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Abstract

Passenger behaviour can have a range of effects on rail operations from adverse to
positive. While rail service providers strive to design and operate systems in a manner that
promotes positive passenger behaviour, congestion is a confounding factor that can cre-
ate responses which may undermine these efforts. The real time monitoring of passenger
movement and behaviour through public transport environments including precincts, con-
courses, platform and train vestibules would enable operators to more effectively manage
congestion at a whole-of-station level.

While existing crowd monitoring technologies allow operators to monitor crowd densities
at critical locations and react to overcrowding incidents, they do not necessarily provide
an understanding of the cause of such issues. Congestion is a complex phenomenon
involving the movements of many people though a set of spaces and monitoring these
spaces requires tracking large numbers of individuals. To do this, traditional surveillance
technologies might be used but at the expense of introducing privacy concerns. Scalability
is also a problem as complete sensor coverage of entire rail station precinct, concourse and
platform areas potentially requires a high number of sensors, increasing costs. In light of
this, there is a need for sensing technology that collects data from a set of ‘sparse sensors’,
each with a limited field of view, but which is capable of forming a network that can track the
movement and behaviour of high numbers of associated individuals in a privacy sensitive
manner.

This paper presents work towards the core crowd sensing and perception technology
needed to enable such a capability. Building on previous research using 3D depth camera
data for person detection, a privacy friendly approach to tracking and recognising individu-
als is discussed. The use of a head-to-shoulder signature is proposed to enable association
between sensors. Our efforts to improve the reliability of this measure for this task are out-
lined and validated using data captured at Brisbane Central rail station.

1 Introduction

Passengers are at the core of rail transport and their presence and behaviour can have a
range of effects on rail operations (Wang & Legaspi 2012). One way that passengers impact
rail operations is when boarding and alighting from services. The time taken for passengers to
board and alight from a train at a platform can directly impact the total train dwell time which, in



turn, affects the reliability and frequency of services provided (Veitch et al. 2013). Undesirable
passenger behaviour such as that exemplified in Figure 1(a), where passengers waiting on the
platform block the doors of the train as it arrives, will slow passengers alighting from the train
and increase dwell time.

(a) Boarding passengers (blue)
stand in front of doors, blocking
alighting passengers (red), leading
to increased dwell time.

(b) Boarding passengers (blue)
stand to the of doors, allowing
alighting passengers (red) to exit the
train promptly, leading to reduced
dwell time.

(c) Platform congestion (orange) un-
dermines positive behaviour of some
passengers (blue), increasing dwell
time.

Figure 1: Passenger behaviour can have a range of effects on rail operations

For this reason operators try to promote positive passenger behaviours, such as that in Figure
1(b) where passengers wait to the side of train doors, through the use of signage (as in Figure
2), announcements and spatial design. Such treatments may be effective when the infrastruc-
ture is operating below capacity, but in peak times overcrowding undermines these efforts, as
in Figure 1(c), and causes negative outcomes for passengers and rail operators alike. The
negative effects of crowding aren’t limited to dwell time delays either, with congestion in thor-
oughfares around the station delaying passengers from reaching their platform in time (Veitch
et al. 2013), and further contributing to platform congestion while they wait for the next service.

(a) Platform markings used by Singapore Mass
Rapid Transit

(b) Signage used by Sydney Trains

Figure 2: Rail operators use platform markings and signage to promote positive passenger
behaviours.



Passenger crowding in peak travel times clearly poses challenges for rail operators, caus-
ing numerous researchers to develop models to estimate the costs of overcrowding (Wang &
Legaspi 2012, Veitch et al. 2013) and its effect on operational capacity (Gray 2013). Creative
approaches to the problem such as fare differentiation to spread out peak travel times have
been suggested and trialled (Liu & Charles 2013) with some success, however as populations
globally continue to rise such methods may not be sufficient to overcome these challenges. In
order to combat overcrowding in the urban rail transport environment it seems more informa-
tion is needed about how, when and where overcrowding can occur. If operators could directly
monitor the movements of people through the train station in real time this could lead to a
deeper understanding of passenger behaviour and the causes of overcrowding.

