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Abstract: The technological progress of a country may mean that its technology 

gap compared to the frontier has changed, which will induce a change in its 

positioning in the global value chain and affect its carbon intensity. Using paten data, 

Input Output Database and the Global Value Chain Index, we employ systematic 

Generalized Method of Moments, quantile regression with panel data and multilevel 

mediation analysis to measure empirically the impact of the technology gap on carbon 

intensity and positioning on the global value chain. The empirical analysis shows that 

narrowing the technology gap will reduce significantly a country’s carbon intensity. 

Further, the effect of the technology gap on carbon intensity is more pronounced on 
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industries with higher carbon intensity. The mechanism test using the mediation effect 

model proves that the impact of the technology gap on carbon intensity is achieved by 

changing in the position of global value chain. The findings suggest that a country’s 

carbon intensity performance is not only affected by its own technological progress, 

but also by global frontiers. Therefore, a country should not only pay attention to its 

own technological progress but also to the development of global frontier 

technologies and speed of technological progress. 

Keywords: Technology gap, Carbon intensity, Global Value Chain, Mediation 

effect model 

 

1. Introduction 

Technological progress is an important factor in achieving Intended Nationally 

Determined Contribution (INDC) to reduce greenhouse gas emissions pursuant to the 

United Nations Framework Convention on Climate Change (UNFCC). It is estimated 

that by 2030, global greenhouse gas (GHG) emissions must be approximately 25 

percent and 55 percent lower than in 2017 to put the world on a least-cost pathway to 

limiting global warming to 2
o
C and 1.5

o
C, respectively (UNEP, 2018). Current 

mitigation efforts of the world’s majority of emitters are, however, lacking (Gao et al., 

2019).  

Since the 1980s, the influence of technological progress on emissions reduction 

has been widely investigated both theoretically and empirically. Some scholars 

believe that technological progress can reduce energy consumption intensity, change 
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energy consumption patterns, and reduce carbon emissions by developing more 

efficient and cleaner production technologies (Jordaan et al., 2017; Li et al., 2019; 

Poumanyvong and Kaneko, 2010; Shuai et al., 2017; Yang and Li, 2017). Other 

analyses show that technological progress promotes economic growth and induces an 

increase in energy consumption and carbon emissions (Ganda, 2019; Jaffe et al., 2005; 

Li and Wang, 2017). Existing studies on the relationship between technological 

progress and emission intensity are often carried out focusing on a single country. As 

carbon emissions is a global issue, any study investigating the relationship between 

the technology gap and emissions intensity should be undertaken at a global level (i.e. 

cross-country).  

Technological progress changes the international production division and trade 

pattern through narrowing the technology gap with the frontiers, which has an effect 

on the carbon emissions of the country. If a less developed country increases the 

speed of technological progress and narrows the technology gap, they can improve 

their position in the GVC and reduce their emissions. Notwithstanding that the 

technological progress of a country has improved, the technology gap with the 

frontiers could be still widened since the faster advancement of the frontiers. In this 

case, even though the absolute level of technology progress has advanced, the country 

cannot reduce carbon emissions through improving GVC position. Because there are 

significant differences in carbon emissions performance between the two groups in 

terms of not only their mean but also their variance under group-frontier technologies

（Zhang et al., 2013）.Therefore, whether technological progress can impact the 
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carbon intensity of the country through GVC position does not depend on absolute 

technological progress but rather its relative technological progress (that is, the 

technology gap). A deeper understanding of the impact of the technology gap on 

emission intensity is important for developing countries that seek to reduce emissions 

without comprising economic development. For instance, China is the worlds’ 

second-largest economy and the largest GHG emitter in the world and its technology 

gap is an important consideration for China's emissions reduction. Zhang et al. (2016) 

found that dynamic carbon emissions performance was mainly driven by the catch-up 

effect and boosted by innovation in China. Fei and Lin (2017) revealed eastern and 

central regions in China display a small part of CO2 emission reduction potential 

derived from the technology gap, while the western region possesses a relatively large 

part because of the technology gap. 

Although the technology gap is important in shaping carbon intensity, there is 

still very little studies focusing on this topic. Employing the cross-sectional data in 

Korean, Zhang et al.,(2013) found that the variance under group-frontier technologies 

can also infect the energy and CO2 performance. However, their study used one 

country data and did not analyze the mechanism and decompose the direct and 

indirect effect. To address this gap in the literature, this study considers the 

technology gap, GVC and carbon intensity in one analytical framework and examines 

the influence of the technology gap on carbon intensity through GVC. As carbon 

emissions from production arise predominantly from the manufacturing sector, this 

paper analyzes empirically the carbon emissions of the global manufacturing sector.  
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Compared with the general literature on technological progress and carbon 

emissions, the main contributions of this paper are threefold. First, we study the 

mechanism of how the technology gap to affect carbon intensity by changing the 

position of GVC. Differing the previous literatures, in this paper, GVC position is an 

intermediate variable. Second, we use the technology gap as the main explanatory 

variable rather than the absolute level of technological progress. Third, we measure 

and calculate the direct and indirect effects of the technology gap on carbon emissions 

using the mediation effect model. Because the technology gap also has the indirect 

effect on carbon emissions, which may be ignored by the absolute level of 

technological progress to some extent.  

The paper proceeds as follow: Section 2 states the mechanism and hypothesis. 

Section 3 elaborates on the methodology and data. Section 4 presents the empirical 

results. The concluding section provides policy recommendations and suggestions for 

further research. 

2. Mechanism and Hypotheses 

The technology gap influences carbon intensity through two channels: the 

technological progress effect and the international production division effect. 

Although the former has been extensively studied in the literature, the latter has 

received little to no attention as is the focus of this study. 

Researches on how technological progress affects carbon emissions are well 

established. Although it is widely accepted that there exists a relationship between 

technological progress and carbon intensity, the direction of causality is unclear and 
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worth further studying due to the existence of rebound effect(Yang and Li, 2017). The 

widely accepted consensus is that technological progress can affect, directly or 

indirectly, carbon intensity. In terms of direct mechanisms, technological progress can 

promote energy efficiency, improve production methods, and reduce the use of fossil 

fuels resulting in lower carbon intensity. Levinson’s (2009) research shows that 

technological progress in the United States has a significant negative impact on 

carbon emissions. There are also come studies based on the input-output model and 

Computable General Equilibrium Model confirming that the technological progress is 

the main driving force of CO2 reduction(Manne and Richels, 2005; Okushima and 

Tamura, 2010; Timilsina and Shrestha, 2006).  

