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Abstract 

Whether there will be a long-run equilibrium (steady state) in energy demand per 

capita is a critical question for energy and environmental policy makers. While many 

studies have been done on energy production and energy consumption, little attention 

has been paid to whether disparities in relative household energy consumption (RHEC) 

converge, and how the use of aggregated data has serious limitations. This paper is the 

first study to investigate the convergence and dynamics of household energy 

consumption in China. The results are helpful to Chinese policy makers when trying to 

identify the key groups for priority interventions. The study finds that variability in the 

RHEC is very high and that many households will likely change their energy 

consumption patterns in the coming years. Overall, Chinese households have two 

convergence clubs. The current dynamics will probably lead to lower energy 

consumption for most households. The study suggests that policy makers should pay 

particular attention to households that have too low or too high RHEC level, mainly in 

rural areas and in the western region.  

Keywords: household energy consumption; convergence clubs; transitional 

dynamics; regional disparity; China; 

JEL classification: C29; Q41; R29 
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1 Introduction 

Whether there will be a long-run equilibrium (steady state) in energy demand per 

capita is a critical question for energy and environmental policy makers (Cheong et al., 

2019). There are active debates in the energy economics literature on whether cross-

sectional differences or convergence in energy-related measures across countries is 

equally applicable to households. While there are many studies devoted to energy 

production and energy consumption, little attention has been paid to whether disparities 

in relative household energy consumption (RHEC) diminish over time and whether 

urbanization and regional characteristics affect the RHEC in the long-run equilibrium 

(Chen et al., 2016; Cheng et al., 2019).  

This question is particularly important for China because it has experienced a 

dramatic increase in energy consumption alongside its remarkable economic growth. 

China’s energy use per capita increased from 0.77 tons of oil equivalent (toe) in 1990 

to 2.3 toe in 2015, despite the energy intensity decreasing from 21 Mega Joule 

(MJ)/$2011 PPP GDP to 6.7 MJ/$2011 PPP GDP over the same time period (World 

Bank, 2018). Due to the continued dominance of coal in the energy mix over the next 

couple of decades (Hao et al., 2015; Shi et al., 2020; Y. Zhang et al., 2019), the expected 

growth in China’s energy consumption, and the concomitant growth in emissions and 

local pollution, is of great concern globally (Wang et al., 2019; Zhang et al., 2020).  

The dynamics of China’s energy consumption are an important issue because 

China is the world’s largest energy user and CO2 emitter. China emitted about 27.6% 

of the world’s GHG emissions in 2017 (BP, 2018). International emission commitments 

and energy security concerns force China to prioritize the management of energy 

consumption. The first mandatory target for reducing the country’s energy intensity was 

set at 20% in the 11th Five-Year-Plan (FYP, 2006–2010) in 2005 (P. Zhang et al., 2019). 

Later, the State Council incorporated mandatory energy targets into the annual 

performance evaluations of local officials (Li et al., 2016). Energy caps were also 

introduced by the Chinese government, and these have been continuously revised in 
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recent decades, reflecting the challenges and further need to better understand China’s 

energy consumption dynamics (Liu et al., 2018).  

Understanding the impacts of regional groups and urbanization on the 

convergence and dynamics of household energy consumption can help in the projection 

of future energy consumption and the design of specific energy policies. There are two 

challenges regarding residential energy consumption (Herrerias et al., 2017). First, the 

shift towards a new, domestically- oriented growth model will incentivize urbanization 

and household consumption (Zhang et al., 2020). However, it will create a need to find 

a balance between urbanization and the achievement of a low carbon economy. Second, 

the existing policies to reduce and decarbonize residential energy consumption are 

challenged by disparities in regional growth paths. While the industrial sector has still 

been dominating China’s energy consumption, residential energy consumption has 

emerged to become an important phenomenon due to the rapid industrialization and 

urbanization (Zhang et al., 2020). Herrerias et al. (2017) used a cluster analysis to test 

for convergence in China’s residential consumption of coal, gas and electricity, in both 

rural and urban areas and across regions. 

