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Abstract: Large reflection losses at interfaces in light-emitting semiconductor devices cause a
significant reduction in their light emission and energy efficiencies. Metal nanoparticle (NP)
surface coatings have been demonstrated to increase the light extraction efficiency from planar
high refractive index semiconductor surfaces. This emission enhancement in Au NP-coated
ZnO is widely attributed to involvement of a green (∼ 2.5 eV) deep level ZnO defect exciting
localized surface plasmons in the NPs. In this work, we achieve a 6 times enhancement of the
ultra-violet excitonic emission in ZnO nanorods coated with 5 nm Au NPs without the aid of
ZnO defects. Cathodoluminescence (CL) and photoluminescence (PL) spectroscopy revealed
that the increased UV emission is due to the formation of an additional fast excitonic relaxation
pathway. Concurrent CL-PL measurements ruled out the presence of charge transfer mechanism
in the emission enhancement process. While time-resolved PL confirmed the existence of a new
excitonic recombination channel that is attributed to exciton relaxation via the excitation of rapid
non-radiative Au interband transitions that increases the UV spontaneous emission rate. Our
results establish that ZnO defect levels ∼ 2.5 eV are not required to facilitate Au NP induced
enhancement of the ZnO UV emission.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Light emitting diodes (LEDs) fabricated from nanorods have clear and significant advantages
over conventional planar device structures. These benefits include, a vast junction area due to the
nanorods’ size and three-dimensional morphology, the potential for light waveguiding, fabrication
of films with low defect densities and strain as well as excellent carrier confinement. Zinc oxide
(ZnO) nanorods are particularly attractive for LED applications owing to their: (i) attractive
optical, electrical and mechanical properties, (ii) large surface to volume ratio, (iii) availability
in a large assortment of bespoke shapes and sizes and (iv) facile growth on a wide variety of
substrates [1–3]. Furthermore, because ZnO has a direct wide band gap at room temperature
(Eg = 3.37 eV) as well as a large exciton binding energy of 60meV, it is a very promising material
for the development of ultra-violet (UV) LEDs [4–8]. However, despite the high luminescence
efficiency of the near band edge (NBE) in ZnO, only a small fraction of this light generated
is emitted due to large internal surface reflection losses arising from the high refractive index
difference at the air – ZnO interface. Recently, however, it has been established that this optical
limitation on the light extraction efficiency can be overcome by using a nanostructured gold
thin-film surface coating, which has been found to significantly enhance that ZnO NBE emission
output [9–28].
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Increase in the ZnO NBE luminescence intensity due to Au nanoparticle (NP) surface coatings
have been attributed to the formation of an additional fast relaxation channel due to dipole-dipole
coupling between excitons and NP plasmon modes, which increases the spontaneous emission
rate (SER) [29–31]. However, this mechanism is unlikely to be an efficient process for gold/ZnO
systems because of the large energy difference between the ZnO exciton UV NBE emission
at around 3.37 eV and the Au NP longitudinal surface plasmon (LSP) resonance ∼ 2.5 eV.
Accordingly, two different alternate models have been proposed both involving a deep level at
∼ 2.5 eV below the ZnO conduction band (CB) and the charge transfer (CT) of hot electrons
between ZnO and Au NPs as illustrated in Fig. 1 [10,15,25,26]. In the first model, a strong green
luminescence (GL) generated from the ZnO by native surface defects is resonantly absorbed
by the Au NPs. Following excitation, the LSPs then decay into hot carriers, in particular, hot
electrons that transfer from high energy Au electronic levels into energetic ZnO CB states, which
thermalize to the band edge. The subsequent radiative recombination of these CB electrons
with free holes in the valence band (VB) enhances the UV excitonic emission at the expense
of the GL; this mechanism has been observed experimentally for gold/ZnO. In the second CT
model, electrons trapped at ZnO defects are transferred to the Au NPs due to their close energy
alignment: ZnO surface defect electronic levels and the Fermi level of the Au NPs are located at
∼- 5.35 eV and ∼-5.30 eV below the vacuum level, respectively [26,32]. This CT process raises
the electron density in Au NPs, forcing electrons into upper energy levels. These hot carriers in
the NPs subsequently flow into the ZnO CB where they can relax radiatively and produce an
increase in the UV emission.

