

Detecting Change via Competence Model

Ning Lu, Guangquan Zhang and Jie Lu

Decision Systems & e-Service Intelligence (DeSI) Lab

Centre for Quantum Computation & Intelligent Systems (QCIS)
Faculty of Engineering and Information Technology, University of Technology, Sydney

P.O. Box 123, Broadway, NSW 2007, Australia
{philiplu, jielu, zhangg}@it.uts.edu.au

Abstract. In real world applications, interested concepts are more likely to
change rather than remain stable, which is known as concept drift. This
situation causes problems on predictions for many learning algorithms
including case-base reasoning (CBR). When learning under concept drift, a
critical issue is to identify and determine “when” and “how” the concept
changes. In this paper, we developed a competence-based empirical distance
between case chunks and then proposed a change detection method based on it.
As a main contribution of our work, the change detection method provides an
approach to measure the distribution change of cases of an infinite domain
through finite samples and requires no prior knowledge about the case
distribution, which makes it more practical in real world applications. Also,
different from many other change detection methods, we not only detect the
change of concepts but also quantify and describe this change.

Keywords: Case-based Reasoning, Competence Model, Concept Drift.

1 Introduction

In recent years, with the rapid development of information, modern organizations are
accumulating data at unprecedented rates. Examples of such data streams include
customer purchase logs, telephone calling records, credit card transactional flows.
While these data may contain valuable knowledge, the distribution or pattern
underlying the data is more likely to change over time rather than remain stable,
which is also known as concept drift [1, 2]. As a result, when a certain learning
algorithm considers all the past training data or makes assumption that the training
data is a random sample drawn from a stationary distribution, the induced pattern may
not relevant to the new data. In practical terms, this means an increasing error in
classifying new records with existing models [3, 4].

Generally there are three approaches for handling concept drift: 1) instance
selection (window-based); 2) instance weighting (weight-based); 3) ensemble
learning [5, 6]. In instance selection, the key idea is to select the most relevant
instances to the current concept. The typical technique of this category is to pick up
the training dataset within a fixed or dynamic window that moves over recently
arrived instances to construct a model [2, 3, 7]. Many case-base editing strategies in

case-based reasoning (CBR) that delete noisy, irrelevant and redundant cases are also
a form of instance selection [8]. In Instance weighting, each instance is assigned a
weight to represent the decreasing relevance of existing training examples. And
learning algorithms are adopted to process these weighted instances, such as Support
Vector Machines (SVMs) [9]. Instances can be weighted according to their age, and
their competence with regard to the current concept [5]. Ensemble learning deals with
concept drift by utilizing multiple models and by voting or selecting the most relevant
one to construct a proper predictive model [10-12]. Generally, there are two ensemble
frameworks: 1) horizontal ensemble, which builds on a set of buffered data chunks; 2)
vertical ensemble, which builds on the most recent data chunk only. More recently, an
aggregate ensemble framework, which could been seen as a hybrid approach of the
two, has been proposed [13].

All these proposed methods reported great improvement for learning under concept
drift. However, most of current solutions implicitly assume that concept drift is
ubiquitous and global. This causes problem when change in the concept or data
distribution occur in some regions of instance space only, which is known as local
concept drift [14]. So instead of directly assigning a weight to each classifier or chunk
of training set, Tsymbal, Pechenizkiy, Cunningham and Puuronen [14] gave a
weighted strategy from instance level, which estimated the local performance of each
base classifier for each instance of the coming instance set. However, their method is
not able to determine whether there is a concept drift happened. On one hand, when
concept remains, clearly old training examples can help to achieve a more robust
model. But on the other hand, when concept drift occurs, old training data do not
always help produce a more accurate hypothesis than using the most recent data only
[15]. As a result, further information about when and where the change has occurred
is needed, so that a learner can distinguish whether there is a concept drift and make
better use of existing training data. Addressing to this issue, we propose a new change
detection method for CBR system, which compares the distribution of existing case
base and newly available cases. Our method not only decides whether concept drift
occurs, but also provides a meaningful explanation about where and how the
underlying distribution change is.

The remaining of this paper is organized as follows. Section 2 reviews the related
works concerning change detection for data stream and a competence model for CBR.
In Section 3, a competence-based empirical distance between case chunks is
introduced with a simple example. Then we present our change detection method in
more details. The results of experimental evaluation are shown in Section 4. Finally,
conclusions and future works come in Section 5.

