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Abstract
With the emerging concepts of smart cities and intelligent transportation systems, accurate traffic sensing and prediction 
have become critically important to support urban management and traffic control. In recent years, the rapid uptake of the 
Internet of Vehicles and the rising pervasiveness of mobile services have produced unprecedented amounts of data to serve 
traffic sensing and prediction applications. However, it is significantly challenging to fulfill the computation demands by the 
big traffic data with ever-increasing complexity and diversity. Deep learning, with its powerful capabilities in representation 
learning and multi-level abstractions, has recently become the most effective approach in many intelligent sensing systems. 
In this paper, we present an up-to-date literature review on the most advanced research works in deep learning for intelligent 
traffic sensing and prediction.
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1 Introduction

The concept of smart cities (Gharaibeh et al. 2017; Silva 
et al. 2018) has become prevalent across different urban 
domains that apply information and communication tech-
nologies (ICT) to the physical world. By the term of ‘smart 
city’, it refers to a technology-intensive ecosystem that 
aims to deliver a wide range of ubiquitous services and 

utility applications, such as intelligent transportation, home 
automation, smart grid, e-health, environment monitor-
ing, and smart logistics (Chamoso et al. 2018; Nagy and 
Simon 2018). With the rapid population growth and the 
unprecedentedly growing number of vehicles, intelligent 
transportation management has become critical for the sus-
tainability of smart cities. The emerging intelligent transpor-
tation system (ITS) (Moustaka et al. 2018) is envisioned to 
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revolutionize the existing transportation management system 
to a more advanced level. To improve traffic efficiency and 
alleviate traffic issues, the ITS aims to bring forth the cut-
ting-edge technologies for traffic sensing, data communica-
tion, information processing, and intelligent computing. One 
of the core functions of the ITS is to enhance the accuracy 
and efficiency of traffic sensing and prediction (Liu et al. 
2018). Accurate sensing and reliable prediction on traffic 
status are fundamentally essential for various urban trans-
portation services and traffic applications. For example, with 
the precise information on future traffic predictions by ITS, 
transportation operators would have comprehensive knowl-
edge in their decision-making for traffic dispersion and con-
gestion management (Wang et al. 2019c).

In ITS, traffic sensing data can be obtained from diverse 
sources, ranging from conventional traffic monitoring infra-
structures to ubiquitous mobile and IoT devices. Traditional 
traffic infrastructures, including loop detectors, traffic cam-
eras, and radars, are commonly deployed at road intersec-
tions to monitor road traffic and detect the presence of pass-
ing vehicles (Nagy and Simon 2018). However, the high 
costs in deployment and maintenance impede their extension 
on a city scale, thus limiting the coverage of traffic sensing 
data. Thanks to the proliferation of pervasive mobile and 
IoT devices, more advanced traffic sensing technologies are 
integrated into ITS by exploiting global positioning system 
(GPS), automatic fare collection (AFC) system, mobile cel-
lular stations, and social media platforms, etc. For example, 
with the equipped GPS sensors, smart mobile devices can 
generate the mobility trajectories of the onboard partici-
pants, thereby providing accurate traffic sensing data. Such 
emerging mobility data sources substantially break the bot-
tleneck of data insufficiency and further make it possible to 
fuse information from multiple traffic sensing modalities.

To leverage the diversity and variety of traffic sensing 
data for fine-grained prediction, numerous research efforts 
have been devoted to devising sophisticated computation 
models. Traditional traffic prediction methodologies gen-
erally apply statistical models to analyze historical traffic 
data, and further use handcrafted features to conduct traffic 
prediction. Meanwhile, such statistical models are invariant 
and cannot be extended for large-scale traffic predictions, 
as they cannot model comprehensive features (e.g., spatial 
features) for the entire transportation networks. To achieve 
more advanced feature learning in traffic prediction, machine 
learning models have been applied to address the non-line-
arity and exploit spatiotemporal correlations in traffic sens-
ing data. These models are typically with the advantages 
of data processing capacity, implementation flexibility and 
generalization ability. Classical machine learning models 
for traffic prediction include non-parametric Bayesian net-
works, K-nearest neighbors (KNN), support vector machine 
(SVM), and artificial neural networks (ANN). Nevertheless, 

the amount of traffic sensing data in ITS has been growing 
from Trillion-byte level to Peta-byte level, which substan-
tially calls for processing models with capabilities in fea-
ture extraction. In this regard, the classic machine learning 
models with shallow architectures only have limited latent 
spaces, which restrict their abstractive representation learn-
ing on big traffic data for prediction purposes.

In recent years, deep learning is making significant 
achievements with state-of-the-art performance in Arti-
ficial Intelligence (AI) community. Modern deep neural 
networks usually consist of tens or hundreds of successive 
layers (LeCun et al. 2015) to discover intricate structures 
from high-dimensional data, and further extract hierarchi-
cal representations in feature learning. As a consequence, 
the researchers in the ITS community have recognized the 
importance of deep learning and already started to exploit 
deep neural networks for intelligent traffic sensing and pre-
diction. The integration of deep learning and ITS has been 
well justified by that deep learning can develop complex 
representations from large-scale traffic datasets in an incre-
mental, layer-by-layer way. Moreover, the incremental inter-
mediate representations of spatial and temporal traffic states 
can be jointly learned by the deep-learning models.

Scope of the survey. In this paper, we present a compre-
hensive, up-to-date survey of deep learning for intelligent 
traffic sensing and prediction. Our goal is to thoroughly 
cover various aspects of deep learning and outline deep-
learning models that can assist different applications of 
ITS. We first provide an overview of deep learning for ITS, 
covering the preliminaries of intelligent traffic sensing and 
prediction with the recent advances driven by deep learning 
techniques. Aside from taxonomically reviewing the existing 
related works, we investigate the pros and cons of various 
deep-learning models for serving different traffic prediction 
applications in ITS. We further present several key insights 
into the future research challenges and directions of this 
cross-domain research filed. We hope that this article can 
benefit the research community with some comprehensive 
knowledge of the up-to-date developments in deep learning 
for ITS.

1.1  Our contributions

We summarize our contributions in this paper as follows:

– We deliver a systematic review of deep learning, particu-
larly for intelligent traffic sensing and prediction in ITS.

– We investigate the various types of representative deep-
learning models and provide detail-oriented analysis 
regarding their customization to different ITS applica-
tions.

– We scrutinize the application-level aspects from hun-
dreds of related papers that contribute to traffic sensing 
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and prediction for ITS, featuring the in-depth analysis 
from different perspectives.

– We thoroughly discuss the emerging research challenges 
for deep learning in ITS over several essential areas, 
and we envision the future directions of this promising 
research field.

The rest of this paper is organized as follows. Section 2 
provides an overview of ITS with a summary of existing 
surveys that cover machine learning and deep learning tech-
niques. Then, Sect. 3 examines the most notable deep neural 
network models for intelligent traffic sensing and prediction. 
Section 4 reviews the categorized applications of ITS driven 
by deep-learning techniques. Section 5 presents open issues 
and future challenges in deep learning for ITS. Finally, 
Sect. 6 concludes the paper.

2  Traffic sensing and prediction in ITS: 
an overview

With the ever-expanding traffic networks and the diverse 
traffic sensing technologies, traffic prediction has become 
more daunting at present. Though deep learning and ITSs 
are two independent areas, the unprecedented amount of 
sensing data has seriously challenged existing computation 
methodologies of traffic data processing and traffic predic-
tion. Particularly, traffic sensing data from various types 
of sources have complex correlations with non-linearity, 
cross-domain, and time-varying properties (Nagy and Simon 

2018). As a consequence, the emerging sophisticated traf-
fic prediction problems cannot be simply attained by the 
existing conventional machine-learning techniques for the 
following reasons.

First, the traditional machine-learning models only 
have shallow space for representation learning, which can-
not preserve enough useful features for large traffic data-
sets. Second, the shallow machine-learning models rely 
on handcrafted features and cannot automatically extract 
high-dimensional representations for joint learning. Third, 
despite the explosive growth of input traffic sensing data, 
the classical machine-learning models cannot improve their 
performance by developing more valuable representations 
in traffic prediction. Therefore, deep learning-driven traffic 
prediction becomes inevitable, imperative, and viable. In 
this section, we first present an overview of the ITS architec-
ture and its key components. Then, we introduce the related 
review articles and further highlight the necessity of this 
up-to-date survey.

2.1  Key components in ITS

As illustrated in Fig. 1, there are basically four major com-
ponents in the architecture of an ITS, namely the sensor 
networks, transmission technologies, deep-learning models, 
and traffic management operations.