Fig. 1. (a) Exciton-LSP coupling: direct dipole-dipole coupling between ZnO-exciton and
LSPs in Au NPs which increases the SER enhancing the excitonic UV emission intensity
in ZnO NRs. This mechanism is due to the large difference between the exciton and LSP
resonance energies. (b) Two previously proposed CT mechanisms: (i) green luminescence
from ZnO defect levels is absorbed by Au NPs or (ii) electrons in defect level can transfer to
Au. The LSPs produced in either process decay into hot carriers where hot Au electrons can
flow into conduction band of ZnO and recombine with holes in ZnO valence band enhancing
the UV emission intensity.

The viability of both these CT models, as illustrated in Fig. 1, are contingent on the existence
of a deep-level ZnO emission band that resonates with the LSPs of metallic coatings. Here, we
demonstrate that an increase of the UV NBE emission in Au NP-coated ZnO NR samples can
be achieved without the presence of a resonant ZnO emission. Clearly neither of the currently
proposed CT models outlined above can be used to describe the increased light output as they
both rely on the presence of a strong ZnO green surface defect luminescence to produce the
enhancement of the UV emission. Consequently, an alternate explanation is presented in this
paper. Here, the enhanced UV emission in Au NP coated ZnO is attributed to the creation of an
additional and fast non-radiative exciton relaxation pathway involving the excitation of interband
Au transitions that increases the measured UV emission output by raising the UV excitonic SER.
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In this work, the UV emission enhancement in ZnO nanorods without a green defect luminescence
has been systematically studied using cathodoluminescence (CL) and photoluminescence (PL)
spectroscopy. We report a 6-fold enhanced UV emission from ZnO NRs, which exhibit negligible
GL, by coating these NRs with a uniform surface coating of 5 nm Au NPs. A shortened
UV radiative recombination exciton PL lifetime and data from a concurrent CL-PL technique
confirm that an increase in the spontaneous emission rate (SER) is the underlying enhancement
mechanism, following the creation of an additional exciton recombination pathway due to surface
energy transfer to fast Au NP interband transitions. Our results establish that the presence of
a deep defect ZnO level is not required to facilitate the UV emission enhancement from ZnO
nanorods with a 5 nm surface coating.

2. Methods

The ZnO NRs were prepared by a low temperature hydrothermal method [33]. A ZnO seed
layer was deposited on a silicon wafer by drop casting zinc acetate (>98%, (C2H3O2)2Zn*2H2O)
solution (5mM in ethanol) which was subsequently heated to 250°C in air for 20 minutes. The
ZnO NRs were grown by placing the ZnO seed layer-coated silicon substrate in an autoclave
containing a mixture of 25mM zinc nitrate hexahydrate (98%, Zn(NO3)26H2O), and 25mM
hexamethylenetetramine (HMT, ≥99.0%, C6H12N4) from Sigma-Aldrich. The autoclave was
held at 90°C for 3 hours before removing the substrates and rinsing them in de-ionized water.
Uniform Au nanoparticles (NPs) were formed by sputtering an Au thin film with a nominal
thickness of one nanometer followed by annealing at 300°C for 30 minutes in air. The same
deposition process was used to coat a polished both sides a-plane 5× 5×1mm ZnO single crystals
plate (MTI Corp.) which was used as a reference sample.
The morphology and size of the ZnO NR samples before and after the deposition of the

