
Elsevier required licence: © <2020>. This manuscript version is made available under the CC-BY-NC-
ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
The definitive publisher version is available online at
 [https://www.sciencedirect.com/science/article/pii/S1568494620306438?via%3Dihub]

http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal Pre-proof

Motion-encoded particle swarm optimization for moving target search
using UAVs

Manh Duong Phung, Quang Phuc Ha

PII: S1568-4946(20)30643-8
DOI: https://doi.org/10.1016/j.asoc.2020.106705
Reference: ASOC 106705

To appear in: Applied Soft Computing Journal

Received date : 14 March 2020
Revised date : 31 July 2020
Accepted date : 2 September 2020

Please cite this article as: M.D. Phung and Q.P. Ha, Motion-encoded particle swarm optimization
for moving target search using UAVs, Applied Soft Computing Journal (2020), doi:
https://doi.org/10.1016/j.asoc.2020.106705.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2020.106705
https://doi.org/10.1016/j.asoc.2020.106705

Journal Pre-proof
Motion-Encoded Particle Swarm Optimization for
Moving Target Search Using UAVs

Manh Duong Phunga,b,∗, Quang Phuc Haa

aSchool of Electrical and Data Engineering, University of Technology Sydney (UTS)
15 Broadway, Ultimo NSW 2007, Australia

bVNU University of Engineering and Technology (VNU-UET), Vietnam National
University, Hanoi (VNU)

144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Abstract

This paper presents a novel algorithm named the motion-encoded particle swarm

optimization (MPSO) for finding a moving target with unmanned aerial vehicles

(UAVs). From the Bayesian theory, the search problem can be converted to

the optimization of a cost function that represents the probability of detecting

the target. Here, the proposed MPSO is developed to solve that problem by

encoding the search trajectory as a series of UAV motion paths evolving over

the generation of particles in a PSO algorithm. This motion-encoded approach

allows for preserving important properties of the swarm including the cognitive

and social coherence, and thus resulting in better solutions. Results from exten-

sive simulations with existing methods show that the proposed MPSO improves

the detection performance by 24% and time performance by 4.71 times compared

to the original PSO, and moreover, also outperforms other state-of-the-art meta-

heuristic optimization algorithms including the artificial bee colony (ABC), ant

colony optimization (ACO), genetic algorithm (GA), differential evolution (DE),

and tree-seed algorithm (TSA) in most search scenarios. Experiments have been

conducted with real UAVs in searching for a dynamic target in different scenarios

to demonstrate MPSO merits in a practical application.

∗Corresponding author
Email addresses: manhduong.phung@uts.edu.au (Manh Duong Phung),

quang.ha@uts.edu.au (Quang Phuc Ha)

Preprint submitted to Journal of Applied Soft Computing September 9, 2020

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Keywords: Optimal search, Particle swarm optimization, UAV

1. Introduction

Unmanned aerial vehicles (UAVs) have been receiving much research inter-

est with numerous practical applications, especially in surveillance and rescue

due to their capability of operating in harsh environments with sensor-rich work

capacity suitable for different tasks. In searching for a lost target using UAVs,5

there often exists a critical period called “golden time” in which the probability

the target being found should be highest [1]. As time progresses, that prob-

ability rapidly decreases due to the attenuation of initial information and the

influence of external factors such as weather conditions, terrain features and

target dynamics. The main objective in searching for a lost target using UAVs10

therefore includes finding a path that can maximize the probability of detect-

ing the target within a specific flight time given initial information on target

position and search conditions [2, 3].

In the literature, the search problem is often formulated as probabilistic

functions so that uncertainties in initial assumptions, search conditions and15

sensor models can be adequately incorporated. In [2, 4], a Bayesian approach

has been introduced to derive the objective functions for evaluating the detection

probability of UAV flight paths. The initial search map has been modeled as a

multivariate normal distribution with the mean and variance being computed

based on initial information about the target position [5, 6]. In [3, 6], the20

target dynamic is represented by a stochastic Markov process which can then

be deterministic or not depending on the searching scenarios. The sensor, on

the other hand, is often modeled as either a binary variable with two states,

“detected” or “not detected” [5], or as a continuous Gaussian variable [2].

Due to various probabilistic variables involved, the complexity of the search-25

ing problem varies from the level of nondeterministic polynomial-time hardness

(NP-hard [7]) to nondeterministic exponential-time completeness (NEXP-com-

plete [8]), in which the number of solutions available to search grows exponen-

2

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Table 1: Comparison between search methods

Method Work Target
Binary

sensor

Multi-

agent

Ad hoc

heuristic

one-step look ahead [2] Static & Dynamic 7 7 3

k-step look ahead [3] Dynamic 3 7 3

BOA [4] Dynamic 3 3 7

ACO [5] Dynamic 3 3 3

GA [10] Static 3 7 7

CEO [11] Dynamic 3 3 7

Depth search [13] Static 3 3 3

Gradient descent [14] Static 7 7 7

tially with respect to the search dimension and flight time. Consequently, solving

this problem using classical methods such as differential calculus to find the30

exact solution becomes impractical, and hence, approximated methods are often

used. A number of methods have been developed, such as greedy search with

one-step look ahead [2] and k-step look ahead [3], ant colony optimization (ACO)

[5], Bayesian optimization approach (BOA) [4], genetic algorithm (GA) [9, 10],

cross entropy optimization (CEO) [11], branch and bound approach [12], limited35

depth search [13], and gradient descend methods [14, 15]. Table 1 compares

main properties of some algorithms where the “multi-agent” column implies

the possibility of using multiple UAVs for searching and “ad hoc heuristic” for

the case being specifically designated for the search problem. It is noted that

most methods cope with moving targets and use the binary model for detection40

sensors. Some approaches ([4, 5, 11, 13]) employ multiple UAVs to speed up

the search process, whereas others use ad hoc heuristic to improve detection

probability.

From the literature, it is recognizable that approaches to optimal search di-

verge in assumptions, constraints, target dynamics and searching mechanisms.45

Due to its complex nature, optimal search, especially in scenarios with fast-

3

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
moving targets, remains a challenging problem. Besides, recent advancements

in sensor, communication and UAV technologies enable the development of new

search platforms. They pose the need for new methods that should not only

robust in search capacity but also possess properties such as computational50

efficiency, adaptability and optimality.

For optimization, particle swarm optimization (PSO) is a potential tech-

nique with a number of key advantages that have been successfully applied in

various applications [16, 17, 18, 19, 20]. It is less sensitive to initial conditions as

well as the variation of objective functions and is able to adapt to many search55

scenarios via a small number of parameters including an initial weight factor

and two acceleration coefficients [21]. It generally can find the global solution

with a stable convergence rate and shorter computation time compared to other

stochastic methods [22]. More importantly, PSO is simple in implementation

with the capability of being parallelized to run with not only computer clusters60

or multiple processors but also graphical processing units (GPU) of a single

graphical card. This allows to significantly reduce the execution time without

requiring any change to the system hardware [23].