First, traffic sensor networks are the primary subsystem 
that in charge of collecting traffic information on road net-
works from vehicles and mobile devices (mainly via wire-
less sensing). Second, wireless communication technologies 
are critical for transmitting real-time traffic data between 

Fig. 1  Hierarchical architecture of urban ITS with deep learning
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traffic sensors and traffic monitoring systems. The above two 
components are out of our scope in this survey; therefore, 
we provide preliminary knowledge of them as follows. The 
detailed technical information of traffic sensor networks is 
provided in Table 5 of Appendix A.1. The wireless com-
munication technologies in ITS are classified in Table 6 of 
Appendix A.2, based on the communication standard, data 
rate, and topology.

Third, deep-learning models are the core component for 
processing ITS information with deep neural networks. Sub-
stantially, deep learning is a subfield of machine learning 
(ML). With multiple successive layers of representations, 
deep-learning models are powerful in high-level represen-
tation learning and feature extraction (Zhang et al. 2019b). 
Moreover, the advanced graphics processing units (GPU) 
and parallel computing infrastructures of traffic data cent-
ers further accommodate deep-learning models to perform 
city-wide traffic prediction tasks within milliseconds (Wang 
et al. 2019c). We believe that deep learning will continue to 
revolutionize ITS by enhancing its capability, integrality, 
and sustainability.

Fourth, traffic management operations are the last step to 
put the information from traffic sensing and deep-learning 
models into practice. The traffic management units include 
traffic prediction (an essential scope in this article), traffic 
optimization, and congestion control.

2.2  Previous efforts of related reviews and surveys

We list the previous surveys and reviews that are related 
to ITS and deep learning in Table 1. Among the above 
works, Lee and Gerla (2010) surveyed the developments 
of vehicle-to-Vehicle sensing techniques for vehicular 
networks. Bolshinsky and Friedman (2012) reviewed 

the conventional methods and initial takes of neural net-
works for traffic prediction. Secondly, Li et al. (2013) 
presented a survey on traffic control and highlighted the 
design philosophy of traffic control systems. Djahel et al. 
(2014) presented a study on different technologies in traf-
fic management systems, ranging from information col-
lection to service delivery. Then, Castillo et al. (2015) 
studied traffic sensor placement, flow observability, and 
flow prediction in traffic networks. More recently, Nellore 
and Hancke (2016) provided a taxonomy of different wire-
less sensor networks and wireless communication tech-
nologies for urban traffic management. Seo et al. (2017) 
summarized the models, datasets, and methodologies for 
traffic state estimation, particularly on highways. Liu et al. 
(2018) investigated urban traffic prediction with various 
mobility data using deep learning, and further compared 
basic deep-learning models for processing traffic indicator 
information. Similarly, Nagy and Simon (2018) focused on 
urban traffic sensing and prediction methods by covering 
different data sources, data models, and prediction models. 
Zhu et al. (2018) surveyed the ITS from the perspective of 
big data and discussed the issues of big data in ITS from 
several aspects. Moreover, Wang et al. (2019c) focused on 
applying deep-learning models to achieve high-accuracy 
visual recognition of traffic signs. At last, Do et al. (2019) 
presented a review of short-term traffic state prediction 
with neural network-based models.

Summary. The recent development in deep learning has 
produced hundreds of papers contributing to the applica-
tions of intelligent traffic sensing and prediction. Despite 
that the above articles have concluded some initial takes of 
machine learning techniques in ITS, there still lacks an up-
to-date survey for researchers to gain sufficient knowledge 
on the latest advancements in deep learning for ITS. In this 
paper, we typically focus on the significant results of deep 

Table 1  Summary of previous 
surveys and reviews in traffic 
prediction and deep learning

Publication Years Scopes

Traffic predic-
tion

Deep learning Other ML

Lee and Gerla (2010) 2010
Bolshinsky and Friedman (2012) 2012 ✓ ✓

Li et al. (2013) 2013
Djahel et al. (2014) 2014 ✓ ✓

Castillo et al. (2015) 2015 ✓ ✓

Nellore and Hancke (2016) 2016
Seo et al. (2017) 2017 ✓ ✓

Liu et al. (2018) 2018 ✓ ✓

Nagy and Simon (2018) 2018 ✓ ✓

Zhu et al. (2018) 2018 ✓ ✓

Wang et al. (2019c) 2019 ✓ ✓ ✓

Do et al. (2019) 2019 ✓ ✓
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learning for ITS in the last five years and restrict our scope 
to the related papers from premier conferences and top-tier 
journals, to provide the readers with a high-level compre-
hensive review.

3  Deep learning preliminaries

In this section, we give a brief introduction to deep learning 
and its preliminaries. Then, we present the most popular 
deep-learning models that can be applied for traffic data pro-
cessing and prediction.

3.1  A brief introduction to deep learning

Deep learning (LeCun et al. 2015) is one of the sub-branches 
in machine learning, and deep-learning methods are essen-
tially representation-learning methods with multiple lev-
els of representations. In recent years, deep learning has 
achieved tremendous advances (Schmidhuber 2015) in 
computer vision, pattern recognition, language translation, 
robots, and self-driving. Deep-learning models learn repre-
sentations from raw data in an incremental, layer-by-layer 
manner. Thereby, complex and high-dimensional representa-
tions can be developed. In particular, these representations 
are learned via different models of deep neural networks 
(Goodfellow et al. 2016), i.e., the long chains of geometric 
functions and operations that are structured into modules 
called layers. These layers are parameterized by ‘weights’, 
which can be learned and updated during the training pro-
cess. Indeed, the knowledge of a deep-learning model is 
stored in its weights. During this process, the critical aspect 
of deep learning is the automatic feature extraction, as fea-
tures are learned using a feedback signal, not handcrafted. 
In the following, we introduce the evolution of deep learn-
ing together with its milestones, enabling technologies and 
universal workflow.

Deep learning is not a relatively new subfield of 
machine learning, and the milestone works of its cur-
rent take-off can be traced back to the late 1980s (Chollet 
2017). Notably, Rumelhart et al. (1986) described a new 

learning procedure, i.e., backpropagation, to efficiently 
train the neural networks. Subsequently, LeCun et  al. 
(1990) further presented the first convolutional neural 
network (CNN) that can be trained by backpropagation. 
Furthermore, Hochreiter and Schmidhuber (1997) intro-
duced another gradient-based model, long short-term 
memory (LSTM), which later became one of the standard 
deep-learning models. Despite all the above milestones, 
it takes nearly another two decades for deep learning to 
break through some major bottlenecks for its boom. To 
conclude, there are three driving forces, i.e., hardware, 
data, and algorithms, that contribute to the tremendous 
developments of modern deep learning, and we explicitly 
introduce the detailed rationale as follows.

First, the typical deep-learning models would require 
exceeding computational capacity that off-the-shelf CPUs 
cannot provide. Fortunately, since the early 2000s, some 
technology companies (e.g., NVIDIA and AMD) have 
been massively investing parallel chips (known as GPU) 
for empowering and rendering complex 3D scenes in video 
games. In 2007, NVIDIA launched CUDA (NVIDIA: Cuda 
2019), a parallel computing platform and programming 
model for GPUs to replace CPUs in various parallel com-
puting scenarios. As deep neural networks are highly paral-
lelizable with matrix multiplications, the scientific research 
community is driven to implement and benefit from more 
sophisticated deep-learning models on GPUs. In 2016, the 
technology giant Google announced the tensor processing 
unit (TPU) at the Google I/O conference and revealed that 
TPUs had been used in their data center for years. Second, 
as deep learning is an engineering science, deep-learning 
models are strictly reliant on data. However, the Big Data 
becomes available till the Internet took off over the last 20 
years together with the exponential growth of storage in 
hardware. Third, the feedback signal used for deep-learning 
model training can quickly fade away, particularly when the 
number of layers increased. Such that, a reliable way to train 
the complex deep neural networks is of great necessity. It 
was until the early 2010s, a series of critical algorithmic 
improvements for gradient propagation were discovered, 

Table 2  Enabling techniques for deep learning-driven traffic sensing and prediction

Enabling techniques Typical examples Function and scope Performance 
improvement

WSNs and big data Road sensors on-board GPS Large-scale traffic sensing High
Deep learning libraries TensorFlow Keras, PyTorch Fast building DL architectures Medium
Neural network models DNN, CNN, RNN LSTM, GAN, DRL Layer-by-layer feature extraction High
Optimization algorithms Adam, RMSprop Adagrad/Delta Accelerate training with convergence Medium
Cloud-based platforms Google Colab Azure, SageMaker Cloud-based online environment for DL Medium
High-performance processing units GPU TPU Enable highly parallel computing High
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including batch normalization, residual connections, and 
depth-wise separable convolutions (Chollet 2017).