The traditional approach to monitoring people in transport environments and other public
spaces is to use closed circuit television (CCTV) systems. Such systems typically involve a
large number of cameras positioned throughout a train station, monitored from a control room
by station staff such as in Figure 3. This type of system is ubiquitous in the transport industry
and highly useful for security purposes, however the attention to detail required of these opera-
tors and the high volume of visual information to be monitored in a large train station mean that
there is a limit to the effectiveness of manual, CCTV based, crowd monitoring (Boghossian &
Black 2005). This has led to the development of automated crowd monitoring systems based
on computer vision, allowing real time crowd monitoring based on numerous video feeds.

Figure 3: The volume of video information captured and high level of attention required limit
the efficacy of manual, CCTV based crowd monitoring.

There are a number of commercially available computer vision based crowd monitoring sys-
tems currently available which provide real-time reporting of crowd densities observed by
CCTV cameras. These systems allow operators to monitor the occupancy of trafficable ar-
eas throughout a train station and respond to overcrowding incidents as they occur. Whilst this
technology presents practical benefits to operators, the level of information may not be suffi-
cient to fully understand the complex causes of overcrowding. Beyond estimating gross crowd
densities, a system capable of simultaneously tracking the real-time movements of many indi-
viduals throughout a crowded train station could give operators deeper insights into the specific
causes of crowding issues and into passenger behaviour generally. This level of information
could enable operators to find solutions to congestion issues at a whole-of-station level through



changes to spatial design, and the development of responsive passenger information systems.

The task of autonomously tracking individuals has been approached by many researchers in
the field of computer vision, with most methods relying on two main stages: person detection,
and motion tracking. Successful tracking relies on detecting people with a great enough accu-
racy and frequency that their motion can be reliably predicted in-between observations for the
purpose of associating each observation with a continuous track. There are many methods
capable of detecting persons with sufficient accuracy and frequency to enable tracking within
the field-of-view (FOV) of a single sensor however the problem remains that a train station is
typically much larger than this.

In their recent work using 3D depth sensors for person tracking, Brscic et al. (2013) overcome
the limits of their sensors’ FOV by constructing a network of sensors with overlapping FOV
covering a large area inside a shopping centre. By calibrating their tracking system to account
for the relative 3D positions of each sensor, the they are able to successfully track individuals
using multiple sensors as they move through the shopping centre. Although this example
demonstrates the promise of using multiple 3d sensors for large scale person tracking, the
sheer number of sensors that would be required to achieve complete coverage of a major
train station may limit the practicality of such an approach for our application. A more practical
solution would be a system capable of tracking individuals across a network of sparse sensors,
that is sensors whose FOV do not necessarily overlap.

To achieve tracking of individuals across sparse sensors, a method is needed for associating
observations of an individual made by one sensor, with observations of the same individual
made by another sensor. In their review of state-of-the-art person re-identification methods
Mazzon et al. (2012) break the task down into 4 main stages: multi-person detection, feature
extraction, cross camera calibration and association. Assuming a system capable of person
detection, the authors discuss a number of approaches to feature extraction with the most
common being colour, texture and shape. The challenges typicaly faced by these methods
are cited as “changes in pose, scale and illumination that modify the perceived appearance
of a person across cameras” and the authors state that ”In general, methods solely based
on appearance features extracted on full body have performances close to random” (Mazzon
et al. 2012) . Face detection algorithms have also been applied to the problem person tracking
(Zhao et al. 2009) but are limited by the requirement for the face to be visible in every sensor
view, an assumption which cannot reasonably be made in our context.

Besides the technical challenges of such vision based re-identification methods this type of
system is also likely to raise privacy concerns. When video surveillance is used the public
are typically concerned with the protection of their personal information, and in a system which
tracks the movements of individuals these concerns are likely to be amplified. It is plausible that
video data captured by a vision-based person tracking system could be used to link people’s
monitored behaviour with their identity. If this capability is not the intended purpose of the
system then it seems preferable to limit the potential for such misuse, by design. In light of this
there is a need for a system capable of real-time tracking of individuals, across a network of
sparse sensors, in a way that respects their privacy. This paper discusses our work towards
the core sensing and perception technology need to create such a system. Building on our
previous work in person tracking using 3d depth cameras, we explore the potential of our
previously developed Head-to-Shoulder signature for the task of track associations.

