on to the next generations. 

IV. EVOLUTIONARY COMPUTATION (EC) 

EC is a part of computational intelligence that is dependent 

on the ideas and theories of biological evolution. Generally, 
EC comprises of Evolutionary Algorithms (EAs), SI, and 

other methods. EC methods perform well in approximating 

solutions in various kinds of problems, due to their 

capability of not creating any supposition about the basic 

fitness landscape. For that reason, these methods have 

shown better performance in different areas that include 

industrial applications, cutting- edge technology, and 

academic research [5]. Figure 1 shows the hierarchical 

distribution of nature-inspired algorithms. 

A. Evolutionary Algorithms (EA) 

EAs are the subcategory of EC that are population-based 

metaheuristic optimization techniques. EA algorithms 

utilize a few procedures depends on biological evolution 

such as mutation, recombination, selection, and 

reproduction. Every solution in the EA algorithm for the 

given optimization problem is denoted by a single agent in 

the whole population. The fitness of each agent is evaluated 

by a function. Through genetic operators and selection 

procedure evolution of the population is performed. These 

operators are cross over, reproduction and mutation. EAs 

are classified into four main types. These are as under:   

1) Genetic Algorithms(GA): 

In the early 1970’s Holland presented a novel algorithm 
called a Genetic Algorithm (GA) [6]. The algorithm is 

founded on Darwin’s theory of survival of the fittest. 

Through utilizing crossover and mutation genetic operators 

along with the Darwin principle of natural selection, the 

population having a related fitness value is iteratively 

determined. GA is famous because it can solve complex 

optimization problems without using the initial values. 

Despite having pros it has a few cons as well, for instance, 

a slow rate of convergence and even non-convergence. The 

probabilities of the crossover and mutation are the 

significant parameters that control the GA’s performance. 
Larger values of the crossover probability resulted in a 

faster rate of the production of the new individuals. 

Extremely large values can destroy the genetic model as 

well as the individuals’ structure with high fitness that leads 

to the slow searching process. In contrast, small values of 

the crossover probability help in the production of new 

individuals. 

2) Genetic Programming (GP): 

GP is an evolutionary technique that expands the use of 

genetic algorithms to permit the exploration of the space 

of computer programs [7]. Similar to the other 
evolutionary algorithms, it works by defining fitness 

criteria and then using this measure to develop the 

population of the agents by imitating the fundamental 

concepts of Darwinian evolution. By using an iterative 

approach it breeds the solutions to problems that involve 

the probabilistic selection of the fittest solutions and their 

difference utilizing a set of genetic operators, generally 

mutation and crossover. The key variance between GA 

and GP is that the population is represented as an array in 

GA whereas, each agent is a computer program in GP. GP 

has been effectively used on different real-world 

problems without telling the computers how to solve 

them. 

3) Evolutionary Strategies (ES):  

ES is similar to the evolutionary methods and applied in 

the continuous search domain for black-box optimization 

problems. Based on the biological evolution, their unique 

creation is reliant on the usage of recombination, 

mutation, and selection in populations of candidate 

solutions. An algorithmic perspective shows that ES is the 

optimization technique that stochastically samples new 

candidate solutions, usually from a multivariate normal 

probability distribution [8].   

4) Evolutionary Programming (EP): 

 EP is analogous to GP, however, the program structure is 

fixed. In EP a population of chromosomes is utilized to 

Figure 1 Hierarchy of nature inspired algorithms. 



 

 

develop finite-state machines (FSMs) – referred to as a 

program [9]. Till now, the sequences of symbols that are 

detected are provided to every FSM. Every agent 

(individual) is then assessed by its capability of guessing 

future symbols. EP uses fitness values to choose agents 

(individuals) similar to other EAs and then uses 

evolutionary operators to explore new solutions. EP is 

dissimilar to GA in the sense that it uses two evolutionary 

operators, which are selection operators and changes by the 

use of mutation. Original EP does not use the 

recombination operators [10]. 

B. SI Based Techniques:  

Several methods are constructed on the performance of 

different natural swarms that are different kinds of birds, 

ants, bees, fireflies, fishes, spiders, wolf, and many others. 

The common characteristics of all these methods are the 

same as they all are population-based and are interactive 

methods. On the other hand, their searching criteria are 

different. A few of the most famous SI algorithms are 

discussed and summarized in Table I. 

1) Ant Colony Optimization 

In 1992, during his Ph.D. studies, Dorigo proposed a new 

algorithm based on the foraging behavior of ants which is 

now known as the Ant Colony Optimization (ACO) 

algorithm [11]. ACO comprises of four key parts (ant 

daemon action, ants, decentralized control, and 

pheromone) that give support to the whole system. Since 

this method is inspired by the ant system, ants are the 

virtual agents that are used to imitate the exploitation and 

exploration of the search area. Ants while moving over the 

paths drop a chemical substance known as a pheromone in 

the real world. Because of the evaporation, the intensity of 
this material varies over time. ACO uses the same 

phenomena, where ants spread this substance while moving 

in the search area and the amounts of this chemical show 

the strength of the trail. The criteria for selecting the 

direction based on the path by the ants are depending on the 

higher trail intensity. This path intensity is regarded as the 

system’s global memory [12]. Daemon's actions are used to 

collect global information. The single ant does not be able 

to perform this action; therefore, it uses this information to 

decide if more pheromone is added so that convergence of 

the algorithm will be increased. Decentralized Control 

System (DCS) is used to make the ACO robust and flexible 

within a dynamic environment. The significance of using a 

DCS is that in case of any ant disappear and system failure 

it makes the ACO more flexible. All these actions give a 

supportive and mutual collaboration which helps to identify 

the shortest routes [13]. The process of choosing the 

shortest path is highlighted in Figs 2(a-c) [14], which shows 

the early stage, the middle phase, and the finishing result of 

the algorithm.  

Fig 2(a) shows the early scenario at the beginning of the 

ACO when an ant moves back and forth from its nest and 

the source. Fig 2(b) shows that over the iterations when the 

ants explore several probable routes between nest and 

source. The best route chosen by the ants due to the higher 

intensity of the pheromone is shown in fig 2(c). To find out 

the probability from the present position to the updated 

position (3) is used.  

𝑝(𝑖,𝑗)
𝑘 (𝑡) = {

([𝜏𝑖𝑗(𝑡)]
𝛼
.[𝜂𝑖𝑗]

𝛽

(∑ [𝜏𝑖𝑗(𝑡)]
𝛼
.[𝜂𝑖𝑗]

𝛽
)𝑘𝜖𝑗𝑘             

0,             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}                                (3) 

Where Jk is the nodes that the ant is permitted to move back 

and forth from node i. p (i, j) is the probability of going from 

node i to node j. At time t, τij (t) denotes the quantity of 

unevaporated pheromone between node i and node j, ηij 

gives to the visibility between node i and node j. β and α 
are used to manage the impact of τij (t) and ηij, whether β” 

is having a larger value the ants searching behavior is 

dependent on its knowledge or visibility. If “α” has, a larger 

value than the ants searching is dependent on the 

pheromone quantity. To preclude the ants from traveling to 

the same nodes, repeatedly, they have a taboo list. Since, 

pheromones are the key factor in ACO, which help the ants 

to choose the path of having a higher intensity, the relation 

for depositing the pheromone can be expressed as: 

Δ𝜏𝑖𝑗
𝑘(𝑡) = {

𝑄

𝐿𝑘
(𝑡)

 0,     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                           (4) 

Where k denotes any specific ant, L is the length of the route 

(i.e. the cost of the ant travel), Q is a constant, and t 

represents the iterations. At iteration t, the value of this 

factor highlights the pheromone rate that the ant moves 

between node i and j. For all the routes that are not chosen 

the pheromone, the deposition value is zero [15]. The 

pheromone evaporation rate is one of the other major 

factors in ACO. Which is used to find out the exploitation 

and exploration behavior of the ants? Greater values of this 

factor lead to exploration whereas the lower values cause 

exploitation. If this factor has a very low value than the ants 
are failed to get the optimal path, on the contrary, very high 

value causes the ants to get lost [16]. The evaporating factor 

is expressed as:  

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝑝). 𝜏(𝑖𝑗)(𝑡) + ∑ [Δ𝜏𝑖𝑗
𝑘(𝑡)]𝑚

𝑘=1                (5) 

where p is the pheromone evaporation rate and m is the 

number of ants in the system. 

