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Abstract 

As the demand for rail services grows, intense pressure is placed on stations at the centre of 
rail networks where large crowds of rail passengers alight and board trains during peak 
periods. The time it takes for this to occur, the dwell time, can become extended when 
crowds of people congest and cross paths. Where a track section is operating at short 
headways, extended dwell times can cause delays to scheduled services that can in turn 
cause a cascade of delays that eventually affect entire networks. Where networks are 
operating at close at their ceiling capacity, dwell time management is essential and in most 
cases requires the introduction of special operating procedures. 

This paper details our work towards developing an autonomous complex dwell time 
diagnostics tool, a low cost technology, capable of providing information on dwell events in 
real time. At present, operators are not able to access reliable and detailed data on train 
dwell operations and passenger behaviour. This is because much of the necessary data has 
to be collected manually. The lack of rich data means train crews and platform staff are not 
empowered to do all they could to potentially stabilise and reduce dwell times. By better 
supporting service providers with high quality data analysis, the number of viable train paths 
can be increased, potentially delaying the need to invest in high cost hard infrastructures 
such as additional tracks. 

The foundation technology comprises a 3D image data based autonomous system capable 
of detecting dwell events during operations and creating business information that can be 
accessed by service providers in real time during rail operations. The technology has been 
tested at Brisbane Central rail station and results are presented in tandem with an analysis of 
QR dwell time operating procedures to identify and show how a user interface can be 
developed to assist operators with both long term operating procedure development and 
real-time operations. 

1. Introduction 

The increase of the demand for rail services has become a real concern in major cities [Henn 
et al., 2011]. The appearance of large crowds of rail passengers during the dwell period 
generally results in a congestion phenomenon destabilizing the proper functioning of the 
dwell operations [[Gray, 2013], [Veitch et al., 2013] and [Wang and Legaspi, 2012]] and 
leading to an extended dwell time which will affect the headway, and consequently imply 
many trains delayed [[Carey and Crawford, 2007], [Kang et al., 2015] and [Li et al., 2014]]. 
Various aspects of dwell can be managed by influencing the passengers’ behaviours using 
special operating procedures: signs, barriers, flags, agents, etc. However, prior to service 
providers require high quality data to target treatments to stabilise or reduce the dwell time. 

Even though operators are sufficiently motivated to treat dwell time issues, this is 
problematic. At present operators do not have to access to reliable, detailed or 
comprehensive enough data on the dwell events to properly manage them. The dwell time 
realities and complexities makes data collection, usually manual, limited and expensive in 



Foundation Technology for development of an Autonomous Complex Dwell Time Diagnostics Tool  

 

2 

terms of time, money and efforts. This complexity can be reduced by expressing the dwell as 
a set of events: train operations and passengers’ events. But a new way monitoring the dwell 
is still required. This clear breakdown provides clues on the sensing and perception 
capabilities required in such a monitoring approach, but also highlight the high volume or 
frequent data points to be captured, suggesting a considerable manual labour expenditure or 
perhaps motivating an autonomous system. 

This paper explores the development of an autonomous system capable of robust and 
reliable detections of dwell events with an on-board preliminary analysis enabling outputting 
business information. This technology will provide the basis for identifying and designing a 
user/operator interface for assisting operators managing the dwell in real time.  

The different points of this paper are presented as follow: section 2 provides a background 
by analysing the main problem presented by the extended dwell time. Then, section 3 details 
our approach developing an autonomous dwell time diagnostics tool helping fixing it. An 
evaluation of this experimental system, at Brisbane Central rail station, is presented in 
section 4. And finally, conclusions, limitations and future work are proposed in section 5. 

2. Background 

The development of an autonomous tool capable of outputting sufficient information to 
service providers first requires an understanding of the consequences presented by an 
extended dwell time, as well as the factors that can lead to such a phenomenon. This section 
presents on the one hand the influence of the extended dwell time on the headway, and on 
the other the main reasons leading to an increase of the dwell events occurrence time. 

2.1 The headway 

Rail systems rely on a signal system to maintain a safe separation between trains operating 
along a section of line for a period of time [Ryus et al., 2013]. This minimum distance has to 
be long enough for the following train to completely stop with a suitable margin with the rear 
of the train ahead if needed. In such, irregularities in the first train schedule will result on a 
delay for the following one. 