As far as indirect mechanisms are concerned, technological progress impacts 

carbon emissions by promoting economic growth. Relatedly, there is a large body of 

empirical research into the Environmental Kuznets Curve (EKC). Many scholars 

believe that the impact of economic growth on carbon emissions follows an inverted 

U shape. When emission reduction technologies meet certain conditions, carbon 

emissions will undergo inverted U transformation (Andreoni and Levinson, 2001; 

Brock and Taylor, 2010; Grossman and Krueger, 2006). 

The international production division effect refers to the impact of the 

technology gap on carbon emissions through GVC positioning. Studies investigating 

the technology gap and GVC suggest that technological progress can help 

manufacturing country shift to higher value-added productive activities (Morrison et 

al., 2007). Industrial technological innovation can often make inputs to production, 
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such as labor and energy, shift into productive sectors with characterized by higher 

value-adding and lower carbon emissions, and thereby influence GVC positioning 

(Sun et al., 2019). In fact, a country's carbon emissions are closely related to its GVC 

positioning (Pei et al., 2016). As a result, the developing countries exports account for 

a substantial share of total production-based emissions through trade in final goods 

compared to developed countries(Meng et al., 2018). 

Countries at the high end of the GVC have capital and technological advantages, 

and predominantly engage in low-carbon and high value-added roles in GVC. In 

contrast, countries at the lower end of the GVC mainly engaged in low technical and 

energy intensive processing and intermediate goods assembly(Yu and Luo, 2018; 

Zhang and Gallagher, 2016). Thus, the developing countries can optimize energy 

efficiency and reduce emissions when they improve their position in GVC(Sun et al., 

2019). 

 When domestic technological progress outstrips the world technology frontier, 

it is possible to change the international production division and trade pattern through 

narrowing the technology gap with the frontiers, which has an effect on the carbon 

emissions of the country. Therefore, we argue that GVC positioning and carbon 

emissions are not necessarily dependent on a country’s absolute level of technological 

progress because international production division is also affected by the conditions 

of other countries. To analyze the international production division effect, two issues 

need to be clarified: how changes in the technology gap affect GVC positioning; and 

how changes in GVC positioning affect carbon intensity, so we propose the 
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hypotheses 1:  

Hypothesis 1: narrowing the technology gap can reduce carbon emissions 

intensity through improve GVC positioning. 

There are large differences in carbon intensity between different industries, so 

the impact of technological progress on carbon emissions also has industry 

heterogeneity. The differences of emissions efficiency and reduction potentials are 

caused by differences in sectoral and national characteristics(Takayabu et al., 2019). 

Acemoglu et al. (2012) found that the mechanisms by which technological progress 

affects carbon emissions depends on the type of initial technology. That is, 

technological progress in green sector will reduce carbon emissions, while 

technological progress in the carbon-intensive sectors will increase carbon emissions. 

The energy efficiency of light industry is generally higher than that of heavy 

industry(Wang et al., 2019), and the industry heterogeneity is the most important 

reason for the difference in energy efficiency(Lu and Wang, 2015; Wang et al., 2013).  

Concluded from previous studies, there are industry heterogeneity of the impact 

of technological progress on carbon emissions. The smaller the technology gap of an 

industry, the stronger its international competitiveness. Thus, an industry can occupy a 

high-end position in the GVC and engage in cleaner production when it narrowed its 

technology gap from the technology frontier. This infers that the higher the carbon 

intensity of the industry, the greater the emissions reduction when production shifts to 

the high-end of the GVC. According to the above analysis, we propose hypothesis 2. 

 Hypothesis 2: the impact of the technology gap on carbon emissions differs 
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among industries due to carbon intensity heterogeneity (industry heterogeneity).  

The Porter Hypothesis suggest that environment regulation can affect innovation 

and technological progress. A large number of researches studied that stringent 

environmental regulation will induce firms to leave the country for less strict 

regulatory regimes(Ambec et al., 2013; Porter and Linde, 1995). Concluding from the 

Porter Hypothesis and pollution haven hypothesis, we find that countries with 

different level of environment regulation may have different incentive to make 

innovation and develop cleaner production(Adetutu et al., 2015). Manufacturers 

subject to environment regulation(cap-and-trade) experience improvements in energy 

efficiency(Curtis and Lee, 2019). In a country with high innovation incentive, the 

technology gap can be narrowed than the low innovation incentive country. In a 

country with cleaner production, the marginal effect of carbon reduction factor may 

be smaller. For example, Non-Annex I parties in the Kyoto Protocol, due to fewer 

restrictions, account for relatively more for the emissions resulting from fewer 

environmental regulations, meaning the technology gap may play a greater 

role(Kuriyama and Abe, 2018). Thus, the Kyoto Protocol was successful in reducing 

the emissions of the ratifying countries approximately by 7% below the emissions 

expected under a “No-Kyoto” scenario, confirming the importance of accounting for 

the collective nature of the agreement(Maamoun, 2019). Feroz et al.(2009) suggested 

that the nations that have ratified the Kyoto Protocol are more likely to be 

environmentally production efficient as compared to the nations that have not ratified 

the Protocol. China's current environmental regulation policies have played positive 
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roles in reducing carbon emissions(Pei et al., 2019). Wei and Yang (2010) 

demonstrated that there are obvious regional differences of the impacts of 

technological progress on CO2 emissions in China, the eastern region is the highest, 

followed by the central and western regions(Wang et al., 2019). Based on the 

discussion above, we propose the hypotheses 3: 

Hypothesis 3: The technology gap may play a greater role in countries that are 

not subject to environmental constraints and regulation (country heterogeneity).  

3. Methodology and Data 

3.1 Model design 

3.1.1 System GMM 

This paper constructs technological progress and the technology gap at the 

multinational industry level, and employs systematic GMM to explore the impact of 

the technology gap on carbon intensity. The benchmark model is as follows: 

                            -                
 
         

 
   

   
  

 
        

          （1） 

where             is the logarithm of carbon intensity;        
   

 is the logarithm of 

the  technology gap;        is the logarithm of technological progress;     is the 

control variables set including the GVC position, value added production, 

intra-industry trade index, actual capital stock, labor time structure, labor 

compensation structure, employees number, gross output, intermediate inputs; i 

represents industry, j represents country and t represents time. Further definition of 

these variables is provided in Section 3.2. 
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3.1.2 Panel data quantile regression 

As discussed in Section 2, the effect of the technology gap on carbon emissions 

can differ among industries with different levels of carbon intensity. This paper uses 

panel data quantile regression to verify this hypothesis.  