ACO has many advantages as compared to other EC 

methods some of them are highlighted as under [17]: 

Figure 2 Path selection criteria of ants in ACO  



 

 

 It helps to find the optimal solution quickly 
because of positive feedback.  

 Distributed computation helps to avoid premature 
convergence.  

 Collective interaction of a population of agents.  

On the other hand, ACO has several disadvantages as well 

these are as under:  

 ACO has a slower convergence in comparison 
with other heuristic methods. 

 The absence of the centralized processor prevents 
the ants to move towards good solutions.  

 The time of convergence is ambiguous. 

 For the problems having a larger search area, ACO 

shows poor performance. 

After the introduction of the standard ACO, it became an area 

of interest among researchers and scientists. Many versions of 
the ACO have been presented so far to expand the efficiency 

of the standard method. The first modification suggested by 
Dorigo et.al [18] entailed modification of three important 

characteristics of the ACO  (local search procedures, 
pheromone, and state transition rule) they named it as Ant 

Colony System (ACS). In this system, for updating the 
pheromone a global update strategy is used so that the ants 

focus on the searching areas having the best solution. This 
amendment intents to better the convergence of the algorithm.  

The state transition rule involves the second modification, 
which differs from ACO. The stated probability “q0” In ACS, 

whereas has to choose (behavior used by the ant) where “q0” 
is commonly set to 0.9 and compare to a value of q (0 ≤ q ≤ 1). 

In case of a lower value of q than this range, the exploitation 
is used and vice versa. Local search procedures are performed 

through local optimization heuristic-based edge exchange 
methods, for instance, 2-opt, 3-opt, or Lin-Kernighan is used 

for. The method is used on each solution produced by an ant 
to achieve its local minima. This new improved ACO is then 

applied to the TSP problem for validating its performance.  
The other most prominent version of ACO is Max-Min Ant 

System. In 2000, Hoos et.al proposed this variant of ACO [19]. 

They presented three modifications in ACO; first, they 
proposed an interval [τmin, τmax] to bounds the pheromone trail 

values. Secondly, the pheromone trails values are set to the 
maximum to facilitate the exploration. In the last variation, 

only one ant is permitted to add pheromone that helps to 
exploit the best solutions. Two techniques are used to add the 

pheromone it is by either a global- best approach or an 
iteration-best approach. In the global best method, the ants 

with the best solution in the same iteration can add the 
pheromone without considering the other ants. In the iteration-

best method, for every iteration, the ant with the best solution 
only adds the pheromone. 

A number of the optimization problems have been solved by 
the ACO to show its proficiency in the field of 

Telecommunication [20-22], Robotics [23-25], Railway 
Engineering [26, 27], Solving Travel Salesman Problem (TSP) 

[28-30], Image processing[31, 32], Finance [33, 34], Biology 
[35, 36], etc.   

2) Artificial Bee Colony 

Artificial Bee Colony (ABC) was introduced by 

Dervis in 2005 and is the most current SI algorithm 

[37]. The efficiency of the ABC was analyzed in 2007 

when compared with other SI techniques [38]. A 

similar study was also conducted in 2009 [39] by using 

different benchmark functions and it is found that the 

ABC method outperformed other methods. ABC is 

stirred by the conduct of honeybees for finding the food 

sources, called nectar, and by sharing the food source 

information with other bees. This method is easy to 

implement similar to PSO and DE [40]. This method 

consists of the agents (bees) which are classified into 

three categories: a) the scout bee b) the employed bee 
c) the onlooker bee. These bees have several duties 

allocated to execute the algorithm. The duties of the 

employed bees are to discover the food source and to 

memorize the food source location information. The 

number of employed bees is like the number of food 

sources as one food source is looked after by each 

employed bee. The employed bees then pass on the 

information of the food source to the onlooker bees in 

the hive. The food source is then selected to collect the 

nectar. Finally, the scout bee is responsible for looking 

for other food sources and the new nectar. 

The steps for the ABC algorithms are as under:  

Initialization (Stage I): The controlling parameters are 

adjusted and scout bees initialized the vectors of the 

population of the food source. Every vector contains n 

variables that are optimized, to minimize the fitness 

function. For the initialization stage, the equation used is 

defined as: 

𝑥𝑖 = 𝑙𝑖 + 𝑟𝑎𝑛𝑑 × (𝑢𝑖 − 𝑙𝑖)                                        (6) 

Where rand is the random number from (0-1), ui and li 
are the upper and lower bound of xi. 

Employed bees (Stage II): In this part of the algorithm, 
there is an extensive search is conducted around the 

neighborhood for the new food source so more nectar is 

gathered. After finding the food source its fitness is 

calculated.  To generate a new food position from the 

previous in the memory following equation is used. 

 𝑣𝑖 = 𝑥𝑖 +Ø𝑖(𝑥𝑖 − 𝑥𝑗)                                                       (7) 

where Øi is a random number between the bounds [-a, a] 

and xj is a randomly selected food source. After producing a 
new its fitness is calculated. a greedy selection is applied 

between xj and vj. For the smaller difference between (𝑥𝑖 − 𝑥𝑗) 

exploitation occur and if it’s large then the exploration takes 
place.  To calculate the fitness value following relationship is 

used: 

𝑓𝑖𝑡𝑖(𝑥𝑖) = {

1

1+𝑓𝑖(𝑥𝑖)
    𝑖𝑓 𝑓𝑖(𝑥𝑖) ≥ 0

1 + 𝑎𝑏𝑠(𝑓𝑖(𝑥𝑖))  𝑖𝑓 𝑓𝑖(𝑥𝑖) < 0
                 (8) 

where fi is the objective function value. 

Onlooker Bees(Stage III): Based on the information 

given by the employed bees and probability calculated 

by using the fitness value the onlooker bees select their 

food sources. pi can be calculated as : 

𝑝𝑖 =
𝑓𝑖𝑡𝑖(𝑥𝑖)

∑ 𝑓𝑖𝑡𝑖(𝑥𝑖)
𝑆𝑁
𝑖=1

                                                                 (9) 



 

 

Scout Bees (Stage IV): The scout bees are unemployed 
bees that randomly select their food sources. If the fitness 
values of the employed bees are not getting better over a 
fixed number of iterations known as abandonment criterion 
or limit, they turned in to the scout bees and their food 
sources have been deserted.

 

Stage V: The best position and its fitness value are 

memorized.
 

Stopping Criteria Check (Stage VI): If the stopping 
criteria are achieved, the program stops, if not then it goes 

back to stage II and redo till the stopping condition is 
obtained. 

There are many pros of ABC these include simple 
implementation, robust and adaptable. As it needs two 

controlling parameters only it is considered as the highly 
flexible algorithm, due to its flexibility as compared to the 

other SI methods it is used for solving many real-world 
optimization problems [41]. A few drawbacks of the ABC 

are; slow when used in serial processing because a lot of 

computation is required for fitness function assessment 
[42]. 

