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This chapter introduces basic concepts relating to a day-ahead market in a power system.
A load dispatch model considers a ramp rate and valve-point-loading effects. An environ-
ment/economic load dispatch model is presented to handle uncertainty factors. The model
provides theoretical foundations for the research on operations and decision making in the
electric power market. To solve load dispatch problems from day-ahead markets in power
systems, a hybrid evolutionary computation method with a quasi-simplex technique, a
weight point method for multi-objective programming, and a fuzzy-number-ranking-based
optimization method for fuzzy multi-objective non-linear programming are developed.

11.1 Models for Day-ahead Markets

The load dispatch in a spot market is one of the kernel problems in an electric power market.

It not only relates to the benefits of every participant in the market, but is also a key issue

to assure safety, reliability of the power system and order operation of the electric power

market. Although a lot of achievements have been obtained, there are still many problems

to be solved for the power market operation. This section introduces the basic concepts of

electric power markets and builds up two load dispatch models for a day-ahead market.
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11.1.1 Introduction

In a traditional generation electricity plan, the electricity price is determined by the gener-

ated electricity cost. In general, one price corresponds to one unit, and the price is fixed for

a long time. Under an electric power market environment, since the previous pricing mech-

anism is unreasonable to represent fair trading and reflect the market status of supply and

demand, many new price methods have been proposed. There are two typical electricity

prices widely used in electric power markets. One is the so-called uniform market clearing

price (MCP) or system marginal price (SMP) which can be obtained by the highest bidding

of the unit committed. The other is pay-as-bid price (PAB). SMP represents the fairness of

merchandise price, i.e., the same quality electric energy should have the same electricity

price in the same power grid. It represents the fairness of market competition by using PAB

to compute the fee of purchasing electricity and dispatching load, which is consistent with

the purpose of an opening electric generation market. Both SMP and PAB are reasonable,

but they still have insufficiencies. A reasonable price should consider the fairness of both

the merchandise pricing and the market competition. Therefore we propose the principle of

the market clearing price determined by SMP and load dispatch calculated by PAB. This

mechanism combines the merits of SMP and PAB, solves simultaneous fairness of the price

of merchant and market competition, and is feasible and simple. This mechanism encour-

ages generation enterprise to uncover the inner potential, decrease generation cost, increase

competition capability, realize lower bid, and finally benefit consumers.

The basic structure of a power market [1, 19, 21] consists of power exchange (PX) and

independent system operator (ISO). In this market structure, PX takes charge of the spot

trading in the day-ahead market, with the main task to solve the dynamic economic load

dispatch problem. In the practical process of electric energy exchange, ISO takes respon-

sibility for both network security and the auxiliary service. In other words, the congestion

management and spinning reserve are controlled by ISO. In this study, we use this market

structure and build two load dispatch models.

11.1.2 A Load Dispatch Model for a Day-ahead Market

Economic dispatch (ED) is very important in power systems, with the basic objective of

scheduling the committed generating unit outputs to meet the load demand at minimum

operating cost, while satisfying all units and system constraints. Different models and tech-

niques have been proposed in the literature [3, 5, 6].

A conventional economic dispatch (CED) considers only the output power limits and the
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balance between the supply and the demand. If ramp rate constraints are included, the

model becomes the dynamic economic dispatch (DED). Great efforts have been devoted to

economic dispatch problems and various models have been proposed [1, 4, 6, 8, 15, 13, 14,

17, 19, 22, 23, 24]. In general, since the CED model does not take into account the ramp

rate constraints, its solution may not be real optimal. In order to assure the optimization

of solutions, the load dispatch model must consider the ramp rate limit. Therefore, the

DED model is needed. Due to the inclusiveness of ramp rate constraints, the number of

decision variables involved in the problem will increase dramatically compared with the

corresponding CED problem. The sharp increase of the number of variables implies the

increase of searching dimensions, which furthermore results in the difficulty of solving

the problems of DED. On the other hand, CED problems usually formulate the objective

function as smooth, which are solved by using equal λ rules [22], which, however, are not

always adequate for real ED or DED problems. A non-smooth function sometimes has to

be used to account for special factors, such as the voltage rippling [23, 24]. A more accurate

ED model that can account for special cost factors leading to a non-smooth objective, and

also including the ramp rate constraints would be highly desired. In addition, there are

different constructions and operation modes in power markets, such as the England and

Wales power market, California power market, Norway power market, Chile power market,

and the Australia and New Zealand power markets [1, 3, 6, 7, 19, 21]. Among some of these

power markets, a power exchange-independent system operator model (PX-ISO model)

has been adopted in the Chilean power market [19], and the California power market [1,

21]. In this model, PX administrates the day-ahead market and the ED is the major task

for PX. ISO will verify the dispatch schedule against a set of criteria, including network

security, transmission congestion and spinning reserve. Hence, constraints on the spinning

reservation can be ignored in the DED model. Based on the analysis above, a dynamic

economic load dispatch (DELD) model for a PX-ISO power market can be described as

follows:

(M1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min f (Pj(t)) =
T
∑

t=1

N
∑
j=1

F(Pj(t))

N
∑
j=1

Pj(t) = PD(t)+ PL(t)

Pj min � Pj(t) � Pj max

−D j � Pj(t)−Pj(t −1) � R j

(1)

where Pj(t) is the output power of the j-th unit during the t-th time interval, T is the

number of time intervals per dispatch cycle, N represents the number of committed units,
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and F(Pj(t)) is the generation cost function and can be formulated as