Au NP coating were studied with a field emission scanning electron microscope (Zeiss Supra
55VP). Optical transmission spectra were collected with an integrated sphere connected to an
Ocean Optics QE Pro spectrometer. CL spectroscopy was performed in an FEI Quanta 200 SEM
equipped with a liquid helium and liquid nitrogen cold stage. Light emitted from the sample was
collected by a parabolic mirror and analyzed using an Ocean Optics QE Pro spectrometer. Light
injection in the CL chamber enabled concurrent CL and PL spectroscopy of spatially equivalent
regions of the samples, where the parabolic mirror was used to focus the laser light onto the
surface of the sample in addition to collecting the photoluminescence and cathodoluminescence.
Sub-bandgap excitation at λ= 532 nm (Lambda Pro laser 20mW) allowed to study the possible
CT mechanism in the Au NP-ZnO NR samples. All luminescence data were corrected for the
total system response. The dynamic behavior of the charge carriers in the Au-coated ZnO NRs
was investigated by time-resolved PL (TR-PL) using a pulsed fiber laser for excitation, with
an excitation wavelength of λ= 258 nm, pulse repetition rate of 76MHz and pulse duration of
approximately 5.5 ps.

3. Results and discussion

3.1. Structural properties of ZnO nanorods coated with Au nanoparticles

The low temperature hydrothermal growth produced a continuous and dense ZnO NR surface
film. The hexagonal ZnO NRs with a growth axis along the <0001> direction exhibit an average
diameter of 40± 10 nm and length of around 700 nm, which are oriented at different angles to
the normal direction of the Si substrate [Fig. 2(a)]. Figure 2(b) shows the ZnO NR’s surface
coating consisting of uniformly distributed Au NPs with an average diameter of 5 nm. Only half
of the ZnO NR sample was coated with Au NPs leaving the other, uncoated half as a reference to
compare the CL and PL measurements before and after the deposition of the metal NP coating.
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Fig. 2. SE image of (a) as -grown hexagonal ZnO NRs grown on a Si substrate with an
approximate diameter of 40± 10 nm, (b) ZnO NR decorated with uniform Au NP film with
a relatively uniform diameter of 5 nm.

3.2. Optical properties of Au NP-coated ZnO NRs

Typical optical transmission spectra from the ZnO single crystal plate reference sample before
and after the deposition of a 5 nm Au NP surface coating are shown in Fig. 3. The spectrum
from the uncoated ZnO sample reveal a strong decrease in the UV transmission due to the band
edge absorption, as expected. After the deposition of the 5 nm Au NP coating, the transmission
spectrum displayed an additional broad absorption band centered at ∼ 2.25 eV with an extended
absorption tail in the UV spectral region. The dip in the green spectral region is characteristic
of the LSP plasmon resonance absorption of spherical Au NPs with a diameter of 5 nm and
confirms the excitation of LSP modes in the Au NPs [34–36].

Fig. 3. Transmission optical spectra of an annealed uncoated a-plane annealed ZnO single
crystal plate (blue) and a-plane ZnO crystal decorated with 5 nm Au NPs (red), showing the
typical plasmon resonance absorption around 2.25 eV characteristics of the LSP resonance
of 5 nm spherical Au NPs.

A comparison of typical normalized CL (5 kV) and PL (excitation at λexc = 325 nm) spectra at
80 K of an uncoated ZnO nanorod ensemble is shown in Fig. 4. The luminescence spectra consist
of two emission peaks centered at 3.33 and 1.75 eV. Significantly, no GL was observed in any of
the ZnO nanorod surface coatings. The NBE UV emission is due to radiative recombination of
free excitons (FX) and their phonon replica which produce a low energy tail. While the relatively
weaker, broad deep level (DL) red emission centered at ∼ 1.7 eV has been assigned to native point
defects [37–40], the RL intensity is noticeably stronger in the PL spectrum compared with its CL
counterpart. This result is in agreement with a near surface distribution of radiative DL centers in
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the ZnO NRs: The PL excitation is strongest at the NR surface as the optical absorption follows
Beer’s law, whereas the maximum CL excitation at 5 kV occurs deeper in the core of the NRs.