Despite the fact, that ABC is a new algorithm many versions 
of the standard algorithm have already been published and 

available in the literature. The most notable is the Modified 
ABC proposed by his creator in which they have introduced 

two new controlling factors perturbation frequency and 
magnitude to solve benchmark functions [43], the other 

variant is proposed by Liu et.al in which they introduced new 
search strategy and elective probability P. The new 

mechanism helps to omit scout bee stage and probabilistic 
selection scheme. The method is compared with two other 

ABC based techniques by using 28 benchmark functions [44]. 

A number of the problems have been solved by ABC in 

different areas these include Communication [45-47], 

TSP [48, 49], Power Engineering [50, 51], Health care 
[52-54], Management [55, 56], Image processing [57, 

58], and many other applications. 

3) Cuckoo Search Algorithm 

Yang et.al have developed a novel algorithm in 2009 called 
the Cuckoo Search Algorithm (CSA)[59]. The algorithm is 

relying on the cuckoo species brood parasite behavior along with 
the levy flight characteristics of fruit flies and birds. Three 

simple rules are followed for the implementation of the CSA 

algorithm.  

1. In every iteration, only one egg is allowed to be laid 

and the nest is selected randomly. 

2. Only the good nests and eggs are allowed to take into 

the next stage.  

3. The host bird explored the nests with a probability pa ∈ 

[0, 1] in which the egg is present and the host nests are 

in a fixed amount. Depending on the value the host bird 
either build a new nest, throw the egg or simply move 

from the nest.  

To make it simple, the third rule is estimated by the fraction pa 

of the n nests and are replaced by new nests. The complexity 
of the algorithm can be increased by adding more eggs in the nest. 

Different steps involved based on the three key factors in CSA are as 

follows:  

A levy flight is performed to generate a new position for the cuckoo 

indexed m: 

𝑥𝑚(𝑡 + 1) = 𝑥𝑚(𝑡) + 𝛼 ⊕ 𝐿𝑒𝑣𝑦 (𝜆)                                (10) 

where 𝛼 is the step size, 𝛼= 1 in most cases. The product ⊕ 

is an entry wise multiplication analogous to the approach used 
in PSO but its more effective due to the levy flight for 

exploring the search area as the step size is bigger. The Levy 
flight necessarily gives a random walk while the random step 

length is taken from a Levy distribution 

𝐿𝑒𝑣𝑦~𝜇 = 𝑡−𝜆 , (1 < 𝜆 ≤ 3)                                          (11) 

(11) has an infinite mean and variance. To fulfill the 
requirement of the step length distribution, it is essential to 

achieved steps of a cuckoo from a random walk process. 
The new nests at the new locations can be made by 

discarding the worst net fraction, pa. Based on the 

difference or the similarity of the host eggs the mixing of 
the solution is done by using random permutation. The step 

size, 𝛼, is initialized with a bigger value and it reduces 

linearly over the iterations. The reason of linearly 

decreasing the step size is allowing the population to 
converge towards the optimal solution in the last stage. The 

modification done by Deb et.al [60] in (10) is defined as: 

xm(t + 1) = xm(t) + α⊕ Levy (λ)~0.01
𝜇

|𝑣|
1
𝜆

(𝑥𝑛(𝑡) −

𝑥𝑚(𝑡))                                                                                            (12)                                                              

where u and v are taken from a normal distribution that is 

𝜇~𝑁(0, 𝜎𝜇
2), 𝑣~𝑁(0, σμ

2),                                                                  (13) 

where, 

𝜎𝜇 = (
(𝛾(1+𝜆) sin(

𝜋𝜆

2
))

𝛾(
(1+𝜆)

2
)𝜆2

(𝜆−1)
2

)

1

𝜆

         ,        𝜎𝑣 = 1                                                  (14)  

𝛾 is the standard gamma function. If term (𝑥𝑛(𝑡) − 𝑥𝑚(𝑡)) 
has a smaller difference, then exploitation occurs otherwise 

for the large differences it will facilitate the exploration.  
With the multimodal functions, CSA gives better 

performance because it needs only a few parameters to 
control than the other SI techniques [61]. Some of the 

variants of the CSA are: In 2011, Hassan et.al [62] 
presented a Modified Cuckoo Search (MCS) algorithm to 

improve the convergence of the algorithm. The amendment 
for this improved version consists of the exchange of 

information between the top solutions (eggs). To validate 
its performance and compare it with other algorithms, a 

different benchmark is used. Quantum Inspired Cuckoo 
Search Algorithm (QICSA) is another improved version of 

CSA presented in 2012 by Abdesslem et.al [63]. The 
improved variant uses the concepts of quantum computing 

and merged it with CSA. The primary purpose is to increase 
the stability and convergence of the method. 

CSA is also used in many application these includes   Power 
Engineering [64, 65], Telecommunication [66, 67], 

Robotics [68], TSP problem [69], Image processing [70, 

71], embedded systems [72], and etc. 

4) Glow-worm Swarm Optimization 

Ghose et.al in 2009 proposed a novel algorithm known as 

Glowworm Swarm Optimization (GSO), which shares some 

properties of ABC and PSO for solving multimodal 

functions [73, 74].  The algorithm is based on the agents 

(glow-worms) that carry with them a minescence quantity 

called luciferin. The fitness of their current position is 

https://www.researchgate.net/profile/Abdesslem_Layeb


 

 

calculated by the given objective function, which they 

transformed into the luciferin value and broadcast it to the 

neighboring worms. Three steps in which the GSO works 

are luciferin level, neighborhood range update, and update 

glow-worm movement. The glow-worm is initialized 

randomly and over the iteration, the above three stages are 

repeated until the stopping condition is met. The fitness of 

the current position of the glow-worm is determined for 

updating the luciferin level by the following expression: 

 𝑙𝑎(𝑡 + 1) = (1 − 𝑝). 𝑙𝑎(𝑡 − 1) + 𝛾𝐽(𝑥𝑎(𝑡 + 1))          (15) 

where 𝛾is the luciferin enhancement constant, la is the 

luciferin level of the glow-worm “a” at time t, p is 

luciferin decay constant, and J(xa(t)) is the value of the 

fitness function of glow-worm “a” position.  

By using a probabilistic strategy during the movement 

phase, every glow-worm moves towards its neighbor 

having a higher luciferin value. The probability of its 

movement towards its neighboring glow-worm is 

calculated as: 

𝑝𝑎𝑏(𝑡) =
𝑙𝑏(𝑡)−𝑙𝑎(𝑡)

∑ 𝑙𝑘(𝑡)−𝑙𝑎(𝑡)𝑘∈𝑁𝑖(𝑡)
                                                     (16) 

𝑤ℎ𝑒𝑟𝑒 𝑏 ∈  𝑁𝑎(𝑡), 𝑁𝑎(𝑡)  =  {𝑏 ∶  𝑑𝑎𝑏 (𝑡)  <  𝑟𝑎
𝑑(𝑡); 𝑙𝑎(𝑡)  <

𝑙𝑏(𝑡)} is the set of neighbors of glow-worm “a” at time t. 

The position of the glow-worm in the searching area can 

be calculated as : 

 𝑥𝑎(𝑡 + 1) = 𝑥𝑎(𝑡) + 𝑠 (
𝑥𝑏(𝑡)−𝑥𝑎(𝑡)

‖𝑥𝑏(𝑡)−𝑥𝑎(𝑡)‖
)                          (17) 

where “s” is the step size, and ||.|| is Euclidean norm 
operator. For the smaller difference value of the term 

(𝑥𝑏(𝑡) − 𝑥𝑎(𝑡)) resulted in exploitation, however, larger 

values will facilitate the exploration behavior. In the next 

phase, every glow-worm tries to find out its neighbors. Each 
glow-worm decides to choose its neighbor depending upon 

the condition of having the shorter distance between as 
compared to the neighborhood range rm (t), the other criteria 

which take into account are that glow-worm a is brighter as 
compared to the glow-worm b. But, to choose among many 

neighbors, then the neighbor is chosen by using the 

probability equation. 