Motivated from the aforementioned analysis, we will employ the PSO method-

ology in this study to deal with the search problem in complex scenarios for fast65

moving targets, aiming to improve the search performance in both detection

probability and execution time. To this end, we propose a new motion-encoded

PSO algorithm, taking into account both cognitive and social coherence of the

swarm. Our contributions include: (i) the formulation of an objective function

for optimization, incorporating all assumptions and constraints, from the search70

problem and the probabilistic framework; (ii) the development of a new motion-

encoded PSO (MPSO) from the idea of changing the search space for the swarm

to avoid getting stuck at local maxima; (iii) the demonstration of MPSO im-

plemented for UAVs in experimental search scenarios to validate its outperfor-

mance over other PSO algorithms obtained from extensive comparison analysis.75

The results show that MPSO, on one hand, presents superior performance on

various search scenarios while on the other hand remains simple for practical

4

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
implementation.

The rest of this paper is structured as follows. Section 2 outlines the steps

to formulate the objective function. Section 3 presents the proposed MPSO and80

its implementation for solving a complex search problem. Section 4 provides

simulation and experimental results. A conclusion is drawn in Section 5 to close

our paper.

2. Problem Formulation

The search problem is formulated by modeling the target, sensor and belief85

map with details as follows.

2.1. Target Model

In the searching problem, the target is described by an unknown variable x ∈
X representing its location. Before the search starts, a probability distribution

function (PDF) is used to model the target location based on the available90

information, e.g., the last known location of the target before losing its signal.

This PDF could be a normal distribution centered about the last known location,

but also could be a uniform PDF if nothing is known about the target location.

In the searching space, this PDF is represented by a grid map called the belief

map, b(x0), in which the value in each cell corresponds to the probability of the95

target being in that cell. The map can be created by discretizing the searching

space S into a grid of Sr × Sc cells and associating a probability to each cell.

Assume the target presents in the searching space, we have
∑

x0∈S b(x0) = 1.

During the searching process, the target may be not static but navigate in a

certain pattern. This pattern can be modeled by a stochastic process which can100

be assumed as a Markov process. In the special case of a conditionally deter-

ministic target, which is considered in this study, that pattern merely depends

on the initial position x0 of the target. In that case, the transition function,

p(xt|xt−1), representing the probability which the target goes from cell xt−1 to

xt, is known for all cells xt ∈ S. Consequently, the path of the target will be105

5

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
entirely known if its initial position is known. This assumption is made quite

often for the survivor search at sea [24] and also for the search problems in

general [5].

2.2. Sensor Model

In order to look for and find a target, a sensor is installed on the UAV to carry110

out an observation zt at each time step t. The observations are independent

such that the occurrence of one observation provides no information about the

occurrence of the other observation. A detection algorithm is implemented to

return a result for each observation which is assumed to have only two possible

outputs, the detection of the target, zt = Dt, or no detection, zt = D̄t, where115

Dt represents a “detection” event at time t. Due to imperfectness of the sensor

and detection algorithm, an observation of the target detected, zt = Dt, still

does not ensure the presence of the target at xt. This is reflected through

the observation likelihood, p(zt|xt), given knowledge of the sensor model. The

likelihood of no detection, given a target location xt, is then computed by:120

p(D̄t|xt) = 1− p(Dt|xt). (1)

2.3. Belief Map Update

Once the initial distribution, b(x0), is initialized, the belief map of the target

at time t, b(xt), can be established based on the Bayesian approach and the se-

quence of observations, z1:t = {z1, ..., zt}, made by the sensor. This approach is

conducted recursively via two phases, prediction and update. In the prediction,125

the belief map is propagated over time in accordance with the target motion

model. Suppose at time t, the previous belief map, b(xt−1), is available. Then,

the predicted belief map is calculated as:

b̂(xt) =
∑

xt−1∈S
p(xt|xt−1)b(xt−1). (2)

Notice from (2) that the belief map b(xt−1) is in fact the conditional prob-

ability of the target being at xt−1 given observations up to t − 1, b(xt−1) =130

6

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
p(xt−1|z1:t−1). When the observation zt is available, the update is conducted

simply by multiplying the predicted belief map by the new conditional observa-

tion likelihood as follows:

b(xt) = ηtp(zt|xt)b̂(xt), (3)

where ηt is the normalization factor,

ηt = 1/
∑

xt∈S
p(zt|xt)b̂(xt). (4)

ηt scales the probability that the target presents inside the searching area to

one, i.e.,
∑

xt∈S b(xt) = 1.135

2.4. Searching Objective Function

According to the Bayesian theory, the probability that the target does not

get detected at time t during an observation, rt = p(D̄t|z1:t−1), relies on two

factors: (i) the latest belief map from the prediction phase (2), and (ii) the no

detection likelihood (1). Across the whole searching area, that probability is140

given by:

rt =
∑

xt∈S
p(D̄t|xt)b̂(xt). (5)

Notice that rt is exactly the inverse of the normalization factor ηt in (4), rt =

1/ηt, for a “no detection” event, zt = D̄t, and thus is smaller than 1. By

multiplying the not detected probability rt over time, the joint probability of

failing to detect the target from time 1 to t, Rt = p(D̄1:t), is then obtained:145

Rt =
t∏

k=1

rk = Rt−1rt. (6)

Hence, the probability that the target gets detected for the first time at time t

is computed as:

pt =
t−1∏

k=1

rk(1− rt) = Rt−1(1− rt). (7)

7

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Summing pt over t steps gives the probability of detecting the target in t steps:

Pt =

t∑

k=1

pk = Pt−1 + pt. (8)

Pt is thus often referred to as the “cumulative” probability to distinguish it with

pt. Notice that150

Pt = 1−Rt, (9)

and as t grows, the probability of first detection pt becomes smaller because

the chance of detecting the target in previous steps increases. The cumulative

probability Pt is thus bounded and increases toward one as t goes to infinity.

The objective function for the searching problem can now be formulated

based on (8) given a finite search time. Let the search time period be {1, ..., N},155

the goal of the searching strategy is to determine a search path O = (o1, ..., oN)

that could maximize the cumulative probability Pt. As such, the objective

function is eventually formulated as follows:

J =
N∑

t=1

pt. (10)

3. Motion-encoded Particle Swarm Optimization

As the search problem defined in (10) is NP-hard [7, 8], the time required to160

calculate all possible paths to find the optimal solution would greatly increase

and become intractable. Therefore, a heuristic approach like PSO can be a good

option for solving the optimal search problem as in this study.