F(Pj(t)) = a0 j + a1 jPj(t)+ a2 jP
2
j (t)+

∣∣d j sin[e j(Pj min −Pj(t))]
∣∣ (2)

where a0 j,a1 j,a2 j are constants,
∣∣d j sin[e j(Pj min −Pj(t))]

∣∣ represents the rippling effects

caused by the steam admission valve openings, d j and e j are coefficients of the j-th unit,

PD(t) and PL(t) are the load demand and network loss in the t-th time interval respectively,

Pj min and Pj max are the minimum and maximum output power of the j-th unit respectively,

D j and R j are the maximum downwards and the maximum upwards ramp rate of the j-th

unit respectively.

The objective function in the above model (M1) can also be the expense of purchasing

electricity.

The model (M1) describes a non-linear programming problem with multiple local opti-

mal points. The prospective algorithms for solving this model must have a stronger global

searching capability. The new algorithm to solve this problem will be given later in this

chapter.

11.1.3 An Uncertain Environment/Economic Load Dispatch Model

A conventional economic dispatch problem is mainly concerned with the minimization

of operating costs or purchasing electricity fee, subject to the diverse constraints in terms

of units and systems. However, an environmental pollution problem caused by generation

has been presented in recent years. A variety of feasible strategies [1, 17, 19] have been

proposed to reduce atmospheric emissions. These include installation of pollutant cleaning

equipment, switching to low emission fuels, replacing the aged fuel-burners and generator

units, and emission dispatching. Petrowski referred the first three options as the long-term

ones, and the emission dispatching option as an attractive short-term alternative [17]. In

fact, the first three options should be determined by the generation companies, not by the

regulatory authorities, especially in the circumstances of the electric power market. The

desired long-term target is to reduce the emission of harmful gases. In other words, the

emission of harmful gases required to generate electricity should be curtailed in accordance

with laws and regulations. Therefore, the environmental/ economic load dispatch problem

considering emission of harmful gases is a kernel issue in electric power markets.

Some researchers pointed out that the environmental/economic load dispatch problem is to

simultaneously minimize two conflicting objective functions, i.e., minimization of fuel cost

and emission, while satisfying load demand and system constraints. The emission of ther-

mal units mainly includes SO2, NOx and CO2, which are not distinguished in this chapter
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for reasons of simplicity. In general, these harmful gases mentioned above are all functions

of output power Pj, and their emission (ton/h), written as E(Pj), can be described as

E(Pj) = α j + β jPj + γ jP
2
j (3)

where α j, β j and γ j are coefficients of the j-th generator emission characteristics.

In a typical environmental/economic load dispatch model, the coefficients of both cost

function and emission function are constants, and generally can be obtained by experi-

ments. However, there exist many factors which affect these coefficients, such as: exper-

iment errors, different operation situations, the quality of coal and the aging of facilities.

Therefore, it is not precise to describe these coefficients as fixed values. Aimed at char-

acterizing the cost and emission more precisely, we present these coefficients described

by fuzzy numbers. A new load dispatch model with uncertainty, called the fuzzy dynamic

environmental/economic load dispatch model (FDEELD), is built as follows:

(M2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min f =
T
∑

t=1

N
∑
j=1

F(Pj(t)) =
T
∑

t=1

N
∑
j=1

(ã j + b̃ jPj(t)+ c̃ jP2
j (t))

mine =
T
∑

t=1

N
∑
j=1

(α̃ j + β̃ jPj(t)+ γ̃ jP2
j (t))

N
∑
j=1

P j(t) = PD(t)+ PL(t)

P j min � P j(t) � P j max

−D j � P j(t)−Pj(t −1) � R j

(4)

where ã j, b̃ j, c̃ j are fuzzy cost coefficients of the j-th unit, e is an emission function,

α̃ j, β̃ j, γ̃ j are fuzzy emission coefficients of the j-th unit. The meanings of the other sym-

bols are the same as the symbols in the model (M1).

The model (M2) describes a fuzzy multi-objective non-linear programming problem, from

which it is very hard to obtain an optimal solution. In Section11.2, we will propose a

weighted ideal point method, a hybrid evolutionary method and a fuzzy number ranking

method to solve FDEELD.

11.2 Evolutionary Computation Methods and Fuzzy Decision Making

The model (M1) built in the above section is a non-linear programming problem with mul-

tiple local optimal points, and (M2) is a fuzzy multi-objective non-linear programming

problem. These optimization problems are hard to solve; we will develop some new algo-

rithms to solve these problems.
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11.2.1 Evolutionary Computation

Conventional optimization methods suffer from local optimality problems and some of

them require a function with good characteristics, such as differentiability, continuity,

which, to a certain extent, limit their application. In recent years, stochastic optimization

techniques, such as simulated annealing (SA), genetic algorithms (GA), and evolutionary

algorithms (EA), have drawn many researchers’ attention because the stochastic optimiza-

tion techniques are capable of finding the near global optimal solutions without putting

restrictions on the characteristics of the objective functions, although they require signifi-

cant computing burdens and generally take a fairly long time to reach a solution. A great

amount of effort has been devoted to improving these methods and some of them have been

successfully used in a variety of real world problems [17, 26].