There are several gaps in the literature. First, the existing studies on the 

convergence of energy consumption or energy intensity, even recent ones, such as 

Cheong and Wu (2018); Herrerias et al. (2017) and Kim (2015) still use aggregate data 

at the city level or even provincial level. Neither reveal the energy consumption at the 

household level. Second, regression models were employed in many previous studies 

which analyze the impacts of different independent variables on the RHEC (Jareemit 

and Limmeechokchai, 2019; Niu et al., 2019; Wu et al., 2019). However, a major 

shortcoming is that such regression models cannot include many independent variables 

due to the problems of multicollinearity. Therefore, regression methods can only be 

used for examining the effects of a few explanatory variables; and the impacts of other 

relevant factors are neglected. Another shortcoming is that the output of regression 

models is the forecasted value of the dependent variable. This cannot be used to forecast 

the evolution of a distribution, which is a two-dimensional entity. Third, regression 
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models also fail to provide any information on convergence, such as the value of the 

convergence and the number of convergence clubs in the distribution. In fact, the single 

value estimation of regression models cannot reveal the heterogeneity across 

households. However, this information is crucial for policy-making. Moreover, the 

parametric methods that are frequently used in the literature can produce misleading 

results due to ignorance about the information relating to multimodal distribution (Quah, 

1993, 1997). Indeed, they cannot depict the entire shape and dynamics of the 

distribution (Quah, 1993).  

Our work contributes to the existing literature by examining the convergence 

patterns and dynamics of household energy consumption in China. This is the first study 

that investigates the convergence and dynamics of household energy consumption in 

China with household survey data. Herrerias et al. (2017) is the first paper using 

provincial data of China to investigate the convergence patterns of residential energy 

consumption in China. The major advantage of household-level data is to provide more 

heterogeneity than the provincial or prefecture-level data (Yu et al., 2019). With the 

consideration of heterogeneity in household energy consumption per capita, Chinese 

policy makers can identify the key groups for priority interventions and formulate more 

effective policy to reduce the energy consumption inequality. In addition, the 

distribution dynamics method is used to forecast the shape of the distribution of 

household energy consumption at per capita levels in the long run. The results of this 

study also enhance the knowledge of intra-distribution mobility for the RHEC based on 

the mobility probability plots (MPPs), a new methodology developed by (Cheong and 

Wu, 2013) that has emerged in recent years . 

The rest of this paper is arranged as follows: Section 2 presents a literature review; 

Section 3 introduces the data preparation process; Section 4 discusses the methodology 

and presents a new representation framework for distribution dynamics analysis; 

Section 5 gives the empirical results; and Section 6 provides conclusions and 

implications. 

 



6 

 

2 Literature review: household energy consumption and convergence 

In recent decades, convergence in energy consumption (including various energy 

carriers), using per capita energy consumption data or energy intensity, has become a 

hot topic in the energy economic literature. Convergence analysis has been extended 

from its traditional territory of economic growth literature1 to the energy economics 

fields, such as energy intensity convergence (Ezcurra, 2007; Le Pen and Sévi, 2010; 

Liddle, 2009), carbon emission convergence (Wu et al., 2016), energy (electricity) 

consumption per capita convergence (Fallahi and Voia, 2015; Payne et al., 2017a), and 

energy price convergence across markets (Sheng and Shi, 2013). Both Fallahi and Voia 

(2015) and Meng et al. (2013) investigated the convergence in energy use per capita 

among OECD countries. Examining convergence in energy consumption per capita 

from 1970 to 2013, Mohammadi and Ram (2017) found no convergence across the 

United States. They explained it as variations in structural factors. Through their 

investigation of the convergence of renewable energy consumption per capita across 

the United States, Payne et al. (2017a) found that both β- and σ-convergence existed 

and that stochastic convergence exited for a majority of the States once allowance was 

made for structural breaks. Payne et al. (2017b) also found the presence of stochastic 

convergence in relative fossil fuel consumption per capita in the United States. An 

examination of emission convergence in the United States, Apergis and Payne (2017) 

revealed multiple convergence clubs in the aggregate by sector, and for two of the three 

fossil fuel sources (natural gas and coal). Liddle (2009) found that the growth of energy 

consumption per capita has been slowed down due to shifts from raw coal to electricity 

and thus improved energy efficiency.  

Many studies have linked energy consumption to economic convergence, such as 

energy market integration and economic growth convergence across countries (Sheng 

and Shi, 2013). Another study examined convergence in economic growth and energy 

intensity (Wesley Burnett and Madariaga, 2017). Electricity use per capita, is a better 

indicator for standard of living than income (Kim, 2015) and particularly popular in the 

 
1 A detailed description of the different concepts of economic convergence and various testing methods 
can be found in (Islam, 2003). 
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energy convergence literature. Many studies have investigated the convergence of 

electricity consumption and electricity consumption per capita, such as Borozan (2017); 

Cheong et al. (2019); Herrerias and Liu, (2013); and Kim (2015). 