3.1. Particle Swarm Optimization

PSO is a population-based stochastic technique, inspired by social behavior

of bird flocking, designed for solving optimization problems [16, 25]. In PSO, a

swarm of particles is initially generated with random positions and velocities.

Each particle then moves and evolves in a cognitive fashion with other particles

to seek the global optimum. Those movements are driven by its best position,

8

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Lk, and the best position of the swarm, Gk. Let xk and vk be the position

and velocity of a particle at generation k, respectively. The movement of that

particle in the next generation is given by:

vk+1 ← wvk + ϕ1r1(Lk − xk) + ϕ2r2(Gk − xk) (11)

xk+1 ← xk + vk+1, (12)

where w is the inertial weight, ϕ1 is the cognitive coefficient, ϕ2 is the social165

coefficient, and r1, r2 are random sequences sampled from a uniform probability

distribution in the range [0,1]. From (11) and (12), the movement of a particle

is directed by three factors, namely, following its own way, moving toward its

best position, or moving toward the swarm’s best position. The ratio among

those factors is determined by the values of w, ϕ1, and ϕ2.170

3.2. MPSO for Optimal Search

There have been several modifications and improvements from the PSO al-

gorithm, depending on the application. However, the implementation of PSO

for online searching for dynamic targets in a complex environment remains a

challenging task, particularly in a limited time window. For the search problem,

it is desired to encode the position of particles in a way that the particles can

gradually move toward the global optimum. A common approach is to define a

position as a multi-dimensional vector representing a possible search path:

xk ∼ Ok = (ok,1, ..., ok,N), (13)

where ok,i corresponds to a node of the search map [26, 27]. The drawback of this

approach is that it does not cover the adjacent dynamic behavior in path nodes

and thus may result in invalid paths during the searching process. Discrete PSO

can be used to overcome this problem, but the momentum of particles is not175

preserved, causing local maxima [28]. Indirect approaches such as the angle-

encoded PSO [29] and priority-based encoding PSO [30] can be a good option

to deal with it and generate better results. Their mapping functions, however,

9

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
3 2
1

876

5

4

7π
(2,)

4

(1,0)

3π
(1,)

2

Figure 1: Motion-encoded illustration for a path with three segments,

Uk = ((1, 0), (1, 3π/2), (
√

2, 7π/4))

require the phase angles to be within the range of [−π/2, π/2] which limits the

search capacity, especially in a large dimension.180

Here, we propose the idea of using UAV motion to encode the position of

particles. Instead of using nodes, we view each search path as a set of UAV

motional segments, each corresponds to the movement of UAV from its current

cell to another on the plane of flight. By respectively defining the magnitude and

direction of the motion at time t as ρt and αt, that motion can be completely185

described by a vector ut = (ρt, αt). A search path is then described by a vector

of N motion segments, Uk = (uk,1, ..., uk,N). Using Uk as the position of each

particle, equations for MPSO can be written as:

∆Uk+1 ← wUk + ϕ1r1(Lk − Uk) + ϕ2r2(Gk − Uk) (14)

Uk+1 ← Uk + ∆Uk+1. (15)

Figure 1 illustrates a path with three segments, Uk = ((1, 0), (1, 3π/2), (
√

2, 7π/4)),

where the belief map is colour-coded with probability values indicated on the190

right.

During the search, it is also required to map Uk to a direct path Ok so

that the cost associated with Uk can be evaluated. As shown in Fig. 1, the

mapping process can be carried out by first constraining the UAV motion to

one of its eight neighbors in each time step. Then, the motion magnitude ρt195

10

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
can be normalized and the motion angle αt can be quantized as:

ρ∗t = 1 (16)

α∗t = 45◦bαt/45◦e, (17)

where be represents the operator for rounding to the nearest integer. Node ok,t+1

corresponding to the location of UAV in the Cartesian space is then given by:

ok,t+1 = ok,t + u∗k,t, (18)

where

u∗k,t = (bcosα∗t e, bsinα∗t e). (19)

From the decoded path Ok, the cost value can be evaluated by the objective

function (10) and then the local and global best can be computed as follows:200

Lk =

Uk if J(Ok) > J(L∗k−1)

Lk−1 otherwise
, (20)

Gk = argmax
Lk

J(Ok), (21)

where L∗k is the decoded path of Lk. It can be seen from the mapping process

that (17) discretizes the motion to one of eight possible directions, (19) con-

verts the moving direction to an increment in Cartesian coordinates, and (18)

incorporates the increment to form the next node of the path.

Similarly to the interchange between the time domain and frequency do-205

main in signal analysis, the mapping process of MPSO allows particles to search

in the motion space instead of the Cartesian space. This leads to the following

advantages:

• The motion space maintains the location of nodes consecutively so that the

resultant paths after each generation evolvement are always valid, which210

is not the case of the Cartesian space;

• In motion space, the momentum of particles and swarm behaviors includ-

ing exploration and exploitation are preserved so that the search perfor-

mance is maintained and the swarm is able to cope with different target

dynamics;215

11

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
• As the normalization of ρt and quantization of αt in (16) and (17) are only

carried out for the purpose of cost evaluation, their continuous values are

still being used for velocity and position updates as in (14) - (15). This

property is important to avoid the discretizing effect of PSO so that the

search resolution is not affected.220

Finally, it is also noted that MPSO preserves the search mechanism of PSO

via its update equations (14) - (15) so that the advantages of PSO such as stable

convergence, independence of initial conditions and implementation feasibility

can be maintained.

3.3. Implementation225

Figure 2 shows the flowchart of MPSO to illustrate the implementation pre-

sented in Algorithm 1. Its structure is based on the core PSO but extended with

the incorporation of the motion encoding and decoding steps. The belief map

update as in (2) and (3) needs to be conducted during calculating the fitness

when the target is non-static. Notably, the parallelism technique proposed in230

[23] can be applied to speed up the computation process of MPSO.

4. Results

To evaluate the performance of MPSO, we have conducted extensive simu-

lation, comparison and experiments with detail described below.