𝑝𝑎𝑏(𝑡) =
𝑙𝑏(𝑡)−𝑙𝑎(𝑡)

∑ (𝑙𝑘(𝑡)−𝑙𝑎(𝑡))𝑘∈𝑁𝑎(𝑡)
                                            (18) 

Finally, to restrict the range of communication in a group 

of glow-worms let’s assume that if the initial range of 

every glow-worm is (𝑟𝑑
𝑎 = 0 = 𝑟0), the neighborhood range 

rm(t) is defined as: 

𝑟𝑑
𝑎(𝑡 + 1) = min {𝑟𝑠,max{0, 𝑟𝑑

𝑎(𝑡) + 𝛽(𝑛𝑡 − |𝑁𝑎(𝑡)|)}}    (19) 

The values of these parameters are set as ρ=0.4 ,γ=0.6, 

s=0.03,β=0.08, r0=rs and nt=5. where rs is a sensor range.  

Some of the suggestions to modify the GSO algorithm, 

in general, are as under: 
1) The range of the neighborhood can be an increase so 

that more glow-worms can be included. After the fitness 
evaluation of each glow-worm, all the glow-worms 

move towards the glow-worm (having the best solution). 
In this way, the proficiency of the algorithm increases in 

the exploitation phase, as more glow-worms are within 
range of the best solution.  

2) To decrease the computational cost of the GSO and 
increase the rate of convergence, there will be a small 

number of glow-worms within the neighborhood range.  

Like other methods, GSO has many modified versions as 

well that are proposed to ameliorate its performance. For 

instance, Bin et al. [75]  proposed two approaches to 

the movement stage of the GSO. The first 
modification is the greedy acceptance criteria in 

which every glow-worm updates its position one 

dimension by one dimension. The other amendment is 

introducing new movement formulas that are inspired 

by the PSO and ABC algorithms. This modification 

helps to enhance the accuracy and convergence of the 

GSO method. A modified version of GSO is proposed 

in [76], which introduced some modifications to adjust 

the step size, the local decision, and the selection 

approach. The standard GSO while solving the multi-

peak benchmark functions, the convergence rate is 

slow, and the accuracy is not high to solve the 
drawback Peng et al. presented a modified version. 

They introduced a fluorescent factor that adaptively 

fine-tunes the step length of the algorithm [77]. 

Applications related to different fields such as Image 

processing [78-80], Communication [81, 82], 

Robotics [83, 84], and Power Engineering [85-87] 

used the GSO algorithm. 

5) Particle Swarm Optimization Algorithm  

In 1995, Kennedy and Eberhart that are inspired by the 

social behavior of the birds present the PSO algorithm. 

Similarly, to the flock of birds, the method comprises the 
number of agents to form a swarm. Each agent in the search 

area is looking for an optimal solution. The description of 

all the standard and the modified PSO algorithm are 

presented as under: 

A. Standard Particle Swarm Optimization Algorithm 

(SPSO): 

In the beginning, a swarm of agents is created with random 
positions and velocities. The evaluation of every agent's fitness 
is made by a given benchmark function. After each iteration, 
the position for the next function assessment, and the velocity 
of the particles is calculated by (1) and (2). As a result, if the 
position found out is better as compared to the last best position 
is stored in the memory. vmax is defined to control the 
unnecessary movement of the agents outside the search space. 
If the velocity goes above vmax it is set to zero.  Each particle 
moves in the search area for finding the best solution. The 
position of each particle is defined as   

𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡) + 𝑣𝑖                                                       (20) 

The knowledge of every particle depends upon its own 
experience and the surrounding particle’s information. These 
elements have equivalent importance and might be changed 
based upon particles decision so the velocity equation will be  

𝑣𝑖(𝑡 + 1) = 𝑣𝑖 +𝑅1(𝑃 𝑖
𝑝
− 𝑥𝑖) + 𝑅2(𝑃𝑔 − 𝑥𝑖)              (21) 

where 

𝑃𝑝 = [𝑃1
𝑝, 𝑃2

𝑝, 𝑃3
𝑝, 𝑃𝐷

𝑝] 

𝑃𝑔 = [𝑃𝑔1, 𝑃𝑔2, 𝑃𝑔3, 𝑃𝑔𝐷] 

i=1, 2, 3… D. 



 

 

Pg is the global best position, the vi = {v1, v2... vn} is the 
velocity of the particles, R is the random number [0-1], D is 

the dimension of the search space D ∈ {1, 2, 3….D, Pi is the 

local best, and xi is the current position. Each particle is 

assessed by a given fitness function. The motivation of the 
PSO is to reduce the cost values of the particles iteratively for 

the given fitness function. The particles progress from iteration 
t to t + 1 by iterating the process. 

B. SPSO with Constriction factor and Inertial Weight: 

Shi et al. have first introduced the inertial weight “w” and 

constriction factor “χ” [88]. By introducing these two 

parameters the (2) will be changed to  

𝑣𝑖 = 𝜒. {𝑤. 𝑣𝑖 + 𝐶1𝑅1(𝑃 𝑖
𝑝 − 𝑥𝑖) + 𝐶2𝑅2(𝑃𝑔 − 𝑥𝑖)}            (22) 

Where χ is the constriction factor, w is the inertial weight, 

and C1, C2 are two acceleration constants numbers.  

The first term in (22) represents the Inertia component it is 

also called the momentum of habit. It supports the particle to 
move in the same way in which it has been traveling. The 

second term stated as the cognitive part. This part is the distance 
that a particle is from the best solution found by itself. It shows 

the propensity of particles’ to come back to environments 
where they experienced their best performance. The third term 

denoted as the social part. It shows the distance that a particle 

is from the best position found by its neighborhood. It 
characterizes the inclination of particles to follow the success 

of other agents. 
The new parameter i.e. inertial weight used to find out the 

impact of the previous velocity on the current update. Higher 
values of the ‘w” assist in global search while lesser values 

facilitate the local search. The inertial weight “w” is decreased 
linearly from the current iteration to the later iteration. Factors 

i.e. wmax and wmin are used to control inertial weight. The 
relationship is used as follows: 

𝑤 = 𝑤𝑚𝑎𝑥 − (
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑇
) ∗ 𝑡                                                      (23)  

where T is the total number of iterations and t is the current 
iteration. The constriction factor has also been presented in 
[89]. (24) calculates the constriction factor as 

𝜒 =
2

𝛷−2+√𝛷2−4∗𝛷 
                                                                 (24)  

where 𝜱=4.1, constriction factor is used to adjust the 
inertial weight by the following relation.  

𝑤 = 𝜒 ∗ (0.0005 +𝑤 ∗ (
𝑇−(𝑡−30)

𝑇
))                                        (25) 

The agent velocity is restricted by the highest value of vmax 
in (22), vmax is used to find out what areas are needed to be 
explored between the current and the target position. If the 
value of vmax is very high than the particles move unsteadily and 
will go distant to the good solution; conversely, if the value is 
small it restricts the mobility of the particle and they do not 
move towards the best solution.  

To enhance the efficiency of the PSO algorithm in general 
the following steps must be considered: 

 As the population is a key parameter, the larger 

population resulted in the accurate and swift convergence.  

 Maintaining a trade-off between exploration and 

exploitation. The higher exploration resulted in exploring the 

new searching areas, whereas, exploitation in the final phase 

helps to confine the search.  