GA was initially introduced by John Holland in the seventies as a special technique for

function optimization [9]. Hereafter, we refer to it as the classical GA (CGA). A typical

CGA has three phases, i.e., initialization, evaluation and genetic operation, which consist

of reproduction, crossover and mutation. The performance of CGA precedes the traditional

optimization methods in aspects of global search and robustness on handling an arbitrary

non-linear function. However, it suffers from premature convergence problems and usually

consumes enormous computing time.

In the CGA, the ability of local search mainly relies on the reproduction and crossover op-

erations, which can be referred to as exploitation operations, while the capability of global

search is assured by the mutation operation, which can be regarded as the exploration op-

eration. Generally speaking, the velocity of local search increases when the probability of

crossover increases. Similarly, the level of capability of global search will increase when

the probability of mutation increases. Since the sum of probabilities of all the generic oper-

ations must be the unity, the mutation probability has to be reduced to increase the crossover

probability for a reasonable level of capability of local search. This contributes to the fact

that the probability of mutation in CGA is very low, with a range of 0.1-5%. On the other

hand, to achieve a satisfactory level of capability of global search, the probabilities of re-

production and crossover have to be decreased to increase the mutation probability. This

will weaken the capability of local search dramatically, slow down the convergence rate

and make the global search ability unachievable eventually. In the process of balancing

exploration and exploitation based on reproduction/crossover and mutation operations for

a fixed population, it is hardly possible to achieve a win-win situation for both sides si-

multaneously. Therefore, how to create a balance between exploration and exploitation in
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GA-type algorithms has long been a challenge and retained its attractiveness to many re-

searchers [10, 17].

We present a new method to enhance the capability of global search by increasing the

probability of mutation operation while assuring a satisfactory level of capability of local

search by employing the idea of simplex method, the so called quasi-simplex technique:

a new hybrid real-coded genetic algorithm with quasi-simplex technique (HRGAQT) is

used. HRGAQT has the following aims: (1) we assure the capability of global search by

increasing the probability of mutation; (2) mutation is implemented by using an effective

real-value mutation operator instead of traditional binary mutation; and (3) we enhance the

capability of local search by introducing the so-called quasi-simplex techniques into the

CGA since the capability of local search will be significantly weakened by the probability

of reproduction/crossover decrease as a result of increasing the probability of mutation. In

each iteration, HRGAQT first divides the population into a number of sub-populations and

each sub-population is treated as a classical simplex. Then for every simplex, HRGAQT

applies four operations in parallel to produce offspring. The first operation is the quasi-

simplex evolution in which two prospective individuals will be chosen as the offspring.

The other three operations are reproduction, crossover and mutation respectively, which

are very similar to the traditional genetic operation, except that the probability of mutation

is fairly high. All four operations together will produce a new sub-population with the same

size as the corresponding parent sub-group. The new generation is the collection of all the

newly produced sub-groups. In short, HRGAQT maintains the diversity of a population to

enhance global search capability eventually because a higher diversity of population leads

to a higher level of capability to explore the search space, while the local search is mainly

implemented by the quasi-simplex technique and reproduction including the elitist strategy

and crossover operations.

11.2.1.1 Function optimization and quasi-simplex technique

We consider the global minimization problem described by Yao and Liu [25] for the pur-

pose of development of new search algorithms. According to Yao and Liu, the problem can

be formalized as a pair of real valued vectors (s, f ), where S ⊆ R
n is a bounded set on R

n

and f : S → R is an n-dimensional real-valued function. f needs not be continuous but must

be bounded. The problem is to find a point where f (xmin) is a global minimum on S. More

specially, it is required to find an xmin ∈ S such that

∀x ∈ S, f (xmin) � f (x) (5)
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On solving the above optimization problem by genetic algorithms, an effective method,

which can speed up the local convergence rate, is to combine the CGA with conventional

optimization methods. Since it has been highly recognized that GA has no special request

on the characteristics of the objective functions, the conventional optimization methods that

go with GA should not require that the objective functions have special characteristics. In

this light, Simplex method is promising because it demands less function characteristics.

Therefore, we choose to combine the conventional GA with simplex technique to form a

hybrid generic algorithm in which a real-value scheme and a dynamic sub-grouping are

used. To understand the HRGAQT algorithm, we briefly introduce basic ideas of the sim-

plex technique. Simplex is a type of direct search method, which is a widely accepted

search technique. A simplex in an n-dimensional space is defined by a convex polyhedron

consisting of n + 1 vertices, which are not in the same hyper-plane. Assuming there are

n + 1 individuals, denoted by xi, with function values denoted as fi, i = 1,2, . . . ,n + 1, the

worst and the best points in terms of function values are denoted by xH and xB, respectively,

and can be determined by

f (xH) = fH = max
i

fi, i = 1,2, . . . ,n + 1 (6)

f (xB) = fB = min
i

fi, i = 1,2, . . . ,n + 1 (7)

where fH and fB denote the worst and the best function values, respectively.

To determine a better new point than the worst point xH , the centroid xC of the polyhedron

are all the points but the worst one needs to be calculated by

xC =

((
∑n+1

i=1 xi
)− xH

)
n

(8)

A better point predicted by simplex techniques lies on the line starting from the worst point,

towards the centroid, which can be referred to as the worst-opposite direction. The actual

location can be determined by the following formula:

x = xC + α(xC − xH) (9)

where α is a constant and can be a different value for different points lying on the worst-

opposite direction, such as the reflection point, expansion points, and the compression

points. The actual value ranges of α for different points are shown in Table 11.1.