4.1. Scenarios setup235

For the sake of coverage, six different search scenarios are used to analyze

the performance of MPSO for optimal search (some of them are adopted from

[5]). The scenarios are defined to have the same map size (Sr = Sc = 40),

but differ in the initial locations of UAV, target motion model P (xt|xt−1) and

initial belief map b(x0). As shown in Fig.3, the probability map is color-coded240

with the target dynamics presented by a white arrow and the initial location

of UAV described by a white circle. The scenarios represent different searching

situations as follows:

12

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Start

Initialize the belief map
and particles with motion-

encoded paths

Compute the cumulative
probability via objective function

Decode the paths encoded in
particles’ position

Update the velocity and position
of particles

Get target dynamics
and initial data

Update the local best and global
best

Check maximum
generation

End

No

Yes

Figure 2: Flowchart of MPSO algorithm

13

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
/* Initialization: */

1 Get target dynamics and initial data;

2 Create belief map;

3 Set swarm parameters w, ϕ1, ϕ2, swarm size;

4 foreach particle in swarm do

5 Create random motion-encoded paths Uk;

6 Assign Uk to particle position;

7 Compute fitness value of each particle;

8 Set local best value of each particle to itself;

9 Set velocity of each particle to zero;

10 end

11 Set global best to the best fit particle;

/* Evolutions: */

12 for k ← 1 to max generation do

13 foreach particle in swarm do

14 Compute motion velocity ∆Uk+1; /* Eq.14 */

15 Compute new position Uk+1; /* Eq.15 */

16 Decode Uk+1 to Ok+1; /* Eq.19 - 18 */

17 Update fitness of Ok+1; /* Eq.10 */

18 Update local best Lk+1; /* Eq.20 */

19 end

20 Update global best Gk+1; /* Eq.21 */

21 end

Algorithm 1: Pseudo code of MPSO.

14

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Scenario 1 has two high probability regions located next to each other.

They are slightly different in location and value, which may cause difficulty in245

finding a better region to search for the target.

Scenario 2 includes two separated high probability regions located opposite

to each other over the UAV location. The algorithm has to quickly identify the

higher probability region to search and track as the target is moving south-west.

Scenario 3 has one small dense region moving rapidly toward the south-250

east. It thus tests the algorithm in its exploration and adaptation capability.

Scenario 4 is similar to Scenario 3 except that the target is moving toward

the UAV’s start location. It further evaluates the adaptability of the searching

algorithm.

Scenario 5 consists of two probability regions located oppositely via the255

start location in which the right region is slightly higher in probability. As the

target is moving north, the algorithm needs to identify the correct target region.

Scenario 6 is similar to Scenario 5, but the start location is below the

potential regions and the target is moving North-East. It thus evaluates the

capability of searching in a diagonal direction.260

In our evaluations, MPSO is implemented with the parameters w = 1 at the

damping rate of 0.98, ϕ1 = 2.5 and ϕ2 = 2.5. The swarm size is chosen to be

1000 particles. The number of iterations is 100 and the size of the search path

is 20 nodes. Due to the stochastic nature of PSO, the algorithm is executed 10

times to find the average and standard deviation values for each scenario.265

4.2. Search path

Figure 4 shows the search paths of MPSO for each scenario together with

the cumulative probability values. In all scenarios, MPSO is able to find the

highest probability regions and generates relevant paths for the UAV to fly. For

scenarios with only one high probability region such as Scenario 3 and 4, the270

cumulative probabilities are high because the chance of finding the target is not

spread to other regions. It is also noted from Fig. 4 that the probability map

only reflects the target belief at the last step whereas the search path represents

15

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
10 20 30 40

x (cell)

10

20

30

40

y
(c

e
ll)

5

10

15

10 -3

10 20 30 40

x (cell)

10

20

30

40

y
(c

e
ll)

5

10

15

10 -3

(a) Scenario 1

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

5

10

15

10 -3

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

5

10

15

10 -3

(b) Scenario 2

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

10

20

30

40

50

60

70

10-3

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

10

20

30

40

50

60

70

10-3

(c) Scenario 3

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

10

20

30

40

50

60

70

10 -3

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

10

20

30

40

50

60

70

10 -3

(d) Scenario 4

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

5

10

15

20

10 -3

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

5

10

15

20

10 -3

(e) Scenario 5

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

5

10

15

20

10 -3

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

5

10

15

20

10 -3

(f) Scenario 6

Figure 3: Scenarios used for evaluating the searching algorithms

16

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
the tracking of high probability regions over time. By comparing them with

those in Fig. 3, we can see that the search paths adapt to the target dynamics275

to maximize the detection probability.

4.3. Comparison with other PSO algorithms

We have judged the merit of MPSO over other PSO algorithms including

a classical PSO, denoted here as PSO for the comparison purpose, quantum-

behaved PSO (QPSO) and angle-encoded PSO (APSO).280

PSO is introduced in [16] in which the particles encode a search path as a

set of nodes. They then evolve according to (11) and (12) to find the optimal

solution.

APSO operates in a similar way as PSO. It, however, encodes the position

of particles as a set of phase angles so that each angle represents the direction285

in which the path would emerge [29].

QPSO, on the other hand, assumes particles to have quantum behavior in a

bound state. The particles are attracted by a quantum potential well centered

on its local attractor and thus have a new stochastic update equation for their

positions [31]. In QPSO, the position of particles also encodes a search path290

that includes a set of nodes.

Table 2 shows the average and standard deviation values of the fitness repre-

senting the accumulated detection probability obtained by all algorithms after

10 runs. It can be seen that MPSO introduces the best performance in 5 sce-

narios. APSO is slightly better than MPSO in Scenario 3, but its convergence295

is not stable reflected via a larger standard deviation value. These results can

be further verified via the convergence curves shown in Fig. 5. They show that

PSO and QPSO present poor performance as the use of nodes to encode search

paths does not maintain particle momentum resulting in local maxima.

APSO, on the other hand, introduces a comparable performance with MPSO.300

Unlike PSO and QPSO, the use of angles in APSO allows particles to search in

orientation space and thus maintains the swarm properties. Interestingly, APSO

can be considered as a special case of MPSO when the motion magnitude is con-

17

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
10 20 30 40
x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

0

5

10

15

10-3

(a) Scenario 1: Pt = 0.1886

10 20 30 40
x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

0

5

10

15

10-3

(b) Scenario 2: Pt = 0.2496

10 20 30 40
x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

0

10

20

30

40

50

60

70

10-3

(c) Scenario 3: Pt = 0.64907

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

0

10

20

30

40

50

60

70

10-3

(d) Scenario 4: Pt = 0.5111

10 20 30 40

x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

0

5

10

15

20
10-3

(e) Scenario 5: Pt = 0.2226

10 20 30 40
x (cell)

5

10

15

20

25

30

35

40

y
(c

el
l)

0

5

10

15

20
10-3

(f) Scenario 6: Pt = 0.1907

Figure 4: Search paths for each scenario generated by MPSO

18

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Table 2: Comparison between PSO algorithms on fitness representing the accumulated

detection probability

Scenario MPSO PSO QPSO APSO

1 0.1876±0.0011 0.1476 ±0.0043 0.1198±0.0037 0.1869±0.0025

2 0.247±0.0055 0.2019±0.0163 0.2014±0.0046 0.2393±0.0113

3 0.6554±0.014 0.5403±0.0218 0.5468±0.014 0.6649±0.0287
4 0.5018±0.0095 0.4082±0.0092 0.4259±0.0164 0.4969±0.0109

5 0.2213±0.0025 0.1785±0.0067 0.1819±0.0008 0.2199±0.004

6 0.1881±0.0112 0.097±0.0239 0.0943±0.0168 0.1735±0.0187

strained to 1. While this constraint limits the flexibility of the swarm, it may

improve the exploration capacity in certain scenarios to yield a good result such305

as in Scenario 3.