Panel data quantile regression estimates coefficients by combining the quantile 

regression and the panel data model to study the relationship between variables on the 

different quantiles of the dependent variable and based on the control of individual 

differences. Consider the following model: 

                         (2) 

where i is an individual, t is time, μ is a random error term,  it is a coefficient vector 

of independent variables, and αi is an unobservable random effect vector of different 

samples. First, the conditional quantile equation is established to estimate the 

parameters of the above panel model: 

                           (3) 

where                    is the independent variable vector, and      

             is the coefficient vector at the τ quantile. If there are differences in the 

estimated coefficients of the technology gap across industries, then the impact of the 

technology gap on carbon emissions is different among these industries.  

When τ varies over (0, 1), solving the weighted absolute residual minimization 

problem can obtain the estimated parameter of the quantile regression. The minimum 

weighted absolute residual is: 

                  
                 

 
   

 
   

 
    (4) 
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where    
 is the weight of each quantile.  

3.1.3 Mediation effect test 

Under open economy conditions, a country can bridge the technology gap, raise 

its position in the GVC and reduce carbon emissions. Therefore, the model’s mediated 

variable is GVC position. The mediation effect tests whether the technology gap 

affects carbon emissions through the GVC position as well as the magnitude of the 

impact. 

Assuming that all variables are centralized, the mediation effect model can be 

illustrated as follows:  

 

Figure 1 Illustration of Mediation Effect Model  

In Figure 1, the coefficient c is the total effect of the independent variable X on 

the dependent variable Y; the coefficient a is the effect of the independent variable X 

on the mediated variable M; the coefficient b is the effect of the mediated variable M 

on the dependent variable Y after controlling for the independent variable X；and c' is 

the direct effect of the independent variable X on the dependent variable Y after 

controlling the mediated variable M. The “mediation effect” is the product a and b, 

and the total effect is equal to the sum of the direct effect and the mediation effect, 

that is c = c'+ab.  

Baron and Kenny's stepwise regression is the most commonly used mediation 

test method (Zhao et al., 2010). The test is applied as follows: the first step is to test 

the coefficient c; the second step is to test the coefficients a and b in order, and if c is 
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significant, a and b are also significant, the mediation effect is significant; if c' is not 

significant, the mediation effect is a complete mediation effect. In recent years, the 

robustness of this approach has been questioned by some studies and as an alternative, 

some studies use the bootstrap method to directly test the coefficient’s product.  

In this study, we apply the mediation effect test using the stepwise regression 

method and the bootstrap method. The mediation effect model can further explore the 

internal interaction mechanism when the X and Y relationships are known. More 

importantly, the total effect of X on Y can be decomposed into direct effects and 

indirect effects, and their scale can be measured. As we use panel data in our study, 

the mechanism analysis is based on the multi-level mediation method of Krull and 

MacKinnon (2001). 

 

3.2 Data and variable construction 

3.2.1 Industry consolidation and unifying 

The industry carbon emissions and input-output data in this paper are obtained 

from environmental and socio-economic accounts of World Input-Output Database 

(WIOD) (2013). The GVC data is sourced from the GVC indicators published by 

University of International Business and Economics (UIBE)
†
. There are some papers 

had been published using this database (Mouanda-Mouanda, 2019; Pan, 2019; Qiu, 

2019). We use the GVC index calculating from the WIOD2013 and use the 

international standard industrial classification ISIC_Rev3.0. We source detailed 

                                                   
† RIGVC UIBE, 2016, UIBE GVC Index, http://rigvc.uibe.edu.cn/english/D_E/database_database/index.htm 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

14 

 

information of patents granted by the U.S. Patent and Trademark Office (USPTO) 

from the Harvard Business School Patent Inventor Database of Li et al. ( 2014) to 

construct the proxies of technological progress at the industry-level. Following Hsu et 

al.(2014) and Bhattacharya et al.(2017) which have matched the three-digit technical 

classification code of the USPTO patent with the US double-digit industry code, and 

calculate  the industry technology gap and technological progress indicators using 

the US industry classification standard. Our sample spans from 1975 to 2010.  

In order to combine the data for empirical analysis, we first need to match the US 

standard industrial classification (SIC) and the ISIC_Rev3.0. The specific matching 

details are shown in Table 1.  

 

Table 1. The unifying of ISIC_Rev3.0 and US standard industry classification 

 

 3.2.2 Variable construction and descriptive statistics 

In this paper, we focus on the carbon emission of a country, and develop the 

theoretical basis for a relationship between the technology gap and carbon intensity at 

the cross-country level and examine empirically the direct effects and indirect effects 

of the technology gap on emissions. So, the dependent variable is carbon emission 

intensity, calculated as total carbon emissions divided by industrial value-added 

output. The WIOD2013 publish emissions and energy use data at the country and 

industry level from 1995 to 2009 for the European Union and 13 major countries and 

regions.  
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The core independent variable - the technology gap - is calculated as follows: 

Technology Gapijt= (Technology Frontierit-Technological progressijt)/Technology 

Frontierit  (5) 

where i denotes the industry, j denotes the country and t denotes time. The technology 

gap lies between 0 and 1. The smaller the value, the smaller the gap. We use the 

number of patent applications to measure technological progress and construct two 

kinds of proxies for the technology gap: the “quality indicator” (measured by the 

number of patent citations) and the “quantity indicator” (measured by the number of 

patent applications). 

Technological progress is represented by the number of patents approved by the 

USPTO and the maximum number of patents represents the world's technology 

frontier. Employing patent data as a "technological" proxy indicator has several 

advantages: First, the patent data is open; Second, it provides a wealth of information 

and longer time series data, including all countries and technology types; Third, 

inventions are relatively standardized data, which gives us the comparable cross 

country and industry. This paper uses the Harvard Business School patent inventor 

database (Lai et al., 2011)
‡
 to construct industrial patent data as a proxy for industrial 

technological progress. The number of patents in each industry is calculated based on 

the time that patent is approved. Since there is a lag between patent  application and 

approval, this paper uses the lagged value to characterize the technological variables 

in the model (Bhattacharya et al., 2017).  