In summary, we conclude the enabling techniques 
for deep learning-driven traffic sensing and prediction in 
Table 2, including big sensing data, integrated libraries, neu-
ral network models, optimization algorithms, online plat-
forms, and high-performance hardware units.

3.2  Deep learning for traffic sensing and prediction: 
a brief chronology

Before reviewing a variety of traffic prediction related stud-
ies in Sect. 4, we summarize some significant milestones 
in research studies of deep learning-driven traffic predic-
tion in terms of the temporal dimension in Fig. 2. From this 
timeline, we observe the research development of urban 
traffic prediction as follows. First, the initial takes of deep 
learning-driven traffic prediction are based on basic deep 
neural networks, such as ANN, MLP, DBN, and SAE. For 
example, Kumar et al. (2015) applied an ANN to incorporate 
historical traffic data and temporal dependencies for mak-
ing traffic predictions, and they achieved better performance 
than conventional machine-learning methods. Nevertheless, 
the fully connected structure (dense layers) of ANN makes 
it computation-intensive to process the explosively growing 
traffic data and is incapable of learning long-term depend-
encies. Instead, researchers start to propose more efficient 
deep-learning models based on convolutional neural net-
works, recurrent neural networks, and their combinations.

CNN models are capable of extracting network-wide spa-
tial features from traffic data that is formatted like images 
(matrices). For instance, Ma et al. (2017) presented a CNN 
model to ‘learn traffic as images’ and achieved surprising 
improvement in traffic speed prediction. Other examples of 
traffic prediction models based on CNN include ER-CNN 

(Wang et al. 2016), SRCN (Yu et al. 2017b), PCNN (Chen 
et al. 2018), and STCNN (He et al. 2019). Regarding the 
LSTM models, they can preserve long-term temporal 
dependencies in historical data without vanishing gradients 
and achieve better performance in traffic prediction. Since 
traffic data are basically time series data, a variety of LSTM-
based variants have been developed for traffic prediction, 
including two-dimension LSTM (Zhao et al. 2017), LC-
RNN (Lv et al. 2018), ST-MetaNet (Pan et al. 2019), Bi-
LSTM (Wang et al. 2019a) and LSTM+ (Yang et al. 2019a).

A newly emerging trend of deep learning-driven traffic 
prediction is the graph neural network (GNN). Since road 
networks can be modeled as graph structures, and traffic 
data can also be represented in the forms of graphs (Wu 
et al. 2020). Existing GNN driven traffic prediction models 
can be categorized as into three categories: (1) Recurrent 
GNNs [Res-RGNN (Chen et al. 2019b)]; (2) Convolutional 
GNNs [DCRNN (Li et al. 2017), AGC-Seq2Seq (Zhang 
et al. 2019a) and T-GCN (Zhao et al. 2019)]; (3) Spatial-
temporal GNNs [ST-MGCN (Geng et al. 2019), GTCN (Ge 
et al. 2019) and ASTGCN (Guo et al. 2019)].

With respect to the deep learning-related papers in ITS 
to be reviewed in Sect. 4, we provide a top-down summary 
in Table 3 by categorizing deep-learning models and data 
sources.

In terms of traffic data sources, traffic infrastructures are 
the most reliable and sustainable sources to provide ubiq-
uitous and direct traffic sensing data. Meanwhile, on-board 
GPS and smartphones have come up as two alternative data 
sources for traffic prediction. As both of them provide con-
tinuous location information of vehicles and passengers, 
researchers can convert the trajectory data into meaningful 
information on traffic speed and traffic volume.

As for deep-learning models, various neural networks 
have been employed to perform traffic prediction tasks. 

Fig. 2  Major milestones of deep learning-driven traffic prediction since 2015. Currently, the most popular models are graph neural networks (in 
blue) for network-wide traffic prediction. Other popular deep-learning for ITS include RNN/LSTM (in green) and CNN (in red)
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First, since traffic data is inherently sequential and exhib-
its temporal correlations, the recurrent neural network is 
frequently used to capture temporal dependencies in traffic 
data. Second, as road networks have specific topologies, the 
network-wide traffic data has spatial correlations in nature. 
To exploit such property in traffic data, convolutional neural 
networks are also employed to automatically extract non-
linear features from traffic data that are transformed into 
2-dimensional shapes. Third, CNNs and RNNs are further 
combined as spatial–temporal neural networks to jointly 
capture spatial and temporal correlations in more complex 
traffic prediction tasks. Moreover, the emerging graph neural 
network models, including recurrent GNNs, convolutional 
GNNs, and spatial–temporal GNNs, can effectively capture 
the hidden patterns of Euclidean data, considering that the 
graph structure arises naturally in traffic networks. At last, 
deep reinforcement learning models are further developed 
for traffic control and autonomous driving.

3.3  Deep‑learning models for ITS

As a specific subfield of machine learning, deep learning 
focuses on learning successive layers of increasingly mean-
ingful representations from raw data. In particular, deep 
learning has achieved near-human-level performance in 
image processing, speech recognition, and language trans-
lation (Goodfellow et al. 2016). In this section, we introduce 
the preliminaries about deep-learning models1 and discuss 
how to apply them in traffic sensing and prediction of ITS.

Deep neural networks. The deep neural network (DNN) 
is the initial artificial neural network (ANN), including 
multi-layer perceptron (MLP), deep belief network (DBN), 
and stacked auto-encoder (SAE). Fig. 3 shows the general 
architectures of different DNNs, where the main differences 
are the connections between hidden layers. As shown in 
Fig. 3a, the MLP has one input layer, one or several hid-
den layers, and one output layer. In the MLP, each unit in a 
layer is densely connected to all the units in the following 
layer. At its hidden layer, the input vector is multiplied by 
the weight matrix, whose parameters are further trained in 
a supervised manner with backpropagation. Moreover, an 
activation function [e.g., sigmoid or Rectified Linear Unit 
(Glorot et al. 2011)] is employed to generate the output and 
improve the non-linearity of the model.

As a simple feedforward artificial neural network model, 
MLP shows promising performance (Kumar et al. 2015) 
in traffic prediction when there are sufficient labeled train-
ing data. However, due to the fully-connected structure, 
MLP could entail high computation complexity with low 

Ta
bl

e 
3 

 S
um

m
ar

y 
of

 d
ee

p 
le

ar
ni

ng
-r

el
at

ed
 p

ap
er

s f
or

 in
te

lli
ge

nt
 tr

affi
c 

se
ns

in
g 

an
d 

pr
ed

ic
tio

n 
in

 te
rm

s o
f d

at
a 

so
ur

ce
s a

nd
 d

ee
p-

le
ar

ni
ng

 m
od

el
s

D
N

N
C

N
N

R
N

N
RC

N
N

G
N

N

Tr
affi

c 
se

ns
or

s
K

um
ar

 e
t a

l. 
(2

01
5)

, H
ua

ng
 e

t a
l. 

(2
01

4)
, L

v 
et

 a
l. 

(2
01

4)
, Y

an
g 

et
 a

l. 
(2

01
6)

, J
ia

 e
t a

l. 
(2

01
6)

, 
H

e 
et

 a
l. 

(2
01

8)
, K

oe
sd

w
ia

dy
 

et
 a

l. 
(2

01
6)

D
en

g 
et

 a
l. 

(2
01

9)
, M

a 
et

 a
l. 

(2
01

5)
, Y

u 
et

 a
l. 

(2
01

7)
, W

an
g 

et
 a

l. 
(2

01
9a

), 
Zh

en
g 

et
 a

l. 
(2

01
9)

Fu
 e

t a
l. 

(2
01

6b
), 

Zh
ao

 e
t a

l. 
(2

01
7)

, K
an

g 
et

 a
l. 

(2
01

7)
, J

ia
 

et
 a

l. 
(2

01
7)

, T
ia

n 
et

 a
l. 

(2
01

8)
, 

Li
ao

 e
t a

l. 
(2

01
8b

), 
Ya

ng
 e

t a
l. 

(2
01

9a
), 

D
ua

n 
et

 a
l. 

(2
01

6)
, 

So
ng

 e
t a

l. 
(2

01
6)

Li
 e

t a
l. 

(2
01

7)
, Y

ua
n 

et
 a

l. 
(2

01
8)

, D
i e

t a
l. 

(2
01

9)
, W

an
g 

et
 a

l. 
(2

01
6)

C
he

n 
et

 a
l. 

(2
01

9b
), 

G
e 

et
 a

l. 
(2

01
9)

, Z
ha

o 
et

 a
l. 