Fig. 4. Normalized CL and PL spectra of the uncoated ZnO NRs at 80 K, confirming that
the RL is most intense at the ZnO surface. CL: HV= 5 kV, P= 45 µW, scan area 15 µm × 15
µm. PL: λexc= 325 nm, P= 35 µW, spot size ∼ 30 µm.

To investigate the effects of the 5 nm Au NP coating on the light emission output from ZnO
NRs, CL spectroscopy was carried out at different temperatures with an accelerating voltage of
5 kV, providing a similar probing depth to the PL measurements. Figure 5 shows the CL spectra
of annealed uncoated ZnO NRs and 5 nm Au NP coated ZnO NRs at a temperature of 10K and
80K. The CL spectra are dominated by the ZnO NBE UV emission peak at ∼ 3.35 eV which
is attributed to (i) recombination of bound excitons (BX) at 10 K and (ii) free excitons (FX)
at 80 K, where the bound excitons have thermally dissociated. Comparison of the CL spectra
of the ZnO NRs with and without Au NPs, displayed in Fig. 5, reveals that the Au NP coating
produces a 6 times and 1.2 times increase in the integrated NBE emission intensity at 80 K and
10 K respectively, while the DL emission intensity remains unchanged. A higher UV emission
enhancement when raising the temperature from 10 K to 80 K is consistent with an excitonic
coupling mechanism. FX dominate the emission at 80 K and are expected to interact efficiently
with the Au NP surface coating due to their high mobility and greater spatial extent. Conversely,
at 10 K, BX prevail and as they are spatially localized the exciton coupling strength is reduced.
Concurrent excitation of the Au NP coated ZnO NRs with a green laser (λexc = 532 nm) and

electron beam was carried out to investigate the CT mechanism where hot electrons in Au NPs
could be responsible for the increase in the UV ZnO emission, as described above. If this
mechanism is correct, it is expected that under the green laser illumination alone, only LSPs
in the Au NPs would be excited due to laser energy of 2.33 eV being very close to the Au NP
plasmon resonance (~ωLSP ∼ 2.25 eV) while no excitons are created in the ZnO as the light
excitation is sub-band gap. However, simultaneous excitation with the electron beam and the
laser should induce both, UV and DL emission of the ZnO NRs, and the LSPs in the Au NPs.
Figure 6(a) shows the luminescence spectra of the Au NP coated ZnO sample at 10K using

excitation from the electron beam only, the green laser only, and both the green laser and the
electron beam concurrently. Electron beam only excites an intense UV emission (∼ 3.34 eV)
and a weak broad red DL emission centered at 1.7 eV, attributed to bound excitons and native
defects, respectively. Illumination with the green laser only produces a broad luminescence band
centered 2.0 eV, and significantly no NBE UV emission is observed. The orange luminescence
(OL) has been assigned to sub-band gap excitation of ionized acceptors in ZnO [41]. In this
process, the laser excites an electron at an ionized acceptor into the conduction band forming a
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Fig. 5. CL (HV= 5 kV, Ib = 3.5 nA, scan 10µm x10µm) spectra of annealed uncoated ZnO
NRs (blue) and ZnO NRs coated with 5 nm Au NPs (red) showing (a) an enhanced UV
emission at T= 10 K and (b) a 6-fold enhancement at T= 80 K due to Au NP coating. The
intensity and shape of the RL is the same with and without the Au NP coating.

neutral acceptor. The subsequent radiative recombination of the excited conduction band electron
with the neutral acceptor reforms the initial acceptor state generating the OL. It is also important
to note that the defect level of the orange emission is likely to be at a higher energy in the band
gap closer to the Au NP Fermi level because deep level centers in ZnO exhibit a large Stokes
shift between their excitation and emission energies [42]. In addition, visible PL from Au NPs
has been reported, however, the 5 nm Au NPs used in this work are too large to enable the
luminescence recombination mechanism, as discussed below.