This delay for the following train is problematic. In order to accommodate these irregularities, 
a non-interference headway (shown in Fig.1), composed by the dwell time average plus the 
operating margin and the safe separation, is typically set up. However, a dwell time 
exceeding the average plus the operating margin will create a first delay for the following 
train which will corrupt the network causing a cascade of delays for the other ones in the 
same section. Furthermore, the average dwell, by definition, over estimates the actual dwell 
allowance component of the headway for 50% of all services. This is unquestionably wasteful 
and is further exacerbated as with limited data the fluctuations in the dwell are not well 
understood and the operating margin is expanded to absorb this variance.  

 

Figure 1: The non-interference headway. 
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This leads to increased cost and management effort by the service providers. However, rich 
knowledge of the dwell composition is required to identify the critical events which generally 
lead to an extended dwell time or dwell time fluctuations in order to manage them and allow 
operating and dwell time average margins to be reduced – allowing additional train paths. 

 

2.2 The dwell time 

“The dwell time is the time that a transit vehicle spends at a station or stop while passengers 
board or alight”, [Widanapathiranage et al., 2013]. 

The dwell is generally expressed as two elements. The train operations corresponding to the 
different states a train can take during the dwell time: arriving, stopped with the doors 
opened, the doors closed, or leaving the station; and the passengers’ events representing 
people behaviours on the platform: waiting, boarding or alighting a train. These two elements 
are inherently connected and generally high passengers’ volume during peak time leads to a 
congestion phenomenon increasing dwell. For instance, people waiting to board at the same 
doors impede the alighting of the other passengers and subsequently increase the time the 
doors remain open. This situation may be avoided by providing rich information to the service 
providers about the different dwell events so that they can be actively managed.  

Opportunities exist for operators if empowered with real time access to this important 
information. However, these data are non trivial, and expensive, to obtain with current 
approaches which rely heavily on manual intervention. Clearly, an autonomous system is for 
detecting the dwell events and outputting the information required for managing the dwell 
time would be advantageous and of value. 

 

3. Methods 

In order to pursue this, an Autonomous Complex Dwell Time Diagnostics Tool was devised. 
This section presents our methods towards developing this autonomous system which built 
on our previous work “Sensing Hardware Platforms (SHP) for robust people detection, 
tracking and counting” [Kirchner et al., 2014] through the addition of capabilities for 
autonomous detection of the dwell events and outputting the aforementioned operator need 
driven business information. 

Figure 2 details the framework of our approach. Features extraction: this stage exploits the 
data directly acquired from the SHPs to detect the platform properties and extract the 
required features for the detection. Events detection: this level allows the events detection by 
using the previously extracted features. Business information: this last stage contributes to 
create the business information usable by the operator. The stages are detailed in the 
following sub sections. 

 

3.1 Features extraction 

The sensing data frontend is acquired by our aforementioned SHPs [Kirchner et al., 2014]. 
From this data the autonomous system needs to detect the different dwell events to extract 
usable business information. However, these events are not easy to automatically detect on 
data such as depth image; which does not provide the same modality of information a 
passenger on the platform could use. Fortunately, some characteristics can be extracted 
from the data in order to be used later for the detection of the different events. These 
features include: information on the platform and tracks geometric position obtained during a 
calibration phase, train characteristics (windows, size) and people movements. 
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Figure 2: The Autonomous Complex Dwell Time Diagnostics Tool System Overview. 

 

 

3.1.1 Training 

Due to environment constraints, the SHPs are set up in different positions and situations in 
the train station. It not feasible to mount them at exact same position and orientation, 
consequently nor is it feasible to use the same detection process for each installation. 
However, the depth data produced by the SHPs provides sufficient information to 
automatically detect the floor orientation and platform edge and tracks (shown in Fig. 3). 
These features, extracted once only during the training phase, are used to align scene in the 
global coordinates enabling the general detection methods which follow. 

 

Figure 3: The training process. The depth image is converted into point cloud. Then the floor of 
the platform is autonomously identified (in red) and the cloud is reoriented to finally find the 

train surface (in red) and by consequent the limit with the tracks. 
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3.1.1.1 Platform orientation 

Knowledge of the platform floor position is important to correct the point cloud orientation and 
facilitate the subsequent feature detection methods. This information is obtained as follows. 
Having converting the depth image into a point cloud it is filtered (using the voxelGrid method 
from the Point Cloud Library (PCL)) to reduce the number of points and consequently the 
computation time. Then the normal are computed for all staying points in the cloud (using 
normalEstimation from PCL). Finally, the points with the most commonly occurring normal, 
typically associated with the floor surface, are used to determine the linear curve parameters 
of the floor in the selected frame (using scatter plots, means and voting points). 