(2
01

9)
, D

ia
o 

et
 a

l. 
(2

01
9)

O
n-

bo
ar

d 
G

PS
Le

m
ie

ux
 a

nd
 M

a 
(2

01
5)

, C
he

n 
et

 a
l. 

(2
01

6)
, H

e 
et

 a
l. 

(2
01

8)
Zh

an
g 

et
 a

l. 
(2

01
7)

, M
a 

et
 a

l. 
(2

01
7)

, J
o 

et
 a

l. 
(2

01
8)

, C
he

n 
et

 a
l. 

(2
01

8)
, H

e 
an

d 
Sh

in
 

(2
01

9)
, W

an
g 

et
 a

l. 
(2

01
8)

Pa
n 

et
 a

l. 
(2

01
9)

, L
ia

o 
et

 a
l. 

(2
01

8a
), 

D
ua

n 
et

 a
l. 

(2
01

6)
Ya

o 
et

 a
l. 

(2
01

9)
, L

v 
et

 a
l. 

(2
01

8)
, Y

u 
et

 a
l. 

(2
01

7b
), 

H
e 

et
 a

l. 
(2

01
9)

G
uo

 e
t a

l. 
(2

01
9)

, Z
ha

o 
et

 a
l. 

(2
01

9)

M
ob

ile
 p

ho
ne

s
C

he
n 

et
 a

l. 
(2

01
6)

, Z
ha

ng
 e

t a
l. 

(2
01

8a
)

D
ab

iri
 a

nd
 H

ea
sl

ip
 (2

01
8)

G
oo

gl
e 

(2
01

9)
, L

ia
o 

et
 a

l. 
(2

01
8a

), 
So

ng
 e

t a
l. 

(2
01

6)
, 

Jia
ng

 e
t a

l. 
(2

01
8a

, b
), 

Fa
n 

et
 a

l. 
(2

01
8)

K
e 

et
 a

l. 
(2

01
7)

, Y
ao

 e
t a

l. 
(2

01
8)

Zh
an

g 
et

 a
l. 

(2
01

9a
), 

G
en

g 
et

 a
l. 

(2
01

9)
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https://github.com/rasbt/deeplearning-models
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convergence efficiency. Therefore, some variants of MLP 
have been proposed, including DBN (Fig. 3b) and SAE 
(Fig. 3c). In general, the bottom layers of DBN and SAE 
models are stacked with hidden variables for unsupervised 
pre-training. For example, DBN models employ stacked 
modules of Restricted Boltzmann Machines (RBM) (Le 
Roux and Bengio 2008) as the bottom layers, where layers 
are connected, but units are not. The DBN models follow 
a layer-by-layer procedure for learning the top-down, gen-
erative weights. The successful implementations of DBN 
models in traffic prediction include (Koesdwiady et al. 2016; 
Soua et al. 2016). In terms of SAE, the hidden layers per-
form encoding on the input data, and the output layer recon-
structs the input layer from the encoded feature representa-
tions. In traffic prediction, the objective of an SAE model is 
to minimize the reconstruction errors, where the encoding 
and decoding operations are inverse to each other in training 
(Yang et al. 2016).

Convolutional neural networks. The convolutional neu-
ral network is comprised of a set of learnable filters (ker-
nels) to process images or image-like data that has multiple 
dimensions (e.g., width, height, and depth). As shown in 
Fig. 4a, the convolution operations will slide over the input 
image data. Each filter outputs the weighted sum of each 
pixel’s neighbors by element-wise multiplying the filter’s 
weights with the original pixel values. The above process 

will be repeated for all pixels, and the convolution opera-
tion over the image will result in a feature map of the filter. 
After each convolution operation, the CNN further employs 
pooling layers to down-sample feature maps, normally by 
max-pooling operations. To induce the spatial hierarchies 
of representation and reduce the number of parameters, the 
max-pooling operations process the feature maps by out-
putting the max value of each channel. Particularly, CNN 
models have two essential properties: first, they learn rep-
resentations that are translation invariant, making convolu-
tion layers highly data-efficient and modular; second, they 
learn spatial hierarchies of local patterns in a down-sampling 
manner (as shown in Fig. 4b), allowing convolution layers to 
extract successive spatial extent of the input data. The exam-
ples of CNN-based traffic prediction include traffic volume 
prediction (Yao et al. 2019; Deng et al. 2019) and traffic 
speed prediction (Ma et al. 2017; Jo et al. 2018).

Recurrent neural networks. The recurrent neural 
networks (RNN) are designed to model sequential data, 
especially when sequential or temporal correlations exist 
between data samples. As shown in Fig. 5a, an RNN pro-
cesses sequential data by iterating through each sequence 
element and maintaining a state that contains information 
relative to the previous input data. The RNN model has 
an internal loop, and when it is unrolled, each copy of the 
network outputs some information to the next successor. 

Fig. 3  The basic structures of deep neural networks (Liu et al. 2017)

Fig. 4  CNN’s structure and examples (Course CS231n 2019)
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However, RNNs suffer from the problem of vanishing gradi-
ents, and they can hardly capture long-term dependencies in 
practice (Bengio et al. 1994). For this reason, different vari-
ants of RNNs have been proposed, and the long short-term 
memory networks (Fig. 5b) can successfully prevent vanish-
ing in processing sequential data (Hochreiter and Schmidhu-
ber 1997). The key idea of the LSTM is the cell state, i.e., a 
horizontal line running through the top of the LSTM model. 
Moreover, the LSTM updates information to the cell state 
with three different gates, including the input gate, the forget 
gate, and the output gate. Given a time-sequential data of 
� = (�1, ..., �t, ..., �T ) , where �t ∈ ℝ

N , the LSTM updates its 
cell state �t and hidden state �t at time interval t as:

w h e r e  �t = �(�i[�t−1;�t] + �i)  i s  t h e  i n p u t 
gate ,  �t = �(�f [�t−1;�t] + �f ) i s  the forget  gate , 
�t = �(�o[�t−1;�t] + �o) is the output gate, [⋅;⋅] is a con-
catenation operation; � is a logistic sigmoid function, ⊙ is a 
pointwise multiplication, �f  , �i , �o , �s and �f  , �i , �o , �s 
are the learnable parameters.

(1)�t = �t ⊙ �t−1 + �t ⊙ tanh(�s[�t−1;�t] + �s),

(2)�t = �t ⊙ tanh(�t),

Another popular variant of RNN is the gated recurrent 
unit (GRU), which is a simplified LSTM that has no separate 
memory cells. In specific, a GRU cell has only two gates, 
i.e., an update gate for determining the amount of memory 
to retain, and a reset gate for calculating the amount of infor-
mation from the previous state to preserve. As the traffic 
data on a road segment is essentially time series, there have 
been numerous traffic prediction models based on RNNs 
(Ma et al. 2015; Fu et al. 2016; Zhao et al. 2017; Kang 
et al. 2017). We will introduce the details of these works 
in Sect, 4.

Generative adversarial networks. The generative adver-
sarial network (GAN) is indeed an alternative to variational 
auto-encoders for learning latent spaces from given data (Lv 
et al. 2018). GANs are capable of generating reasonably 
realistic synthetic data such as images, by forcing the gener-
ated data to be statistically indistinguishable from the real 
ones. As illustrated in Fig. 6a, a GAN model typically con-
sists of two parts, i.e., a generator network G and a discrimi-
nator network D . The former seeks to approximate the target 
data distribution from training data, and the latter predicts or 
estimates the probability that a generated sample is from the 
training set or created by the generator network. Both G and 

Fig. 5  The structures of RNN and LSTM (Olah 2015)

Fig. 6  The generative adversarial network and deep reinforcement learning model (Bau et al. 2019)
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D are neural networks, and their training process is iterative 
to supervise each other.

Taking image generation as an example, the objective of 
G is to be trained to fool the D with increasingly realistic 
images during the training process. In contrast, the discrimi-
nator D will continuously adapt to set a higher bar of real-
ism for the generated images. Consequently, after training is 
finished, the generator G is capable of turning any point in its 
input space into a believable image (Chollet 2017). In traffic 
prediction studies, different GAN models have been adopted 
for traffic data imputation (Chen et al. 2019c), traffic-state 
estimation (Liang et al. 2018), and pattern-sensitive traffic 
prediction (Lin et al. 2018).