                                                   

‡The Harvard Business School Patent Applicant Database contains detailed information on patents approved by the US Patent 

and Trademark Office (USPTO) from 1976 to 2010. 
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The number of approved patents does not fully reflect the level of technological 

progress of an industry since the overall quantity does not always account for the 

quality. The patent citation better reflects the influence of patents and captures quality 

and market value (Aghion et al., 2013; Harhoff et al., 1999; Trajtenberg, 1990). It is 

hard to conclude that the patents approved in 2000 and cited 10 times in 2010 are of 

higher quality than those approved in 2008 but only cited 5 times, which is the 

truncation error. In this paper, the weighting factor developed by Hall et al.(2001) is 

used to adjust the number of patent citations.  

 

Figure 2. Technological progress and technology gap 

Source: Collating from USPTO and WIOD databases by author. 

 

As can be seen in Figure 2, between 1995 and 2009, the average level of 

technological progress at the world industry level fluctuated and simultaneously the 

technology gap expanded. This means that the gap between the level of technological 

progress of an industry and the international frontier are not narrowing. Between 1995 

and 2009, technological progress improved globally on average, whereas the 

technology gap enlarged.  

We use the UIBE GVC Index that was constructed by the GVC Research Team 

of the UIBE combing the GVC accounting and other indicators
§
. Based on the 

original world ICIO table, the UIBE indicator system uses the current value-added 

                                                   

§RIGVC UIBE, 2016, UIBE GVC Index, http://rigvc.uibe.edu.cn/english/D_E/database_database/index.htm 
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trade accounting and analysis method to generate the database. Based on the 

input-output data at the national and industrial level from 1995 to 2009, we construct 

control variables including forward linkage (based GVC participation index), 

backward linkage (based GVC participation index); capital density, labor time 

structure, labor compensation structure, number of employees, industry value added 

output, total industry output and intermediate inputs to production. The data is 

sourced from the social economic database published by WIOD in 2013 and the UIBE 

GVC Index.  

Capital density is equal to the ratio of capital stock to industrial value-added 

production. Labor time structure is equal to the ratio of the working hours of 

high-skilled workers to the working hours of low and medium technical workers. 

Labor compensation structure is the ratio of labor compensation of high-skilled 

workers to labor compensation of low and medium technical workers. This paper 

constructs cross-national data from 39 countries, 15 years, and 14 manufacturing 

industries. Descriptive statistics of all the variables are reported in Table 2. 

 

Table 2. Descriptive statistics 

Sources: WIOD, UIBE GVC Index, WDI Database 
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4. Empirical Analysis 

4.1 Unit root test 

We first perform a panel unit root test on the variables using the LLC, HT and 

Fisher criteria to avoid the pseudo-regression problem. It can be seen from Table 3 

that total output value, intermediate input, employees, energy use, and per capita GNI 

failed are non-stationary in levels and stationary in first-difference. The remaining 

variables are stationary in levels. 

 

Table 3. Panel unit root test 

 

4.2 Benchmark estimation and panel quantile regression 

The benchmark estimation focuses on the effect of the technology gap on carbon 

emissions intensity using the systematic GMM. This estimation method controls for 

industry, country and year fixed effects of. The estimation results are presented in the 

first column of Table 4.  

 

Table 4. Benchmark estimation 

 

The benchmark estimates show that an improvement GVC position will 

significantly reduce the carbon emissions intensity. The increase in GVC positioning 

helps a country's industry to engage in cleaner and higher-end production in the 

international production division, thereby reducing carbon intensity. These results 
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confirm Hypothesis 1. The backward linkage will significantly increase carbon 

intensity, which may be conducive to economic growth and energy use, thereby 

increasing carbon emissions. Intermediate inputs and emissions-related energy use 

significantly increase carbon intensity, as would be expected. 

We now proceed to investigate whether the technology gap, GVC position and 

carbon emissions vary by industry (industry heterogeneity). As we can see in Table 4, 

the estimated coefficients of technology gap are not statistically significant before the 

50th quantile and are statistically significant from 50th to 90th quantile. The value of 

estimated coefficients increases with the increase of quantiles. That is, the higher the 

carbon intensity of the industry, the greater the effect of the technology gap, which 

confirms Hypothesis 2. We find that the coefficient of GVC position is significantly 

negative in both SYS-GMM estimation and panel data quantile regression, which 

means the promotion of GVC position have negative effect on carbon emission 

intensity. The coefficient of backward linkage based GVC participation is 

significantly positive, which means the more an industry embodied in the GVC 

production from the backward, the higher carbon emission intensity the industry has. 

The coefficient of forward linkage based GVC participation is not statistically 

significant. These results are consistent in SYS-GMM estimation and panel data 

quantile regression. 

4.3 Mechanism analysis 

We use a multilevel mediation method in order to verify further what’s role the 

technology gap plays in influencing carbon emissions. We presented the results of the 
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stepwise regression method and the bootstrap method to test the mediation effect in 

Table 5 and Table 6, respectively. Before running the estimates, we center all the 

variables to avoid multi-collinearity effects.  

Table 5 presents three sets of estimation results, corresponding to the three 

formulas of the mediation effect test using the stepwise regression method. The first 

tests whether the effect of the technology gap on carbon emissions is significant, the 

second tests the effect of the technology gap on the GVC position, and the third tests 

the effect of these two variables on carbon emissions intensity. The direct effect is the 

coefficient of the technology gap, and the mediation effect is equal to the coefficient 

of the technology gap in the second estimate multiplied by the coefficient of the GVC 

position in the third estimates. The total effect of technology gap on carbon emission 

intensity is 0.349, the direct effect of the technology gap on carbon emissions is 0.811, 

and the indirect effect is (-1.406) *(-0.031), or 0.043. The proportion of total effect 

mediated is about 11.7%. Therefore, the expansion of the technology gap will 

significantly increase carbon emissions, reduce the GVC position, and increase carbon 

emissions. The results confirm Hypothesis 2, that the division effect of the technology 

gap influences GVC positioning. 

 

Table 5. Median effect test of stepwise regression 

 

Since the stepwise regression method has many criticisms for the mediation 

effect (Zhao et al., 2010), a growing studies use the bootstrap method to directly test 
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whether the mediation effect is significant, that is, whether the product of coefficient 

of technology gap in the estimates 3 and the estimates 2 is significant. In order to 

provide more robust mediation evidence, this paper also uses the bootstrap method to 

test the mediation effect, repeat sampling 500 times, the test results are listed in Table 

6. The direct effects, indirect effects, and total effects are presented in Table 6. We 

find all effects are significant, and the scale of coefficients are consistent with the 

stepwise method. This finding provides robustness to the earlier results indicating that 

the mediation effect is significant. 