2 Related Work

In this section, we first introduce a change detection method for data streams.
Following that, a competence model for CBR systems will be discussed.

2.1 A Change Detection Method

A natural approach of detecting concept drift is to compare the distribution of the
data. However, in real world applications, the data that one typically encounters may
not arise from any standard distribution, which makes non-parametric tests more
practical. Moreover, the data may contain several dimensions. As a result, traditional
non-parametric tests like the Wilcoxon and Kolmogorov-Smirnov cannot be easily
adopted. Kifer, Ben-David and Gehrke [16] proposed a change detection method by
employing a notation of distance which could be seen a generalization of
Kolmogorov-Smirnov statistic (Def. 1). Two probability distributions are considered
as ε-close if their distance is no greater than ε.

Definition 1. [16] Fix a measure space and let 𝒜 be a collection of measurable sets.
Let P and P′ be probability distributions over this space.

• The 𝒜-distance between P and P′ is defined as

d𝒜 (P, P′) = 2 sup
A∈𝒜

|P(A) − P′(A)| (1)

• For a finite domain subset S and a set A ∈ 𝒜, let the empirical weight of A
with regard to (w.r.t.) S be

S(A) =
|S ∩ A|

|S| (2)

• For finite domain subsets, S1 and S2, the empirical distance is defined as

d𝒜 (S1, S2) = 2 sup
A∈𝒜

|S1(A) − S2(A)| (3)

They also provided a variation of notion of the 𝒜-distance, called relativized

discrepancy, which takes the relative magnitude of a change into account. But for this
work, we only show how our method works with the 𝒜-distance in a CBR system
and leave the discussion of relativized discrepancy for future work. Interested readers
please refer to the original work [16] for the details.

Although there exist many other change detection methods [17-20], there is a
reported advantage for us to choose Kifer, Ben-David and Gehrke’s [16] method.
That is being able to quantify and describe the change it detects, which makes it more
appropriate for handling local concept drift.

2.2 A Competence Model

Competence is a measurement of how well a CBR system fulfils it goals. As CBR is a
problem-solving methodology, competence is usually taken to be the proportion of
problems faced that it can solve successfully [21]. According to Smyth and Kenna

[22], the local competence of an individual case is characterized by its coverage and
reachability. The coverage of a case is the set of target problems that it can be used to
solve. The reachability of a target problem is the set of cases that can be used to
provide a solution for the target. Since it is impossible to enumerate all possible future
target problems, in practice Smyth and Kenna [22] estimated the coverage set of a
case by the set of cases that can be solved by its retrieval and adaption. And the
reachability set of a case is estimated by the set of cases that can bring about its
solution. Smyth and McKenna [23] extended this competence model. They defined
the related set of a case as the union of its coverage set and reachability set, and said
the shared coverage of two cases exists if and only if the intersection of the related
sets of two different cases is not empty. Definition 2 gives a overall view of this
competence model based on a survey provided by Smyth and McKenna [24].

Definition 2. [24] For a case base ℂ = {c1, c2,⋯ , cn}, given a case c ∈ ℂ

CoverageSet(c) = {c′ ∈ ℂ: Solves(c, c′)} (4)

ReachibilitySet(c) = {c′ ∈ ℂ: Solves(c′, c)} (5)

RelatedSet(c) = CoverageSet(c) ∪ ReachabilitySet(c) (6)

Further, based on Smyth and McKenna’s competence model [24], we defined a

competence closure as the maximal set of cases linked together though their related
set in our previous research (Def. 3).

Definition 3. [25] For G = {c1 ⋯ cm} ⊆ ℂ,

CompetenceClosure(G), iff ∀ci, cj ∈ G, if ci ≠ cj,∃�ci1 , ci2 ,⋯ , cik� ⊆ G,
st. SharedCoverage �cip, cip+1� ≠ ∅ (p = 0,⋯ , k)

where ci = ci0 , cj = cik+1 ∧
∀ck ∈ ℂ − G,∄cl ∈ G, st. SharedCoverage(ck, cl) ≠ ∅

(7)

3 Competence-based Change Detection Method

When mining concept drifting data, a common assumption is that the up-to-date data
chunk and the yet-to-come data chunk share identical or considerable close
distributions [26]. In CBR, this means the newly available cases represent the concept
that we may interested in the future. Obviously, cases in existing case base and the
newly available cases could be considered as two samples drawn from two probability
distributions. Thus by detecting possible distribution change between existing case
base and newly available case chunk, we are able to identify whether there is a
concept drift. However, there are two difficulties that prevent us from applying Kifer,
Ben-David & Gehrke’s detecting algorithm [16] directly. First, we have no prior

knowledge about the probability distributions of either the existing case base or the
new case chunk. Second, the cases may come from an infinite domain. As a result, we
cannot estimate the distance through the cases directly.