4.4. Comparison with metaheuristic optimization algorithms

To further evaluate the performance of MPSO, we have compared it with

state-of-the-art metaheuristic optimization algorithms including the artificial

bee colony (ABC), ant colony optimization (ACO), genetic algorithm (GA),310

differential evolution (DE), and tree-seed algorithm (TSA).

ABC searches for optimal solutions based on the cooperative behavior of

three types of bees: employed bees, onlooker bees and scout bees [32]. Our

implementation represents each solution as a search path that consists of a set

of motion segments similar to MPSO.315

ACO solves optimization problems based on heuristic information and a

pheromone model of artificial ants, each maintains a feasible solution [33]. Our

implementation of ACO is based on [5] in which the “ACO-Node+H” approach

is used together with the max-min ACO.

GA is a popular metaheuristic optimization that modifies a population of320

individual solutions similar to the process of natural selection [9]. Our im-

plementation of GA is based on the “EA-dir” approach in [10] where a path is

19

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
0 20 40 60 80 100
Number of Iterations

0

0.05

0.1

0.15

0.2

F
itn

es
s

V
al

ue

MPSO
PSO
QPSO
APSO

0 20 40 60 80 100
Number of Iterations

0

0.05

0.1

0.15

0.2

F
itn

es
s

V
al

ue

(a) Scenario 1

0 20 40 60 80 100
Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

F
itn

es
s

V
al

ue

MPSO
PSO
QPSO
APSO

0 20 40 60 80 100
Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

F
itn

es
s

V
al

ue

(b) Scenario 2

0 20 40 60 80 100

Number of Iterations

0

0.2

0.4

0.6

0.8

F
itn

es
s

V
al

ue

MPSO
PSO
QPSO
APSO

0 20 40 60 80 100

Number of Iterations

0

0.2

0.4

0.6

0.8

F
itn

es
s

V
al

ue

(c) Scenario 3

0 20 40 60 80 100
Number of Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

F
itn

es
s

V
al

ue

MPSO
PSO
QPSO
APSO

0 20 40 60 80 100
Number of Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

F
itn

es
s

V
al

ue

(d) Scenario 4

0 20 40 60 80 100
Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

F
itn

es
s

V
al

ue

MPSO
PSO
QPSO
APSO

0 20 40 60 80 100
Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

F
itn

es
s

V
al

ue

(e) Scenario 5

0 20 40 60 80 100
Number of Iterations

0

0.05

0.1

0.15

0.2

F
itn

es
s

V
al

ue

MPSO
PSO
QPSO
APSO

0 20 40 60 80 100
Number of Iterations

0

0.05

0.1

0.15

0.2

F
itn

es
s

V
al

ue

(f) Scenario 6

Figure 5: Convergence curves of the four PSO algorithms on the six benchmark scenarios

20

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
encoded as a string of directions subjected to two mutation techniques including

“flip” and “pull”.

DE is an optimization method that finds the optimal solution by improving325

its candidates via simple mathematical formulas from a population of individ-

ual solutions [34]. In implementing DE for optimal search, we represent each

solution as a set of motions similar to the representation used in MPSO.

TSA solves the optimization problem by simultaneously exploring and ex-

ploiting the search space based on the spread of seeds from a tree population.330

The level and balance between the exploration and exploitation are controlled

by predefined parameters including the search tendency (ST) and the number

of seeds (NS). Those parameters are chosen as in the original study [35] in our

implementation, i.e., ST = 0.1 and NS ∈ [0.1, 0.25].

Table 3 presents the fitness values corresponding to the optimal solutions335

of MPSO and metaheuristic algorithms over six scenarios after 10 runs. The

values include the average and standard deviation representing the cumulative

detection probability. It can be seen that MPSO outperforms other metaheuris-

tic algorithms in scenarios 1 to 5 with the highest fitness values and small

standard deviation. TSA is the second best with satisfactory results in most340

scenarios, whereas the remaining algorithms are only good in one or two sce-

narios.

Figure 6 further compares the convergence among the algorithms. While

MPSO shows good exploitation capability represented via the high fitness value

in most scenarios, its exploration reflected via the convergence speed is rather345

slow in some scenarios such as Scenario 3 where the high probability region is

small and the target is moving away from the UAV. TSA, on the other hand,

is good at exploration but rather limited in exploitation so that its final fitness

values are slightly less than MPSO. ACO performs well in detecting static and

slow-moving targets, but its adaptation to fast-moving targets is limited due to350

the nature of ACO incrementally exploring via nodes. DE and ABC have stable

performance in most scenarios. GA, on the other hand, is often trapped at local

minimums as the crossover and mutation operators cause many invalid paths

21

Jo
ur

na
l P

re
-p

ro
of

Scenario SA

1 0.0006

2 0.0085

3 0.0135

4 0.0239

5 0.0005

6 ±0.0018

Journal Pre-proof
Table 3: Comparison between MPSO and other metaheuristic algorithms on fitness

MPSO ABC GA ACO DE T

0.1876±0.0011 0.1691±0.0076 0.1283±0.0001 0.1836±0.0013 0.1818±0.0015 0.1873±
0.247±0.0055 0.2099±0.0041 0.2151±0.0018 0.2145±0.0049 0.22±0.0045 0.2362±
0.6554±0.014 0.5872±0.0152 0.5995±0.003 0.6053±0.02 0.5985±0.0166 0.6236±
0.5018±0.0095 0.4225±0.0017 0.3497±0.0311 0.4866±0.0139 0.4243±0.0252 0.4626±
0.2213±0.0025 0.2093±0.0071 0.1733±0.0001 0.2208±0.0024 0.2128±0.006 0.2209±
0.1881±0.0112 0.181±0.0019 0.1255±0.0001 0.15±0.0119 0.1829±0.0139 0.1889

during operation. Besides, the enhanced “flip” and “pull” operators which pri-

oritize horizontal and vertical search do not perform well in scenarios requiring355

diagonal search such as Scenario 6.