The limited studies in the literature on energy or energy-intensity convergence in 

China have focused mainly on the provincial or prefecture level. Their findings have 

not been consistent: while some claimed a declining trend in convergence (Ma and 

Stern, 2008; Zhang, 2003), others had the opposite results (Zhao et al., 2010). (Herrerias 

et al. (2017) claimed to be the first study on the convergence patterns related to 

residential energy consumption per capita in urban and rural areas and across China’s 

regions. Different steady-states of residential energy consumption between rural and 

urban residents were documented by Herrerias et al. (2017). The aggregate data used in 

the previous studies on China’s energy consumption convergence could not estimate 

the impacts of individual characteristics on energy consumption. In a study of the 

stochastic electricity-intensity convergence across provinces, Herrerias and Liu (2013) 

found multiple convergence clubs. 

Whether energy consumption converges across households and reaches steady 

states can inform the projection of future energy demand. However, this is rarely studied 

due to the complicated information pertaining to technological progress, economic 

growth and population growth. There is huge uncertainty when predicting energy 

demand. The traditional energy outlooks, such as IEA (2017), consider economic 

growth, population growth and technological progress as drivers. However, the 

relationship between the driving factors and energy consumption is more complicated 

than the outlook models often assume. For example, the large body of empirical 

research on the relationship between energy consumption and income has produced 

conflicting results on the direction of the causality. Moreover, the explicit assumption 

that countries and regions converge at the same path is also questionable (Herrerias et 

al., 2017). T. Zhang et al. (2019) further demonstrated that most of the existing studies 

that used pre-assumptions about the influencing factors in the case of access to 

 
 A summary list of studies on electricity consumption convergence can be found in (Cheong et al., 
2019).  
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electricity were biased or even wrong. However, some of the uncertainties in projecting 

energy demand could be removed from the projections, which are done on the demand 

side and in unit terms (such as household).  

Another major issue in the empirical literature on convergence analyses in energy 

economics is methodology. The majority of existing convergence methods require a 

strong assumption about the underlying distribution. σ-convergence and β-convergence 

are two popular technologies used in the economic growth literature (Barro and Sala-i-

Martin, 1995) but not been extended to energy economics field (Payne et al., 2017a; 

Sheng and Shi, 2013). Many other approaches have been used more recently, such as 

LM and RALS-LM unit root tests with endogenously-determined structural breaks to 

test for stochastic convergence (Payne et al., 2017a, 2017b) and the Phillips-Sul club 

convergence approach (Apergis and Payne, 2017). Previous studies have shown that 

the conclusions from these parametric studies are often misleading due to wrong 

assumptions about the distribution (Quah, 1993).  

The distribution dynamics approach avoids this problem by making no 

assumptions about the underlying distribution of the population. Most applications of 

distribution dynamics have focused on carbon emission convergences, such as Nguyen 

Van (2005) for the global case and Evans and Kim (2016) for 11 Asian countries. 

Worldwide energy intensity convergence has also been studied, such as (Ezcurra, 2007; 

Herrerias, 2012). For China, Wang (2011) examined the source of each province’s 

energy productivity growth in their distribution dynamics. Applying distribution 

dynamics with mobility probability plots (MPPs), Wu et al. (2016) investigated carbon 

emission convergence among Chinese cities. Cheong et al. (2019) investigated 

electricity consumption per capita convergence across China’s provinces. Among the 

small number of distributed dynamics studies, there has been no use of such an 

approach on household level data.  

In summary, the existing literature has often used aggregated and parametric 

methods and there has been no application of household data. It is demonstrated below 
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that a distribution dynamics approach which does not assume the underlying 

distribution of the population has some advantages over the parametric methods.   

 

3 Household energy consumption in China: the data 

This paper used the annual China Family Panel Studies (CFPS) survey data. 

Launched in 2010 by the Institute of Social Science Survey of Peking University in 

China, it is a nationally representative, annual longitudinal survey of Chinese 

communities, families, and individuals which collects individual-, family-, and 

community-level longitudinal data (Xie and Hu, 2014). The CFPS baseline survey has 

interviewed 14,960 households in 25 mainland provinces (excluding Inner Mongolia, 

Xinjiang, Tibet, Hainan, Ningxia, Qinghai, Hong Kong, Macau, and Taiwan), 

representing about 95% of the Chinese population (Zhang et al., 2014). As the CFPS 

started to comprehensively calculate the energy consumption of households only 

recently in 2014, this paper used the CFPS data of 2014 and 2016 to conduct research. 

Since distribution dynamics analysis requires observations of households for at least 

two consecutive years, the observations existing only in 2014 or 2016 were excluded. 