Deep reinforcement learning. Deep reinforcement 
learning (DRL) uses deep neural networks to develop an 
agent for interacting with an environment and update poli-
cies to gain maximum long-term rewards over a series of 
time intervals. During each time step t, the agent would 
receive some observations ot from the environment and must 
perform an action at that will be transmitted back to the 
environment. Ultimately, the agent would receive a reward rt 
from the environment and start the next session. The behav-
iors of a DRL agent are governed by a policy, which is a 
function that maps from observations of the environment 
to the actions of the agent. The objective of the DRL is to 
produce a good policy that an agent can find the best action 
to perform accordingly. The general process of DRL is illus-
trated in Fig. 6b, and the major breakthroughs of DRL’s 
achievement include Deep Q-network (Mnih et al. 2015) 
and AlphaGo (Silver et al. 2016). In traffic-related studies, 
DRL models are implemented for traffic prediction (Li et al. 
2016a), traffic signal control (Wei et al. 2018), data recovery 
(Tang et al. 2019) and resource deployment (Li et al. 2020).

4  Applications of deep learning in traffic 
prediction for ITS

Deep learning has been widely applied to a range of traf-
fic-related applications for smart cities. In this section, we 
present the state-of-the-art research works across the most 
critical domains of traffic prediction. Specifically, we first 
introduce the essential prerequisite of traffic prediction, i.e., 
traffic data models. Then, we review all relevant studies in 
five categories that deep learning has been making remark-
able advances.

4.1  Traffic data models

Data models characterize the dimension, granularity, and 
relevant features of traffic measurements. In particular, two 

main characteristics of traffic data should be taken into con-
sideration when creating data models.

(1) Time interval. In the real-world datasets, time inter-
vals of traffic measurements range from seconds, minutes to 
hours. Meanwhile, the most commonly used time intervals 
are in minute-scales (e.g., 5–30 min per sample). Moreover, it 
also depends on the desired traffic prediction horizon of traffic 
prediction models that whether a specific time interval should 
be adopted. For example, the hourly scale can be used for pre-
dicting network-wide traffic mobility, and the minute scale can 
be helpful when predicting rush hour traffic jams (Nellore and 
Hancke 2016).

(2) Spatial property. Traffic data that covers a point, a 
road, a region, or even an urban area would have different 
spatial dimensions. Subsequently, different data models should 
be applied to traffic data with different spatial dimensionality. 
Typically, there are three major data models for traffic sensing 
data, i.e., the scalar model, the vector model, and the matrix 
model. The scalar model is the simplest data model for traffic 
data on a single road segment. For example, given a position-
fixed sensor p, its traffic flow measurement at time t can be 
denoted by fp,t , where t = 1, 2, ..., T  . The scalar models can 
only represent basic traffic sensing data (i.e., traffic volume or 
traffic speed) at a single and fixed position. The vector model is 
more advanced in describing actual traffic states over a period 
of time. The vector models can be categorized into the uni-
variate type and the multivariate type. For the univariate one, 
a vector model denotes the current traffic state measured by a 
specific sensor at time interval t is denoted by �

�
= {ft−l, ..., ft} , 

where l is the ‘lag’. For the multivariate case, given traffic flow 
measurements from multiple traffic sensors in a road network, 
the overall traffic data can be denoted by �

�
= {�

�

1
, �

�

2
..., �

�

N} , 
where N is the total number of sensors. The multivariate vec-
tor models can be useful to identify spatial correlations for 
the downstream and upstream traffic in adjacent road seg-
ments. The matrix model is the most fine-grained traffic data 
model, as it can preserve both spatial information and temporal 
information. In a time-space traffic data matrix, each entry fi,t 
represents a specific measurement of traffic state from sensor 
i at time interval t. Correspondingly, a time-space matrix of 
traffic flows for N traffic sensors over T time intervals can be 
denoted by:

A time-space matrix data model has a similar structure to an 
image, which is represented by pixels arranged in rows and 
columns. As a result, the time-space matrix can be used as 
by the CNN-based traffic prediction models.

(3)� =

⎡
⎢
⎢
⎢
⎣

f1,1 f1,2 ⋯ f1,T
f2,1 f2,2 ⋯ f2,T
⋮ ⋮ ⋱ ⋮

fN,1 fN,2 ⋯ fN,T

⎤
⎥
⎥
⎥
⎦

.
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In the following, we review various traffic prediction appli-
cations, including traffic volume prediction, traffic speed pre-
diction, etc. To provide a clear overview of these applications, 
as shown in Table 4, we classify them in terms of predicting 
targets, deep-learning models, wireless traffic sensors, and traf-
fic data models.

4.2  Deep learning for traffic volume prediction

(1) Initial efforts. Traffic volume prediction is a problem of 
time series prediction in essence. Conventionally, a series 
of parametric models (i.e., statistical models) have been 
adopted to solve primitive problems in traffic prediction. 
For example, Williams and Hoel (2003) proposed a seasonal 
ARIMA to process and predict traffic volume. Moreover, by 
taking the spatial characteristics of a road network into con-
sideration, Min and Wynter (2011) presented a spatial–tem-
poral autoregressive model to achieve accurate and scalable 
traffic prediction at a fine granularity. Besides, Chandra 
and Al-Deek (2009) used a vector auto-regressive (VAR) 
model to address the effect of upstream and downstream on 
the traffic volume of a specific location. Guo and Williams 
(2010) investigated the Kalman filter with a time-varying 
process for variance adaptation in short-term traffic volume 
forecasting.

However, the above time series models cannot deal with 
non-linearity in traffic data, so that the forecast errors can 
be substantial with irregular variations in traffic. Therefore, 
non-parametric models have been further proposed, includ-
ing K-nearest neighbors (KNN) and Bayesian networks 
(Zhang et al. 2013; Zhan et al. 2016; Zhang et al. 2016). 
For example, Zhang et al. (2013) presented a KNN-based 
short-term traffic flow prediction system. Zhan et al. (2016) 
predicted city-wide traffic volume by using Bayesian net-
works to learn the high-level features from vehicle GPS 
trajectories. Zhang et al. (2016) further proposed DeepST, 
a deep neural network model for modeling spatio-temporal 
closeness in traffic data to enhance prediction accuracy. 

More recently, Meng et al. (2017), Zhang et al. (2018b) 
applied spatio-temporal semi-supervised learning with an 
affinity graph structure to predict city-wide traffic volume, 
based on loop detector data and taxi trajectories. Although 
the above probabilistic machine learning models can handle 
the non-linear and irregular variances in traffic prediction, 
they actually perform shallow learning in feature extraction. 
Consequently, they are subject to dealing with traffic data 
by simple transformations, i.e., using one or two succes-
sive representation spaces. Since the data volume and data 
dimensions of urban traffic networks have been growing 
explosively, the complex traffic prediction tasks that require 
refined feature representations cannot be attained by the 
above techniques.

(2) Advanced models. The emergence of deep learning in 
traffic prediction starts with multi-layer perceptron (MLP), 
i.e., a three-layer forward neural network. As the units in 
each layer of each MLP are densely connected, a substantial 
number of parameters need to be learned via the backpropa-
gation process. For instance, Kumar et al. (2015) proposed 
an MLP model to incorporate traffic volume, speed, road 
density, and temporal information to predict short-term 
traffic volume on highways. As MLP is a straightforward 
model with a fully-connected structure, it would entail 
high complexity with low efficiency in the representation 
learning process. Therefore, a subsequent branch of deep 
learning models is proposed to reduce computation cost in 
traffic prediction, such as deep belief network and stacked 
auto-encoder. The DBN is a stack of restricted Boltzmann 
machines that are trained in a greedy and layer-wise manner. 
The key idea of using a deep belief network is to effectively 
capture the features of traffic data without prior knowledge 
by unsupervised feature learning. For example, Huang et al. 
(2014) proposed a deep architecture that incorporates a deep 
belief network and a multi-task regression layer, where the 
DBN at the network’s bottom performs unsupervised feature 
learning and a top regression layer is used for supervised 
traffic prediction. Koesdwiady et al. (2016) incorporated 
deep belief networks and data fusion techniques to derive 
more accurate traffic flow prediction with historical traffic 
data and weather data. Moreover, Soua et al. (2016) pro-
posed a deep belief network-based approach to predict traf-
fic flow using multi-stream data (i.e., historical traffic data, 
weather data, and event-based data).

Similar to DBN, the stacked auto-encoder is another type 
of pre-trained deep neural network to learn compact rep-
resentation for dimension reduction. Specifically, Lv et al. 
(2014) proposed an SAE model to learn generic features 
from historical traffic flow data. This model can discover 
the non-linear spatial and temporal correlations with greedy 
layer-wise training. To further improve the performance of 
SAE models on traffic prediction, Yang et al. (2016) pro-
posed a novel stacked auto-encoder Levenberg–Marquardt 

Table 4  A Summary of predicting targets, deep-learning models, 
wireless sensors, and data models

Deep learning-driven traffic prediction summary

Predicting target DL model Wireless sen-
sors

Data models

Traffic volume DNN Road sensor Scalar value
Traffic speed CNN Traffic cameras Univariate vector
Traffic demand RNN On-board GPS Multivariate 

vector
Travel time RNN + CNN Smartphones Time-space 

matrix
Traffic anomaly GNN Social media Region matrix
Traffic pattern DRL AFC systems Graph model
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(SAE-LM) model. By introducing the LM algorithm to train 
the neural networks and the Taguchi method to optimize its 
structure, the SAE-LM model showed higher accuracy and 
more efficiency in traffic flow forecasting.