Fig. 6. Luminescence spectra of ZnO NRs decorated with 5 nm Au NPs at T= 10 K. (a) A
typical PL spectrum using green laser (λexc = 532 nm) sub-band gap illumination (green
full line) showing a broad OL peak centered at 2.0 eV emissions attributed to excitation
and relaxation of ionized acceptors in ZnO. The intense PL emission at 2.3 eV is due to
the green laser illumination. A CL spectrum at HV= 5 kV and Ib = 3.5 nA (red full line)
reveals a weak DL emission at 1.75 eV in the visible and a strong NBE emission at 3.34 eV
attributed to BX. A luminescence spectrum (blue dashed line) using concurrent PL and CL
excitation exhibiting a spectrum identical to the sum of the PL only illumination and CL
excitation only spectra. (b) UV NBE emission spectrum using electron beam excitation only
(red full line) and concurrent electron beam and green laser excitation (blue dashed line)
showing identical emission spectra, indicating that a CT mechanism is not responsible for
the enhanced UV NBE in ZnO coated with Au NPs.
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To establish whether the presence of free holes is required to facilitate the UV emission
enhancement via the CT process as described above, luminescence spectra were collected from
the Au NP coated ZnO under coincident laser and electron beam excitation. Figure 6(b) shows
that there is no perceivable change in the intensity or shape of the NBE emission at 5 kV when
comparing luminescence spectra using electron beam only illumination to those measured with
concurrent green laser and electron beam excitation. These results indicate that the Au NP
surface coating induced ZnO UV NBE enhancement observed in this work does not originate
from a CT mechanism as reported in other studies.

A typical high-resolution PL spectrum of the UV NBE of the ZnO NRs is displayed in Fig. 7(a).
The PL spectrum is dominated by donor bound I line transitions (DBX) around 3.36 eV with
their LO-phonon replica (~ωLO = 73 meV) and a peak at 3.32 eV is due to the overlap of the
two-electron satellite (TES) of the DBX and the 1-LO-FX emission peaks. A weak emission
peak around 3.26 eV is attributed to the 2-LO FX transition. These DBX peaks are much broader
than those reported in ZnO single crystals most likely due to the poorer crystal quality of the
hydrothermally-produced ZnO NRs [43]. Consequently, the 3.36 eV peak is too broad to allow
its assignment to a specific DBX I line transition.

Fig. 7. (a): High-resolution PL spectrum of NBE of the ZnO NRs at T= 10K dominated
by DBX peak and its phonon replicas and TES transition. (b) Top: 10K-PL enhancement
factor of Au NP coated ZnO nanorods as a function of energy. Bottom: high-resolution
PL of uncoated (black) and Au nanoparticle coated ZnO nanorods (red), graphed on a
semi-logarithmic scale. The ratio of PL spectra with and without the Au NP surface coating
provide the enhancement factor data. Excitation: λexc= 325 nm and P= 22.4mW, spot size
∼ 30 µm.

The enhancement factor as a function of energy is obtained by dividing the PL spectra of the
ZnO NRs with and without the Au NP coating. A typical ratio plot, shown in Fig. 7(b), reveals
that the energies at which the maximum enhancement occurs are highly correlated with BX and
FX emission peak positions. This result confirms that the Au NP surface coating specifically
enhances the excitonic emission peaks from the ZnO NRs rather than uniformly increasing the
NBE emission.
To establish the effect of the 5 nm Au NP surface coating on ZnO NRs on the radiative

lifetime of the ZnO NBE emission, TR-PL was collected at a fixed wavelength of λ= 368 nm at a
temperature of 8K (Fig. 8). The TR-PL curve for both the uncoated and Au NP coated ZnO NR
samples was de-convoluted with the system response and fitted with a bi-exponential function.
The resulting two time constants were averaged over five positions on each sample to minimize
possible local variations in homogeneity.