4.5. Execution time

Apart from the accuracy, we also evaluate the execution time of all algo-

rithms to roughly estimate their complexity. We executed all algorithms under

the same conditions of software and computer hardware. Table 4 shows the av-360

erage execution time together with the standard deviation after 10 runs on an

Intel Core i7-7600U 2.80 GHz processor. It can be seen that MPSO is the fastest

in four scenarios, followed by ABC with two scenarios. DE also introduces rela-

tively short execution time due to its simplicity in the search mechanism. TSA,

on the other hand, is rather slow due to the extra computation required to eval-365

uate the seeds of each tree. ACO is the slowest because of a large time spent

on calculating heuristic information [5]. Notably, the execution time of APSO

is close to MPSO which further explains it as a special case of MPSO. PSO

and QPSO both require extra execution time due to the invalid paths generated

during operation.370

4.6. Validation on UAV platform

To demonstrate the practical use of MPSO, we have applied it to real search-

ing scenarios with details as follows.

22

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
0 20 40 60 80 100

Number of Iterations

0

0.05

0.1

0.15

0.2

F
itn

es
s

V
al

ue

MPSO
ABC
ACO

GA
DE
TSA

0 20 40 60 80 100

Number of Iterations

0

0.05

0.1

0.15

0.2

F
itn

es
s

V
al

ue

(a) Scenario 1

0 20 40 60 80 100

Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

F
itn

es
s

V
al

ue

MPSO
ABC
ACO

GA
DE
TSA

0 20 40 60 80 100

Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

F
itn

es
s

V
al

ue

(b) Scenario 2

0 20 40 60 80 100

Number of Iterations

0

0.2

0.4

0.6

0.8

F
itn

es
s

V
al

ue

MPSO
ABC
ACO

GA
DE
TSA

0 20 40 60 80 100

Number of Iterations

0

0.2

0.4

0.6

0.8

F
itn

es
s

V
al

ue

(c) Scenario 3

0 20 40 60 80 100

Number of Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

F
itn

es
s

V
al

ue

MPSO
ABC
ACO

GA
DE
TSA

0 20 40 60 80 100

Number of Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

F
itn

es
s

V
al

ue

(d) Scenario 4

0 20 40 60 80 100

Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

F
itn

es
s

V
al

ue

MPSO
ABC
ACO

GA
DE
TSA

0 20 40 60 80 100

Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

F
itn

es
s

V
al

ue

(e) Scenario 5

0 20 40 60 80 100

Number of Iterations

0

0.05

0.1

0.15

0.2

F
itn

es
s

V
al

ue

MPSO
ABC
ACO

GA
DE
TSA

0 20 40 60 80 100

Number of Iterations

0

0.05

0.1

0.15

0.2

F
itn

es
s

V
al

ue

(f) Scenario 6

Figure 6: Convergence curves of MPSO and other metaheuristic algorithms on the six

benchmark scenarios

23

Jo
ur

na
l P

re
-p

ro
of

A

±2

±6

±2

±1

±5

±2

Journal Pre-proof
Table 4: Comparison between MPSO and other algorithms on execution time in seconds

Scenario MPSO PSO QPSO APSO ABC GA ACO DE TS

1 43±2 129±6 140±15 50±8 34±1 85±2 144±3 37±3 84

2 26±4 150±7 180±22 34±4 34±5 95±3 157±2 32±6 57

3 30±8 142±4 149±3 39±4 31±4 97±1 150±5 34±2 50

4 20±2 149±7 149±1 32±5 30±3 92±3 133±3 26±3 47

5 29±7 126±4 129±5 46±5 34±4 92±3 150±4 31±3 60

6 48±7 140±3 139±2 61±1 39±3 99±2 146±13 39±3 85

4.6.1. Experimental setup

The experiment is carried out in the search area of 60 m × 60 m located in a375

park in Sydney. The UAV used is a 3DR Solo drone with a control architecture

developed for infrastructure inspection [36] that can be controlled via a ground

control station (GCS) software named Mission Planner. The detection sensor

is a Hero 4 camera attached to the drone via a three-axis gimble responsible

for adjusting and stabilizing the camera. An unmanned ground vehicle (UGV)380

is used as the target. The UGV is equipped with control and communication

modules to allow it to track certain trajectories for the sake of experimental

verification.

In experiments, initial locations of UAV and UGV are obtained via the GPS

modules equipped on those vehicles and used as the input to generate a belief385

map. The map is fed to MPSO to generate a search path that includes a list of

waypoints. Those waypoints are loaded into Mission Planner to fly the UAV.

During the flight, for recording the testing results, positions of the vehicles are

tracked via GPS and the video received from the camera is streamed to GCS.

4.6.2. Experimental results390

Figure 7a shows the belief map and path generated by MPSO for the scenario

in which the UGV started from the center of the map at the latitude of -

33.875992 and the longitude of 151.19145 and moved in East direction. Figure

24

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
5 10 15 20
x (cell)

5

10

15

20

y
(c

el
l)

0

20

40

60

80

100

10-3

(a) Belief map and search path in

experimental scenario 1

Target trajectory

Planned path

UAV
trajectory

Start

End

(b) Planned and actual flight paths in

experimental scenario 1

5 10 15 20
x (cell)

5

10

15

20

y
(c

el
l)

0

20

40

60

80

100

10-3

(c) Belief map and search path in

experimental scenario 2

Target
trajectory

Planned path

UAV
trajectory

Start

End

(d) Planned and actual flight paths in

experimental scenario 2

Figure 7: Experimental detection results

25

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Drone

Target

Target viewed
from drone

Figure 8: The target within the vision of the camera attached on the drone

7b shows the planned and actual flight paths recorded via Mission Planner

together with the actual path of UGV. It can be seen that the flight path tracks395

the planned path with some inevitably small tracking errors caused by GPS

positioning. Those errors can be compensated for by extending the field of view

of the detection camera via the flight attitude. The UAV thus can trace and

approach the target at the location of (-33.87598,151.19153), as shown in Figure

7b. This can be verified in Fig. 8 that displays the target within the vision of400

the camera.

In another experiment where the UGV moves toward the starting location

of the UAV, the planned path adapts to it by turning backward as shown in

Fig. 7c. Figure 7d presents the actual trajectories of the UAV and UGV.

It can be seen that the UAV tracks the planned path to approach the target405

at the location of (-33.875938,151.191515) and then can trace it eventually.

Those results, together with various successful trials, confirm the validity and

applicability of our proposed algorithm.

26

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
4.7. Discussion

Through extensive simulation, thorough comparison and experiments as410

described above, it can be seen that MPSO presents better performance than

other state-of-the-art heuristic algorithms in most search scenarios and is suit-

able for practical UAV search operations. The rationale for the success of MPSO

lies in the motion-encoded mechanism that prevents the algorithm from gener-

ating invalid paths during the searching process so that it can avoid the need415

for re-initialization, and as such, to accelerate the convergence. The motion-en-

coded mechanism also allows MPSO to search in the motion space instead of

the Cartesian space to improve search performance and better adapt to target

dynamics. This advantage is clearly reflected in the good search result of MPSO

for the challenging Scenario 4 where the target moves in the opposite direction420

to the search path that requires the UAV to turn around. Nevertheless, like

PSO, MPSO may need to increase the swarm size and number of iterations if

the search dimension increases [37]. In those scenarios, parallel implementation

is required to effectively reduce the computation time, and hence, improve the

scalability of the proposed algorithm for large-scale systems.425

In practical search, the target dynamics may vary depending on the appli-

cations so that the deterministic assumption used in this study may go beyond

its validity. In those scenarios, a prediction mechanism using optimal estimators

such as the Kalman filter [38] can be employed to provide a prediction of the

target trajectory. It is then used to calculate the cumulative probability used in430

the objective function of MPSO.