Recurrent neural networks and long short-term memory 
networks become prevalent with their outstanding perfor-
mance in capturing temporal features for accurate traffic vol-
ume prediction. For instance, Fu et al. (2016b) initiatively 
used basic LSTM and GRU to predict traffic flow. Zhao et al. 
(2017) proposed a two-dimension LSTM network to capture 
correlations in the temporal domain and spatial domain from 
the original destination correlation matrix. To improve pre-
diction accuracy with multi-source data, Kang et al. (2017) 
further studied the effects of various input settings (traffic 
flow, occupancy, and speed) on the performance of LSTM 
for traffic flow prediction. Meanwhile, Jia et al. (2017) intro-
duced two models, namely R-DBN and R-LSTM, to crea-
tively take rainfall as an impact factor in traffic prediction. 
Besides, Tian et al. (2018) proposed the LSTM-M model to 
infer traffic flow by explicitly combining the missing traf-
fic patterns with masking vectors. To build capabilities of 
LSTMs and satisfy different requirements in predicting traf-
fic volume, many research works have proposed different 
variants of LSTMs, which are further combined with other 
deep-learning models. Hua et al. (2018) proposed RC-LSTM 
that contains fewer parameters due to sparse neural con-
nectivity in comparison to conventional LSTM. Liao et al. 
(2018b) integrated multi-source information, including 
crowd map queries, road intersections, and geographical/
social attributes, as the input of an LSTM-based sequence 
to sequence learning framework.

(3) Cutting-edge techniques. More recently, spatiotem-
poral traffic forecasting has attracted massive interest from 
research communities, as it integrates the convolutional 
neural networks to enable spatial feature extraction from 
traffic data. For example, Yao et al. (2019) revisited spa-
tial–temporal dynamics in traffic data and proposed STDN, 
which combined a local CNN model to capture the dynamic 
similarity of traffic flows and an LSTM model to learn the 
sequential information. Zhang et  al. (2017) designed a 
deep spatio-temporal residual network (ST-ResNet) to col-
lectively predict the inflow and outflow of traffic in every 
region of a city. The ST-ResNet incorporated convolutional 
neural networks with residual unit sequences and dynami-
cally aggregated their outputs for crowd/traffic flow predic-
tion. Moreover, Li et al. (2017) modeled the traffic flow as a 
diffusion process on a directed graph, and they proposed a 
diffusion convolutional recurrent neural network (DCRNN) 
to solve the spatiotemporal forecasting problem. DCRNN 
can capture the spatial and temporal dependence in traffic 
data by using bi-directional random walks on the graph, and 
model the temporal dependency using an encoder-decoder 
architecture with scheduled sampling. Likewise, Deng et al. 

(2019) further designed a random subspace learning strategy 
for a deep CNN architecture. It can learn hierarchical feature 
representations from incomplete traffic data for prediction. 
Furthermore, Zheng et al. (2019) proposed DeepSTD, a 
two-phase end-to-end deep learning framework to leverage 
spatio-temporal disturbances to predict citywide traffic flow.

Inspired by the human’s ability to capture the focus in 
a particular vision field, attention mechanisms have been 
integrated into sequence-to-sequence learning, including 
traffic prediction (Xu et al. 2015). For example, Yang et al. 
(2019a) proposed an improved LSTM+ solution by integrat-
ing attention mechanisms to capture high-impact historical 
data for feature enhancement. Guo et al. (2019) proposed an 
attention-based spatiotemporal graph convolutional network, 
where the graph convolutions can capture spatial features, 
and the convolutions in the temporal dimension can capture 
dependencies on historical data of different time intervals. 
In a state-of-the-art work in spatial–temporal data min-
ing for traffic prediction, Pan et al. (2019) presented ST-
MetaNet, a deep-meta-learning based model, consisting of 
meta-knowledge learner, meta graph attention network and 
meta recurrent neural network. The ST-MetaNet can learn 
of traffic-related embeddings from geo-graph attributes and 
further model both spatial and temporal correlations for 
high-accuracy and network-wide traffic prediction.

4.3  Deep learning for traffic speed prediction

(1) Basic efforts. Besides traffic volume, traffic speed is 
another essential indicator of traffic status that can serve 
many ITS applications. Intuitively, the value of vehicular 
speed on the road can reflect the crowdedness level (CL) 
of road traffic (Qin et al. 2018). For example, Google Maps 
Google (2019) visualize CL of road traffic with crowd 
sensed traffic speed data from individual mobile devices 
and in-vehicle sensors. In literature studies, the revolution 
pattern of traffic speed prediction is similar to that of traffic 
volume prediction. Conventional methods for traffic speed 
prediction include ARIMA (Lefèvre et al. 2014; Wang et al. 
2014), VAR (Chandra and Al-Deek 2009), Kalman Filter 
(Guo and Williams 2010), SVM (Wang and Shi 2013), KNN 
(Rasyidi et al. 2014), and Support Vector Regression (SVR) 
(Asif et al. 2013). Likewise, the initial takes of applying 
deep-learning models for traffic speed prediction started 
from deep neural networks. For instance, Dia (2001) first 
introduced a time-lag recurrent network (TLRN) model for 
predicting short-term traffic speed. Vlahogianni et al. (2005) 
further provided a multi-layer perceptron network with a 
structural optimization strategy to learn representations from 
multivariate traffic speed data. Moreover, the stacked auto-
encoder (Lemieux and Ma 2015) and deep belief network 
(Jia et al. 2016) have been further adopted for traffic speed 
prediction, respectively.
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(2) Deep-learning models. Research studies using LSTM 
for traffic speed prediction have become more influential 
in recent years. For instance, Ma et al. (2015) proposed a 
long short-term memory network for traffic speed predic-
tion by capturing long-term temporal dependency. Yu et al. 
(2017a) proposed a Deep LSTM architecture to unify LSTM 
with SAE for forecasting traffic speed in peak-hour and post-
accident conditions. Liao et al. (2018a) presented a deep spa-
tiotemporal residual network to integrate sequence learning 
from different modalities for hotspot traffic speed prediction. 
Wang et al. (2019a) used bidirectional LSTM (Bi-LSTM) to 
model each path in the road network, and multiple all Bi-
LSTMs were further stacked to incorporate temporal infor-
mation for traffic speed prediction.

CNN is another research focus for traffic speed predic-
tion, as it is capable of extracting features from local input 
patches and allowing for representation modularity. As a 
pioneering work in the ITS community, Ma et al. (2017) 
advocated ‘Learning Traffic as Images’ and proposed a 
deep convolutional neural network for speed prediction in 
large-scale transportation networks. By converting network-
wide traffic to the image-like data format, they constructed 
a time-space matrix with temporal and spatial traffic data 
and further employed CNNs to process the traffic images for 
feature extraction and network-wide traffic speed prediction. 
Similarly, Jo et al. (2018) proposed image-to-image learning 
to predict traffic speed with a novel CNN model that consists 
of convolutional and deconvolutional filters.

To further exploit the potential of CNN in long-term and 
large-scale traffic prediction, recurrent convolutional net-
works have been proposed to incorporate CNN and LSTM 
for more accurate traffic prediction. Wang et al. (2016) pro-
posed eRCNN, an error-feedback recurrent convolutional 
neural network structure for continuous traffic speed predic-
tion, by utilizing the implicit correlations among nearby road 
segments to improve prediction accuracy. Yu et al. (2017b) 
introduced spatiotemporal recurrent convolutional networks 
(SRCNs) that inherited the advantages of both CNN and 
LSTM. In SRCNs, the spatial dependencies of road network-
wide traffic can be captured by its deep convolutional neural 
networks, while the temporal dynamics can be learned by 
the LSTM component. Lv et al. (2018) proposed a look-
up convolutional recurrent neural network (LC-RNN) as a 
rational integration of RNN and CNN. LC-RNN contained 
several look-up convolution layers that can perform topol-
ogy-aware convolution operations to capture spatial traffic 
dynamics of surrounding areas effectively. Additionally, dif-
ferent variants of recurrent convolutional neural networks, 
such as PCNN (CNN for periodic traffic data) (Chen et al. 
2018) and STCNN (spatio-temporal CNN) (He et al. 2019) 
have been further proposed for traffic speed prediction on 
different datasets.