Conventional simplex techniques mainly consist of four operations, i.e., reflection, expan-

sion, compression, and contraction. The simplex algorithm produces a new simplex by

either replacing the worst point by a better point produced using the simplex technique or

contracting current simplex towards the best point in each iteration step. The process will



Evolutionary Computation Methods for Fuzzy Decision Making on Load Dispatch Problems 309

Table 11.1 Points obtained using the simplex techniques with different α

x = xC +
α(xC − xH )

α = 1 reflection point Reflection point of xH respect to xC

α > 1 Expansion point
A point farther than the reflection point
from xC

0 < α < 1 Compression point Points between xC and reflection point
−1 < α < 0 Compression point Points between xH and xC

be continuous until the termination criterion is satisfied. The crucial idea of the classical

simplex techniques is to track the local optimal following the worst-opposite direction of

each simplex, which can be regarded as guidance in the search landscape. Therefore, the

simplex algorithm has a higher level of ability of local search.

11.2.1.2 Hybrid real-coded GA with Quasi-Simplex techniques

HRGAQT is established by combining a technique evolved from the traditional simplex

technique, which is referred to as a quasi-simplex technique with the CGA. In doing so,

HRGAQT can achieve a substantially high level of global exploration by increasing the

probability of mutation, while its capability of local exploitation can also be reasonably

high by using both reproduction/crossover and quasi-simplex techniques.

The process of HRGAQT can be described as follows: First, HRGAQT initializes a random-

generated population with μ individuals (real-coded chromosomes) and each individual has

n components. The population starts to evolve. At the beginning of each iteration, the gen-

eration is divided into a number of sub-populations (or sub-groups) with each sub-group

having n+1 individuals. Each sub-group will then evolve into a new sub-population of the

same size by four operations in parallel, which are quasi-simplex operation, reproduction,

crossover and mutation. The quasi-simplex operation (QS) will generate two new individ-

uals, and the reproduction will retain the best individual by applying the elitist strategy and

also produce some individuals based on the probability of reproduction (R). The crossover

operation will also generate a number of pairs of individuals according to the probability

of crossover (C) and the left-over individuals will be produced by mutation (M). At the end

of each evolution iteration, all the new individuals from the sub-populations will merge to-

gether and evolution enters new generation. If the termination criterion is not met, evolution

starts a new iteration. This process continues until the termination criterion is satisfied. The

best individuals of population in the final generation will be taken as the optimal solutions.

HRGAQT has a number of outstanding features which enable both local exploitation and

global exploration. HRGAQT adopts the dynamic sub-grouping idea to ensure each sim-
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plex consists of reasonably correlated individuals in the entire evolution process to enhance

the convergence rate. HRGAQT implements population partition different to the strategies

proposed in the literature by two methods. One is to take into account the dimension of

individuals on deciding the number of sub-groups. HRGAQT divides a population into a

number of sub-groups with each sub-group consisting of n+1 individuals to ensure the

search validity and efficiency in terms of computing times. The detailed discussion about

the size of a sub-population and the number of sub-populations to be used will be presented

in another paper. The other method is to make a partition for each iteration. Although the

computation time for each iteration may increase due to the partition process, the enhance-

ment in the convergence rate could decrease the number of iterations needed.

Secondly, HRGAQT employs the quasi-simplex technique with ancillary reproduction and

crossover operation to assure the local exploitation. The quasi-simplex technique absorbs

the idea of classical simplex techniques to perform a guided search. It produces four

prospective individuals using the reflection, expansion and compression operations along

with the worst-opposite direction. The quasi-simplex technique also expands the conven-

tional simplex technique by looking at the prospective individuals lying on a line starting

from the centroid towards the best point of the simplex. We refer to this direction as the

best-forward direction, in contrast with the worst-opposite direction. Three prospective in-

dividuals xe, xm and xn will be produced along the best-forward direction by the expansion

and compression operations using the following formula:

x = xB + β (xB − xD) (10)

where xD denotes the centroid of the remaining points except for the best point xB and can

be calculated by

xD =

((
n+1

∑
i=1

xi

)
− xB

)/
n (11)

The points xe, xm and xn can be determined by the value of β in (10) and the range of β is

shown in Table 11.2.

To avoid a situation in which too many individuals are similar so that the diversity of the

population decreases dramatically, HRGAQT selects the best one from the two prospective

individual groups along the worst-opposite and the best-forward directions to produce two

new individuals as a part of offspring.