5. Conclusion

We have presented a new algorithm, the motion-encoded particle swarm op-

timization (MPSO), to solve the problem of optimal search for a moving target

using UAVs. The algorithm encodes the search path as a series of motions that435

are directly applicable to the search problem which constrains the movement of

a UAV to its neighbor cells. By changing the search domain from the Cartesian

27

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
space to motion space, the algorithm is able to adapt to different target dynam-

ics. It also preserves key properties of PSO to enhance the search performance

and allows to conduct continuous search in discrete maps. Simulation and ex-440

perimental results show that the algorithm is effective and practical enough to

deploy for search operations. To be effective also for large-scale systems, the pro-

posed algorithm would need parallel computation to further reduce its execution

time. Our future work will focus on evaluating MPSO on benchmarking func-

tions and exploring its capability to solve other complex optimization problems.445

References

[1] S. F. Ochoa, R. Santos, Human-centric wireless sensor networks to improve

information availability during urban search and rescue activities, Informa-

tion Fusion 22 (2015) 71 – 84. doi:10.1016/j.inffus.2013.05.009.450

[2] F. Bourgault, T. Furukawa, H. F. Durrant-Whyte, Optimal Search for a

Lost Target in a Bayesian World, Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2006, pp. 209–222. doi:10.1007/10991459_21.

[3] M. Raap, S. Meyer-Nieberg, S. Pickl, M. Zsifkovits, Aerial vehicle search-

path optimization: A novel method for emergency operations, Journal of455

Optimization Theory and Applications 172 (3) (2017) 965–983. doi:10.

1007/s10957-016-1014-y.

[4] P. Lanillos, J. Yañez Zuluaga, J. J. Ruz, E. Besada-Portas, A bayesian

approach for constrained multi-agent minimum time search in uncertain

dynamic domains, in: Proceedings of the 15th Annual Conference on Ge-460

netic and Evolutionary Computation, GECCO ’13, ACM, New York, NY,

USA, 2013, pp. 391–398. doi:10.1145/2463372.2463417.

[5] S. Perez-Carabaza, E. Besada-Portas, J. A. Lopez-Orozco, J. M. de la Cruz,

Ant colony optimization for multi-uav minimum time search in uncertain

28

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
domains, Applied Soft Computing 62 (2018) 789 – 806. doi:10.1016/j.465

asoc.2017.09.009.

[6] T. Furukawa, F. Bourgault, B. Lavis, H. F. Durrant-Whyte, Recursive

bayesian search-and-tracking using coordinated uavs for lost targets, in:

Proceedings 2006 IEEE International Conference on Robotics and Automa-

tion, 2006. ICRA 2006., 2006, pp. 2521–2526. doi:10.1109/ROBOT.2006.470

1642081.

[7] K. E. Trummel, J. R. Weisinger, Technical note - the complexity of the

optimal searcher path problem, Operations Research 34 (2) (1986) 324–

327. doi:10.1287/opre.34.2.324.

[8] D. S. Bernstein, R. Givan, N. Immerman, S. Zilberstein, The complexity of475

decentralized control of markov decision processes, Mathematics of Opera-

tions Research 27 (4) (2002) 819–840. doi:10.1287/moor.27.4.819.297.

[9] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-

chine Learning, 1st Edition, Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1989.480

[10] L. Lin, M. A. Goodrich, UAV intelligent path planning for wilderness

search and rescue, in: 2009 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems, 2009, pp. 709–714. doi:10.1109/IROS.2009.

5354455.

[11] P. Lanillos, E. Besada-Portas, G. Pajares, J. J. Ruz, Minimum time search485

for lost targets using cross entropy optimization, in: 2012 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, 2012, pp. 602–609.

doi:10.1109/IROS.2012.6385510.

[12] J. N. Eagle, J. R. Yee, An optimal branch-and-bound procedure for the con-

strained path, moving target search problem, Operations Research 38 (1)490

(1990) 110–114. doi:10.1287/opre.38.1.110.

29

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
[13] A. Sarmiento, R. Murrieta-Cid, S. Hutchinson, An efficient motion strategy

to compute expected-time locally optimal continuous search paths in known

environments, Advanced Robotics 23 (12-13) (2009) 1533–1560. doi:10.

1163/016918609X12496339799170.495

[14] S. K. Gan, S. Sukkarieh, Multi-UAV target search using explicit decentral-

ized gradient-based negotiation, in: 2011 IEEE International Conference on

Robotics and Automation, 2011, pp. 751–756. doi:10.1109/ICRA.2011.

5979704.

[15] G. Mathews, H. Durrant-Whyte, M. Prokopenko, Asynchronous gradient-500

based optimisation for team decision making, in: 2007 46th IEEE Confer-

ence on Decision and Control, 2007, pp. 3145–3150. doi:10.1109/CDC.

2007.4434301.

[16] J. Kennedy, R. Eberhart, Y. Shi (Eds.), Swarm Intelligence, Morgan Kauf-

mann, 2001. doi:10.1016/B978-1-55860-595-4.X5000-1.505

[17] K. Y. Lee, J. Park, Application of particle swarm optimization to economic

dispatch problem: Advantages and disadvantages, in: 2006 IEEE PES

Power Systems Conference and Exposition, 2006, pp. 188–192.

[18] V. Mohammadi, S. Ghaemi, H. Kharrati, PSO tuned FLC for full autopilot

control of quadrotor to tackle wind disturbance using bond graph approach,510

Applied Soft Computing 65 (2018) 184 – 195. doi:10.1016/j.asoc.2018.

01.015.

[19] T. Niknam, M. R. Narimani, M. Jabbari, Dynamic optimal power flow using

hybrid particle swarm optimization and simulated annealing, International

Transactions on Electrical Energy Systems 23 (7) (2013) 975–1001. doi:515

10.1002/etep.1633.

[20] T. Niknam, M. R. Narimani, J. Aghaei, R. Azizipanah-Abarghooee, Im-

proved particle swarm optimisation for multi-objective optimal power flow

30

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
considering the cost, loss, emission and voltage stability index, IET Gen-

eration, Transmission Distribution 6 (6) (2012) 515–527.520

[21] R. C. Eberhart, Y. Shi, Comparison between genetic algorithms and parti-

cle swarm optimization, in: V. W. Porto, N. Saravanan, D. Waagen, A. E.