Following this introduction, Section 2 will give the background for this work, including a dis-
cussion of privacy in this context, and an overview of our previous work in person tracking on



which we have built. Section 3 will detail our technical contributions including the proposed
system framework and feature filtering method, which leverages intra-sensor person tracking
in to improve inter-sensor associations. Following this Section 4 describes our empirical vali-
dation of this method, based on data collected at Brisbane Central train station. Finally Section
5 will discuss our conclusions from this work and intended future work.

2 Background

2.1 Privacy in Crowd Monitoring

Surveillance in its various forms is increasingly embedded in all parts of our life. Much of our
daily activity both online and offline is monitored in some way, generally with practical reasons
in mind such as security, marketing and operational optimisation. However as surveillance in-
creases, so too does the risk of misuse of personal information gathered, both intentionally and
unintentionally. As such, the general public tend to be skeptical when additional surveillance
measures are introduced in public spaces.

The issue of unintentional video surveillance is addressed in many cases by image process-
ing systems built into surveillance equipment, capable of removing or scrambling areas of an
image which should not be monitored. While this may be helpful in certain circumstances, in
the context of video based crowd monitoring where members of the public are intentionally
observed, there is a risk the information gathered has utility beyond the intended purpose of
the system. Perhaps a preferable scenario would be one where the information gathered was
adequate only to perform the intended task.

The recent advent of economical 3D depth cameras offers a new type of sensing technology
to problem of crowd monitoring. 3D depth cameras can be used in a similar fashion to regular
CCTV cameras, in that they have a similar FOV and can be positioned throughout an environ-
ment to observe regions of interest, with frame rates of up to 30fps. Where this technology
differs is in the type of information captured. In a digital image taken from a standard colour
camera, each pixel represents the colour and intensity of light coming from that part of the
cameras FOV. In a depth image, on the other hand, each pixel represents the distance from
the sensor of a visible surface in that part of the cameras FOV. Given some understanding of
the optics of the camera, each depth pixel can be converted to a point in 3D space and the
collection of points (pointcloud) generated by each depth image can be used to interpret the 3d
location of objects in the FOV. This type of information has obvious advantages when applied
to the task of tracking the locations of people in the scene, but less obvious are the privacy
implications of the technology.

For the sake of discussion we can consider privacy concerns around surveillance technology
under two broad questions: ”what personal information is observed by the system?” and ”how
can this information be used?”. Starting with the first question, we can compare a system using
standard colour CCTV cameras to one using 3D depth cameras. Figure 4 presents an example
of each type of image. Looking first at the colour image, the types of personal information
visible are: skin colour, hair colour, face, sex and some indication of age. In comparison
the depth image gives us a silhouette of each person from which we could gather information
about the height and build of a person, but little else of personal significance, and arguably with
modern computer vision techniques [] and some knowledge of the scene, height is obtainable
from the colour image also.



(a) Image from a standard colour camera (b) Image from a 3D depth camera

Figure 4: 3D depth cameras inherently capture less personal information that standard colour
CCTV cameras.

If we consider now how this information can be used, in the case of a system based on standard
CCTV cameras, the movements and behaviour captured by the system would, apart from
providing the desired crowd tracking information, be linked to an array of photographic images
of the individual. The personal information contained in these images could be compared with
a database of known persons containing similar types of information, such as that maintained
by police, and combined with the time and place of observation could be used to resolve their
identify. Comparing this with the 3D depth camera case, each individual’s activities would be
associated with information about their height and shape, and while this type of information
may also be contained in some identification databases it is unlikely to be sufficient to provide
a definitive identification. From this it seems that if the information available in the depth image
is sufficient to perform the intended crowd monitoring task then there are inherent privacy
benefits in using this technology over standard cameras.