Therefore, the micro database used in this study was made up of those households that 

exist both in 2014 and 2016. Our analytical sample of the CFPS included 6,222 

households, 56.17% of which were in rural areas and 43.83% in urban areas.  

The core variable of this paper was the RHEC, which is expressed by dividing the 

actual energy consumption per capita of each household by the mean of the actual 

energy consumption per capita at the national level. The specific process is as follows: 

first, HEC expenditure is equal to the sum of fuel consumption and electricity 

consumption. For the CFPS, household fuel consumption includes gas, liquefied natural 

gas, coal, firewood and charcoal. Second, each HEC expenditure was divided by the 

total number of family members to obtain the HEC per capita. Then, the nominal 

consumption per capita was converted into real consumption by using the fixed-base 

price index of water, electricity and fuel in urban and rural areas within 25 Chinese 

provinces in 2014 and 2016, which is 100 in 2011, respectively. This information 
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obtained from China’s Statistics Agency. The unit of energy consumption per capita 

was RMB yuan.  

Finally, this paper used the average of real energy consumption per capita for all 

households in 2014 and 2016 to represent the national mean for 2014 and 2016, 

respectively. On this basis, each household’s annual real energy consumption per capita 

was divided by the annual national mean to obtain the relative household energy 

consumption per capita in 2014 and 2016. A ratio equal to 1 indicated that the real 

energy consumption per capita of the households was equal to the national mean. If this 

ratio was greater than 1, the real energy consumption per capita of the households was 

greater than the national mean. Conversely, if the ratio was less than 1, the real energy 

consumption per capita of households was lower than the national mean. 

'     

  

household s energy consumption per capita
RHEC

the national mean
               (1) 

For this paper, China was divided into four subregions: the eastern region, central 

region, western region and northeastern region, according to the degree and phase of 

economic development. The provinces included in this study were: 1) Eastern region: 

Beijing, Tianjin, Hebei, Shandong, Jiangsu, Shanghai, Zhejiang, Fujian, and 

Guangdong; 2) Central region: Shanxi, Henan, Hubei, Hunan, Anhui, and Jiangxi; 3) 

Western region: Chongqing, Guangxi, Shaanxi, Sichuan, Guizhou, Yunnan, and Gansu; 

and 4) Northeastern region: Liaoning, Jilin, and Heilongjiang. 

Table 1 presents the statistics of the RHEC in China. Four main conclusions can 

be drawn from it. First, for the 6,222 households that existed in both 2014 and 2016, 

the mean of their energy consumption was equal to 1. The reason for this result is that 

the RHEC was based on the ratio of annual energy consumption of the households 

divided by the national mean. Thus, the mean must be equal to 1. Second, the RHEC 

of the urban households was significantly higher than the national mean (e.g., the mean 

of the urban households is 1.155), while the RHEC of the rural household was 

significantly below the national mean(e.g., the mean of the rural households is only 

0.879). The results revealed that energy consumption in China’s urban and rural 

households had obvious characteristics of inequality: the urban households accounted 
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for more than half of the nation’s total consumption of fuel, electricity and other 

resources. Third, in terms of different regions, the mean value of the RHEC in the 

eastern region was 1.128. In the northeast is was 1.073, and in the central and western 

regions it was less than 1. 

A key finding was that the RHEC in the eastern and northeastern regions of China 

was higher than the national mean, while that in the central and western regions was 

lower than the national mean. Further analysis showed that obvious consumption 

inequality among China’s different regions in terms of the RHEC. This was reflected 

in the large RHEC in the eastern and northeastern regions, and the small RHEC in the 

central and western regions.  

 

[Insert Table 1 Here] 

 

4 Methodology 

The distribution dynamics approach was first proposed by (Quah, 1993). It has 

been developed for unveiling important information which is not readily available from 

the traditional analyses such as the sigma-convergence analysis and the beta-

convergence analysis. It is worth noting that for the former approach, the same value of 

inequality measurement may derive from two entirely different distributions, therefore, 

it is difficult to reach the conclusion that convergence can be achieved by merely 

observing the trend of the inequality measurement. For the latter approach, Quah has 

shown that it has the issue of Galton's Fallacy, and so it is not appropriate to claim 

convergence by relying on this approach alone. On the contrary, distribution dynamics 

approach provides a lot of important information to the readers, such as the current 

shape and the evolving trend of the distribution. Moreover, the probability of the 

movement of the entities within the distribution can also be derived. Finally, one can 

also prepare the forecast of the equilibrium distribution in the long-run.  