In some cases more than one floor is detected, the floor and the tracks for example. In this 
the curve parameters are computed re-iteratively using a distance threshold reduction. 
Finally, the linear parameters are  converted in a rotation angle in the corresponding frame. 

3.1.1.2 Platform limit 

The platform limit with the tracks will provide important information on the train position and 
orientation. But its computation time is too important to be performed in tandem with the 
detection process. The limit detection works using the same method as previously, except 
this time the point cloud has to be reoriented with the platform horizontally displayed, the 
floors removed and a train present on the tracks. The most represented normal direction will 
correspond to the train surface one. From this information, the limit curve can be computed. 

 

3.1.2 Train features extraction 

Train unique features, such as the windows and the size, can be extracted from the depth 
images and provide important clues for the dwell events detections. 

3.1.2.1 Train windows 

The multiple train windows detected are exploited to extract information on its velocity, 
positions, and states. However, the noise in the data and the people occlusions generally 
result in a change of their shapes and sizes between two images making their detections 
susceptible to error. This section presents our approach detecting and recognising the same 
window between two images taken at two different times to improve general robustness, 
estimate accuracy, and reducing false detections. 

After the aforementioned preliminary treatment, where the platform is removed and the noise 
reduced by dilating the image (using dilate from OpenCV), the contours of the image shapes 
are detected (using findContours from OpenCV) and filtered by geometric properties such as 
size and shape. 

The detected contours are used to update a list containing the previously detected windows 
(shown in Fig. 4) with their last, current and estimated next shape (contour, size and 
position). A weight associated to each window, increased when a matching shape is found or 
decreased when no corresponding shape is found in the current image, partially addresses 
false detections. Moreover, in the case where the window disappears between observations, 
the next positions will still be estimated but the trust value will decrease. The platform limit 
provides an important clue to match a same window with two images: windows directions 
follow the platform one. 
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Figure 4: Windows detection. Left image shows the windows contours. Centred and right 
images shows the windows centroids positions for images at different time t, t-1 (red), t 

(green), t+1 (blue), for two different velocities. 

 

3.1.2.2 Train size 

The train length and the height is retrieved by first creating a 2D-histogram image where 
each pixel intensity corresponds to the number of points found on vertically above each bin 
from the reoriented point cloud with the floors removed by segmentation. This image is then 
transformed into a binary image and blob detection (using simpleBlobDetector from OpenCV) 
is performed. The blobs are then sorted by size and shape to identify the train, again using 
geometric a priori of a train (vertical planar surface). Finally, the train-blobs are used to 
identify regions in the original point cloud and the train size measures are extract. 

 

3.1.3 Passengers features extraction 

Person recognition and behaviour extraction by a machine is non trivial and the current 
approaches are limited due to constraints like illumination facial expressions, etc. [Kirchner et 
al., 2012]. However, where most of the studies are based on the face-area detection and 
facial recognition, a new method presents an innovative approach enabling the people 
recognition by an autonomous system. This method, called Head-to-Shoulders Signature 
(HSS), uses the inter-person variation in the size of the people’s head, neck and shoulders to 
achieve robust person recognition [7]. The SHPs data is used by the HSS and enables 
detection of passengers on the platform, tracking their position and outputting usable clues 
on their behaviours, moving or standing, to detect the passengers’ events, and later, the train 
operations. This is illustrated in Fig. 5. 

 

3.2 Dwell events detection 

The main function presented by this Autonomous Complex Dwell Time Diagnostics Tool is 
the autonomous detection of the different events constituting the dwell time in order to output 
rich information to service providers. However, these events are various, complex and 
currently no methods allow their direct detection using depth images. This section presents a 
set of new methods using the previous features extracted to detect the main train operations: 
the train appearance, stopped, doors opening, doors closed, departure and finally 
disappearance; and passengers’ events: the passengers flow (boarding and alighting). 

A state machine was designed to underpin this; shown in Fig. 6. The state machine 
represents the current train state during the dwell and in such limits the false positive 
detections as the meaning extracted from detections is contingent on past events, the current 
situation, and feasible ‘next’ events based on knowledge of the dwell process. 
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Figure 5: Head-to-Shoulders Signature detection and recognition process. 