11.2.1.3 A new mutation operator

To guarantee the local search effect, GA usually uses a very small mutation probability. A

typical mutation probability ranges from 0.001 to 0.05. The mutation operators have two
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Table 11.2 Range of β in (10) for xe, xm and xn

Formula Range of β Calculated point

x = xB +β(xB − xD)
β > 1 xe

β = 1 xm

0 < β < 1 xn

kinds in real-coded GA: one is to generate a new random real number within the domain

and the other is to add a new random real number to the original one. Both of these two

operators lack support from the principles of biological natural mutation processes. In a

process of biological evolution, a gene often changes dramatically after it is mutated. In

real-coded GA, decimal digits are used to represent genes. According to the principles of

a natural biological mutation, these digits should also change significantly after a mutation

operation. In other words, they should become bigger when they are small enough (< 5),

or become smaller when they are big enough (� 5). Based on this idea, we propose a new

real-coded mutation operator, which is described as follows. Suppose xi j, i = 1,2, . . . ,μ ,

j = 1,2, . . . ,n, represents the j-th component in the i-th individual, where μ is the size of

a population and n is the dimension of each individual. In a real-coded scheme, xi j can be

expressed as a sequence of decimal numbers including the decimal point:

xi j = dw1
i j dw2

i j · · ·dwp
i j •d f1

i j d f2
i j · · ·d

fq
i j (12)

where superscript w and f denote the integer part and the fractional part respectively, and p

and q are constants representing the number of digits in the integer part and the fractional

part for a given xi j, respectively. In application, p is determined by the maximum value that

this sequence can represent, q is determined by the precision required by the problems and

its maximum value will be determined by the hardware used in computing. If the digits in

the sequence are randomly selected to undertake a mutation, the new sequence after the

mutation can be represented as:

xi j = dw1
i j dw2

i j · · ·dwp
i j •d f1

i j d f2
i j · · ·d

fq
i j (13)

where each decimal digit is determined by:

dr
i j = 9−dr

i j if di j is selected (14)

or

dr
i j = dr

i j if di j is not selected (15)

where r = w1,w2, . . . ,wp, f1, f2, . . . , fq.
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11.2.1.4 HRGAQT algorithm procedure

The HRGAQT algorithm can be outlined in the following steps:

Step 1 Initialize a random population X with size μ = K(n + 1).

Step 2 Divide the population X into K sub-populations with each sub-group consisting of

n + 1 individuals.

Step 2.1 Select the best individual x from the population X .

Step 2.2 Select n individuals which are most close to x in terms of their Euclid dis-

tances.

Step 2.3 Combine the individuals obtained from steps 2.1 and 2.2 to form a sub-

population S.

Step 2.4 Remove S from the original population.

Step 2.5 Repeat Steps 2.1 – 2.4 for the sub-population until no individuals are left.

Step 3 Each sub-population evolves into a new group.

Step 3.1 Produce two new individuals using quasi-simplex techniques.

Step 3.2 Implement elitist strategy, i.e., reserve the best one in the sub-population to

be a part of offspring.

Step 3.3 Produce new individuals by reproducing by linear ranking. The reproduction

probability of the i-th individual xi, in the target sub-group (sorted by descending

the fitness) calculated by the following formula

Pi =
1

n + 1

(
η −2(η −1) · rank(xi)−1

n

)
(16)

where η > 1, which can be determined by the desired probability of the best

individual.

Step 3.4 Crossover operation is processed as follows:

Select [(n−2)PC
/
2] pairs of parents randomly, where [] is an operator producing

the maximum integer which is less than or equal to the operand. For every pair

of the selected parent,

xi =
(
xi

1,x
i
2, . . . ,x

i
m1, . . . ,x

i
m2, . . . ,x

i
n

)
(17)

x j =
(
x j

1,x
j
2, . . . ,x

j
m1, . . . ,x

j
m2, . . . ,x

j
n

)
(18)

where the superscripts i and j denote the i-th and the j-th individual in the pop-

ulation respectively. The subscript m1 and m2 are two random numbers between
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1 and n. The two new individuals will be:

xi
new =

(
xi

1,x
i
2, . . . ,x

j
m1, . . . ,x

j
m2, . . . ,x

i
n

)
(19)

x j
new =

(
x j

1,x
j
2, . . . ,x

i
m1, . . . ,x

i
m2, . . . ,x

j
n

)
(20)

Step 3.5 The remaining individuals will participate in the mutation operation. For each

individual, a new individual will be produced by (12)–(15).

11.2.2 A Fuzzy Multi-object Non-linear Optimization Method

11.2.2.1 A weight idea point method of multi-objective optimization problems

Both weighting and reference point methods are all powerful methods to achieve Pareto

optimal solutions for multi-objective non-linear programming problems. Strictly speaking,

the weight method only represents the relative importance of goal values from an objective

rather than from different objectives. It is hard to know the magnitude of effect of the set of

weights to each objective function value. The reference point method is a relatively practi-

cal interactive approach to multi-objective optimization problems. It introduces the concept

of a reference point suggested by decision makers and presents some desired values of the

objective functions. It is very hard to determine weightings and reference points in ap-

plications, and the interactive approach increases computing burden heavily. This section

proposes a new weighting ideal point method (WIPM), which doesn’t require any interac-

tion, and can predict the magnitude of effect of the set of any weights to each objective

function value.

To describe the proposed WIPM method, we write a general multi-objective non-linear

programming problem as:

min
x∈S

f (x) = ( f1(x), f2(x), . . . , fk(x)) (21)

where f1(x), . . . , fk(x) are k distinct objective functions and S is the constrained set de-

fined by

S = {x ∈ R
n | g j(x) � 0, j = 1, . . . ,m} (22)

In this section, we propose a weighted ideal method (WIPM) as follows: let

g(x) = w1

(
f1 − f min

1

f min
1

)2

+ · · ·+ wk

(
fk − f min

k

f min
k

)2

(23)

where

f min
i = min

x∈S
fi(x), f min

i �= 0, i = 1, 2, . . . , k.
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f min = ( f min
1 , . . . , f min

k ) is a so-called ideal or utopia point, w = (w1, . . . ,wk) > 0, ∑k
i=1 wi =

1 is a weight vector.