It can be broadly divided into the traditional Markov transition matrix analysis and 

the stochastic kernel approach. A major problem of the former is the demarcation of the 
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state associated with the selection of grid values. This is an arbitrary process and the 

results largely depend on the means of demarcation. The stochastic kernel approach is 

better as it can circumvent this issue, hence its use in this study. 

The bivariate kernel estimator is defined as: 

��(�, �) =  
�

�����
 ∑ �(

����,�
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����,���
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���                  (2) 

where n is the number of observations, h1 and h2 are the bandwidths which are 

calculated on the basis of the approach proposed by (Silverman, 2018), K is the normal 

density function, x is a variable representing the RHEC of a household at time t, y is a 

variable representing the RHEC of that household at time t+1, Xi,t is an observed value 

of the RHEC at time t, and Xi,t+1 is the observed value of RHEC at time t+1. 

An adaptive kernel approach with flexible bandwidth was employed to take the 

sparseness of the data into consideration (Silverman, 2018). Assuming that the process 

is time-invariant and first order, and the distribution at time t +τ depends on t only and 

not on any previous distributions, then the relationship between the distributions at time 

t and time t +τ can be represented by: 

����(�) =  ∫ ��
�

�
(�|�)��(�)��                         (3) 

where ����(�) is the τ-period-ahead density function of z conditional on x, ��(�|�) is 

the transition probability kernel which maps the distribution from time t to t +τ, and 

��(�) is the kernel density function of the RHEC distribution at time t.  

The ergodic density function, given that it exists, can be computed by: 

��(�) =  ∫ ��
�

�
(�|�)�∞(�)��                         (4) 

where ��(�)  is the ergodic density function when τ is infinite. This analysis can 

provide pertinent information on future development of the RHEC distribution. 

(Cheong and Wu, 2013) developed the mobility probability plot (MPP) for 

interpreting mobility probability. The MPP has been employed to analyze transitional 

dynamics in various research areas, such as industrial output (Cheong and Wu, 2018), 

rural household income (Li and Cheong, 2016), electricity (Cheong et al., 2019) and 

even carbon dioxide emissions (Cheong and Wu, 2018; Wu et al., 2016). 



13 

 

The MPP can be constructed by computing �(�)  which is defined as the net 

upward mobility probability: 

�(�) = ∫ ��
�

�
(�|�)�� −  ∫ ��

�

�
(�|�)��                 (5) 

The MPP shows the net upward mobility probability against the RHEC. It is worth 

noting that a positive value implies that the household has a net probability of moving 

upwards; whereas a negative value of net upward mobility probability implies that the 

household has a net probability of moving downwards in the distribution. Interested 

readers can refer to (Cheong and Wu, 2013). 

 

5 Results and discussion 

The transitional dynamics of China’s RHEC is shown in Figure 1 as a three-

dimensional plot, and in Figure 2 as a contour map. The contour map is basically an 

overhead view of the three-dimensional plot. These two types of display tools are 

employed widely in the stochastic kernel analysis literature.  

5.1 Overall transitional dynamics 

In Figure 1, it is notable that the higher the relative frequency, the more the data 

in the region. It can be observed that the RHEC is higher between 1 and 1.5, and much 

lower between 0 and 0.5. This result shows that the RHEC of most households in China 

was between 1 and 1.5, but for only a few households it was 0.5 or below.  

 

[Insert Figure 1 Here] 

 

On the one hand, for those households that will convergence to RHEC of less than 

0.5, poverty alleviation measures need to be implemented to provide these households 

with basic living conditions. On the other hand, the government should not overlook 

those households with an RHEC greater than one as the high variability in the figure 

suggests that a small number of these households are at risk of increasing their RHEC 

to more than two, leading to a sharp increase in energy consumption. 

 

Figure 2 presents the ergodic distribution for the RHEC with annual transitions. 

The ergodic distribution shows the steady-state distribution of China’s household 
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energy consumption per capita in the future if the distribution dynamics remain 

unchanged. Figure 2 portrays multiple convergence clubs. The highest peak in the 

RHEC is 0.56, indicating that many Chinese households’ relative energy consumption 

level would converge to a value of 0.56. However, there is another obvious peak in the 

RHEC around 0.7. This indicates that the RHEC of many Chinese households will 

eventually converge to around 0.56, while some other households will converge to 

around 0.7, thereby indicating the emergence of convergence clubs. 

