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Abstract: The world is currently experiencing the worst health pandemic since the Spanish flu in 

1918—the COVID-19 pandemic—caused by the coronavirus severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2). This pandemic is the world’s third wake-up call this century. In 2003 

and 2012, the world experienced two major coronavirus outbreaks, SARS-CoV-1 and Middle East 

Respiratory syndrome coronavirus (MERS-CoV), causing major respiratory tract infections. At 

present, there is neither a vaccine nor a cure for COVID-19. The severe COVID-19 symptoms of 

hyperinflammation, catastrophic damage to the vascular endothelium, thrombotic complications, 

septic shock, brain damage, acute disseminated encephalomyelitis (ADEM), and acute neurological 

and psychiatric complications are unprecedented. Many COVID-19 deaths result from the aftermath 

of hyperinflammatory complications, also referred to as the “cytokine storm syndrome”, 

endotheliitus and blood clotting, all with the potential to cause multiorgan dysfunction. The 

sphingolipid rheostat plays integral roles in viral replication, activation/modulation of the immune 

response, and importantly in maintaining vasculature integrity, with sphingosine 1 phosphate (S1P) 

and its cognate receptors (SIPRs: G-protein-coupled receptors) being key factors in vascular 

protection against endotheliitus. Hence, modulation of sphingosine kinase (SphK), S1P, and the S1P 

receptor pathway may provide significant beneficial effects towards counteracting the life-

threatening, acute, and chronic complications associated with SARS-CoV-2 infection. This review 

provides a comprehensive overview of SARS-CoV-2 infection and disease, prospective vaccines, 

and current treatments. We then discuss the evidence supporting the targeting of SphK/S1P and S1P 

receptors in the repertoire of COVID-19 therapies to control viral replication and alleviate the 

known and emerging acute and chronic symptoms of COVID-19. Three clinical trials using FDA-

approved sphingolipid-based drugs being repurposed and evaluated to help in alleviating COVID-

19 symptoms are discussed. 
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1. Introduction 

The novel betacoronavirus (2019-nCoV), also known as severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) [1,2] and pneumonia-associated respiratory syndrome (PARS) [3], 

causes coronavirus disease 19, or simply COVID-19. SARS-CoV-2 is rapidly evolving as the pestilence 

of the 21st century. As of September 2020, the number of COVID-19 cases has surpassed 33 million 

with nearly one million confirmed deaths worldwide. The incidence of COVID-19 continues to 
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increase daily and has not shown any signs of abating 

(https://www.who.int/emergencies/diseases/novel-coronavirus-2019). Whilst approximately 80% of 

all cases will be either asymptomatic, or exhibit mild symptoms with no known ongoing health 

issues, 20% of patients will develop severe acute respiratory distress syndrome (ARDS), dyspnoea, 

low oxygen saturation, and lung infiltrates [4]. Complications of hyperinflammation, also referred to 

as the “cytokine storm syndrome”, are associated with the critical symptoms of the disease, including 

respiratory failure, septic shock, or multiorgan dysfunction, which, together, are the leading causes 

of morbidity and mortality in patients with severe COVID-19 [4,5]. More recently, it has come to light 

that a major complication of SARS-CoV-2 infection is the viral infectivity of endothelial cells lining 

the inside of blood vessels, causing major catastrophic damage to the endothelium, vascular 

dysfunction, and consequent multiple organ failure [6,7]. There is also a very high incidence of 

thrombotic complications in critically ill COVID-19 patients [8–10]. Additional severe complications 

of COVID-19 now include ischaemic stroke and brain damage, acute disseminated encephalomyelitis 

(ADEM) [11], and acute neurological and psychiatric issues [12]. 

Once the virus invades the host cell and replicates, the body will mount an inflammatory 

response to combat the excess manufacture of the virus particles. A major complication of viral 

infection is a hyperinflammatory response, characterised by exacerbation and dysregulation of the 

immune response and excess production of cytokines and chemokines during the acute phase of the 

illness (cytokine storm), leading to the attack and damage of not only infected cells, but normal cells 

as well [13]. In fact, it is this hyperinflammatory response that is the cause of many of the major health 

issues as well as increased mortality, particularly in elderly, immunocompromised, and comorbidity 

patients (such as those with diabetes and cardiovascular disease). One of the first studies to emerge 

from Wuhan, China, described patients with severe COVID-19 complications, admitted into the 

intensive care unit (ICU), as being more likely to present with higher plasma levels of inflammatory 

markers, including the interleukin 2, 7, and 10 (IL2 ,IL7, IL10), GMCSF, IP10, MCP1, MIP1A, and 

tumour necrosis factor alpha (TNFα) [14]. The association of the symptoms of hyperinflammation 

with disease severity and death was confirmed in other studies, strongly suggesting that the use of 

anti-inflammatory agents alongside antiviral treatments may reduce the rising mortality in severely 

compromised COVID-19 patients [15]. Recent pathology reports from deceased COVID-19 patients 

have shown severely compromised endothelium causing catastrophic multiorgan failure. Balancing 

the immune response to SARS-CoV-2 infection is critical for virus attenuation. Therefore, to combat 

the more severe effects of COVID-19, specifically ARDS, catastrophic vascular dysfunction, and 

secondary multiorgan failure, resulting from a hyperimmune response, “the plea” is for 

multitargeted interventions to trial combinational therapies and/or new targeted drugs [16]. 