(3) Graph neural network models To capture struc-
tural features of graphic traffic networks, the state-of-the-art 
research studies (Wu et al. 2020; Chen et al. 2019) focused 
on graph convolutional networks (GCN) to learn the interac-
tions between road links in the traffic networks. Chen et al. 
(2019b) first utilized multiple residual recurrent graph neural 
networks (Res-RGNNs) to jointly capture spatial dependen-
cies and temporal dynamics of traffic networks. Ge et al. 
(2019) proposed a temporal graph convolutional network 
(GTCN), which was composed of spatial–temporal com-
ponents and external components to achieve traffic speed 
prediction. Zhang et al. (2019a) further proposed a novel 
attention graph convolutional sequence-to-sequence model, 
namely AGC-Seq2Seq, addressing the multistep prediction 
challenge. Moreover, Zhao et al. (2019) presented T-GCN, a 
temporal graph convolutional network model that combined 
GCN and gated recurrent units to learn complex topologi-
cal structures and predict traffic speed. Diao et al. (2019) 
constructed a dynamic Laplacian matrix to represent spatial 
dependencies between road segments. They further proposed 
a dynamic spatio-temporal graph convolutional neural net-
work for traffic forecasting.

4.4  Deep learning for traffic prediction 
with miscellaneous tasks

Besides traffic volume and traffic speed, there have been 
numerous deep learning-driven applications in traffic pre-
diction with other miscellaneous tasks. In the following, we 
briefly highlight four research directions.

(1) Passenger demand prediction. It also called traffic 
demand prediction, which is a critical component in taxi 
services and ride-hailing services. Accurate prediction of 
passenger demand would benefit the operations of ITSs to 
allocate available transportation resources to different urban 
areas. Ke et al. (2017) proposed a fusion convolutional 
LSTM network (FCL-Net) to address spatial, temporal, and 
exogenous dependencies for short-term passenger demand 
forecasting for the on-demand ride services platform. More-
over, Zhang et al. (2017) proposed a spatio-temporal residual 
network (ST-ResNet) to collectively forecast the crowd flows 
based on traffic trajectories. Yao et al. (2018) proposed a 
deep multi-view spatial–temporal network (DMVST-Net) 
to model traffic correlations with three different views, 
i.e., temporal view, spatial view and semantic view for 
taxi demand prediction. Furthermore, He and Shin (2019) 
used a spatio-temporal deep capsule network (STCapsNet) 
to accurately predict ride demands and driver supplies, 
exploiting vectorized neuron capsules to account for com-
prehensive spatio-temporal and external factors. Recently, 
Geng et al. (2019) proposed ST-MGCN, a spatiotemporal 
multi-graph convolution network for ride-hailing demand 
forecasting. They first identified non-Euclidean correlations 
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of ride-hailing demand in different regions and then modeled 
these correlations with multi-graph convolution for demand 
forecasting. To infer the citywide traffic volume with biased 
GPS trajectories, Tang et al. (2019) presented the JMDI 
framework to jointly model the dense and incomplete tra-
jectories for citywide traffic volume inference, using dense 
trajectory data from GPS and incomplete trajectory data 
from the camera surveillance system.

(2) Travel time prediction. Estimating and predicting 
travel time is crucial for both passengers and drivers in plan-
ning the commuting time and selecting fast routes, respec-
tively. To accurately estimate travel time on highways, Duan 
et al. (2016) adopted the LSTM neural network to predict the 
travel time of vehicles based on traffic data of 66 road links 
provided by Highways England. Moreover, Li et al. (2016a) 
exploited to build a Q-function reinforcement learning with 
DNN by using sampled traffic state/control as the input and 
the corresponding performance of the traffic system as the 
output. Similarly, Wei et al. (2018) proposed IntelliLight, 
a more effective deep reinforcement learning model with 
offline training and online testing based on synthetic data 
and real-world data, respectively. Wang et al. (2018) pro-
posed DeepTEE, an end-to-end deep learning framework for 
travel time estimation, for predicting the travel time of the 
whole path directly. The core component of DeepTEE was a 
spatio-temporal learning architecture that consisted of a geo-
based convolutional layer and an LSTM-based RNN layer.

(3) Traffic anomaly prediction. Traffic anomalies, such 
as traffic congestions and accidents, are the major causes of 
traffic delay. It is of great importance to detect and predict 
traffic anomalies in a timely manner. For example, Chen 
et al. (2016) studied the relationship between traffic acci-
dent data and human mobility data. They developed a deep-
learning model based on SAE to learn hierarchical feature 
representations and further indicate the risk level of traffic 
accidents. He et al. (2018) made a first attempt to detect 
illegal parking event by mining massive trajectories from 
bike traffic data. Yuan et al. (2018) proposed a deep learn-
ing framework called Hetero-ConvLSTM. They employed a 
convolutional LSTM neural network with a model ensemble 
approach to address the spatial heterogeneity in traffic data 
and further improved the accuracy of traffic anomaly predic-
tion. In addition, Di et al. (2019) proposed a ConvLSTM 
based congestion propagation model to process spatial traf-
fic matrix for traffic congestion prediction. Likewise, Zhang 
et al. (2018a) leveraged social media data of over 3 million 
tweets for detecting traffic accidents, by feeding these data 
into LSTM and DBN models to effectively mining informa-
tion of possible traffic accident.

(4) Urban mobility prediction. Understanding how 
large-scale transportation networks evolve is critical for 
urban traffic management. Therefore, some research studies 
have linked traffic prediction with urban mobility modeling 

and prediction (Zheng 2019). For example, Song et  al. 
(2016) proposed DeepTransport, an intelligent system that 
used deep learning architectures to jointly model human 
mobility and transportation patterns with 1.6 million users’ 
GPS trajectories. Jiang et al. (2018a) proposed and imple-
mented DeepUrbanMomentum, an online deep-learning 
system for short-term urban mobility prediction based on 
real-world human mobility data. Jiang et al. (2018b) also 
proposed a deep Regions-of-Interests based architecture to 
model urban mobility sequence and predict city-scale mobil-
ity effectively. Fan et al. (2020) leveraged building sensing 
data (e.g., building occupancy) with cross-domain learning 
for nearby urban mobility prediction. More recently, Yang et 
al. presented VeMo (Yang et al. 2019b) system that utilized 
data from the electric toll collection (ETC) to transparently 
model and predict state-level urban mobility. Subsequently, 
Wang et al. (2019b) quantified dynamic city-level patterns 
of electric vehicles with comprehensive data analysis from 
spatial and temporal dimensions. Xiang et al. (2020) inves-
tigated edge computing and low-rank theory in large-scale 
urban mobility datasets from a real-world ITS.

5  Future directions

In this section, we envision the promising and potential 
research directions for future ITS with deep learning.

Multi-source data fusion for advanced traffic predic-
tion. With the ever-increasing number of vehicles on the 
road, accurate predictions on traffic states should take con-
sideration of multiple data sources that are related to traffic 
status (Fan et al. 2019). It has been proven that instead of 
using single-source traffic sensing data, jointly considering 
multiple data sources can enhance the accuracy, reliabil-
ity, and sustainability of traffic prediction (Liu et al. 2018). 
Data sources, which are not directly generated from vehi-
cles but certainly affect traffic, are called extrinsic data (Qin 
et al. 2018). There are a variety of extrinsic data, including 
the topology of road networks, weather conditions, social 
events, point of interest, and public holidays. However, it is 
extremely difficult to fuse these extrinsic data into features 
for traffic prediction, as they have different non-linear cor-
relations with traffic data (Fan et al. 2020). Moreover, it is 
challenging to build a concrete traffic prediction model by 
taking traffic data and multi-source data as input. The multi-
level non-linearity would make traffic modeling and predic-
tion exceedingly computation-intensive, and this challenge 
remains to be tackled in the future research study.

Real-time, large-scale, and fine-grained traffic predic-
tions with big traffic data. With the rapid development of 
ITSs, traffic sensing infrastructures are generating sensing 
data at the Trillion-byte level to the Peta-byte level. Such 
an unprecedented volume of data has posed considerable 
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difficulties for real-time and fine-grained traffic prediction. 
For example, a dataset of shared electric vehicle networks 
contains nearly 5 TB vehicular GPS trajectory data (Wang 
et al. 2019b). Taming such big traffic data for traffic mod-
eling and prediction requires more advanced techniques on 
both deep-learning models and parallel computing hardware. 
First, the deep-learning models based on GNN can further 
extract high-level feature abstractions from a network-wide 
traffic dataset. Second, parallel computing infrastructures 
(e.g., computing clusters) with GPUs and TPUs are envi-
sioned to boost processing traffic data for different prediction 
purposes. Nevertheless, it is still an open issue about how 
to enable and manage advanced parallel computing with the 
ever-increasing big traffic data.