As the competence measures the problem solving capabilities of a CBR system, the
probability distribution change of its cases should also reflects upon its competence.
This inspired our research of detecting change via competence model. The key idea is
to measure the distribution change of cases with regarding to their competence instead
of their real distribution. This section will illustrate how to detect change via
competence model for CBR systems.

3.1 Competence-based Empirical Distance

Similar as Smyth and McKenna’s work [23], we refer the related set of a case to
represent a local area of target problems. A visible benefit of adopting their
competence model is that it transfers the infinite case domain into a finite domain of
related sets. This solves our difficulties of measuring the statistic distance between
two case samples.

Definition 4. Given a case c ∈ ℂ, denote the related set of c with regard to ℂ as
Rℂ(c)

• We define the related closure of c w.r.t. ℂ as

ℛℂ(c) = {Rℂ(ci):∀ci ∈ ℂ,∃Rℂ(ci) st. c ∈ Rℂ(ci)} (8)

• For a case sample set 𝕊 ⊆ ℂ, we define the related closure of 𝕊 w.r.t. ℂ as

ℛℂ(𝕊) = �ℛℂ(c)
c∈𝕊

 (9)

To be more clear, ℛℂ(c) is the set of all related sets, with regard to ℂ, which

contain the case c. Since the related set measures the local competence of a case, the
intuitive meaning of the related closure is the maximum set of local competence that
a case or a group of cases could stand for.

Theorem 1. For a case base of finite size ℂ, and a case sample set 𝕊 ⊆ ℂ, ℛℂ(𝕊) is
a finite set and we have:

|ℛℂ(𝕊)| ≤ |ℛℂ(ℂ)| ≤ |ℂ| (10)

Since each case in ℂ corresponding to a related set, the proof of Theorem 1 is

obvious. Therefore, over a case base of finite size ℂ, for two case samples of 𝕊1,
𝕊2 ⊆ ℂ, we obtain two finite related closures, ℛℂ(𝕊1) and ℛℂ(𝕊2). Intuitively we
could measure distance between 𝕊1 and 𝕊2 as the empirical distance between

ℛℂ(𝕊1) and ℛℂ(𝕊2). However, it will only represent the distance between the
competences covered by these two samples. The relative distribution discrepancy
within the competence is missing. This introduces problem when we are comparing
two samples of similar related closures, but with dramatic different distribution. To
address this problem, we assign a weight for each element in ℛℂ(𝕊1) and ℛℂ(𝕊2)
to represent the relative density of the cases distributed over their related closures.

Definition 5. Denote the ith element in ℛℂ(𝕊) as riℂ(𝕊), let ℛi
ℂ(𝕊) = {riℂ(𝕊)}, we

defined the density of riℂ(𝕊) w.r.t 𝕊 be

w∗�riℂ(𝕊)� =
1

|𝕊| ∗ �
�ℛi

ℂ(𝕊) ∩ ℛℂ(cj)�
�ℛℂ(cj)�

n=|𝕊|

j=1
cj∈𝕊

(11)

The density weights each related set in a related closure by the degree to which the

sample cases distributed.

Theorem 2. For a case base of finite size ℂ, and a case sample set 𝕊 ⊆ ℂ, the sum of
the densities of all elements in ℛℂ(𝕊) equals to 1.

� w∗�riℂ(𝕊)�

n=�ℛℂ(𝕊)�

i=1

= 1 (12)

Proof. Substitute Equation 11 into Equation 12, we have the left side as

1
|𝕊| ∗ � �

�ℛi
ℂ(𝕊) ∩ ℛℂ(cj)�
�ℛℂ(cj)�

|𝕊|

j=1
cj∈𝕊

�ℛℂ(𝕊)�

i=1

=
1

|𝕊| ∗� �
�ℛi

ℂ(𝕊) ∩ ℛℂ(cj)�
�ℛℂ(cj)�

�ℛℂ(𝕊)�

i=1

|𝕊|

j=1
cj∈𝕊

 (13)

According to definition of related closure (Def. 4), ℛℂ(cj) ⊆ ℛℂ(𝕊), therefore we

have:

�
�ℛi

ℂ(𝕊) ∩ ℛℂ(cj)�
�ℛℂ(cj)�

�ℛℂ(𝕊)�

i=1

= 1 (14)

From practical point of view, this means, for all cases in sample 𝕊, they are

equally important with regarding to the contribution of the total density of elements in
ℛℂ(𝕊), no matter what their related sets are.