 

Table 6. Bootstrap mediation effect test 

 

4.4 Robustness test 

To confirm the robustness of our results, we substitute the patent quantity 

indicator (citations) with the quantity indicator (the number of patent applications). 

The results are presented in Table 7. 

The panel quantile regression robustness test is consistent with our previous 

results. The results of the mediation effect test show that the total effect of the 

technology gap on carbon emissions, direct effect and indirect effect, are significant. 

The results are also very similar to those presented in Table 6. Above all, these 

findings demonstrate that the empirical results of this paper are robust, and the 

expansion of the technology gap will significantly increase carbon emissions by 

affecting GVC positioning. 
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Table 7. Robustness test 

 

4.5. Extended discussion 

In order to verify the country heterogeneity hypothesis, we classify the baseline 

model according to whether they are the Annex I countries. The results are presented 

in Table 8 (in this instance the technology gap and technological progress in equations 

(1) and (3) are constructed by using patent citation). In equations (2) and (4), they are 

constructed using the number of patents. The estimates are still based on the system 

GMM (to control for time, industry and national fixed effects), and the standard error 

is the robust according to national industry and time clustering. There are no 

second-order sequence correlations for the four estimated residuals.  

The results show that the expansion of the technology gap drives increases in 

carbon emissions, but this effect varies across country categories. This provides prima 

facie evidence in support of Hypothesis 3.  

In non-Annex I countries, the estimated coefficient of the technology gap is 

significantly positive and the larger than Annex I countries (for Annex I countries, the 

estimated coefficient is not statistically significant). Non-Annex I countries have a 

relatively loose environmental constraint, and subsequently, higher carbon emissions. 

In industries with higher carbon intensity, the technology gap plays a greater role, 

which is consistent with the previous analysis. However, we find that the technology 

gap in Annex I countries is not significant. The reason is that most Annex I countries 
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are developed countries, which not only have strict environmental constraints, but 

also occupy a high-end position in the GVC and undertake cleaner production. The 

coefficients of other control variables are consistent with the baseline estimates. 

 

Table 8. Group estimates 

 

We now test whether the change in the technology gap affects carbon emissions 

through GVC positioning using the bootstrap mediation test. The estimated results are 

presented in Table 9. Technology (citation) represents the quality of patent that is 

measured by number of patent citations, and the technology(number) represents the 

quantity of patent that is measured by the number of patent applications.  

The results reveal that the technology gap of non-Annex I countries has a 

meditation effect, but no direct effect. The median effect of Annex I countries is 

significant, and the proportion of the total effect mediated is about 5%, less than the 

full sample result. This result is also consistent with the estimates in Table 8, further 

confirming that for countries with higher carbon intensity, the technology gap can 

affect carbon emissions by affecting the GVC positioning.  

 

Table 9. Mediation effect test 
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5. Conclusion and Policy Implications 

Technological progress is an important factor for countries to achieve Intended 

Nationally Determined Contribution. Existing studies on the relationship between 

technology gaps and emission intensity generally only focus on a single country. As 

GHG emissions are an international concern, a proper examination of how 

technological progress influences carbon intensity should be conducted at the 

cross-country level. Technological progress changes the international production 

division and trade pattern through narrowing the technology gap with international 

frontiers, which has an effect on the country level carbon emissions. From the 

perspective of the global economy, technological progress of a country infers a 

change in the technology gap, resulting in changes to GVC positioning, international 

production division and industrial competition, which in turn influences trade patterns. 

Industrial structure and trade patterns directly affect the carbon emissions of the 

economy. 

Although the technology gap is important in shaping energy intensity, there is 

very little research on the relationship between the technology gap and carbon 

intensity. We posit that technology gap can change carbon intensity with GVC 

positioning as a meditating factor. We further posit that this relationship varies across 

industries with different levels of carbon intensity and across Annex I and non-Annex 

I countries.    

This paper combines theories relating to the technology gap, GVC and carbon 

intensity into a single analytical framework. Compared with the literature on general 
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technological progress and carbon emission, the main contribution of this paper is that 

it decomposes the direct effects and indirect effects through the mediation effect 

model and quantifies the mediation role of GVC positioning in the relationship 

between the technology gap and carbon emissions intensity.  

The empirical results show that narrowing the technology gap significantly 

reduces carbon emissions, and the higher the carbon intensity, the greater the effect of 

technology gap on reducing emissions intensity. The mediation effect model proves 

that the impact of the technology gap on the carbon emission can be achieved by 

improving GVC positioning. The results of the country group estimates indicate that 

technology gap can play a significant role in carbon emissions in Non-Annex I 

countries, and that it has the greatest mediation effect through changing GVC.  

The policy implications of this paper are summarized as follows: First, 

mitigating emissions needs a global framework due to the presence of carbon leakage 

along the GVC. Second, in order to pursue green development, national governments 

must not only focus on their own technological progress, but also pay attention to the 

gap between their technology level and the world's frontiers. Third, in order to 

effectively advance technological progress for emission reduction, priority should be 

given to carbon intensive industries. Last, Annex I countries needs to work harder 

than non-Annex I countries in advancing their technological progress and reducing 

technology gaps. Non-Annex I countries, which have high abatement potential, could 

collaborate with Annex I countries through measures such as regional cooperation and 

trade (Han et al., 2018) in order to promote cost effective emission mitigation.  
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The present study could be further improved in the future in the following areas: 

Technology gap can be differentiated into clean technology gap and dirty technology 

gap, and explore how technology gaps in different technology categories affect carbon 

intensity. 
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Tables 

Table 1. The unifying of ISIC_Rev3.0 and US standard industry classification 

ISIC/REV3.0 US SIC
1
 Unified industry 

code 

  Food, beverages and tobacco sec15t16 20，21 1 

   Textiles and textile sec17t18 

 

22,23 2 

   Leather, leather and footwear sec19 

 

31 3 

  Wood and of wood and cork sec20 

 

24 4 

  Pulp, paper, paper, printing and publishing sec21t22 

 
26、27 5 

   Coke, refined petroleum and nuclear fuel sec23 

 

29 6 

   Chemicals and chemical sec24 

 

28 7 

   Rubber and plastics sec25 

 

30 8 

Other non-metallic mineral sec26 

 

32 9 

  Basic metals and fabricated metal sec27t28 

 
33、34 10 

  Machinery, nec sec29 

 

35 11 

  Electrical and optical equipment sec30t33 

 
36、38 12 

  Transport equipment sec34t35 

 

37 13 

  Manufacturing nec; recycling sec36t37 

 
25、39 14 

 