 

 

 

 

 

 

Figure 6: State machine representing the different train states during the dwell. The states: 

“train is gone, system is waiting for a train to arrive” (1), “train detected, waiting for it to stop” 
(2), “train is stopped with the doors closed, waiting for the doors to open or the train to leave 

the station” (3), “train is stopped with doors opened, waiting for the doors to close” (4), “train 
is leaving the station” (5); and the transitions (outputs of the events detections): “train 
appearance”, “train stopped”, “doors opened”, “doors closed”, “train departure”, “train gone”. 

The passengers flow occurs in state 4 but the passengers’ behaviours before the doors 
opened is really important to help detecting the crowd formation and manage it in time. 
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3.2.1 “Train appearance” detection 

Corresponding to the train first appearance on the depth images, this event can be detected 
when at least one window, generally the driver one, and an appropriately sized object appear 
on the tracks (the train). 

 

3.2.2 “Train stopped” detection 

A train is considered as stopped when its velocity is zero. This event is detected by 
comparing the windows’ weighted last and current positions. The window size also provides 
information when it becomes station on the 2D-histogram image. 

 

3.2.3 “Doors opened” detection 

Doors are detected as opened when they are detected to start opening on the 2D-histogram 
image: people are generally leaving the train before the doors are fully opened. This 
detection is realised by computing the distances between the train windows: the distance 
between the doors windows and their neighbours (in the direction of the door window 
opening) will decrease when the distance between the doors will increase, creating a hole.  

 

3.2.4 “Doors closed” detection 

Doors are closed when they return to their original state. This detection is achieved by 
comparing the current windows positions on the 2D-histogram image with their original ones 
saved before the doors stated opening. 

 

3.2.5 “Train departure” detection 

A train is considered in departure when the train starts moving to leave the station i.e. its 
velocity is greater than zero as determined by all train windows being observed to moving in 
the same direction along the platform edge. Moreover, the return size of the vehicle in the 
2D-histogram image changes. 

 

3.2.6 “Train gone” detection 

If no windows and no object with the train dimensions are detected on the tracks, the train is 
supposed to be gone. 

 

3.2.7 “Passengers flow” detection 

The passengers’ features allow the detection and tracking of people all along the platform by 
providing the person position associated with a unique ID. When coupled with the train 
operations, it is possible to determine the passengers’ behaviours: waiting, boarding or 
alighting the train. For example, a passenger moving forward the platform limit when the train 
is not here is considered as waiting. 

 

3.3 The business information 

Service providers need to access rail operations data in real time. This information has to be 
rich enough to enable managing and preventing eventual extended dwell events leading to 
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an increase of the dwell time. The Autonomous Complex Dwell Time Diagnostics System 
was designed to output relevant data based on the dwell events detections. 

By interrogating the various dwell event detections outputted during a period of time, 
operators can have a direct access to information on train operations: for each train, the 
different states, time of appearance and doors positions; the passengers’ data: unique IDs 
and position during time; and the train position: the limit between the tracks and the platform. 
Furthermore, these data provide high quality information on the main components generally 
leading to an extended dwell time: the time doors stay opened, the time between the doors 
closed and the train departure, the time the doors stay opened after the passengers flow 
stopped, the time for the passengers to board and alight the train, and the presence of a 
crowd front of the doors [Ryus et al., 2013].  

 

4. Results 

The Autonomous Complex Dwell Time Diagnostics system was tested at Brisbane Central 
rail station to explore the feasibility of autonomously detecting the different dwell events on 
an extended period and outputting relevant information for operators. This section presents 
an evaluation of the methods detection for the set of 10 trains which transited on the platform 
during the 50 minutes captured by our SHP (shown in Fig. 7) and an example of business 
information generated for a train. 

 

Figure 7: Picture of a 3D-RGBD sensor placed on a platform at Brisbane Central rail station. 

 

 

4.1 Evaluation of the detection methods 

The data captured by our SHP was used to evaluate our methods described above in a 
piecemeal fashion. Namely, an evaluation of the core autonomous detection of the dwell 
operations was conducted on the data without employing the aforementioned state machine. 
This was done to give an indication of the worse case performance with the assumption that 
the state machine relationships built on the dwell a priori would alleviant false detections. 
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Table 1 presents the results of this evaluation. The columns correspond to the known dwell 
process state (which are also mirrored in the state machine). The rows of the table indicate 
detection rates of each of the detection methods for the 10 trains observed during the study.  