Finally, we define the distance with regard to the competence of two case samples.

Definition 6. Given a case base of finite size ℂ, and a case sample set 𝕊 ⊆ ℂ, let
ℛℂ(ℂ) be the measure space and a set 𝐴 ⊆ ℛℂ(ℂ)

• We define the competence-based empirical weight of 𝕊 w.r.t. 𝐴 over ℂ as

Sℂ(A) = � w∗�riℂ(𝕊)�

i=�A∩ℛℂ(𝕊)�

i=1
ri
ℂ(𝕊)∈A∩ℛℂ(𝕊)

 (15)

• For two case sample sets 𝕊1,𝕊2 ⊆ ℂ , we define the competence-based
empirical distance as

dℂ (𝕊1,𝕊2) = 2 sup
A⊆ℛℂ(ℂ)

�S1ℂ(A) − S2ℂ(A)� (16)

For all sets A which cause the competence-based empirical distance to be greater

than ε, we say that there is a concept drift. Similar to Kifer, Ben-David & Gehrke’s
work [16], the set A also depicts a local area where the largest distribution
discrepancy between two samples lies.

Now, we consider a simple example to illustrate how to measure the competence-
based empirical distance between two case sample sets. Suppose there is a case base
ℂ = {c1, c2, c3, c4, c5, c6} aims to determine whether a cup of milk turns bad after
some hours taken out of a fridge. Assume we have c1 represents the milk is still good
after 4 hours, and c2 (7hs, good), c3 (12hs, bad), c4 (16hs, bad), c5 (19hs, bad), c6
(21hs, bad). Also we assume two cases can be used to retrieve each other if they were
both taken out within 5 hours. Constructing the competence model over ℂ, we have
the related set for each case in ℂ is as follows: Rℂ(c1) = Rℂ(c2) = {c1, c2} ,
Rℂ(c3) = {c3, c4}, Rℂ(c4) = {c3, c4, c5, c6}, Rℂ(c5) = Rℂ(c6) = {c4, c5, c6}. Our goal
is to measure the competence-based empirical distance between two sample sets
drawn from the case base S1 = {c1, c4, c5} and S2 = {c2, c3, c6}. The related closure of
c3 with regard to ℂ is the set of all related sets which contain c3. Thus we have
ℛℂ(c3) = �{c3, c4}, {c3, c4, c5, c6}�. Also we have the related closure of S1 and S2 as
ℛℂ(S1) = ℛℂ(S2) = �{c1, c2}, {c3, c4}, {c3, c4, c5, c6}, {c4, c5, c6}� . The density of
{c3, c4} with regard to S1 is calculated as 1/3*(0/1+1/3+0/2) = 1/9. And the density of
{c1, c2}, {c3, c4, c5, c6}, {c4, c5, c6} with regard to S1 is 1/3, 5/18, 5/18 respectively.
Accordingly, the density of {c1, c2}, {c3, c4}, {c3, c4, c5, c6}, {c4, c5, c6} with regard
to S2 is 1/3, 1/6, 1/3, 1/6. In this case, when A = �{c3, c4}, {c3, c4, c5, c6}� or
{c4, c5, c6}, we get 1/9 as the competence-based empirical distance between S1 and S2.

3.2 A Detection Algorithm

In this section we discuss how to determine whether a concept drift occurs through
competence-based empirical distance. Assume we are running a CBR system, and a
new case chunk becomes available. Before retaining these new cases, we could like to

detect whether there is a concept drift. We measure the competence-based empirical
distance between current case base and the new case chunk and say a concept drift
exists if the distance is large enough (> ε).

If we deem all cases of current case base follow a certain distribution, we may say
that there is no significant distribution change between two case samples drawn
randomly from the case base. Therefore, the distance between these samples provides
a reference for determining ε.