 

[Insert Figure 2 Here] 

 

Figure 3 presents the mobility probability plot for China’s RHEC. The horizontal 

axis of the figure represents the RHEC while the vertical axis represents the net 

probability of an increasing RHEC. The upper half of the vertical axis represents the 

probability that the RHEC will increase, whereas the lower half represents the 

probability that the RHEC will decrease. As can be seen from Figure 3, if a household’s 

RHEC is close to 0, then it has a probability of almost 100% to move up in the next 

period. In contrast, if a household’s RHEC is close to 6, then the net probability is -

84%, indicating that the relative consumption of this household will drop in the future. 

It is observed that the MPP intersects the horizontal axis at 0.63, indicating that the 

probability of Chinese household energy consumption per capita rising or falling is 

equal when the value is at 0.63. On the left-hand side of 0.63, there is a higher 

probability of moving up. On the right-hand side of 0.63, there is a higher probability 

of moving down. As the intersection point is lower than 1, the inequality in the RHEC 

in China is quite significant. The energy consumption of a few wealthy households is 

much higher than the national mean, while for most other households, the RHEC is 

lower than the national mean. This can also be verified from the statistics shown in 

Table 1. In Table 1, the mean of the RHEC is 1, but the median of the RHEC is only 

0.67. As the findings suggest that when the value of the RHEC is around 0.63 or above, 

the households are under the threat of a decline in energy consumption. Furthermore, 
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this paper finds that there are some obvious peaks around 0.25 and 0.5, meaning that 

the RHEC of these households is more likely to move upwards compared to the others. 

In addition, when the RHEC is around 0.35, the net probability of an increase in the 

RHEC will drop rapidly. 

 

[Insert Figure 3 Here] 

 

5.2 Urban and rural heterogeneity 

Figure 4 shows the ergodic distribution of the RHEC for the urban and rural 

households. As can be seen from Figure 4(a), the highest peak of the RHEC in the urban 

households was 0.48, indicating that many Chinese urban households’ relative energy 

consumption will converge to a value of around 0.48. In addition to the highest peak of 

0.48, there was also another obvious peak in the RHEC around 0.63. This reflects the 

emergence of convergence clubs in energy consumption for the urban households.  

From Figure 4(b), it is observed that many Chinese rural households’ RHEC will 

converge to around 0.57. However, there is also another obvious peak of RHEC around 

0.31. This implies that the RHEC of many rural households will eventually converge to 

a value around 0.57, but that many of these will converge to the values of around 0.31. 

This also reflects the issue of convergence clubs in the relative energy consumption for 

the rural households. 

When comparing Figures 4(a) and 4(b), it can be seen that the highest value in the 

vertical axis of Figure 4(a) is 0.83, while for Figure 4(b) it is 0.65, thereby indicating 

that the convergence in the RHEC among the urban households is more significant than 

for the rural households. In other words, the inequality in rural households is more 

serious than in the urban households. However, the value of the primary convergence 

among the urban households (0.48) was much lower than for the rural households (0.57). 

Given the overall lower income among the rural households compared to the urban 

households, rural households face higher pressure in energy costs than do their urban 

counterparts.  
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[Insert Figure 4 Here] 

 

Figure 5 presents the mobility probability plot for the RHEC of the urban and rural 

households. It shows that the MPP of the urban households intersects the horizontal 

axis at 0.73. Some small peaks occur at around 0.28 and 0.65, meaning that the urban 

households in this range of RHEC are more likely to move upwards compared to the 

others. Meanwhile, the MPP of the rural households intersects the horizontal axis at 

0.69. Some obvious peaks occur at 0.35 and 0.63, meaning that the rural households 

within this range of RHEC are more likely to move upwards than the others.  

Three important results emerge from the comparison of the MPP between the rural 

households and urban households in Figure 5. First, there are many intersection points 

between the MPPs of the urban households and rural households. This means that the 

dynamics of the RHEC in urban households are not significantly different from those 

of the rural households. Second, the intersection point of the MPP and horizontal axis 

for urban households (0.73) is larger than for rural households (0.69). When the RHEC 

is greater than 0.69 and smaller than 0.73, urban households are more likely to move 

up than rural households. Third, when the RHCE is greater than 1.32, the MPP of urban 

households is higher than that of rural households. In this case, the RHEC of rural 

households is significantly more likely to decline than for urban households. This result 

has important policy implications, namely, that when the RHCE is greater than 1.32, it 

is difficult for the rural households to maintain a high level of energy consumption 

(above the national mean) but it is easier for the urban households. 