2.2 Using 3D Depth Cameras for Person Tracking

In order to provide context for later sections of the paper, this section outlines our previous work
using 3D depth cameras to detect, track and count people within the FOV of a single sensor.
The foundations of this work are in the field of human-robot-interaction (HRI) where a system
was developed for detecting people from 3D depth data for use on a mobile robot in a domestic
environment (Hordern & Kirchner 2010). The use of a 3D sensor in this work was motivated by
the robustness to lighting variation achieved by the self-illuminating design of the sensor as well
as the high utility of 3d data for extracting the location of the people detected. These benefits
combined with success of the approach in robustly detecting people from a single point-of-
view lead to additional research into extending the work for recognising individuals from 3D
data (Kirchner et al. 2012), which will be explained in more detail in Section 2.3. Building on
these foundations in the field of HRI, more recent work saw the development of a system for
detecting, tracking and counting people in a public train station (Kirchner et al. 2014). Figure 5
shows the basic structure of the system and type of information passed between each of the
functional components.

The Scene Flattening block converts the received depth images into 3D pointclouds and lo-



Figure 5: A system for real time person detection and tracking with proposed developments for
tracking across sparse sensors

calises itself relative to the ground by locating the ground plane. After this localisation step,
subsequent pointclouds are reoriented using the obtained ground-to-sensor transformation and
flattened into a density image using the bi-variate histogram technique originally presented in
(Hordern & Kirchner 2010). The intensity of each pixel in the density image represents the
concentration of 3D points at a particular horizontal location in the sensors FOV. The ROI
Segmentation block detects regions of interest (ROI) potentially representing people, by per-
forming blob detection on the density image, leveraging the assumption that people will present
in the 3D data as vertical surfaces. As well as people this technique detects other vertical sur-
faces such as walls, poles and furniture. To deal with this, the overall dimensions of each ROI
are checked and those considered too large or too small to represent people are eliminated,
removing most but not all of the false positives generated in blob detection. The pointcloud
segments contained by each of the remaining ROI are passed to the HSS Extraction block
which constructs a descriptive feature vector called the Head-to-Shoulder Signature (HSS),
using the method presented in (Kirchner et al. 2012). These HSS are checked against a col-
lection of known human HSS in the Human Validation block to determine if the ROI is human
or not. The 2D location of each ROI along with its human status are passed to the Motion
Tracking block which uses a particle filter, as described in (Alempijevic et al. 2013) to track
the detected people. Tracks are validated as belonging to a person once at least one of the
associated observations are positively confirmed by the Human Validation block.

The high density of people in the public transport environment introduces the problem of



merged detections due to the close proximity of people to one another. The motion model
used by the Motion Tracking block provides some robustness to this issue however the prob-
lem remains that in a densely populated environment people walking near one another may
be repeatedly detected as a single entity causing erroneous tracking results. The Merge-Split
Tracker treats this by recognising merge and split events. When a track terminates near (within
0.8m) of another track the two tracks are considered merged and last observed HSS for each
one are stored and associated with the continuing track. When a new track appears near a
previously merged track the HSS for each track is obtained and compared to the previously
stored HSS to resolve the identity of each post-merge track against the possible pre-merge
tracks allowing the tracks to be repaired.

2.3 Head-to-Shoulder Signature

The head-to-shoulder signature (HSS) is a descriptive feature vector which can be extracted
from a 3d pointcloud of a person. The HSS was presented in (Kirchner et al. 2012) as a
method for encapsulating the 3d shape of a persons and head and shoulders for the task of
person recognition in human-robot-interaction (HRI). Although less accurate for person recog-
nition when compared with other biometric identification methods such as fingerprinting or
face matching, the HSS was designed to be captured by a mobile robot from a single point of
view without requiring the robot to disrupt the person, an important consideration in HRI. The
method was shown to perform significantly better than random when differentiation between
25 individuals, achieving a mean classification accuracy of 78.15% on stationary participants
and 52.11% while moving.

The HSS is constructed from a segment of a pointcloud containing a person as illustrated in
Figure 6. The top 40cm of the pointcloud is divided into 20 horizontal slices each 2cm thick.
For each slice the maximum horizontal distance between any two points in the slice is found,
referred to as the span. In this way some robustness to viewing angle is provided as the span
can be in any direction, not only orthogonal to the observation angle. The 20 obtained spans
are stored as an ordered vector forming the HSS.