To minimize the error inferred due to sample bias, we incorporate two mechanisms.
First, we do multiple experiments and choose ε as the maximum distance rather than
rely on a single test. Actually, the number of experiments plays the role of tradeoff
between miss detection and false detection error. Second, we split the whole case base
into several competence closures and draw samples within each competence closure
respectively. A major concern for us to use competence closure but not other methods,
such as dividing the case base according to feature values, is that a competence
closure represents a group of local competence measurements that related to each
other. Sampling based on competence closures consists with the sense of our
competence-based change detection method, also facilitates the work of doing
experiments within a certain local competence area when desired. In additional we
determine the sample size according to the size of each competence closure. That is to
draw a larger sample for larger competence closures, and vice versa. By doing this,
we expect the case sample set represents the distribution of the original case base to
the greatest extend.

The overall process of our change detection method is shown in Figure 1. When
new cases become available, we merge these new cases with existing case base. We
use this merged case base to represent the whole case domain, and construct
competence model on it. Then we draw samples randomly from the original case base
and measure the competence-based empirical distance between samples. The
maximum distance is selected as the bound (ε) for determining whether a concept
drift occurs, after a certain number of experiments (n).

Fig. 1. Competence-based change detection flow chart.

Take our previous example again, but this time we change the environment by a little,
thus the milk can last longer. And we get some new cases c7 (8hs, good), c8 (15hs
good) and c9 (17hs bad). Merging these new cases into the case base ℂ , we
reconstruct the competence model over the merged case base ℂ′. We have Rℂ′(c1) =
Rℂ′(c2) = Rℂ′(c7) = {c1, c2, c7} , Rℂ′(c3) = {c3, c4, c9} , Rℂ′(c4) = Rℂ′(c9) =
{c3, c4, c5, c6, c9}, Rℂ′(c5) = Rℂ′(c6) = {c4, c5, c6, c9}, Rℂ′(c8) = {c8}. We measure
the competence-based empirical distance between the new case set Snew =
{c7, c8, c9} and a sample set S1 drawn from the original case base ℂ. By comparing
this distance with distance between two sample sets, S1 and S2 for example, drawn
from the original case base ℂ, we find there is a concept drift happens, with an
decreasing trends for bad cases, and increasing trends for good cases especially
around 15 hours (c8).

4 Experimental Evaluation

In order to evaluate the proposed competence-based change detection method, it is
necessary to use simulated data so that the change in generating distributions is
known. We use four synthetic datasets based on sets used in other paper concerning
concept drift [18]. All the datasets have two classes.

• STAGGER (1S). sudden, noise free. The dataset has three nominal
attributes: size (small, medium, large), color (red, green) and shape (circle,
non-circle), and has three concepts: 1) [size = small and color = red], 2)
[color = green or shape = circle] and 3) [size = medium or large]. Data was
randomly generated within the domain and labeled according to current
concept.

• MIXED (2M). sudden, noise. The dataset is a mixture of data generated
according to two different but overlapped geometric distributions,

fp(x) = �p(1 − p)x−1 1 ≤ x < 20
 (1 − p)x−1 x = 20

 and fp
′(x) = fp(21 − x). There are

two concepts for this dataset. In both concept the positives are generated by
f0.25(x), while the negatives are changed from f0.25

′(x) to f0.33
′(x). In

addition the proportion of the negatives is changed from 1/3 to 3/7. In both
concept, we consider a sample as positive if x ≤ 11. The overlapping can be
considered as noise. Although the condition of classifying the samples
remains the same, the distribution of the data changes, thus concept drift
occurs. Figure 2 shows the data distributions before and after concept drift.

• CIRCLES (3C). sudden, noise free. The examples are label according to the
condition: if an example is inside the circle, then its label is positive. The
change is achieved by displacing the centre of the circle �(0.2,0.5) →
(0.4,0.5)� and growing its radius (0.15 → 0.2). We assume the problem
space is ([0,1], [0,1]), and two cases are considered as similar if their
Euclidean distance is not greater than 0.1. Being different from Nishida and

Yamauchi [18], we still consider this dataset as sudden concept drift, and
create another dataset CIRCLES-2 based on Stanley’s definition on gradual
concept drift [27] to compare the results.