Table 2. Descriptive statistics 

variable Variable content Obs mean std min max 

CO2int log of CO2 intensity 8190 2.031 2.63 -11.543 6.313 

GVC GVC position 8190  0.927 0.134 0.646 1.687 

lntechnum log of technology progress 

(number) 

8190  4.079 3.624 0.000 13.710 

lntechgapp log of technology gap 

(number) 

8190  0.818 0.369 0.000 1.000 

lntechcit log of technology 

progress(citation) 

8190  3.332 3.295 0.000 13.397 

                                                   
1 For details of the US industry classification code and corresponding name, see: 

https://mckimmoncenter.ncsu.edu/2digitsiccodes/ 

Table(s)



lntechgapc log of technology 

gap(citation) 

8190  0.824 0.368 0.000 1.000 

lncap log of capital density 8190  -0.983 0.720 -7.643 8.259 

laborhs work hours structure 8190  0.163 0.121 0.004 0.850 

laborcs labor compensation structure 8190  0.276 0.190 0.006 1.711 

lnvalue log of value added 8190  4.843 0.516 0.000 7.624 

lninter log of Intermediate inputs 8190  4.864 0.557 0.000 7.793 

lngross log of Gross output by 

industry 

8190  5.021 0.852 2.447 10.825 

lnenergy log of energy use 8190  4.331 2.001 0.000 10.017 

lnemployee log of number of persons 

engaged 

8190  9.724 2.510 0.000 16.035 

lngni log of GNI per capital 8190 9.76 0.717 7.293 11.197 

 

forward Forward linkage based GVC 

participation 

8190 0.293 0.194 0 3.87 

backward Backward linkage based 

GVC participation 

8190 0.299 0.140 0 0.93 

Sources: WIOD, UIBE GVC Index, WDI Database 

 

Table 3. Panel unit root test 

Variables 

LLC Criteria HT Criteria 
Fisher Criteria 

 

Statistic P Value Statistic 
P 

Value 
Statistic P Value 

CO2int -33.864
***

 0.000 -5.57
***

 0.000 40.297
***

 0.000 

GVC -76.6
***

 0.000 -21.855
***

 0.000 43.206
***

 0.000 

lntechnum -50.182
***

 0.000 -61.706
***

 0.000 66.217
***

 0.000 

lntechgapp -540
***

 0.000 -62.186
***

 0.000 85.624
***

 0.000 

lntechcit -50.182
***

 0.000 -61.706
***

 0.000 66.217
***

 0.000 

lntechgapc -570
***

 0.000 -62.344
***

 0.000 93.718
***

 0.000 

lncapital -27.738
***

 0.000 -49.63
***

 0.000 49.46
***

 0.000 

laborhs -15.448
***

 0.000 -15.689
***

 0.000 13.452
***

 0.000 

laborcs -22.654
***

 0.000 -16.106
***

 0.000 23.666
***

 0.000 

lnvalue -81.990
***

 0.000 -3.647
***

 
0.000

1 
51.457

***
 0.000 

forward -12.36
***

 0.000 -37.901
***

 0.000 40.4
***

 0.000 

backward -8.931
***

 0.000 -15.386
***

 0.000 43.152
***

 0.000 

lngross -5.796
***

 0.000 3.8594 
0.999

9 
35.998

***
 0.000 

lninter -6.242
***

 0.000 4.536 1 35.909
***

 0.000 



lnenergy -13.002
***

 0.000 -0.793 0.214 37.051
***

 0.000 

lnemployee -6.677
***

 0.000 -0.717 
0.236

7 
27.1967

***
 0.000 

lngni -3.18
***

 0.001 16.168 1 19.742
***

 0.000 

FODlngross
2
 -35.802

***
 0.000 -27.624

***
 0.000 55.466

***
 0.000 

FODlninter -39.039
***

 0.000 -26.299
***

 0.000 58.102
***

 0.000 

FODlnenergy -54.576
***

 0.000 -46.066
***

 0.000 77.416
***

 0.000 

FODlnemploye

e 
-29.7995

***
 0.000 -39.964

***
 0.000 59.503

***
 0.000 

FODlngni -22.473
***

 0.000 -9.187
***

 0.000 45.801
***

 0.000 

 

 

Table 4. Benchmark estimation 

Dependent 

variable:CO2int 

SYS-GMM Quantile regression with panel data 

Baseline q(10) q(30) q(50) q(70) q(90) 

CO2int 1st order lag 

 

0.137
***

 0.989
***

 0.993
***

 0.994
***

 0.992
***

 0.986
***

 

(3.59) (391.80) (790.98) (765.10) (651.99) (281.71) 

lntechcit 
0.00413

*
 0.000995 -0.000917 -0.000649 -0.00147

**
 -0.0119*** 

(1.72) (0.46) (-0.72) (-0.85) (-2.15) (-4.50) 

 lntechgapc 
0.0395

*
 0.0137 0.0104 0.0101

*
 0.0119

**
 0.0206

***
 

(1.89) (1.59) (1.45) (1.88) (2.04) (2.80) 

GVC position 
-1.439

**
 -0.112

***
 -0.105

***
 -0.101

**
 -0.0980

**
 -0.0769

*
 

(-2.50) (-2.71) (-2.59) (-2.47) (-2.40) (-1.83) 

forward 
0.482

***
 -0.0490 -0.0487 -0.0463 -0.0460 -0.0478 

(2.59) (-1.61) (-1.64) (-1.59) (-1.56) (-1.61) 

backward 
0.770

*
 0.0775

*
 0.0812

*
 0.0832

*
 0.0856

**
 0.0925

**
 

(1.91) (1.77) (1.88) (1.94) (2.01) (2.17) 

lncapital 
-0.00735 -0.0125 -0.00393 -0.00280 -0.000154 0.00214 

(-0.59) (-1.64) (-0.64) (-0.51) (-0.03) (0.31) 

laborhs 
0.345 -0.174

**
 -0.177

**
 -0.178

***
 -0.179

***
 -0.179

**
 

(0.85) (-2.51) (-2.57) (-2.58) (-2.61) (-2.57) 

laborcs 
-0.167 0.113

***
 0.109

***
 0.108

***
 0.108

***
 0.108

***
 

(-0.78) (3.24) (3.04) (3.01) (2.90) (3.08) 

FODlngross 
-0.968

***
 -0.114

***
 -0.0700

***
 -0.0463

***
 -0.0284

***
 0.0175

*
 

(-5.54) (-9.36) (-15.19) (-9.30) (-5.76) (1.72) 

                                                   
2FODinter means first order difference of inter.  