Many of the characteristics which make the HSS suitable to the home environment transfer well
to the transport environment making it a suitable candidate for track association in this context.
The capability of the HSS to accommodate a variety of viewing angles, including viewing from
behind, and the robustness to lighting variations provided by the self-illuminating function of the
depth sensors used, make the method preferable to methods mentioned above which typically
require more controlled input data. Additionally the use of 3d sensing in this context carries
with it privacy benefits as discussed in section 2.1.

In our person tracking work discussed in Section 2.2 (Kirchner et al. 2014) the HSS is used to
resolve the identity of tracks after a consecutive merge and split event. Whist this approach
is quite effective in discriminating between two possible individuals, in the case of inter-sensor
track association in a crowded train station it is likely there will be many more than two possible
outcomes. As the number of potential association outcomes increases so to will the chance of
miss-association. This increased complexity in the association problem places greater demand
on the discriminative power of the HSS obtained for each track and therefore requires a method
more robust to potential erroneous HSS measurements. Fortunately the motion tracking stage
of the system presents an opportunity to improve this robustness.



Figure 6: The Head-to-Shoulder signature is constructed from a 3d pointcloud of person, sum-
marising their shape via a series of horizontal slices

3 Leveraging motion tracking for HSS based track association

The HSS is designed to be robust to a range of viewing conditions however there are known
failure modes and additional factors present in a crowded train station which may undermine
the consistency of the HSS. This section explores the possibility of leveraging intra-sensor
motion tracking to improve the robustness of HSS collected for the task of inter-sensor track
associations. Specifically by exploiting assumptions about the relationship between velocity
and body pose we propose to filter the HSS observed for each track to provide a consistent
representation of the observed individual. The remainder of this section is divided into two
parts: Section 3.1 proposes a framework for privacy sensitive, sparse 3d-sensor based, real-
time person tracking which builds on our previous work and provides the context to present our
method for HSS filtering; Section 3.2 discusses our method for HSS Filtering which leverages
motion tracking to improve HSS based track association.

3.1 A system for tracking people across sparse sensors

Our proposed system for developing a privacy friendly, sparse 3D-sensor based, multi-person
tracking system is built upon our previous work into multi-person tracking and is comprised of
some previously developed components, as well as some newly proposed components. Fig-
ure 5 enumerates the components and describes the information passed between them. The
Scene Flattening, ROI Segmentation, HSS Extraction, Human Validation and Motion Tracking
blocks work as described in Section 2 of this paper. Together they provide an output of contin-
uous tracks of location, velocity and HSS observations for each person that moves through the
FOV of the 3D sensor.



The three newly proposed blocks are intended to concatenate the partial tracks output by the
Motion Tracking block into complete trajectories of individuals through an entire train station.
The role of the HSS Filtering stage is to process the full set of HSS to produce a representation
that is descriptive of the observed individual and robust to errors in the individual HSS mea-
sured. Our method for HSS filtering is discussed in detail in Section 3.2. The Track Association
block has the task of associating each track with an individual based on a combination of the
Filtered HSS measurements and available spatio-temporal information belonging to each track.
This a complex task and outside the scope of work for this paper. Finally the Track Concatena-
tion block combines the tracks associated with each individual to form complete trajectories of
their motion throughout the sparse sensor network. This final output can be stored and inter-
rogated further to provide operators with a detailed understanding of passenger behaviour.

3.2 Filtering Head-to-Shoulder signatures for better track association

The object of HSS Filtering in the context of the system described above is to produce a
representation for each track that is descriptive of the observed individual and robust to errors
in the HSS measurements such that it can be used by the Track Association block. Assuming
the presence of some error in the HSS observed, collecting all the HSS together per track
would allow for the extraction of robust statistics for each track, such as a median HSS to
obtain a more consistent measurement. Better yet, statistical methods could be applied to
compare entire distributions of HSS to one another and model the boundaries that separate
one person’s HSS from another’s. This type of task is the role of machine learning classifiers
and there exists several well developed methods, such as the Support Vector Machine used
in (Kirchner et al. 2012), which can be trained on labeled input data and used to classify
subsequent inputs into one of the trained classes. The role of the HSS Filtering block then
becomes to select the set of HSS which will best represent the underlying individual to use as
input data to a classifier.