To get the Pareto optimal solution of the problem (21), it can be transferred to solve the

single objective optimization problem below

min
x∈S

g(x) (24)

Since the values of different objective functions in (21) can be very different, it is hard to

know the magnitude of the effect of the set of weights to each objective function value. In

the model (24), all objectives are converted into the same magnitude by the formula

fi − f min
i

f min
i

.

We can therefore predict the effect quantity of the set of weights to each objective function

value. For example, if w1 = 2w2, then

f ∗2 − f min
2

f min
2

≈ 2
f ∗1 − f min

1

f min
1

,

where f ∗i = fi(x∗), i = 1, 2, x∗ is the optimal solution of (23). In other words, the weights

given in WIPM can reflect the trade-off rate information among the objective functions.

11.2.2.2 A weight idea point method of fuzzy multi-objective optimization
problems

A problem becomes a fuzzy multi-objective non-linear programming problem if the objec-

tive function fi includes uncertainty represented by fuzzy numbers in the multi-objective

non-linear programming problem (21). We will give a solution based on the weight idea

point method and the fuzzy number ranking.

When the non-linear objective functions are fuzzy functions, we also use (23) to convert

(21) into a corresponding single objective fuzzy optimization problem. Now we need to

solve a single objective fuzzy programming problem (SOFPP). One of the methods to solve

fuzzy optimization problems is the maximum satisfaction factor method [11]. Another one

is to convert a fuzzy optimization problem into several classical optimization problems.

In this section we do not use the above methods, but directly apply HRGAQT to search

for optimum solutions. We then compare the function values of different solutions by the

method of ranking fuzzy numbers.

Different methods for ranking fuzzy numbers have been proposed [5, 10, 15, 19]. The

definition below comes from Lee and Li [15].
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Definition 11.1. Let ã, b̃ ∈ F(R) be two fuzzy numbers. The definition of ranking two

fuzzy numbers is as follows:

ã � b̃ if m(ã) < m(b̃) (25)

or

m(ã) = m(b̃) and σ(ã) � σ(b̃) (26)

where mean m(ã) and standard deviation σ(ã) are defined as

m(ã) =

∫
s(ã)

xã(x)dx∫
s(ã)

ã(x)dx
(27)

σ(ã) =

⎛⎜⎜⎝
∫

s(ã)
x2ã(x)dx∫

s(ã)
ã(x)dx

− (
m(ã)

)2

⎞⎟⎟⎠
1
2

(28)

where s(ã) = {x | ã(x) > 0} is the support of fuzzy number ã.

For a triangular fuzzy number ã = (l,m,n),

m(ã) =
1
3
(l + m+ n) (29)

σ(ã) =
1
18

(
l2 + m2 + n2 − lm− ln−mn

)
(30)

The main steps of the weight idea point method for fuzzy multi-objective optimization

problems are as follows:

Step1 Convert problem (21) into a single objective optimization by using (23) and (24);

Step2 Solve the single objective optimization (24) by HRGAQT.

Note:

(1) f i
min can be given by a desired value or determined by solving the corresponding single

objective optimization problem by HRGAQT.

(2) In solving the single objective optimization by using HRGAQT, for each individual

we compute fuzzy function values according to the fuzzy number operation principle,

then directly compare the function values of different solutions by the fuzzy ranking

method given above.
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Table 11.3 Technical data of units

Unit
No. Pmin(MW) Pmax(MW) a b c d e D R

1 00 680 550 8.10 0.00028 300 0.035 60 50
2 00 360 309 8.10 0.00056 200 0.042 50 35
3 00 360 307 8.10 0.00056 200 0.042 50 35
4 60 180 240 7.74 0.00324 150 0.063 40 30
5 60 180 240 7.74 0.00324 150 0.063 40 30
6 60 180 240 7.74 0.00324 150 0.063 40 30
7 60 180 240 7.74 0.00324 150 0.063 40 30
8 60 180 240 7.74 0.00324 150 0.063 40 30
9 60 180 240 7.74 0.00324 150 0.063 40 30
10 40 120 126 8.6 0.00284 100 0.084 30 25
11 40 120 126 8.6 0.00284 100 0.084 30 25
12 55 120 126 8.6 0.00284 100 0.084 30 25
13 55 120 126 8.6 0.00284 100 0.084 30 25

11.3 Illustrations on Load Dispatch for Day-ahead Market

11.3.1 An example of load dispatch in a day-ahead market

To test the effectiveness of the proposed HRGAQT in solving a DED problem (M1), a

typical dynamic dispatch case consisting of 13 committed units and 24 time intervals is

chosen. The data of the unit techniques and predicted load demands in each dispatch period

are listed in Tables 11.3 and 11.4. Experimental results are as follows.

Because the objective function is a high-dimensional function with multi extremum points,

it is unknown where the real optimal solution is. In order to demonstrate the effectiveness of

the proposed algorithms, the mean value and standard deviation of total cost corresponding

with optimal outputs would be significant and convincing. Table11.3.1 lists the optimal

total cost, the mean value and standard deviation of 10 results obtained by the proposed

algorithm running independently 10 times. Table 11.6 gives optimal power output of units

and total cost corresponding to the best results.