The annealed uncoated ZnONRs exhibited a short lifetime component of τNR = (25.2 ± 3.2)ps,
which was attributed to non-radiative recombination [29]. While the longer lifetime component of



708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808

Research Article Vol. 0, No. 0 / 00 00 0000 / Optical Materials Express 8

Fig. 8. Typical time-resolved UV NBE PL (T= 8 K) of (a) annealed uncoated ZnO NRs
and (b) ZnO NRs decorated with a surface coating of 5 nm Au NPs, showing a shorter UV
NBE radiative recombination life time for the Au NP coated ZnO NR sample. This result
provides evidence for the creation of an additional, fast ZnO exciton decay channel due to
the Au NPs coating.

τR = (129.4 ± 4.5)ps is due to the radiative excitonic recombination, where the total relaxation
time τ is given by : 1

τ =
1
τR
+ 1

τNR
[29,44,45]. The ZnO NRs decorated with Au NPs showed

a similar non-radiative lifetime of τ∗NR=(21.5 ± 1.5)ps, suggesting that the fast component is
due to non-radiative recombination in the bulk rather than at surface states, which are likely to
be passivated by the metal surface coating. This conclusion is consistent with the CL results
which revealed that there was no change in the ZnO DL emission due to the Au NP surface
coating (cf. Fig. 4). Conversely, the radiative lifetime of Au NP coated ZnO NRs was reduced
to τ∗R= (91.0 ± 15.2)ps. A shorter UV NBE lifetime, τ∗Au, due to the Au NP surface coating is
generally considered to be strong evidence for the formation of an additional, faster exciton
recombination channel, which enhances the SER of the ZnO NRs with 1

τ∗ =
1
τ∗R
+ 1

τ∗NR
+ 1

τ∗Au
[29,30,46].
As described above, in ZnO samples with ∼ 2.5 eV deep level defects, the additional, faster

exciton relaxation pathway has been attributed to the excitation of LSPs in the AuNPs facilitated by
the presence of a GL that strongly overlaps with the AuNP LSP absorption energy [9,17,24,47–49].
However, since this green ∼ 2.5 eV defect center is absent in the samples studied in this work, a
different model is required to explain the observation of the enhanced UV NBE in the Au NP
coated ZnO NRs. As demonstrated above, a CT mechanism can be also excluded as there is
no hot electron transfer from the Au nanoparticles into the conduction band of the ZnO NRs
under simultaneous electron beam and green laser (λexc= 532 nm). Furthermore, since there is
no strong spectral overlap between the LSP absorption resonance (ELSP= 2.25 eV) in the Au NPs
with either red defect center (ERl= 1.75 eV) or UV NBE (Eexciton= 3.36 eV) emissions from the
ZnO NRs, exciton relaxation cannot occur via a radiationless exciton-LSP coupling mechanism.
Nevertheless, as evidenced by a reduced radiative lifetime of the exciton emission, an additional,
faster exciton decay channel is indeed created by the 5 nm Au NP surface coating.

The two key criteria that must bemet for this new relaxation pathway to produce an enhancement
of the ZnO excitonic SER are: (1) its energy is close to that of the excitonic emission of ZnO
(3.36 eV) and (2) the relaxation channel is faster than the excitonic recombination in ZnO. The
interband transitions in Au NPs can fulfil both of these requirements. Electrons in Au can be
promoted via interband transitions excited by a non-radiative surface energy transfer (SET)
mechanism [50] involving the ZnO exciton dipole from occupied 5d levels to unoccupied states
in hybridized 6sp bands above the Fermi level with an excitation threshold energy of ∼ 2.4 eV
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[51,52]. The exciton dipole can also relax via the SET to Au surface conduction band electrons.
These generated hot electrons and holes rapidly thermalize and non-radiatively recombine via
electron-electron and electron-phonon scattering mechanisms with a fast sub-ps relaxation
time [53]. Indeed, it is noteworthy that an increase of the UV photo-response in Au-ZnO
nanocomposite sensors is attributed to Au interband transitions increasing the photo-conductivity
of the device, which is in agreement with our proposed mechanism for the additional relaxation
channel [22].
In Au NPs, due to the carrier confinement effects reducing the density of states (DOS), this