 Having a swarm of particles within the swarm (sub 

swarm) is another common approach. This approach is 

effective to solve the multi-objective problems by 

allocating tasks to each sub-swarm [90]. 

 Modifying the velocity equation of the PSO that is 

dynamic velocity adjustment. This technique moves the 

particles in various directions resulted in fast convergence. 

There are many advantages and a few disadvantages of the 

PSO algorithm these include simple implementation, 
efficient global searching, few parameters settings, and 

design variables that can be modified. PSO has a propensity 
to trapped in local minima resulted in a premature 

convergence and weak exploitation in the final stage. Over 
the years, PSO has been used in many areas these include in 

the field of Communication [91-93], Robotics [94-96], 
Image processing [97-99], Electrical [100-102], 

Management [103, 104], and many others. 

6) Bat Algorithm: 

In 2010 Xin proposed a novel algorithm known as the Bat 
algorithm [105]. The algorithm is based on the echolocation 

behavior of microbats. Microbats release a sound wave a kind 
of sonar and listen to it when reflected from the nearby objects. 

They use this approach to prevent hurdles, find out prey and 
locate their roosting crevices in the dark. Based on the type of 

micro-bats each produces a different type of pulse and can 
correspond to their correlated with their hunting scheme. Few 

of them produce constant frequency waves for echolocation, on 

the other hand, the majority of them generate low-frequency 

pulse [106]. The approach is based on the three main principles.  

a) They all use the echolocation approach to observe the 
distance and remarkably, they find out the difference between 

prey/food and the obstacles.  

b) Every bat has a frequency range [fmin, fmax] and moves with a 

velocity vi at position xi randomly. They vary their loudness A0 
and emission rate r ϵ [0, 1] to find out prey based on the 

closeness of their target.  

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡                                                                       (26) 

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) 𝜖                                                (27) 

𝑣𝑖
𝑡+1 = 𝑣𝑖

𝑡 + (𝑥𝑖
𝑡 − 𝑥∗) 𝑓𝑖                                                      (28) 

c) The loudness A0 changes from the maximum value of A0 to 

the minimum value of A0.  

𝐴𝑖
𝑡+1 =∝ 𝐴𝑖

𝑡                                                                           (29) 

𝑟𝑖
𝑡 = 𝑟𝑖

0[1− 𝑒−𝛽𝑡]                                                                (30) 

Where x is the position, v is the velocity,  ε is a random number 

drawn from a uniform distribution, and α β are constants. Many 
areas in engineering use this algorithm such as in 

Communication [107, 108], Power [109, 110], Robotics [111, 
112], etc. 

7) Other SI based Algorithms: 

Many other algorithms are proposed during the last few 

decades. Table I summarized a list of the remaining algorithms.  
The proficiency of the SI methods is based on the principle that 

they mimic the best properties of nature, mainly the selection 
of the fittest in biological systems that have evolved by nature 

over a millennium. 

 



 

 

Table I: List of the Swarm Intelligence Algorithms 

Algorithm Year of 

Publication 
Inspiration Authors 

 
Boids [113] 

 
1987 

Inspired by the behavior of flocks of birds. Instead of, simulating 
the whole flock, the algorithm only specifies the behavior of a 
single bird. 

Craig W. 
Reynolds 

MBO: Marriage in Honey 
Bees Optimization[114] 

2001 The unified model of the marriage in honeybees inspires the 
method. 

H.A. Abbass 

Bacterial Foraging[115] 2002 The algorithm is inspired by the foraging behavior of 
Escherichia coli bacteria. 

K.M. Passino 

Bacteria chemotaxis (BC) 
algorithm [116] 

2002 Based on the biological model of the Bacteria chemotaxis. Muller et al. 

Fish Swarm Optimization 
Algorithm [117] 

2002 It depends on the behavior of fish such as making groups. Li et al. 

Shuffled frog-leaping 
algorithm [118] 

2003 The algorithm is based on the natural memetic in which a set of 
the virtual population of frogs interact with each other and 
grouped into various memeplexes. 

Eusuff et al. 

BeeHive [119] 2004 It depends on the communicative and evaluative approaches 
and processes of honeybees. 

Horst et al. 

Virtual Bees [120] 2005 Depends upon the communication model of the bees, they 
interact whenever they find the targeted food source. 

Xin-She Yang 
 

Bee colony 
optimization[121] 

2005 It depends on the communicating behaviors of the real bees to 
solve a ride-matching problem. 

Dusan et al. 

Bacterial Colony 
Chemotaxis (BCC) 

algorithm[122] 

2005 It is based on the BC algorithm; it used the single bacterium’s 
reaction to chemoattractants and the communication among the 
bacteria. 

Wu et al. 

Bees Swarm 
Optimization [123] 

2005 It depends on the intelligent behavior of real bees for solving a 
hard Johnson benchmark. 

Safa et al.  

Honey-Bees Mating 
Optimization (HBMO) 

Algorithm [124] 

 
2006 

 
Inspired by the honeybees mating process. 

 
Haddad et al. 

Cat Swarm Optimization 
(CSO) [125] 

2006 Inspired by the behaviors of cats, such as seeking and tracing. Pan et al.  

Fish School Behaviour 
[126] 

2008 The algorithm depends on the feeding, swimming, and breeding 
behavior of the fish school for high dimensional search space 
problems. 

Filho et al. 

Roach Infestation 
Optimization [127] 

2008 Inspired by the social characteristics of cockroaches.   Spain et al. 

Fast Bacterial Swarming 

Algorithm (FBSA) [128]  

2008 The algorithm is based on the swarming behavior of birds and 

foraging behavior of Escherichia coli bacteria. 

Hua et al. 

Bumblebees [129] 2009 Inspired by the mutual behavior of social insects. Padro et al. 

Group Search Optimizer 
[130] 

2009 The algorithm is based on animal searching behavior He et al. 

Firefly Algorithm [131]  2009 This algorithm is based on the bioluminescence process of 
fireflies. 

Xin-She Yang 

Bumble Bees Mating 

Optimization Algorithm 
[132] 

2010 The algorithm is dependent on the mating behavior of the 

bumblebees. 

Yannis et al. 

Cockroach Swarm 
Optimization [133] 

2010 This algorithm is based on the social behavior of cockroaches. Hui et al. 

Hunting Search  [134] 2010 This algorithm is based on the group hunting skills of animals 
like dolphins, wolves, and lions. 

Mahjoob et al. 

Krill Herd [135] 2012  The algorithm is based on the herding behavior of krill 
individuals.  

Amir et al. 

Wolf search algorithm 
[136]  

2012 This algorithm mimics how wolves can search for food and stay 
alive by circumventing their adversaries.  

Rui et al. 

Bacterial Colony 
Optimization [137] 

2012 The algorithm depends upon the entire life cycle of the E. coli 
bacteria that include communication, chemotaxis, reproduction, 
elimination, and migration. 

Ben et al. 

Lion's Algorithm [138] 2012 Based on the social behavior of the lion that helps it to keep 
strong. 

B.R.Rajakumar 

Blind, naked mole-rats 
(BNMR) algorithm [139] 

2012 Inspired by the Social behavior of the blind naked mole-rats 
colony. 

Mohammad 
Taherdangkoo 



 

 

 

 

V. TESTING OF SI METHODS ON STANDARD 

BENCHMARK  FUNCTIONS: 

A. Benchmark Functions: 

Several optimization algorithms claim their proficiency 

than the other methods in the literature. Therefore, to 

examine the efficiency of any algorithm benchmark test 

functions are used. In this paper, to examine the proficiency 

of the SI based methods a set of 23 standard benchmark 

functions are used. The testing is done on a selected SI 

based algorithms that have been used widely for decades on 

different optimization problems. These functions are 

tabulated in Table II.  These functions are divided into two 

categories and they are as under: 

a)  Unimodal: This is the asymmetric model with a single 

minimum f1−f6 and f19 belong to this type. 

 b) Multimodal with a few and several numbers of minima: 
These functions from f7- f23 is in the multimodal type having 

a few and several local minima; f7, f8 f17, f18, f21 – f23 are the 

low dimensions functions having only a few local minima.  