 

[Insert Figure 5 Here] 

 

5.3 Regional disparity 

Figure 6 presents the ergodic distribution for the RHEC of all the households in 

the different regions. Three important findings can be derived from Figure 6(a)-(d): first, 
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from the peak point of view, the highest peak value of the central region (0.63) was the 

greatest amongst all the regions, and the highest peak values of the RHEC in the central 

and northeastern regions were significantly greater than those in the eastern and western 

regions. Second, there were more than two peaks in the RHEC in each of China’s four 

regions. There were two peaks in the eastern region, of which the highest was 0.51 and 

the other was 0.78. In the central region, there were also two peaks in the RHEC. The 

highest was 0.63 and the other was 1.65. There were two peaks in the western region, 

at 0.46 and 0.51 respectively. However, in the northeastern region, there were three 

peaks. The highest was 0.56, the next was 0.7 and the other was 1.5. Convergence clubs 

were found in each of the four regions, but were more obvious in the northeastern region. 

Third, the peak in the northeastern region had a vertical height of 0.85. This was the 

highest among the regions. Therefore, the convergence of the RHEC in the other three 

regions was not as obvious as in the northeastern regions. In other words, the 

distributions were more dispersed in the other three regions of China. 

The value of convergence in the central region was the greatest, followed by that 

in the northeastern region and then the eastern region, while the western region came 

last. These results indicate that the RHEC convergence of many households in the 

central region was at a higher level, but for many households in the western region it 

was at a much lower level than for the central region. This demonstrates that China’s 

regional development is seriously imbalanced. Ideally, the Chinese government should 

pay more attention to these regional differences. 

 

[Insert Figure 6 Here] 

 

Figure 7 shows the mobility probability plot for the RHEC in China’s regions. 

Some important conclusions can be drawn from Figure 7: first, the intersection points 

between the horizontal axis and the MPP of the households in the eastern, central and 

the northeastern regions were 0.79, 0.72 and 0.82, respectively, higher than those in the 

western region, whose intersection point was only 0.54. This finding corroborates the 
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results derived from Figure 6. Second, in the eastern region, the MPP had no obvious 

jump points on the left side of the intersection point. The steep shape of the MPP 

indicates a sharp drop in the MPP. Only when the RHCE was greater than 1 would the 

MPP have obvious jump points. In the central region, the MPP would show a less 

obvious jump point near the intersection point. When the RHEC was less than 0.35, the 

MPP dropped sharply. Moreover, when the RHEC was greater than 0.35 and less than 

0.72, the decline of MPP was very flat. In the western region, when RHEC was equal 

to 0.35, the MPP would show a very obvious jump point. To the left of the point, the 

MPP had a slight rebound, while to the right, the MPP dropped sharply. By contrast in 

the northeastern region, there would be a very obvious jump point in the MPP when the 

RHEC was equal to 0.69. Before the line on the right side of the jump point intersects 

the horizontal axis (i.e. RHEC is greater than 0.69 and less than 0.82), the MPP showed 

the characteristics of rapid decline. 

According to Figures 6 and 7, the western region had the lowest value of 

convergence, and the intersection point between the MPP of this region and the 

horizontal axis was also the smallest among the four regions. This result has important 

policy implications: the western region may be at a significant disadvantage in terms of 

access to energy consumption. In order to eliminate the inequalities in household 

consumption among the different regions, the Chinese government must carry out 

targeted poverty alleviation in the western region and increase the support for 

households in the western region so that they can have greater access to electricity and 

thereby benefit from the many opportunities which would accompany it. The various 

levels of government need to strengthen the investment and construction of energy 

infrastructure in the western region. 

 

[Insert Figure 7 Here] 

 

6 Conclusions and implications 

Whether there will be a long-run equilibrium (steady state) in energy demand per 
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capita is a critical question for energy and environmental policy makers (Cheong et al., 

2019). While many studies have investigated energy production and energy 

consumption, little attention has been paid to whether disparities in the relative 

household energy consumption (RHEC) diminish over time and whether urbanization 

and regional characteristics will affect the RHEC in the long-run equilibrium. Most of 

the previous studies on convergence of energy consumption or energy intensity used 

aggregated data at the city (prefecture) or provincial level and thus could not reveal 

many policy insights.  

Using household survey data, this paper examined the convergence patterns and 

dynamics of residential energy consumption in China. It is the first study to investigate 

the convergence and dynamics of household energy consumption in China. With the 

consideration of heterogeneity in household energy consumption per capita, the results 

are useful to Chinese policy makers in identifying the key groups for priority 

interventions.  

It was found that the variability in the RHEC was very high and that many 

households will change their energy consumption status in the next period. Some 

households with an RHEC greater than one may jump to an RHEC of more than two. 

However, the RHEC was stable for the households with an RHEC of 0.5 and below. 