The best result occurred in the 7-th time, and the optimal power output of units and total

cost corresponding to the best result is listed in Table 11.3.1. It is obvious that the standard

deviation is small and the results are believable.

The experiments show that the proposed method with hybrid real-coded generic algorithms

and the quasi-simplex techniques is very effective and the results are convincing.

In Table 11.4, T is time interval, PD(t) is the load demand.
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Table 11.4 Load demands in different time intervals

T 1 2 3 4 5 6 7 8 9 10 11 12

PD(t) 1550 1500 1520 1540 1600 1680 1780 1880 1950 2010 1970 1970
T 13 14 15 16 17 18 19 20 21 22 23 24
PD(t) 1910 1830 1850 1880 1920 2150 2370 2280 2130 1950 1790 1670

Table 11.5 The total cost, the mean value and standard deviation

i-th time 1 2 3 4 5
i-th result 461839 461138 460893 461382 460562
Mean Value 46113.47
Std Dev 582.5868

i-th time 6 7 8 9 10
i-th result 461540 459898 461779 461134 461182
Mean Value
Std Dev

11.3.2 An Example of Uncertain Environment/Economic Load Dispatch

In this section, we solve an uncertain environment/economic load dispatch problem (M2)

by using the WIPM, HRGAQT and fuzzy number ranking methods. We convert (M2) into

a single objective optimization problem by using WIPM. We then use the Lagrange relax-

ation method to form a Lagrange function. Finally, we use the HRGAQT to optimize the

Lagrange function. In the process of the iteration, the fuzzy number ranking method is used

to compare fuzzy function values of different points for the single objective function.

Tables 11.7–11.10 show the test data of the units output, cost function, emission function,

and load demand, respectively.

Penalty function h is a high-dimension non-linear function, and therefore it is hard to know

where the global minimum point is. In order to demonstrate the effectiveness of the pro-

posed algorithm, the mean and standard deviation of fuzzy fuel cost, fuzzy emission and

fuzzy total cost corresponding with the optimal outputs are tested. In addition, in order to

compare the magnitude of effect of the set of weights to fuzzy fuel cost and fuzzy emission,

we calculate three group weights. Table 11.11 lists the means and standard deviations of

fuzzy fuel cost, fuzzy emission and fuzzy total cost. Table 11.12 shows results obtained by

the proposed algorithm through 10 independent runs.
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Table 11.7 Limits of unit output and ramp rate

Unit No. 1 2 3 4 5 6 7

Pmin(MW ) 20 20 35 35 130 120 125
Pmax(MW ) 125 150 150 210 325 310 315
Dj 40 40 40 50 60 60 60
R j 30 30 30 40 50 50 50

Table 11.8 Fuzzy coefficients of the cost function

Unit
No

a0 a1 a2 b0 b1 b2 c0 c1 c2

1 800.95401 825.72578 846.36892 37.46062 38.53973 39.46468 0.15813 0.16218 0.16559
2 625.96538 645.32513 661.45826 41.32673 42.51721 43.53762 0.12050 0.12359 0.12619
3 1107.49967 1135.89710 1158.61504 38.83637 39.83217 40.62881 0.02651 0.02705 0.02754
4 1168.89357 1198.86520 1222.84250 36.90654 37.85286 38.60992 0.03403 0.03472 0.03534
5 1555.00481 1586.73960 1610.54069 36.58126 37.32782 37.92507 0.02478 0.02521 0.02559
6 1269.74602 1295.65920 1315.09409 38.29901 39.08062 39.70591 0.01653 0.01682 0.01707
7 1466.71867 1496.65170 1519.10148 36.52011 37.26542 37.86167 0.01979 0.02013 0.02043

Table 11.9 Fuzzy coefficients of the emission function

Unit
No.

α0 α1 α2 β0 β1 β2 γ0 γ1 γ2

1 15.18178 15.65132 16.04260 0.28456 0.29276 0.29979 0.003822 0.00392 0.00400
2 15.18178 15.65132 16.04260 0.28456 0.29276 0.29979 0.00382 0.00392 0.00400
3 34.69310 35.58267 36.29432 −0.54136 −0.52816 −0.51760 0.00698 0.00712 0.00725
4 34.69310 35.58267 36.29432 −0.54136 −0.52816 −0.51760 0.00698 0.00712 0.00725
5 42.03762 42.89553 43.53896 −0.52138 −0.51116 −0.50298 0.00453 0.00461 0.00468
6 40.92147 41.75660 42.38295 −0.53245 −0.52201 −0.51366 0.00464 0.00472 0.00479
7 40.92147 41.75660 42.38295 −0.53245 −0.52201 −0.51366 0.00464 0.00472 0.00479

In Table 11.10, T represents a time segment, PD(t) represents the load demand of the cor-

respondence to the time segment.

In Table 11.11, MFC, MEC, and MTC present the means of the fuel cost, the emission, and

the total cost respectively, STDEV-FC, STDEV-EC and STDEV-TC present corresponding

standard deviations. As the standard deviations of every result are all significantly small, the

results are believable. It can be seen that the fuel cost decreases and the emission increases

when the weight of the fuel cost increases.