Potential sources of error in the HSS measurement include: image coordinate quantisation,
depth resolution quantisation, partial occlusions at the edge of the sensors field of view, partial
occlusions due to other people in the environment, and observation angle. Partial occlusions
causing significant deformation of the measured HSS tend to be omitted by the Human Vali-
dation stage of the system. Quantisation issues are worst at long range and treated in part by
only detecting people within 8 meters of the depth camera. While lesser occlusion and quanti-
sation errors will still contribute to measurement noise the largest remaining source of error is
observation angle.

The HSS is designed to accommodate a range of observation angles however the method is
limited by the 3d data input to the HSS extraction algorithm, meaning that if the full breadth of
the shoulders is not observed by the sensor the HSS will reflect this. The ability of the HSS
to accommodate different observation angles is evaluated in (Kirchner et al. 2012) based on
data of one of the participants of the study, and it is noted, that classification using the HSS
was successful for a range of observation angles from -60◦ to +60◦ and from -140◦ to 160◦,
where 0◦ is a frontal view. It is expected therefore that for angles outside these ranges there
is likely to be some deviation from the expected HSS measurements causing the classification
to fail. Based on these results, and assuming the general case to be symmetrical we divide
the full range of possible observation angles into three groups as show in figure 7. Front refers
to the angles -60◦ to +60◦ via 0◦, rear refers to -150◦ to 150◦ via 180◦ and side refers to the
remaining ranges.



Figure 7: Observation angles are divided into three cases: front, rear and side.

In order to omit potentially erroneous measurements based on observation angle the pose of
the tracked individuals must be determined. A method for shoulder pose estimation using prin-
ciple component analysis, similar to that in (Brscic et al. 2013), was implemented and proved
successful for a range of angles. Unfortunately the typical failure cases of this method cause
it to measure extreme portrait observations (near 90◦ or -90◦) as 0◦ rendering it unsuitable for
classifying observations as either front or side views. In light of this a method was needed
which would not be susceptible to errors related to observation angle.

Based on the assumption that people walking will typically align their head and shoulders with
their direction of travel, the velocity of the track provided by the motion tracker was chosen as an
estimate of body pose. For each HSS observation the direction of the track velocity at that point
in time was assumed to be the facing direction of the person. While this assumption proved
fairly reliable at a normal walking pace, for the case of a person standing still slight variations
in the measured location of a person would cause velocity measurements with very small
magnitude and random direction. To avoid these measurements corrupting our experimental
results a threshold of 0.5 metres per second was set and pose estimations derived from track
velocities under this threshold were disregarded. For the remaining observations with velocities
above 0.5m/s the observation angle was determined based on direction of the track velocity
and location relative to the of the person at the time of the observation as illustrated in figure.
For each track observations were divided into those observed from the front, rear and side
angles.

Due to the velocity threshold used in determining observation angle there may be many HSS
collected while a person is stationary which are perfectly valid measurements and yet ignored
due to the limitations of the pose angle estimation technique. Additionally there may be sam-
ples selected as part of the front set which still contain significant errors due to failures in the
pose angle estimation technique. For this reason the observations taken from the front for
each track are used as the basis to select a subset of the total HSS collection using Maha-
lanobis distance. The Mahalanobis distance is a measure of the distance between a point and
distribution used in multivariate statistics to test if a particular point belongs to a distribution.
In this case we calculate the distance between each HSS observation in the total set and the
distribution of observations observed from the front. Based on the calculated distances the
inner 20% of the total collection of HSS are selected to represent the track for the purpose of



Track Association. Section 4 discusses the results of this selection process on real world 3d
data.

4 Experimental Results

4.1 Data collection and processing

The HSS Filtering method described above was evaluated on data captured at Brisbane’s
Central train station using three of our purpose built sensor hardware platforms (Kirchner et al.
2014), comprised of a 3d Depth camera, compact fanless PC (FitPC3), hard drive and battery
system, pictured in Figure 8. Over the course of three days, 3D depth images were recorded
at 30 frames per second in areas of passenger flow through the train station. For the sake
of evaluating the HSS Filtering method discussed above, a 29 minute recording of a high
passenger traffic area on one of the stations train platforms was selected for the large numbers
of moving people. Figure 8 shows a depth image from the data set.