FODlninter 
0.569

***
 -0.101

**
 -0.0976

*
 -0.0915

*
 -0.0872

*
 -0.0528 

(4.35) (-2.00) (-1.91) (-1.80) (-1.72) (-1.04) 

FODlnenergy 
0.304

***
 0.0484 0.0552 0.0610 0.0657 0.0980

**
 

(7.61) (1.03) (1.19) (1.33) (1.44) (2.17) 

FODlnemployee 
-0.241

***
 0.0134

***
 0.0121

***
 0.00771

**
* 0.00839

***
 0.0178

**
* 

(-4.00) (3.17) (4.79) (3.36) (2.94) (3.25) 

lnvalue 
-0.469

***
 -0.00101 -0.00601 -0.00649 -0.0134

***
 -0.0183*** 

(-4.72) (-0.13) (-1.38) (-1.59) (-2.90) (-2.70) 

FODlngni 
-0.244 0.0588

***
 0.0510

***
 0.0443

***
 0.0394

***
 0.101

***
 

(-1.04) (4.34) (5.43) (5.28) (4.85) (7.61) 

Time fixed effect YES - - - - - 

Country fixed effect YES - - - - - 

Industry fixed effect YES - - - - - 

Constant 

 

0 -0.107 -0.104 -0.102 -0.100 -0.0821 

(.) (-1.01) (-0.98) (-0.96) (-0.95) (-0.77) 

N 7606 7606 7606 7606 7606 7606 

Notes: Z values are in parentheses, and *, **, and *** indicate significant levels at 

10%, 5%, and 1%, respectively. q (10)-q (90) represent the estimated results of the 

10th, 30th, 50th, 70th, and 90th positions, respectively. 

 

Table 5. Median effect test of stepwise regression 

  (1) (2) (3) 

Dependent variable CO2int GVC position CO2int 

GVC position 

  

  

  

    -1.406
***

 

    (-5.84) 

lntechgapc 
0.349

***
 -0.031

***
 0.326

***
 

(6.92) -12.76 (6.38) 

lntechcit 

  

0.02
***

 -0.001
***

 0.0191
***

 

(3.11) -2.91 (2.94) 

lncapital 

  

0.198
***

 0.004
***

 0.193
***

 

(8.33) 3.9 (8.10) 

lnvalue 

  

-0.335
***

 -0.003 -0.343
***

 

(-8.67) -1.5 (-8.88) 

FODlninter 

  

0.842
***

 0.001 1.382
***

 

(3.5) 0.07 (5.16) 

FODlngni -1.015
***

 0.011 -1.014
**

 



  (-2.6) 0.57 (-2.56) 

FODlngross 

  

-1.274
***

 -0.007 -1.882
***

 

(-4.81) -0.48 (-6.10) 

laborhs 

  

-2.141
***

 0.178
***

 -1.953
***

 

(-3.62) 6.46 (-3.29) 

laborcs 

  

0.222
***

 -0.047
***

 0.176 

(0.7) -3.14 (0.55) 

FODlnenergy 

  

0.251
***

 -0.003 0.256
***

 

(3.22) -0.67 (3.21) 

FODlnemployee 

  

-0.569
***

 0.007 -0.502
***

 

(-3.26) 0.85 (-2.87) 

forward 

  

1.279
***

 0.243
***

 1.652
***

 

(12.6) 50.11 (14.07) 

backward 

  

-1.073
***

 0.198
***

 -0.562
***

 

(-6.36) 23.76 (-3.07) 

Constant 

  

-0.028
***

 -0.001 -0.0361 

(-0.08) -0.15 (-0.10) 

N 7606 7606 7606 

Meditator Variable:GVC position, it is level 1 variable   

c_path  = 0.34851033 

a_path  = -0.03073396       

b_path  = -1.4059667       

c_prime = 0.32600969  same as dir_eff     

ind_eff = 0.04321093 proportion of total effect mediated = 0.11703281 

dir_eff = 0.32600969 ratio of indirect to direct effect  = 0.13254491 

tot_eff = 0.36922062 ratio of total to direct effect     = 1.1325449 

Note: Z values are in parentheses, and *, **, and *** indicate significant levels at 

10%, 5%, and 1%, respectively. 

 

 

Table 6. Bootstrap mediation effect test 

 

Observe

d Coef. 

Bootstrap 

Std. Err. 
z P>z 

Normal based [95% 

Conf.Interval] 

Indirect effect 0.043 0.014 3.020 0.003 0.015 0.071 

Direct effect 0.326 0.051 6.360 0.000 0.226 0.426 

Total effect 0.369 0.049 7.490 0.000 0.273 0.466 



 

 

Table 7. Robustness test 

Dependent 

variable:CO2int 

SYSGMM Quantile regression with panel data 

Baseline q(10) q(30) q(50) q(70) q(90) 

CO2int 1st order lag 

 

0.138*** 0.989*** 0.993*** 0.994*** 0.992*** 0.986*** 

(3.63) (395.75) (584.99) (645.50) (570.50) (276.87) 

lntechnum 
0.00314 0.00164 -0.000379 -0.000306 -0.000947 -0.00814*** 

(1.53) (0.90) (-0.62) (-0.56) (-1.49) (-2.89) 

lntechgapp 
0.0304 0.0121 0.0105 0.0101 0.0124** 0.0254*** 

(1.19) (1.41) (1.58) (1.58) (1.98) (3.48) 

GVC position 
-1.438** -0.112* -0.107* -0.103* -0.0990* -0.0574 

(-2.50) (-1.95) (-1.87) (-1.82) (-1.74) (-0.96) 

forward 
0.481*** -0.0489* -0.0484* -0.0461* -0.0454* -0.0467* 

(2.59) (-1.90) (-1.93) (-1.81) (-1.80) (-1.92) 

backward 
0.770* 0.0787** 0.0822** 0.0841** 0.0866** 0.0981*** 

(1.91) (2.07) (2.18) (2.23) (2.30) (2.60) 

lncapital 
-0.0073 -0.0125** -0.00403 -0.00295 -0.000194 0.00390 

(-0.59) (-2.10) (-0.94) (-0.68) (-0.04) (0.91) 

laborhs 
0.342 -0.181** -0.184** -0.184** -0.186** -0.188** 

(0.85) (-2.21) (-2.25) (-2.27) (-2.28) (-2.30) 

laborcs 
-0.165 0.116** 0.111** 0.111** 0.110** 0.109** 

(-0.77) (2.41) (2.27) (2.24) (2.22) (2.20) 