Data privacy, data storage, and open-source data. 
With the explosive amount of traffic data being generated 
by traffic infrastructures and on-board GPS sensors, there 
are rising issues concerning data privacy, data storage, and 
data openness in traffic-related research. First, the aggressive 
increase in connected autonomous vehicles makes data shar-
ing become universal (Liu et al. 2020). Meanwhile, the ITS 
must guarantee the privacy of individuals who contribute to 
their personal traffic information. Regarding this, privacy-
preserving data publishing techniques (Fan et al. 2016), pri-
vacy-aware data structures (Wu et al. 2018), and encrypres-
sive (encrypted and compressive) privacy Wu et al. (2018) 
have been proposed in recent years. Second, regarding the 
unprecedented increase in traffic sensing data, efficient and 
low-cost data storage becomes a vital issue and has attracted 
research interest (Li et al. 2016b). For example, Chen et al. 
(2019a) developed a novel framework called TrajCompres-
sor to perform cost-effective online trajectory compression, 
by exploiting vehicle heading direction from GPS data. 
Third, the evaluability and verifiability of ITS-related studies 
are subject to the availability of corresponding traffic data-
sets. However, it is still challenging to develop consolidated 
standards for public traffic data. Consequently, most of the 
traffic prediction methods are based on different datasets for 
evaluation, making it difficult to comprehensively compare 
their performance (Gharaibeh et al. 2017).

6  Conclusion

In this paper, we have presented an in-depth literature review 
on the recent advances in deep learning for traffic sensing 
and prediction. First, we have provided a brief introduction 
to the ITS and summarized the previous survey articles 
related to traffic sensing and prediction. Then, we have intro-
duced the most popular deep-learning models that can be 
applied for ITS. Moreover, we have presented state-of-the-
art deep learning-based applications in traffic sensing and 

prediction, including traffic volume prediction, traffic speed 
prediction, passenger demand prediction, travel time predic-
tion, traffic anomaly prediction, and urban mobility predic-
tion. Furthermore, we have envisioned the future directions 
of deep learning for ITS and discussed the emerging chal-
lenges. We hope that this survey can benefit the research 
community with a comprehensive knowledge of the latest 
developments of deep learning for intelligent traffic sensing 
and prediction in ITS.
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A Wireless sensor networks for traffic 
sensing and prediction

A.1 Wireless sensing technologies for urban traffic 
systems

Sensors are the fundamental elements in traffic sensing, 
and wireless sensor networks are widely used to satisfy the 
requirements of real-time and accurate traffic sensing (Xiao 
et al. 2019). A wireless sensor node usually consists of five 
critical functional modules as follows (Xu et al. 2014).

– A sensing module for vehicle detection and data acquisi-
tion.

– A wireless transceiver module for wireless data transmis-
sion.

– A local data processing module for converting physico-
chemical signals into traffic values.

– A memory module for storing sensing data and backup 
of system settings.

– A power supply module that consistently provides energy 
for the sensor.

We categorize wireless traffic sensors in Table 5 and 
introduce different traffic sensing technologies as follows. 
inductive loop sensors, as the most commonly used devices, 
are installed in the road surface to detect the presence of 
vehicles by the inducing currents from the vehicle. Simi-
larly, magnetic sensors (including Magnetic sensors and 
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Magnetic induction coil) can detect the presence of a vehi-
cle through the anomaly in the magnetic field (Gong et al. 
2018). Moreover, microwave radar sensors leverage antenna 
beams to detect the presence, passage, volume, lane occu-
pancy, speed, or length of a vehicle by the reflected signals. 
Likewise, infrared sensors (either active or passive) detect 
the energy reflected by or emitted from vehicles, then con-
vert the energy into electrical signals to further determine 
the presence of vehicles. Besides, laser radar sensors trans-
mit power in the near-infrared spectrum and provide traffic 
measurements, such as vehicle presence, traffic volume, and 
traffic speed. Modern laser sensors can provide precise two-
dimensional or three-dimensional image data of vehicles.

As another short-range sensing technique, RFIDs (Xiao 
et al. 2018a, b) have been utilized for fine-grained object 
detection. However, they are not feasible for the scenar-
ios of large-scale traffic sensing, due to the constraints 
of communication scalability and the cost of RFID tags. 
Ultrasonic sensors work with pulse waveforms and can 
detect vehicle count, presence, and occupancy informa-
tion. Furthermore, acoustic arrays are passive sensors 
that use signal processing algorithms to measure traffic 
volume and traffic speed in vehicular networks. For real-
time traffic surveillance, video image sensors are the most 
pervasive devices of roadways that transmit television 

imagery to traffic operators. With the installed data pro-
cessing modules, surveillance cameras can perform more 
advanced traffic sensing tasks, including plate recognition, 
driving behavior detection, and even driver facial recogni-
tion. Moreover, onboard GPS sensors can be categorized 
as indirect sensors that can provide city-wide trajectory 
data of vehicles. GPS trajectory can be utilized by speed 
inference models (Zhan et al. 2016) and traffic volume 
estimation models (Meng et al. 2017). Meanwhile, the 
tradeoff between incentive pricing and sensing quality on 
sensing data like GPS remains as a challenge, and various 
mechanisms have been proposed to address this issue (Qu 
et al. 2018; Xiang et al. 2016)

A.2 Wireless communication technologies for urban 
traffic systems

There are a number of wireless communication technolo-
gies that can support traffic data transmission under vari-
ous requirements (e.g., transmitting distance, data volume). 
As shown in Table 6, we summarize the critical enabling 
transmission technologies for traffic sensing and prediction, 
including Bluetooth, ZigBee, Z-Wave, LoRaWAN, WiFi, 
WiMAX, LTE, and LTE-A.

Table 5  Wireless sensing 
technologies for urban traffic 
systems

Technologies Presence Count Speed Classification Cost

Inductive loop ✓ ✓ ✓ ✓ Low
Magnetometer ✓ ✓ ✓ Moderate
Magnetic induction coil ✓ ✓ ✓ Low
Microwave radar ✓ ✓ ✓ ✓ Low
Active infrared ✓ ✓ ✓ ✓ Moderate
Passive infrared ✓ ✓ ✓ Low
Laser radar ✓ ✓ ✓ ✓ Moderate
Ultrasonic ✓ ✓ Low
Acoustic array ✓ ✓ ✓ High
Video image camera ✓ ✓ ✓ ✓ High
On-board GPS ✓ ✓ ✓ Low
Mobile signaling ✓ ✓ ✓ Low

Table 6  Wireless 
communication technologies for 
urban traffic systems

Technologies Standard Data Rate Topology Feature

Bluetooth IEEE 802.15.1 3 Mb/s P2P Low-power
ZigBee IEEE 802.15.4 250 kb/s Mesh Scalable
Z-Wave Z-Wave Alliance 250 kb/s Cluster Indoor
LoRaWAN LoRa Alliance 50 kb/s Star Low-cost
WiFi IEEE 802.11 300 Mb/s Star Ubiquitous
WiMAX IEEE 802.16 75 Mb/s P-M High-speed
LTE 3GPP 75-300 Mb/s Star High-coverage
LTE-A 3GPP 500-1000 Mb/s P2P High-speed
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To begin with, Bluetooth and ZigBee are more suitable 
for short-range communication between traffic sensors and 
road-side units, where Bluetooth is characterized for Peer-
to-Peer (P2P) communications and ZigBee has higher scal-
ability with lower transmission rate. In addition, Z-Wave 
has been applied for short-range communication of indoor 
traffic applications (Xiang et al. 2015), such as smart park-
ing. Moreover, LoRaWAN can support wireless communi-
cation between gateways for long-range traffic monitoring 
scenarios (e.g., highways) and further secure bidirectional 
communication with moderate data load. Alternatively, WiFi 
with different configurations under IEEE 802.11 standards 
can be used for short-range, regional, and opportunistic traf-
fic data transmission at intersections and business-intensive 
areas (Zhu et al. 2017; Fu et al. 2016a; Xiang et al. 2014). 
Moreover, WiMAX allows scalable data rates for long-range 
communication. Thereby, it is more desirable for video sur-
veillance and image cameras in traffic sensing systems. At 
last, LTE and LTE-A are both under the 3GPP standard. 
Thus, they can provide portable mobile broadband connec-
tivity across urban areas for traffic data transmission.
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