(a) The sensor hardware platform in situ (b) A depth image from the evaluation data set

Figure 8: The sensor hardware platform mounted in Brisbane Central train station collecting
3d depth images of rail passsengers

The depth images from this dataset were processed by our person detection and tracking sys-
tem, implemented in C++, using the Robot Operating System (ROS). ROS is an open source
software framework for robotics development which provides key services such as message
passing and drivers for many common robotics components and sensors. As described in 2.2
the output of the person tracking system is a collection of tracks containing observations of
HSS, location (x,y) and velocities (x,y). This dataset was logged using ROS and imported into
MATLAB in ourder to process results of the HSS Filtering method.

4.2 HSS Filtering Results

The dataset used to evaluate the HSS filtering results contained 1130 tracks with numbers
of observations per track ranging from 1 to 11331 and a variety of walking paths through the
sensor FOV. In order to evaluate the HSS Filtering method presented a subset of tracks was



selected for detailed analysis in which at least 30 frames (approximately 1 seconds worth) were
captured in both front and side views. The effect of grouping HSS measurements for each of
these tracks by observation angle was examined by plotting the median HSS for each group.
The median HSS is a vector constructed from the median value of each slice index across the
entire set of HSS. The median is used here rather than mean for its robustness to outliers.
Figure 9 shows the result of this process on two of the tracks indicative of the range of results
encountered.
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(a) The effect of grouping HSS by observation angle
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(b) The filtered HSS compared with the original HSS set

Figure 9: Results of grouping HSS by observation angle and selecting HSS based on similarity
to frontal observations

The plots resemble the shape the head and shoulders of a person laying on their side, where
slice index 1 corresponds to the top of a persons head and slice 20 is a point 40cm below
that. In most cases the median of HSS measured from the front showed a visible deviation
from those measured from the side particularly in the shoulder region (slices 14 to 20). In
most cases the front HSS median showed a wider shoulder than the side HSS median, with
the all HSS median predictably showing somewhere in-between the two, such as for ID:1147
on the right of Figure 9. This effect is most likely explained by self-occlusion in extreme side
observations ( 90◦), where the view of the far shoulder is hidden behind the head and neck
of the person. This trend is more pronounced in some samples than others with cases such



as Track ID 975, left of Figure 9, showing no significant difference between the two. This may
simply be due to the side observations for this track being less extreme but could also be
related to individual characteristics such as head size and hairstyle.

As described in Section 3 the front HSS are used as the basis to select a subset of the original
HSS that will be used to represent the track. Figure 9(b) shows the result of this process
on the same two tracks. The most noticeable difference result is the reduced variation in the
selected HSS compared with the full set. This is expected as the HSS selection process based
on mahalonobis distance is a form of outlier removal. Importantly the selected set does not
appear in the centre of the distribution of HSS but rather favours the HSS shape determined
by the front HSS set. As many clearly erroneous measurements are omitted from the selected
HSS set. By reducing the variance of the HSS based on the most consistent HSS observations,
those captured from the front it is likely that the performance of subsequent HSS based track
matching will be improved.

5 Conclusions and future work

The development of the privacy sensitive, multi person tracking system described in this paper
is expected to provide rail operators with a valuable tool for understanding passenger move-
ments. Data gained from such a system could be used in a variety of ways to improve service
outcomes including: informing spatial design choices, providing effective real time monitoring
solutions capable of early detection of congestion issues, and enabling responsive passenger
information systems capable of automated crowd management.

This paper has discussed our efforts towards developing the sensing and perception tech-
nology to enable privacy sensitive, multi-person tracking across a network of sparse sensors.
Specifically it has proposed the use of the head-to-shoulder signature (HSS) for associat-
ing observations of individuals across a sparse sensor network to reconstruct their complete
movement trajectories. A method for improving the efficacy of the HSS for this task has been
explored which leverages data association provided by intra-sensor motion tracking choose a
reliable subset of the available HSS to be used for track association. Based on prior investi-
gations into the effect of observation angle on the HSS, track velocities are used to estimate
body pose, and hence observation angle, and choose HSS based on their similarity to those
measured from known reliable angles of observation.