The sphingolipid rheostat plays an important role in regulating viral replication, the innate, 

adaptive, and hyperinflammatory immune response, and importantly, maintaining vascular 

endothelial integrity [17,18]. Hence, targeting sphingosine kinase (SphK), sphingosine-1-phosphate 

(S1P), and the S1P cognate receptors (high-affinity G-protein-coupled receptors) in the repertoire of 

therapies to control viral replication, hyperinflammation, and aid in the maintenance of vascular 

endothelial integrity is highly attractive. 

This review provides a comprehensive overview of SARS-CoV-2 infection, the resultant severe 

symptoms caused by the virus, our current strategies for treatment, and importantly, discusses how 

we can we use our knowledge of the SphK/ S1P/S1PR pathway to design therapeutic strategies to 

provide some relief from, and to combat, the severe, unprecedented symptoms of COVID-19 and the 

chronic health problems emerging in an increasing number of patients. To date, three clinical trials 

using FDA-approved sphingolipid-based drugs being repurposed in COVID-19 treatment are in 

progress and will be discussed.  

2. Coronaviruses from Animals to Humans 

The first human coronavirus (hCoV) describing symptoms of the common cold was documented 

over 50 years ago in the British Medical Journal by Tyrell and Bynoe [19]. Coronaviruses were isolated 

from humans in the early 1960s in both Britain and the United States [20] and were identified by their 
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crown-like morphology [21]. Their virion is between 80 and 120 nm containing a positive single-

stranded RNA genome (ranging from 26 to 32 kb in length) encoding four enzymes essential for the 

viral life cycle [21,22]. Human volunteer studies in the 1960s and 1970s showed that after coronavirus 

exposure, the virus multiplied superficially in the respiratory tract with symptoms of mild 

respiratory infection [20]. Although coronavirus was found to be common in humans, due to the lack 

of severity of disease symptoms, the study of hCoV was relatively lacklustre for over 50 years [23]. 

In contrast, CoV has been well studied in animals due to its contribution to the rich diversity of animal 

diseases in many species, where it is sometimes fatal [23,24].  

Sadly, this viral pandemic is not unexpected. A wake-up call to the severity of coronavirus 

infections in humans came with the outbreak of the human severe acute respiratory syndrome (SARS) 

in 2003 [25,26], and later the emergence of the Middle East respiratory coronavirus (MERS-CoV) in 

2012 [27,28], causing major clinical pathology, mainly characterised by fever, dyspnoea, 

lymphopenia, and respiratory tract infections. This year (2020), the world is experiencing the worst 

health pandemic since the Spanish flu in 1918 [29]—the SARS-CoV-2 or COVID-19 pandemic [30,31]. 

Coronaviruses have a unique strategy of replication. Studies of CoV pathogenicity in animals 

have provided a strong base in the understanding of the origin and biology of the human SARS-CoV 

[23] and now SARS-CoV-2. SARS-CoV and SARS-CoV-2 are zoonotic pathogens, believed to have 

been transmitted to humans from an animal source. The understanding is that the SARS 

coronaviruses derived from viral transmission between animals from different species housed in the 

same cages in live-animal wet markets in China [1]. Gradual deletions and mutations in the viral 

genome enabled the emergence of these new human coronaviruses, crossing the animal-to-human 

barrier [1]. Bats are the most likely primary host of the SARS epidemic with genomic sequence and 

phylogenetic studies revealing 79.6% identity between human SARS-CoV and bat-coronavirus and 

96% sequence identity between hSARS-CoV-2 and bat-coronavirus [2,32]. Although the transmission 

intermediary host of SARS-CoV-2 to humans is not known, a suspected intermediary reservoir 

associated with the COVID-19 outbreak is the pangolin (bat–pangolin–human) [33], yet to be 

confirmed or retraced. 

3. SARS-CoV-2 Infectivity, Symptoms, and Complications 

3.1. SARS-CoV-2 Infectivity.  

The extremely virulent nature of SARS-CoV-2 and the uncertainties surrounding the 

complexities of the disease have facilitated a surge in research of the biology, infectivity, and 

symptoms of the COVID-19 disease. SARS-CoV-2 (2019-nCoV) is transmitted human-to-human via 

airborne droplets, direct contact, or surface contamination [34,35]. The genome sequence of the 2019-

hCoV/ SARS-CoV-2 (GenBank No. MN908947) is enclosed in a lipid envelope in which are embedded 

transmembrane glycoprotein spikes protruding from the viral surface [22]. These protruding spiked 

glycoproteins bind to specific receptors on the host cells to promote viral entry. The human 

angiotensin-converting enzyme 2 (hACE2) receptor, essentially expressed in all tissues, including the 

lung, heart, kidney, gut, brain, and vascular endothelial cells, has been identified as the functional 

entry coreceptor for SARS-CoV-2 [22,36,37]. The SARS-CoV-2 also employs the cellular serine 

protease TMPRSS2, to facilitate entry into the host cell [38]. The virus then uses the host cell machinery 

to replicate and subsequently shed viral copies.  