• CIRCLES-2 (4C). gradual, noise free. The concept is the same as CIRCLES,
but gradually changed over ∆𝑥 samples. We assume the probability of the
coming instance being in the first concept declines linearly as the probability
of an instance being in the second concept increases until the first concept is
completely replaced by the second concept. That means for the ith new
instance ci, it still has the probability of ∆𝑥−𝑖

∆𝑥
 to follow the first concept,

when 𝑖 ≥ ∆𝑥 the second concept will completely replace the first one. We
continuously detect whether there is a concept drift each time a certain
number of instances (samples) become available. We assume the size of the
case base is ten times the size of the samples. And previous samples
containing both concepts are retained and considered as noise for detection.

Fig. 2. Distributions of the mixed dataset (2M) before and after concept drift

The experiment results are shown in Table 1. We varied the sample size (N) for each
concept and number of experiments (n) used to determine the upper bound (ε) to see
how our detection method was affected. We evaluate all results by two types of error
rate, false positive (miss detection) and true negative (false detection). All error rates
were calculated based on 5K tests.

0.00%
5.00%

10.00%
15.00%
20.00%

0 5 10 15 20

P(
X

=x
)

X

Before

Positive

Negative

0.00%
5.00%

10.00%
15.00%
20.00%

0 5 10 15 20

P(
X

=x
)

X

After

Positive

Negative

Table 1. Experiment Results of Competence-based Change Detection

Data Set ∆𝑥 N n FP TN

1S

500 100 0.00% 0.73%
500 20 0.00% 3.52%
100 100 0.34% 0.70%
100 20 0.10% 3.55%

2M

500 100 0.50% 0.80%
500 20 0.02% 4.36%
100 100 56.59% 0.97%
100 20 38.23% 4.50%

3C 100 10 20.05% 10.43%
200 10 2.1% 9.51%

4C

300

001-100 10 77.32% 10.74%
101-200 10 62.39% 9.31%
201-300 10 42.58% 9.13%
301-400 10 38.43% 9.96%

600

001-200 10
201-400 10
401-600 10
601-800 10

It can be seen that for all these dataset, our method can detect change with very

low error rates. However, one thing to note is that the false positive error rate
increases dramatically with relative a small sample size. This is probably due to the
sample bias, considering that this size of samples may not fully represent the
distribution of the data. When the sample size is large enough, the error rate remains
stable. Second, the number of experiments (n) balances between the two types of error.
An increasing of n will lead to an increasing of miss detection error but lower the
false detection error and vice versa. Third, by comparing with the results of the third
dataset, we found our method achieve a

Finally, being a specialty of our change detection method, it is able to quantify and

describe the change detected. For example, we detect a dramatic increase of negative
samples when 17 ≤ 𝑥 ≤ 20 (Fig. 2)

5 Conclusions and Future Works

We present a method for detecting change in the distribution of samples. The method
requires no prior knowledge about distribution but measures it through a competence
model. The competence-based change detection method can be applied to CBR
systems where new case chunks are available sequentially over time. Empirical
experiments show that the competence-based change detection method works well for
large samples and is not too sensitive to noises. Being special, the competence-based
change detection method is able to quantify and describe the change it detects, which
makes it more suitable for handling local concept drift.

For future works, the proposed approach for detecting concept drift requires a
sample data which is large enough to represent the true data distribution. How to track
concept drift with very little data is still a remaining issue. Second, how to construct
the competence model and detect change for non-classification problems will be
another issue. Finally, detecting change is only the first step towards handling concept
drift. Successive methods that takes advantage of change detection are needed to
improve the final learning performance.

Acknowledgment. The work presented in this paper was supported by Australian
Research Council (ARC) under Discovery Project DP0880739. We also wish to thank
the anonymous reviewers for their helpful comments

References

1. Widmer, G. and Kubat, M.: Effective learning in dynamic environments by explicit context
tracking. In: Brazdil, P. (eds.) Machine Learning: ECML 1993. LNCS, vol. 667, pp. 227--
243. Springer, Heidelberg (1993)

2. Widmer, G. and Kubat, M.: Learning in the Presence of Concept Drift and Hidden Contexts.
Machine Learning. 23(1), pp. 69--101 (1996)

3. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: 7th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 97--106.
ACM Press, San Francisco, California (2001)

4. Cohen, L., Avrahami, G., Last, M., Kandel, A.: Info-fuzzy algorithms for mining dynamic
data streams. Applied Soft Computing. 8(4), pp. 1283--1294 (2008)

5. Tsymbal, A.: The Problem of Concept Drift: Definitions and Related Work. Technical
Report TCD-CS-2004-15, Department of Computer Science, Trinity College Dublin, Ireland
(2004)