The proposed HSS selection method is tested on data collected at Brisbane Central train
station and the results are discussed. A clear difference is noted in the HSS collected from
front and side observation angle respectively highlighting the value of segmenting HSS based
on observation angle. The HSS sets selected for each track give a tighter representation than
the original set, centred around the reliable frontal HSS set. This improved representation of
each track is expected to allow more reliable track association provided that at least some
frontal HSS observations can be made for each track.

Future work will investigate the possibility of developing multiple representations per individual
based on different viewing angles to account for cases where frontal images are not observed
at all. Beyond this the non-trivial task of track association will be approached using a combina-
tion of HSS based classification and spatio-temporal information. The use of spatio-temporal
information for inferring a persons future behaviour is also currently being researched within
our research group and is expected to provide valuable inputs to this work.



Acknowledgment

References

Alempijevic, A., Fitch, R. & Kirchner, N. (2013), ‘Bootstrapping navigation and path planning
using human positional traces’, Proceedings - IEEE International Conference on Robotics
and Automation pp. 1242–1247.

Boghossian, B. & Black, J. (2005), ‘The Challenges of Robust 24/7 Video Surveillance Sys-
tems’, IEE International Symposium on Imaging for Crime Detection and Prevention (1), 33–
38.

Brscic, D., Kanda, T., Ikeda, T. & Miyashita, T. (2013), ‘Person Tracking in Large Public Spaces
Using 3-D Range Sensors’, IEEE Transactions on Human-Machine Systems 43(6), 522–
534.
URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6636027

Gray, J. (2013), Rail simulation and the analysis of capacity metrics, in ‘Australasian Transport
Research Forum Proceedings’, number October, pp. 1–15.

Hordern, D. & Kirchner, N. (2010), ‘Robust and Efficient People Detection with 3-D Range
Data using Shape Matching’, Proc. of the 2010 Aust. Conf. on Robotics and Automation
pp. 1–8.
URL: http://www.araa.asn.au/acra/acra2010/papers/pap138s1-
file1.pdf\nhttp://nathankirchner.com/NathanKirchner/Media files/Robust and Efficient
People Detection with 3-D Range Data using Shape Matching.pdf

Kirchner, N., Alempijevic, A. & Virgona, A. (2012), Head-to-shoulder signature for person
recognition, in ‘Proceedings - IEEE International Conference on Robotics and Automation’,
pp. 1226–1231.
URL: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6224901

Kirchner, N., Alempijevic, A., Virgona, A., Dai, X., Pl, P. G. & Venkat, R. K. (2014), A robust
people detection , tracking , and counting system, in ‘Australasian Conference on Robotics
and Automation’.

Liu, Y. & Charles, P. (2013), Spreading peak demand for urban rail transit through differential
fare policy : A review of empirical evidence 2 . Transit Peak Spreading and Fare Differentia-
tion, in ‘Australasian Transport Research Forum Proceedings’, Vol. 2007, pp. 1–35.

Mazzon, R., Tahir, S. F. & Cavallaro, A. (2012), ‘Person re-identification in crowd’, Pattern
Recognition Letters 33(14), 1828–1837.
URL: http://dx.doi.org/10.1016/j.patrec.2012.02.014

Veitch, T., Partridge, J. & Walker, L. (2013), Estimating the Costs of Over-crowding on Mel-
bourne s Rail System, in ‘Australasian Transport Research Forum 2013 Proceedings’, num-
ber October, pp. 1–14.

Wang, B. & Legaspi, J. (2012), Developing a train crowding economic costing model and es-
timating passenger crowding cost of Sydney CityRail network, in ‘Australasian Transport
Research Forum Proceedings’, number September, pp. 1–15.

Zhao, X. Z. X., Delleandrea, E. & Chen, L. C. L. (2009), ‘A People Counting System Based
on Face Detection and Tracking in a Video’, 2009 Sixth IEEE International Conference on



Advanced Video and Signal Based Surveillance pp. 67–72.
URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5279466