The detection performance, found by comparing autonomously detected dwell event 
instances with a manually coded ground truth of when dwell event should occur, in indicated 
by cell shading. Cells are shaded green in the table when our system reported detected 
events, or a lack thereof, and manual coding agreed. Orange shaded cells indicate instance 
where our system detected events and manual coding disagreed that they should have been 
– note, in several instances these rates are low. Finally, the number within the cell refers to 
the detection rate; for instance, a detection rate of 90% indicates that our system detected 
90% of event occurrence in the data. Problematic detection rates (both false positives and 
false negatives) are highlighted in orange text. 

As previously mentioned, the state machine was not employed during this evaluation – if it 
had of been the overall detection rate would improve, so too would have the false detections. 
For instance, the instances of detection of the doors opening whilst the train is still moving 
would be discarded by the state machine layer as a priori information dictates that this not 
likely. Similarly, a priori knowledge precludes a train from stepping directly from ‘Doors 
opening’ to ‘Train gone’ without the intermediate steps having been observed. This again 
would see the state machine drive an improvement in overall performace. These results 
clearly show that automatic core dwell event detection is feasible. Furthermore, these results 
highlight the value of encapsulating a priori of the dwell process within a state machine.  

 

Table 1: Detection rate of our system Vs manually coded ground truth of dwell events (%)  
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Stopped 0 0 0 90 70 100 30 80 0 

Doors Opened 0 0 90 20 40 90 10 30 80 

Departure 0 0 100 20 50 90 40 50 100 

Gone 90 0 0 0 0 0 0 0 0 

 

 

4.2 Business information example 

To demonstrate the potential of outputting relevant information, these dwell event detections 
outputs were automatically collected in a file and a demonstrate of a potential analysis of a 
dwell time component conducted. In this case, passenger flow while the train is present and 
the doors are ajar. A representation of the passengers’ positions during the dwell of a train 
knowing the train and the doors positions was created. This information, presented in Fig.8, 
can be accessed during the dwell and provides operationalisable data such as the number of 
person currently on the platform. This provides valuable insights to operators in a form 
suitable for engagement. For instance, this data raises the questions ‘why were people 
lingering in front of the doors but not boarding the train?’ or a perhaps more operations 
focused version of this question is ‘what should be do to discourage this now that we know 
how prevalent it is?’. Moreover, the train operations parameters, such as the doors opened 
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or closed, and the passengers’ positions during this period of time can provide, for example, 
the time doors stayed opened after the last passenger alighted or boarded. 

 

Figure 8: Passengers movements (as detected and recorded by our SHPs) on the platform 

during an entire train dwell time: the coloured curves corresponding to the passengers’ tracks.  

 

 

 

5. Conclusions and future work 

The results presented by this paper confirm our hypothesis that the Dwell, expressed as a 
set of train and passengers’ events, can be automatically detected using our previously 
developed SHP, placed on a train station platform, by extracting some features and 
performing detection methods such as those described here within. The data acquired during 
the detections allowing to outputting rich information enabling service providers to manage 
dwell time at a higher fidelity. Moreover, the analysis of the dwell time operating procedures 
gave insights to create an operator suitable interface for providing dwell information in real 
time: such as the train and doors position and the number of passengers on the platform. 

The findings here within provide evidence for the feasibility of developing, and motivation to 
pursue further developments of, an Autonomous Complex Dwell Time Diagnostics Tool that 
will deliver valuable and operationalisable information to operators in the form of business 
information. 

The work presented here is not without limitations. The limitations are primarily related to the 
features extraction errors. Noise in the SHP data effects the robustness of the doors 
detection, and this needs to be addressed. Additionally, the pivotal role the state machine 
plays was highlighted and in such concern arouse. Specifically, it became evident that 
formation of the dwell a priori into a state machine directly interplays with the interpretation of 
detections as being false. Furthermore, attention was draw to the issue of the system 
recovering from an incorrect state transition. Future work will focus on further investigation on 
the multi-sensors detection, optimal sensor positioning, a deeper exploration of the dwell 
organisation in order to create more robust detection methods and increase the reliability of 
the Autonomous Complex Dwell Time Diagnostics Tool by service providers.  
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