This suggests that households with an RHEC that is too low to meet basic moderate 

modern living standards is undesirable. 

Overall, Chinese households have two convergence clubs. The main club had the 

highest RHEC peak at 0.56, and the second convergence club had a peak level of around 

0.7. These results suggest that the current dynamics will lead to lower energy 

consumption for most households are thus quite desirable.  

The inequalities in energy consumption among Chinese households were 

significant as most households will remain at an RHEC level of 0.63. The inequality 

was obvious between urban and rural households. The former converged to an RHEC 

of between 0.48 and 0.63 while the later converged to only an RHEC of between 0.51 

and 0.31. The significant difference in the RHEC levels between the two convergence 
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clubs in the rural households also suggests that the inequalities among rural households 

were more serious than for the urban households.  

The rural-urban analysis suggests that rural households will converge to a lower 

level of energy consumption than urban households, but that the rural households were 

subject to higher financial pressures than their urban counterparts because the urban 

households have higher per capita incomes. The regional analysis shows that China’s 

regional development is seriously unbalanced: the western region may be at a 

significant disadvantage in terms of access to energy consumption. 

Based on the findings, the following policy implications can be drawn: First, 

policy makers need to pay attention to the households that have an RHEC level below 

basic living standards. For those households that will convergence to RHEC of less than 

0.5, Poverty alleviation measures need to be implemented to provide these households 

with basic living conditions. A good example is China'’s PV poverty alleviation 

programs (Xu et al., 2019), which increase access to clean energy and alleviates poverty 

at the same time. On the other hand, households with an RHEC of more than 1 and may 

possibly jump to higher levels and should be monitored and encouraged to scale down 

their energy consumption. Second, governments need to pay more attention to the rural 

households than to the urban households for at least two reasons: firstly, to reduce 

inequalities among rural households, and secondly, to mitigate the financial pressures 

(measured as the share of energy costs in total household income) of some rural 

households. Last, the Chinese government needs to support households in the western 

region. In order to eliminate the inequalities in household consumption among regions, 

the Chinese government must increase the support for households in the western region 

by helping them gain access to affordable and quality energy. While China has achieved 

universal access to electricity, access to clean coking fuels are still a major challenge, 

which is particularly serious in the western region where households have lower rate of 

access to natural gas for cooking than other regions (Liao et al., 2016). 
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Figures 

 

Figure 1. Three-dimensional plot of transition probability kernel for the RHEC in 

China with annual transitions.  

Source: authors’ calculation.  

Note: The vertical axis is relative frequency, while the two horizontal axes are the 
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RHEC values at t and t+1. 

 

 

Figure 2. Ergodic distribution for the RHEC in China with annual transitions. 

Source: authors’ calculation.  

Note: The vertical axis is the proportion, while the horizontal axis is the RHEC value. 

 

 

Figure 3. Mobility probability plot (MPP) for RHEC in China with annual 

transitions.  
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Source: authors’ calculation. 

Note: The vertical axis is the net probability of moving upward, while the horizontal 

axis is the RHEC value. 

 

 

 

(a) the urban households 

 

(b) the rural households 

Figure 4. Ergodic distribution for RHEC of the urban and rural households in 

China. 
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Source: authors’ calculation 

Note: The vertical axis is the proportion, while the horizontal axis is the RHEC value. 

 

 

Figure 5. Mobility probability plot (MPP) for RHEC of the urban and rural 

households in China. 

Source: authors’ calculation 

Note: The vertical axis is the net probability of moving upward, while the horizontal 

axis is the RHEC value. 
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(a) the eastern region 

 

(b) the central region 
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(c) the western region 

 

(d) the northeastern region 

Figure 6. Ergodic distribution for RHEC in China within different regions.  

Source: authors’ calculation. 

Note: The vertical axis is the proportion, while the horizontal axis is the RHEC value. 
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Figure 7. Mobility probability plot for RHEC in China within different regions.  

Source: authors’ calculation. 

Note: The vertical axis is the net probability of moving upward, while the horizontal 

axis is the RHEC value. 
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Tables  

Table 1.  Summary statistics of the RHEC in China  

Variables Observations  Mean  Median Standard deviation  

All the households 6222 1.000  0.670  1.401  

The urban households 2727 1.155  0.818  1.401  

The rural households 3495 0.879  0.539  1.389  

Households in the eastern region 1919 1.128  0.842  1.199  

Households in the central region 1603 0.850  0.572  1.132  

Households in the western region 1653 0.950  0.506  1.802  

Households in the northeastern region 1047 1.073  0.739  1.367  
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