 

 

 

 

Fruit Fly Optimization 

Algorithm [140] 

2012 The algorithm is based on the behavior of fruit flies. Wen-TsaoPan 

Social Spider 
Optimization (SSO) [141] 

2013 The algorithm is based on the cooperative behavior of social 
spiders.  

Erik et al. 

Cuttlefish Algorithm 
[142] 

2014 Imitates the process of color-changing behavior of the cuttlefish Adel et al. 

Grey Wolf Optimizer 

[143]  

2014 The algorithm mimics the leadership hierarchy and hunting 

strategy of grey wolves. 

Ali et al. 

Spider Monkey 
Optimization algorithm 

[144] 

2014 Based on the foraging behavior of spider monkeys. Bansal et al. 

Animal migration 
optimization [145] 

2014 The algorithm is based on the migration behavior of animals. Li et al. 

Monarch butterfly 
optimization[146] 

2015 Inspired by the migration of monarch butterflies. Gai et al. 

Moth-flame optimization 
algorithm [147] 

2015 The algorithm is inspired by the navigation approach of moths 
known as transverse orientation.  

Seyed Ali 
Mirjalili 

Elephant Herding 
Optimization[148] 

2015 Inspired by the herding behavior of the elephant group. Gai et al. 

Ant Lion Optimizer   2015 This algorithm is based on the hunting skills of ant lions. Seyed Ali 
Mirjalili 

Crow search algorithm 
[149] 

2016 The algorithm works on the concept of how the crows stock their 
extra food in hiding places and use it when required. 

Alireza 
Askarzadeh 

Dolphin swarm algorithm 
[150] 

2016 Inspired by the dolphins’ behavior of echolocation, information 
exchanges, cooperation, and division of labor. 

Tian et al. 

Dynamic Virtual Bats 

Algorithm [151] 

2016 This algorithm is based on the bat’s capability during hunting to 

alter the frequency and wavelength of the sound waves. 

Topal et al. 

Dragonfly algorithm 
[152] 

2016 This algorithm is based on the dynamic and static swarming 
behaviors of dragonflies 

Seyed Ali 
Mirjalili 

The Swarm Dolphin 
Algorithm (SDA) [153] 

2016 This algorithm work on the three main characteristics of 
dolphins (a) Search (b) Detects (c) Capture. 

Yi et al. 

Wolf-pack algorithm 

[154] 

2016 The Algorithm is inspired by the social behaviors of the wolf 

pack in besieging, calling, and scouting. 

Wang et al. 

Whale Optimization 
Algorithm [155] 

2016 The algorithm imitates the social behavior of humpback whales 
and based on its bubble-net hunting strategy.  

Ali et al. 

Spotted Hyena Optimizer 
[156] 

2017 This algorithm is based on the spotted hyena's behavior. The 
primary idea is the social relationship between spotted hyenas 
and their collective behavior. 

Gaurav et al. 

Grasshopper Optimization 
Algorithm [157] 

2017 The algorithm is inspired by the grasshopper behavior.  Saremi et al. 

Salp Swarm Algorithm 
[158] 

2017 Inspired by the swarming behavior of salps in oceans while 
foraging and navigating.  

Ali et al. 

Donkey and smuggler 
optimization algorithm 

[159] 

2019 The algorithm is based on the searching behavior of donkeys. Ahmed et al. 

Fitness Dependent 
Optimizer [160] 

2019 The algorithm is based on the bees’ reproductive process and 
their collective decision-making behavior. 

Jaza et al. 

https://www.sciencedirect.com/science/article/abs/pii/S0965997816305567#!


 

 

Table II: Standard Benchmark Test Functions

Test Function Domain Range Optimal point 

𝑓1(𝑥) =∑𝑥𝑖
2

𝑑

𝑖=1

 

 

 -100 ≤ xi ≤100 

 

        f1(0) =0 

𝑓2(𝑥) =∑[100

𝑑

𝑖=1

(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2] 
 

    -2.048≤ xi ≤2.048 

 

f2(1) =0 

𝑓3(𝑥) =∑(|𝑥𝑖 + 0.5|)
2

100

𝑖=1

 

 

 -10 ≤ xi ≤10 

 

f3(0) =0 

𝑓4(𝑥) =∑ 𝑖𝑥𝑖
4

10

𝑖=1

+ 𝑟𝑎𝑛𝑑𝑜𝑚[0,1] 
 

   -2.56 ≤ xi ≤ 2.56 

 

f4(0) =0 

𝑓5(𝑥) = 𝑚𝑎𝑥𝑖{|𝑥𝑖| ,1 ≤ 𝑖 ≤ 30 -100 ≤ xi ≤100 f5(0) =0 

𝑓6(𝑥) =∑|𝑥𝑖| +∏|𝑥𝑖|

𝑑

𝑖=1

𝑑

𝑖=1

 

 

-10 ≤ xi ≤10 

 

f6(0) =0 

𝑓7(𝑥) = [
1

500
+∑

1

𝑗 + ∑ (𝑥𝑖 − 𝑎𝑖𝑗)
62

𝑖=1

]

25

𝑗=1

]

−1

 

 

     -65.536≤ xi ≤65.536 

 

𝑓7([−32, −32]) ≈ 1 

𝑓8(𝑥) =∑[𝑎𝑖 −∑
𝑥1(𝑏𝑖

2 + 𝑏𝑖𝑥2)

𝑏𝑖
2 + 𝑏𝑖𝑥3 + 𝑥4

]

25

𝑗=1

]

2
9

𝑖=1

 

 

      -5 ≤ xi ≤ 5 

 

      𝑓8(0.1928,0.1928,0.1231,0.1358)
≈ 0.0003075 

𝑓9(𝑥) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1
6 + 𝑥1𝑥2 − 4𝑥2

2 + 4𝑥2
4 

-5 ≤ x1 ,x2 ≤5 𝑓9 = ([0.08983, −0.7126]) = 𝑓11
= ([−0.08983,0.7126]) ≈ −1.0316 

𝑓10(𝑥) = −∑𝑐𝑖

𝑑

𝑖=1

𝑒𝑥𝑝 [−∑𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

3

𝑗=1

] 

 

      0≤ xi ≤ 1 

 

𝑓10 = (0.114,0.556,0.852) ≈ −3.8628 

𝑓11(𝑥) = −∑𝑐𝑖

𝑑

𝑖=1

𝑒𝑥𝑝 [−∑𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

6

𝑗=1

] 

 

      0≤ xi ≤ 1 

𝑓11
= ([0.201,0.15,0.477,0.275,0.311,0.627])
≈ −3.32 

𝑓12(𝑥) = 0.1

{
 
 

 
 

𝑠𝑖𝑛2(𝜋3𝑥1)

+ 
∑(𝑥𝑖 − 1)

2

29

𝑖=1

. [1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖+1)]

+ (𝑥30 − 1)
2 [1 + 𝑠𝑖𝑛2(2𝜋𝑥30)] }

 
 

 
 

+∑𝑢(𝑥𝑖

30

𝑖=1

, 5,100,4) 

 
-50 ≤ xi ≤ 50 

 
f12(1) =0 

𝑓13(𝑥) =∑[𝑥𝑖
2 − 10cos (2𝜋𝑥𝑖)