non-radiative Au channel slows down, facilitating a radiative relaxation involving an interband
transition around the L- and X- symmetry point in the Au band structure. However, as the
5 nm Au NPs used in this work are sufficiently large enough to exhibit a bulk-like DOS, these
luminescence interband Au transitions cannot occur [54]. Furthermore, no additional signature
Au NP luminescence emission was observed in any of the PL measurements, confirming that the
non-radiative sub-ps interband transitions within the 5 nm Au NPs are many orders of magnitude
faster that the radiative decay time for DBX (∼ 100s ps) and FX (∼ 1 - 10s ns) in ZnO [43,55].
Accordingly, the Au NPs facilitate an additional fast excitonic relaxation pathway involving the
excitation of Au interband transitions via non-radiative surface energy transfer process, which
increases the exciton SER and enhances the UV NBE emission output. This is a significant
finding as it reveals the importance of the Au NP size on the observed emission enhancement.
The Au NPs cannot be too small (< 1 nm) since the quantum confinement effect will reduce the
DOS of the Au NPs and slow down relaxation rate, as discussed above. It is also important to
note that luminescence spectra (data not shown) from an as-deposited 1 nm thick featureless
Au surface film before heating to form the 5 nm NPs, exhibit a small decrease in NBE output
intensity when compared to its uncoated reference sample rather than an increase.
Given that the exciton (3.36 eV) energy is not resonant with the 5 nm Au NP (2.25 eV), the

additional fast exciton relaxation pathway is likely to involve a surface energy transfer (SET)
mechanism [50]. In this process, the ZnO exciton dipole non-radiatively transfers its energy via
(i) a metallic surface Au interband excitation involving a transition between Au 5d band and the
Au 6sp band or (ii) a near surface Au conduction band electron. The transition lifetimes involved
in the SET process, being sub-ps [56], are much shorter that the ZnO exciton relaxation and so
swift enough to provide an additional fast decay channel to increase the exciton SER and increase
the UV emission. The proposed process is illustrated in Fig. 9.

Fig. 9. Proposed mechanism for the additional fast exciton decay pathway that increases the
SER enhancing the ZnO UV emission. The new ZnO exciton relaxation channel is attributed
to a surface energy transfer process between the ZnO exciton dipole and (i) metal surface Au
interband transitions and (ii) Au surface conduction band electrons.
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4. Conclusion

Au NP coated ZnO nanorods with no green defect luminescence have been systematically studied
using CL, PL and a novel concurrent CL-PL technique as well as time resolved PL spectroscopy.
It was shown that the UV NBE emission of the ZnO NRs is increased up to 6 times by the Au
NP surface coating despite the absence of a ZnO defect level to excite LSPs in the Au NPs.
Concurrent illumination with electron beam and green laser excited the LSPs in the Au NPs but
no increase of the UV emission was observed, ruling out a CT mechanism as the cause of the
observed NBE enhancement. A shortened NBE PL lifetime from ZnO NRs with the 5 nm Au NP
surface coating indicated the formation of an additional, faster relaxation channel that increased
the exciton SER. This new exciton recombination pathway was attributed to relaxation via a
surface energy transfer mechanism involving the ZnO exciton dipole coupling to Au interband
transitions or Au conduction band electrons. The finding that the presence of the defect band
is not necessary to enhance the luminescence is important for the utilization of Au NP surface
coatings to improve the performance and energy efficiency of solid state LED lighting devices.
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