6. Tsai, C.-J., Lee, C.-I., Yang, W.-P.: Mining decision rules on data streams in the presence of
concept drifts. Expert Syst. Appl. 36(2), pp. 1164--1178 (2009)

7. Maloof, M.A., Michalski, R.S.: Incremental learning with partial instance memory.
Artificial Intelligence. 154(1-2), pp. 95--126 (2004)

8. Delany, S.J., Cunningham, P., Tsymbal, A., Coyle, L.: A case-based technique for tracking
concept drift in spam filtering. Knowledge-Based Systems. 18(4-5), pp. 187--195 (2005)

9. Klinkenberg, R.: Learning drifting concepts: Example selection vs. example weighting.
Intell. Data Anal. 8(3), pp. 281--300 (2004)

10. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification.
In: 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 377--382. ACM Press, San Francisco, California (2001)

11. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble
classifiers. In: 9th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 226--235. ACM Press, Washington D.C. (2003)

12. Kolter, J.Z., Maloof, M.A.: Dynamic Weighted Majority: An Ensemble Method for Drifting
Concepts. J. Mach. Learn. Res. 8, pp. 2755--2790 (2007)

13. Zhang, P., Zhu, X., Shi, Y., Wu, X.: An Aggregate Ensemble for Mining Concept Drifting
Data Streams with Noise. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B.
(eds.) Advances in Knowledge Discovery and Data Mining: PAKDD 2009. LNCS, vol.
5476, pp. 1021--1029. Springer, Heidelberg (2009)

14. Tsymbal, A., Pechenizkiy, M., Cunningham, P., Puuronen, S.: Dynamic integration of
classifiers for handling concept drift. Information Fusion. 9(1), pp. 56--68 (2008)

15. Fan, W.: Systematic data selection to mine concept-drifting data streams. In: 10th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 128--
137. ACM Press, Seattle, Washington (2004)

16. Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: 13th International
Conference on Very Large Data Bases, pp. 180--191. VLDB Endowment, Toronto, Canada
(2004)

17. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with Drift Detection. In: 17th
Brazilian Symposium on Artificial Intelligence, pp. 286--295, Springer, Sao Luis,
Maranhao, Brazil (2004)

18. Nishida, K., Yamauchi, K.: Detecting Concept Drift Using Statistical Testing. In: 10th
International Conference on Discovery Science, pp. 264--269. Springer, Heidelberg, Sendai,
Japan (2007)

19. Song, X., Wu, M., Jermaine, C., Ranka, S.: Statistical change detection for multi-
dimensional data. In: 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 667--676. ACM Press, San Jose, California (2007)

20. Dries A., Rückert, U.: Adaptive concept drift detection. Statistical Analysis and Data
Mining. 2(5-6), pp. 311--327 (2009)

21. Massie, S., Craw, S., Wiratunga, N.: What is CBR competence? BCS-SGAI Expert Update.
8(1), pp. 7--10 (2005)

22. Smyth, B., Keane, M.T.: Remembering To Forget: A Competence-Preserving Case Deletion
Policy for Case-Based Reasoning Systems. In: 14th International Joint Conference on
Artificial Intelligence. pp. 377--382. Morgan Kaufmann, Montreal, Quebec, Canada (1995)

23. Smyth, B., McKenna, E.: Footprint-Based Retrieval. In: 3rd International Conference on
Case-Based Reasoning and Development, pp. 343--357, Springer, Seeon Monastery,
Germany (1999)

24. Smyth B., McKenna, E.: Competence Models and the Maintenance Problem. Computational
Intelligence. 17(2), pp. 235--249 (2001)

25. Lu, N., Lu, J., Zhang, G.: Maintaining Footprint-Based Retrieval for Case Deletion. In:
Leung, C.S., Lee, M., Chan, J.H. (eds.) Neural Information Processing: ICONIP 2009.
LNCS, vol. 5864. pp. 318--325. Springer, Heidelberg (2009)

26. Gao, J., Fan, W., Han, J.: On Appropriate Assumptions to Mine Data Streams: Analysis and
Practice. In: 7th IEEE International Conference on Data Mining, pp. 143--152, IEEE
Computer Society, Omaha, NE (2007)

27. Stanley, K.O.: Learning concept drift with a committee of decision trees. Technical Report
UT-AI-TR-03-302, Department of Computer Science, University of Texas at Austin, USA,
(2003)