Eiben (Eds.), Evolutionary Programming VII, Springer Berlin Heidelberg,

Berlin, Heidelberg, 1998, pp. 611–616.

[22] Zwe-Lee Gaing, Particle swarm optimization to solving the economic dis-525

patch considering the generator constraints, IEEE Transactions on Power

Systems 18 (3) (2003) 1187–1195.

[23] M. D. Phung, C. H. Quach, T. H. Dinh, Q. Ha, Enhanced discrete particle

swarm optimization path planning for UAV vision-based surface inspection,

Automation in Construction 81 (2017) 25 – 33. doi:10.1016/j.autcon.530

2017.04.013.

[24] K. Iida, R. Hohzaki, K. Inada, Optimal survivor search for a target with

conditionally deterministic motion under reward criterion, Journal of the

Operations Research Society of Japan 41 (2) (1998) 246–260. doi:10.

15807/jorsj.41.246.535

[25] M. Kohler, M. M. Vellasco, R. Tanscheit, PSO+: A new particle swarm

optimization algorithm for constrained problems, Applied Soft Computing

85 (2019) 105865. doi:10.1016/j.asoc.2019.105865.

[26] V. Roberge, M. Tarbouchi, G. Labonte, Comparison of parallel genetic

algorithm and particle swarm optimization for real-time uav path planning,540

IEEE Transactions on Industrial Informatics 9 (1) (2013) 132–141. doi:

10.1109/TII.2012.2198665.

[27] Y. Zhang, D. wei Gong, J. hua Zhang, Robot path planning in uncertain

environment using multi-objective particle swarm optimization, Neurocom-

puting 103 (2013) 172 – 185. doi:10.1016/j.neucom.2012.09.019.545

31

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
[28] M. Clerc, Discrete Particle Swarm Optimization, illustrated by the Trav-

eling Salesman Problem, Springer Berlin Heidelberg, Berlin, Heidelberg,

2004, pp. 219–239. doi:10.1007/978-3-540-39930-8_8.

[29] Y. Fu, M. Ding, C. Zhou, Phase angle-encoded and quantum-behaved par-

ticle swarm optimization applied to three-dimensional route planning for550

UAV, IEEE Transactions on Systems, Man, and Cybernetics - Part A:

Systems and Humans 42 (2) (2012) 511–526. doi:10.1109/TSMCA.2011.

2159586.

[30] A. W. Mohemmed, N. C. Sahoo, T. K. Geok, Solving shortest path problem

using particle swarm optimization, Applied Soft Computing 8 (4) (2008)555

1643 – 1653, soft Computing for Dynamic Data Mining. doi:10.1016/j.

asoc.2008.01.002.

[31] J. Sun, W. Fang, X. Wu, V. Palade, W. Xu, Quantum-behaved particle

swarm optimization: Analysis of individual particle behavior and param-

eter selection, Evolutionary Computation 20 (3) (2012) 349–393, pMID:560

21905841. doi:10.1162/EVCO_a_00049.

[32] D. Karaboga, B. Basturk, On the performance of artificial bee colony

(ABC) algorithm, Applied Soft Computing 8 (1) (2008) 687 – 697. doi:

10.1016/j.asoc.2007.05.007.

[33] M. Dorigo, T. Stützle, The Ant Colony Optimization Metaheuristic: Algo-565

rithms, Applications, and Advances, Springer US, Boston, MA, 2003, pp.

250–285. doi:10.1007/0-306-48056-5_9.

[34] R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for

global optimization over continuous spaces, Journal of global optimization

11 (4) (1997) 341–359. doi:10.1023/A:1008202821328.570

[35] M. S. Kiran, Tsa: Tree-seed algorithm for continuous optimization, Expert

Systems with Applications 42 (19) (2015) 6686 – 6698. doi:10.1016/j.

eswa.2015.04.055.

32

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
[36] V. T. Hoang, M. D. Phung, T. H. Dinh, Q. P. Ha, System architecture for

real-time surface inspection using multiple UAVs, IEEE Systems Journal575

(2019) 1–12doi:10.1109/JSYST.2019.2922290.

[37] S. Piccand, M. O’Neill, J. Walker, On the scalability of particle swarm

optimisation, in: 2008 IEEE Congress on Evolutionary Computation (IEEE

World Congress on Computational Intelligence), 2008, pp. 2505–2512.

[38] H. Musoff, P. Zarchan, Fundamentals of Kalman filtering: a practical ap-580

proach, American Institute of Aeronautics and Astronautics, 2009.

33

Jo
ur

na
l P

re
-p

ro
of

Highlights for Review

•

•

•)

•

•

•

Journal Pre-proof
 Formulation of an objective function based on the Bayesian probabilistic theory to
convert the searching problem of a dynamic lost target to an optimization problem

 The objective function incorporates all assumptions and constraints on the search
conditions, sensor model and target dynamics

 Development of a new motion-encoded particle swarm optimization (MPSO
algorithm to optimize the designed objective function

 The developed algorithm allows changing the search space to find optimal solutions
by preserving important properties of PSO including cognitive and social coherence

 Comparison between MPSO and other PSO and metaheuristic algorithms have been
conducted to present its superior performance on various search scenarios

 Implementation of MPSO for real-world UAVs in various searching experiments has
been conducted to verify its validity for practical applications

Jo
ur

na
l P

re
-p

ro
of

Credit Author Statement

Man
anal

Qua

Journal Pre-proof
h Duong Phung: Conceptualization, Methodology, Software, Validation, Formal
ysis, Data curation, Writing- Original draft preparation, Visualization, Investigation.

ng Ha: Supervision, Writing- Reviewing and Editing.

Jo
ur

na
l P

re
-p

ro
of

Decla

☒ Th ips
that c

☐Th ed
as po

Journal Pre-proof
ration of interests

e authors declare that they have no known competing financial interests or personal relationsh
ould have appeared to influence the work reported in this paper.

e authors declare the following financial interests/personal relationships which may be consider
tential competing interests:

Jo
ur

na
l P

re
-p

ro
of

	Elsevier required licence
	4c4bb60b-26de-4aae-a842-a1281d0091a1
	Motion-encoded particle swarm optimization for moving target search using UAVs
	Introduction
	Problem formulation
	Target model
	Sensor model
	Belief map update
	Searching objective function

	Motion-encoded particle swarm optimization
	Particle swarm optimization
	MPSO for optimal search
	Implementation

	Results
	Scenarios setup
	Search path
	Comparison with other PSO algorithms
	Comparison with metaheuristic optimization algorithms
	Execution time
	Validation on UAV platform
	Experimental setup
	Experimental results

	Discussion

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