The model (M2) is a new environmental economic load dispatch model which considers
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Table 11.10 Load demands in different time intervals

T 1 2 3 4 5 6 7 8 9 10 11 12
PD(t) 690 670 670 680 730 800 870 840 890 920 950 910
T 13 14 15 16 17 18 19 20 21 22 23 24
PD(t) 890 890 930 970 930 950 1070 1040 950 850 760 730

the uncertainty in coefficients of the fuel cost and emission functions. The weighting ideal

point method, hybrid genetic algorithms with quasi-simplex techniques and fuzzy number

ranking method are developed and used to solve the optimization problem described in

model (M2). Compared with other fuzzy multi-objective programming methods, the pro-

posed method has three main advantages:

(1) To describe the coefficients of the fuel cost and emission functions by fuzzy numbers

can more precisely characterize the fuel cost and emission, and can get a more accurate

FDEELD model(M2).

(2) The results described by using fuzzy numbers can provide more information than real

numbers. The fuzzy minimum tells not only the approximate fuel cost and emission, but

also the dispersivity of the minimal fuel cost and emission.

Table 11.11 The comparison of the results obtained for different weights

(w1,w2) (0.3, 0.7) (0.5, 0.5) (0.7, 0.3)

MFC
1067359
1092154
1112300

1061711
1086218
1106213

1053936
1078110
1097695

STDEV-FC
291.4
303.8
312.4

472.8
377.1
615.9

57
58.3
60

MEC
11423.23
11993.81
12539.55

11466.7
12041.25
12596.67

11600.89
12184.12
12744.69

STDEV-EC
2.2
2.5
2.7

4.2
5.3
9.4

1.3
1.4
1.5

MTC
1078780
1104148
1124838

1073181
1098320
1118805

1065537
1090295
1110440

STDEV-TC
290.7
300.7
310.4

468.5
540.6
607.9

55
58.2
60.9
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(3) The optimum solution obtained is steady and trustworthy, because the solution of min-

imum dispersivity has been chosen when candidate solutions have approximately the same

total cost.

Table 11.12 Optimal power output of units for weights (0.3, 0.7)

Time
segment

Unit number
1 2 3 4 5 6 7

1 51.46 53.05 91.02 88.99 136.41 134.07 134.99
2 49.21 49.30 89.04 88.18 131.88 130.08 132.34
3 49.52 49.59 88.67 87.94 132.89 129.43 131.96
4 50.27 50.22 89.99 89.38 133.92 133.12 133.10
5 56.06 61.42 95.36 93.57 141.20 140.42 141.96
6 68.33 71.53 100.77 99.66 153.84 152.07 153.80
7 76.66 82.65 110.36 107.55 165.83 164.45 162.50
8 69.73 78.13 106.59 105.29 160.19 160.29 159.79
9 80.40 86.77 111.39 110.45 168.51 165.29 167.20
10 86.43 90.07 114.66 112.83 174.17 170.07 171.78
11 90.33 92.03 119.42 116.21 181.36 174.44 176.22
12 86.41 87.87 113.15 112.45 171.72 168.67 169.74
13 80.76 85.96 111.19 110.33 169.91 165.58 166.26
14 75.09 88.24 111.12 110.66 169.85 165.97 169.07
15 87.70 89.80 116.03 112.73 176.57 172.51 174.67
16 94.07 98.21 119.83 116.49 183.22 177.82 180.37
17 86.22 90.68 118.52 114.26 175.70 172.11 172.51
18 87.79 93.94 120.20 116.19 181.15 176.30 174.42
19 103.47 111.97 132.23 130.48 200.75 195.36 195.75
20 106.17 104.57 128.55 126.04 194.27 190.44 189.96
21 89.82 92.90 119.69 115.03 181.85 174.92 175.78
22 68.41 81.11 109.17 105.86 163.49 161.03 160.93
23 57.34 66.97 98.25 97.35 147.49 145.48 147.11
24 55.12 62.23 94.79 94.43 141.83 140.30 141.30
Fuel cost Emission Total cost
1066800 11427.6 1078220
1091570 11998.6 1103570
1111700 12544.8 1124240

11.4 Conclusions and Further Research

Aiming at power markets characterized by the PX and ISO structure, and based on the

analysis of market competition mode, this chapter proposes a competition mode of “SMP

plus PAB”, and establishes a load dispatch mode which considers both ramp rate and valve-

point-loading effects. As the pollution caused by power generation becomes an increasingly

urgent issue, we analyze the uncertainty of power generation cost function and harmful gas

emissions function, and develop a fuzzy environment/economic load dispatch mode by
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fuzzy set theory to minimize power generation costs and harmful gas emissions.

To solve load dispatch problems, we develop an evolutionary method, which combines

an evolutionary method and the quasi-simplex technique to improve the convergence rate

and global search capability. This method imposes no special requirement on objective

functions, and has very wide applications.

To solve fuzzy dynamic environment/economic load dispatch problems, we propose

a weight point method, which converts the FDEELD problem into a single objective

fuzzy optimization problem. We also present a fuzzy-number-ranking-based optimization

method, which can make the most of available information and give more powerful assis-

tance to decision makers. Experiments reveal the effectiveness of this method.

Based on the research in this chapter, we will focus our future research as follows:

Considering the profit for both generating companies and power corporations at the same

time, we will use bilevel programming technique, together with Game theory, to develop

bidding models.

We will apply multiple objective techniques and fuzzy non-linear programming technique

on our current methods.

Multiple leaders multiple followers bilevel game models will be studied for more practical

methods.
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