𝑑

𝑖=1

+ 10 
 

-50 ≤ xi ≤ 50 
 

f13(0) =0 

𝑓14 (𝑥) =
1

4000
∑𝑥𝑖

2 − ∏cos(
𝑥𝑖

√𝑖

𝑑

𝑖=1

) + 1 

𝑑

𝑖=1

 
 

-600 ≤ xi ≤ 600 
 

f14(0) =0 

𝑓15(𝑥) = −20𝑒𝑥𝑝 (−0.2√
1

𝑑
∑𝑥𝑖

2

𝑑

𝑖=1

) − exp(
1

𝑑
∑cos(2𝜋𝑥𝑖)

𝑑

𝑖=1

) + 20 + 𝑒 

 

-32 ≤ xi ≤ 32 
 

f15(0) =0 

f16(x) = −∑(xi sin(√|xi|))

10

i=1

 

 

-500 ≤ xi ≤ 500 
𝑓16 = ([420.9687 ……420.9687])

= 10 
× 418.9829
= 4189.829 

𝑓17(𝑥) = (𝑥2 −
5.1

4𝜋2
𝑥1
2 +

5

𝜋
𝑥1 − 6)

2 + 10 (1 −
1

8𝜋
)  𝑐𝑜𝑠𝑥1 + 10 

 

-5 ≤ xi ≤ 5 

 

f17-min = 0.398 

𝑓18(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)
2(19 − 14𝑥1 + 3𝑥1

2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2
2)] 

× [30 + (2𝑥1 − 3𝑥2)
2 × (18 − 32𝑥1 + 12𝑥1

2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2)] 

 

-2 ≤ xi ≤ 2 
f18-min = 3.0 

𝑓19(𝑥) =∑(∑𝑥𝑗

𝑖

𝑗−1

)2
𝑑

𝑖=1

 

 

  -100 ≤ xi ≤100 
 

f19(0) =0 

𝑓20(𝑥) =
𝜋

𝑑

{
 
 

 
 

10 𝑠𝑖𝑛(𝜋𝑦1)

+ 
∑(𝑦𝑖 − 1)

2

𝑑−1

𝑖=1

. [1 + 10 𝑠𝑖𝑛2(𝜋𝑦𝑖+1)]

+ (𝑦29 − 1)
2 }

 
 

 
 

+∑𝑢(𝑥𝑖

30

𝑖=1

, 10,100,4) 
 

-50 ≤ xi ≤ 50 
 

f20 (1) =0 

𝑓21(𝑥) = −∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

5

𝑖=1

 

 

    0 ≤ X ≤10 
 

f21-min = -10.1532 

𝑓22(𝑥) = −∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

7

𝑖=1

 

 

    0 ≤ X ≤10 

 

f22-min = -10.4028 

𝒇𝟐𝟑(𝒙) = −∑[(𝑿 − 𝒂𝒊)(𝑿 − 𝒂𝒊)
𝑻 + 𝒄𝒊]

−𝟏

𝟏𝟎

𝒊=𝟏

 

 

    0 ≤ X ≤10 

 

f23-min = -10.5363 



 

 

B. Results and Discussion: 

The results presented in this section are based on the 

performance of the different SI based methods that are 

applied to the 23-benchmark functions. The proficiency of 

each SI approach is tested on the standard versions of these 

methods and no modifications are applied. The 

performance is evaluated in terms of the standard deviation 

and the mean value. The benchmark functions are divided 

into two types the first is unimodal and the other is the 

multimodal functions with some or many local minima. 
Table III shows the results of the unimodal functions. The 

results show that the WOA (Whale Optimization 

Algorithm) gives better performance as compared to the 

standard versions of the other SI algorithms. WOA also 

reaches the global or near-global optimum faster as 

compared to the other optimization methods. PSO 

algorithm gives the second-best proficiency for a few 

unimodal functions. Similarly, for the Type II benchmark 

functions, WOA outperformed the remaining algorithms. 

WOA is a new metaheuristic algorithm proposed by Ali 

et.al that is inspired by the social behavior of humpback 
whales and based on its bubble-net hunting strategy. 

 
 

TABLE III.  The mean and standard deviation evaluation between SI algorithms for Type I Benchmark Functions for D=30 

 
 
 

TABLE IV.  The mean and standard deviation evaluation between SI algorithms for Type II Benchmark Functions for D=30 

 

 

Functions  PSO 

 

ACO ABC GSO CSA WOA 

 

f1(x) 

Mean 0.000136 1.7596e-4 1.1820e-5 1.1844e-06 4.4138e-4 1.41e−30 

Std. 

Dev 
0.000202 1.8603e-3 8.3508e-3 8.0723e-04 5.5047e-4 4.91e−30 

 

f2(x) 

Mean 96.71832 6.6160e1 7.3760e+01 1.1701e+02 6.4181e+01 27.86558 

Std. 

Dev 
60.11559 3.7940e+01 2.8049e+01 2.6130e+01 5.5250e+00 0.763626 

 

f3(x) 

Mean 0.000102 3.38563 3.7395 3.3792 3.5441 3.116266 
Std. 

Dev 
8.28e−05 0.9363 0.7830 0.59301 0.68829 0.532429 

 

 
f4(x) 

Mean 0.122854 5.035e-1 8.43 e-2 2.939e−01 7.692e-02 0.001425 

Std. 

Dev 
0.044957 1.068e-1 9.019 e-2 4.3811e−01 6.0392e-02 0.001149 

 
f5(x) 

Mean 1.086481 1.9737 0.7013 3.90932e−1 5 .36e-1 0.072581 
Std. 

Dev 
0.317039 0.7602 0.60031 8.1938e−1 9 .630e-1 0.39747 

 

f6(x) 

 

Mean 0.042144 1.038e-3 8.0986e−6 3.0032e−8 6.1718e-09 1.06e−21 
Std. 

Dev 
0.045421 1.78375e-3 5.3819e−6 4.92938e−8 9.8728e-09 2.39e−21 

 

f19(x) 

 

Mean 70.12562 4.762e1 5.3439e1 1.9664e-2 4.2038e-3 5.39e−07 
Std. 

Dev 
22.11924 5.1531e1 3.08892e1 4.8427e−2 7.2998e-3 2.93e−06 

Functions  PSO 

 

ACO ABC GSO CSA WOA 

 

f7(x) 

Mean 3.627168 2.4324 2.52729 2.27382 2.80071 2.111973 

Std. 

Dev 
2.560828 2.39313 2.469293 2.42819 2.50288 2.498594 

 
f8(x) 

Mean 0.000577 1.8201e-3 7.9875e-3 9.1103e−03 4.7793e-03 0.000572 

Std. 

Dev 
0.000222 6.7301e-3 0.000324 5.8018e−03 4.5842e−03 0.000324 

 

f9(x) 

Mean −1.03163 -1.03163 −1.03163 −1.03163 -1.031614 −1.03163 
Std. 

Dev 
3.9802e−7 9.40823e−7 5.337e−07 8.27939e−7 6.3347e−07 4.2e−07 



 

 

 

 

 

f10(x) 

 

Mean −3.86278 -3.87073 −3.88939 -3.86641 -3.8628 −3.85616 

Std. 

Dev 
2.58e−15 0.006392 0.005492 0.00497 0.006827 0.002706 

 

f11(x) 

 

Mean −3.26634 -3.2902 −3.10773 -2.9863 -3.2792 −2.98105 

Std. 

Dev 
0.060516 4.668e-2 0.47991 0.53814 0.42775 0.376653 

 

f12(x) 
 

Mean 0.006675 3.0142 2.8085 1.14322 3.3901 1.889015 

 

Std.  