FODlngross 
-0.969*** -0.101** -0.0970** -0.0912** -0.0867** -0.0492 

(-5.54) (-2.44) (-2.42) (-2.27) (-2.18) (-1.23) 

FODlninter 
0.570*** 0.0482 0.0552 0.0606 0.0657 0.0972** 

(4.34) (1.20) (1.35) (1.50) (1.63) (2.41) 

FODlnenergy 
0.304*** 0.0132** 0.0122*** 0.00765*** 0.00833*** 0.0145* 

(7.6) (2.35) (3.49) (2.74) (2.94) (1.91) 

FODlnemployee 
-0.241*** -0.00118 -0.00670 -0.00685* -0.0139*** -0.0183*** 

(-3.98) (-0.14) (-1.32) (-1.93) (-4.30) (-3.77) 

lnvalue 
-0.469*** -0.112*** -0.0700*** -0.0464*** -0.0277*** 0.0232*** 

(-4.72) (-8.82) (-10.74) (-6.78) (-4.31) (4.15) 

FODlngni 
-0.242 0.0568*** 0.0497*** 0.0436*** 0.0381*** 0.0907*** 

(-1.03) (3.24) (10.28) (9.05) (6.81) (11.55) 



Time fixed effect YES - - - - - 

Country fixed effect YES - - - - - 

Industry fixed effect YES - - - - - 

Constant 

 

7.143*** -0.0961 -0.0928 -0.0911 -0.0892 -0.0574 

(5.66) (-1.27) (-1.22) (-1.20) (-1.17) (-0.74) 

N 7606 7606 7606 7606 7606 7606 

  
Observed 

Coef. 
Bootstrap Std. Err. z P>z 

Normal based [95% 

Conf.Interval] 

Indirect effect 0.042 0.007 6.02 0 0.029 0.056 

Direct effect 0.343 0.031 11.23 0 0.283 0.403 

Total effect 0.385 0.025 15.8 0 0.338 0.433 

proportion of total effect mediated = 0.117 
   

ratio of indirect to direct effect  = 0.133 
   

ratio of total to direct effect     = 1.133 
   

Notes: Z values are in parentheses, and *, **, and *** indicate significant levels at 

10%, 5%, and 1%, respectively. 

 

Table 8. Group estimates 

Dependent variable:CO2int 
No Annex I Countries Annex I Countries 

(1) (2) (3) (4) 

CO2int 1st order lag 
0.547*** 0.547*** 0.0683 0.0691 

(6.89) (6.87) (1.57) (1.59) 

lntechcit 
0.0135*** 0.0129*** 0.00211 0.00132 

(2.77) (2.71) (0.88) (0.63) 

lntechgapc 
1.875*** 2.117** 0.0169 0.00508 

(2.58) (2.26) (0.76) (0.25) 

GVC position 
-1.309** -1.308** -0.694 -0.693 

(-2.45) (-2.44) (-0.92) (-0.92) 

forward 
-0.0424 -0.0436 1.056*** 1.055*** 

(-0.39) (-0.40) (4.5) (4.50) 

backward 
0.103 0.104 0.949* 0.948* 

(0.3) (0.30) (1.94) (1.94) 

lncapital 
-0.014 -0.0134 -0.0114 -0.0113 

(-0.44) (-0.42) (-0.81) (-0.80) 

laborhs 
-0.543 -0.455 0.528 0.525 

(-0.80) (-0.68) (1.12) (1.11) 



laborcs 
-0.00956 -0.0488 -0.196 -0.194 

(-0.02) (-0.12) (-0.80) (-0.80) 

FODlngross 
-1.278*** -1.278*** -0.872*** -0.872*** 

(-6.54) (-6.52) (-4.10) (-4.10) 

FODlninter 
0.562*** 0.564*** 0.488*** 0.488*** 

(3.96) (3.93) (3.21) (3.20) 

FODlnenergy 
0.731*** 0.728*** 0.241*** 0.241*** 

(7.06) (6.99) (5.52) (5.52) 

FODlnemployee 
-0.598*** -0.595*** -0.191*** -0.191*** 

(-3.94) (-3.90) (-2.71) (-2.71) 

lnvalue 
-0.347*** -0.350*** -0.468*** -0.467*** 

(-3.50) (-3.51) (-3.74) (-3.74) 

FODlngni 
0.499** 0.484* -0.686** -0.684** 

(2.00) (1.91) (-2.14) (-2.13) 

Time fixed effect YES YES YES YES 

Country fixed effect YES YES YES YES 

Industry fixed effect YES YES YES YES 

Constant 
1.154 0.925 0 0 

(1.26) (0.93) (.) (.) 

N 1364 1364 6242 6242 

ar1p 0.000 0.000 0.156 0.151 

ar2p 0.319 0.432 0.571 0.567 

hansenp . . 1 1 

Notes: Z values are in parentheses, and *, **, and *** indicate significant levels at 

10%, 5%, and 1%, respectively. 

 

Table 9. Mediation effect test 

 No Annex I Countries: N=1364  

   Observed Coef. Bootstrap Std. Err. z P>z Normal based 

 [95% Conf.Interval] 
Technology 

(citation) 

Indirect effect 0.085 0.034 2.510 0.012 0.019 0.152 

Direct effect 0.060 0.120 0.500 0.618 -0.175 0.294 

Total effect 0.145 0.085 1.700 0.090 -0.022 0.313 

Technology 

(number) 

Indirect effect 0.084 0.034 2.450 0.014 0.017 0.151 

Direct effect 0.067 0.139 0.480 0.629 -0.205 0.340 

Total effect 0.151 0.105 1.440 0.150 -0.055 0.356 



 Annex I Countries: N=6242 

Technology 

(citation) 

Indirect effect 0.021 0.003 8.110 0.000 0.016 0.027 

Direct effect 0.378 0.003 120.910 0.000 0.372 0.384 

Total effect 0.399 0.000 838.360 0.000 0.398 0.400 

Technology 

(number) 

Indirect effect 0.021 0.003 8.130 0.000 0.016 0.026 

Direct effect 0.399 0.006 71.420 0.000 0.388 0.410 

Total effect 0.420 0.003 141.580 0.000 0.414 0.426 
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Figure 1. Illustration of Mediation Effect Model  

 

 

Figure 2. Technology progress and technology gap 

Source: Collating from USPTO and WIOD databases by author. 
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