Dev 

 

0.008907 

 

2.69025 

 

1.59925 

 

2.831 

 

2.1682 

 

0.266088 

 

f13(x) 

 

Mean 46.70423 20.792 2.8310e1 4.8429e1 21.6331 0.000289 

Std. 

Dev 
11.62938 3.0742 1.330e1 2.4031e1 10.7601 0.001586 

 
f14(x) 

Mean 0.009215 1.1711e+00 3.0996e+01 9.3869e+01 9.2549e+00 0.0000 

Std. 

Dev 
0.007724 2.9271e-02 2.2269e+00 3.0447e+00 3.3997e-01 0.0000 

 

f15(x) 

Mean 0.276015 1.5884e+01 2.0681e+01 1.9896e+01 1.2795e+01 7.4043 

Std. 

Dev 
0.50901 1.2211e+00 3.8721e-02 5.3227e-01 8.4147e-01 9.897572 

 

f16(x) 

Mean −4841.29 -5658.37 −5490.76 -5197.0 -5509.7 −5080.76 
Std. 

Dev 
1152.814 7203.56 242.778 8920.93 763.32 695.7968 

 

f17(x) 

Mean 0.397887 3.9789e-01 3.9789e-01 3.7481e-01 3.9789e-01 0.397914 

Std. 

Dev 
0.000 1.781e-01 2.925e−01 8.6588e-01 3.77e−01 2.7e−05 

 

f18(x) 

Mean 3.00 3.0 3.0 3.0 3.0 3 
Std. 

Dev 
1.33e−15 5.541e−10 3.143e−11 8.2517e-9 6.0247e-9 4.22e−15 

 

f20(x) 

 

Mean 0.006917 5.921e-1 0.35738 8.92113e−1 2.5739e-1 0.339676 
Std. 

Dev 
0.026301 1.5730e-1 0.37949 6.1135e−2 0.835834 0.214864 

 

f21(x) 

 

Mean −6.8651 −7.1892 −7.2940 −8.0942 -7.3440 −7.04918 
Std. 

Dev 
3.019644 3.519303 3.70638 6.57e−02 3.7929 3.629551 

 

f22(x) 

 

Mean −8.45653 −8.6903 −8.2947 −8.5783 -7.53978 −8.18178 
Std. 

Dev 
3.087094 3.02792 3.5013 3.4935 3.79391 3.829202 

 

f23(x) 

 

Mean −9.95291 −9.6938 −9.89299 −9.47492 -9.44929 −9.34238 
Std. 

Dev 
1.782786 1.893683 2.50027 2.68282 2.472820 2.414737 



 

 

VI. TEAM 22 AN ELECTROMAGNETIC DESIGN 

PROBLEM:  

A. Description of the Problem: 

The SMES (Superconducting Magnetic Energy Storage 

System) is a design problem that is formulated to store 

energy in magnetic fields that were generated by current 

densities in their superconducting coil system. It is famous 

with the name of “TEAM 22 problem” as it was presented 

by the team in a workshop where its number is 22. TEAM 

22 is an optimization version of the SMES and it is used 
widely in magnetostatics as a benchmark problem. The 

system comprises two coils carrying current in the opposite 

direction. The outer shielding and the inner main solenoid 

are used to reduce the effect of the stray field. The 
configuration of the system is shown in figure.3.  

 

So, the primary purpose of the problem is to store the 

required amount of energy keeping the negligible stray 

field.  To meet the above objective following conditions 

must be considered.  

 

 The energy stored should be 180 MJ. 

 The produced magnetic field inside the solenoids 

must not violate a certain physical condition that 
confirms superconductivity. 

 The average stray field along “line a” and “line b” 

at 10 meters should be minimal. 

 

The two objectives are mapped into a single objective 

function by:  

𝑚𝑖𝑛 𝐹 =
𝐵𝑠𝑡𝑟𝑎𝑦
2

𝐵𝑛𝑜𝑟𝑚
2 +

|𝐸−𝐸𝑟𝑒𝑓|

𝐸𝑟𝑒𝑓
                                              (31) 

where Eref = 180 MJ, Bnorm = 200 µT and B2
stray is defined 

as: 

𝐵𝑠𝑡𝑟𝑎𝑦
2 =

∑ |𝐵𝑠𝑡𝑟𝑎𝑦,𝑖|
222

𝑖=1

22
                                                                (32) 

Some of the design constraints are that the solenoids should 

not overlap with each other. 

𝑅1 +
𝑑1

2
< 𝑅2 −

𝑑2

2
                                                             (34) 

The superconducting material should not violate (35) 

condition that links together the value of the current density 

and the maximum value of magnetic flux density. 

|𝐽| = (−6.4|𝐵| + 54)𝐴/𝑚𝑚2                                        (35) 

B. Results and discussion: 

The performance of the SI algorithm (Standard PSO) is 

tested on an electromagnetic design problem. Moreover, 

some other techniques are also compared with the SI 

method that is available in the literature. A modified 

version of the PSO algorithm that is developed by the 

authors previously is also used to solve the TEAM 22 
problem. The design parameters for the problem are 

defined in table V. 

 
Table V shows the parameters of the TEAM 22 Problem. 

 

 Table VI shows the comparison between the standard SI 

methods, some state of the art algorithms applied to this 

problem previously and advanced PSO presented in [161] 

by the authors. 
 

Table VI Comparison of the SI methods, state-of-the-art algorithms, and 

APSO for TEAM 22 Problem. 

 

Methods R2 

(m) 

d2 

(m) 
𝐵𝑠𝑡𝑟𝑎𝑦
2  

(nT) 

h2/2 

(m) 

Fitness 

value 

APSO [161] 2.683 0.1792 0.06291 0.3083 7.972e-5 

Standard PSO 2.950 0.3853 6.345 0.529 0.5379 

Standard 

ABC 

3.429 0.3727 5.3915 0.8683 0.7738 

HAL Method 

[162] 

2.78 0.11 4.55 1.479 5.16e-4 

MQPSO 

[163] 

3.139 0.2871 - 0.316 0.0716 

MOCSA 

[164] 

4.0355 0.2470 - 0.4753 3.12e-3 

MPSO[165] 2.9927 0.2976 - 0.2139 0.0929 

POS[166] 3.080 0.394 0.7913 0.478 0.0881 

Bayes Opt 

[167] 

3.093 0.369 0.7736 0.500 0.0917 

EQBPSO 

[168] 

1.800 0.2851 1.79 1.800 1.1730 

Team22 

Standard 

Problem  

[169] 

1.80 0.195 0.0724 1.513 0.0018 

 

The result analysis validates the proficiency of the APSO 

algorithm that is presented by the authors in [161] as 

compared to the other state-of-the-art techniques available 

in the literature. 

 R1 

(m) 

R2 

(m) 

h1/2 

(m) 

h2/2 

(m) 

d1 

(m) 

d2 

(m) 

J1 

A/mm2 

J2 

A/mm2 

Fixed 2 - 0.8 - 0.27 - 22.5 -22.5 

Minimum - 2.6 - 0.204 - 0.1 - - 

Maximum - 3.4 - 1.1 - 0.4 - - 

Figure 3 Configuration of Team 22 Problem 



 

 

VII. CONCLUSIONS 

In this paper, a summary of the famous SI methods is 

presented. These SI methods have been used to solve 

different problems related to diverse fields. Moreover, an 

electromagnetic inverse problem is solved by using the 

APSO algorithm that has been proposed by the authors 

previously, some SI methods, and it is also compared with 

the other state-of-the-art techniques available in the 

literature.  The results obtained show that the APSO has 

better performance than the other methods. 
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