The severity of symptoms appears to be dependent on patient age and immune system status, 

with mortality more prevalent in the >70 age group and immunocompromised individuals [4]. 

Comorbidities, including hypertension, diabetes, chronic obstructive pulmonary disease (COPD), 

cardiovascular disease, cerebrovascular disease, and pre-existing respiratory disorders, contribute as 

major risk factors for COVID-19 patients [39–41]. Systemic disorders known to be associated with 

COVID-19 infections are not confined to fevers and respiratory-related issues. Other mild to severe 

side effects include headaches, loss of smell (affecting the olfactory bulb in the brain), fatigue, 

haemoptysis, hypoxemia, gastroenteritis and diarrhoea, dyspnoea (difficult or laboured breathing 
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linked to pulmonary disease or heart failure), lymphopenia, acute cardiac injury and thrombosis, 

neurological disorders, and brain damage [4,8,9,10,42]. 

3.2. COVID-19 and Respiratory Failure  

Whilst COVID-19 disease characteristics are similar to the common cold and influenza, SARS-

CoV-2 viral infection has a higher transmission rate [4]. The primary cause of COVID-19 deaths is 

respiratory failure, mainly in the elderly and patients with other underlying health problems 

[32,43,44]. SARS-CoV-2 attacks both the lower and upper airways, varying from mild respiratory 

disorders, ground-glass opacities (observed in subpleural regions of the lung cavities), through to 

pneumonia, RNAaemia, and ARDS [4,45].  

In the early stages, the patient’s immune response is triggered to clear the infection with the local 

and systemic elevation of blood cytokine and chemokine levels observed. Replication of cytopathic 

viruses, such as SARS-CoV-2, causes host cell death, tissue injury, and initiates an inflammatory 

response. If the infection is not cleared, the body elicits a surge in proinflammatory cytokines (the 

cytokine storm) associated with disease severity and death [14]. Hyperinflammatory alveolar 

oedema, a decrease in lung compliance, and reduced oxygen capacity are symptomatic of ARDS. 

Although patients with severe illness have more of a propensity to develop blood clots, large and 

small blood clots are frequently observed and are a major complication of COVID-19 [10]. Blood clots 

in the lungs can restrict oxygenated blood flowing through the lungs, and in cases where COVID-19 

patients develop critically low blood-oxygen readings, it may explain why, in some cases, ventilators 

do not help to prevent respiratory failure [10].  

3.3. COVID-19 Pulmonary Vascular Disorders  

In the few studies of lung morphology of deceased COVID-19 patients, the lungs exhibited 

distinct pulmonary vascular changes [46]. In COVID-19 patients, specific pathogenic features of the 

lungs include severe endothelial injury with the presence of intracellular virus with disrupted 

endothelial cell membranes (endotheliitis) [6]; an accumulation of inflammatory cells with evidence 

of endothelial and inflammatory cell death [6]; widespread vascular thrombosis with 

microangiopathy and occlusion of alveolar capillaries; and significant new vessel growth through 

intussusceptive angiogenesis [46], which refers to the expansion and remodelling of the wall of the 

blood vessel, splitting one vessel into two [47]. This pulmonary pathobiology distinguishes COVID-

19 from other equally severe respiratory diseases, such as influenza viral infections [46].  

The question of whether COVID-19-endotheliitis is a direct consequence of SARS-CoV-2 

infectivity and/or a consequence of endocytosis of the viral particles by the endothelial cells may be 

partly answered in the publication by Ackemann and colleagues [46]. The observation that the SARS-

CoV-2 receptor, ACE2, was more abundant on the endothelial cells of COVID-19 patients compared 

to uninfected subjects suggests direct entry [46], although this does not exclude viral entry by 

endocytosis or entry due to endothelial dysfunction. Endothelial morphological changes, including 

loss of adhesion contact with the basal membrane, cell swelling, and disruption of intercellular 

junctions were consistent with intracellular SARS-CoV-2 infection, suggesting that direct intercellular 

viral effects contributed to endothelial injury as well as perivascular inflammation, infiltrating 

lymphocytes, and subsequent multiple organ failure [6,46]. Pulmonary complications from breaches 

in the vascular endothelium include tissue oedema (build-up of lung fluid), deregulation of 

inflammatory cell infiltration, and intravascular coagulation, which all contribute to severe lung 

damage [48]. 

3.4. COVID-19, the Heart and Cardiovascular System  

SARS-CoV-2 has demonstrated a specific tropism towards the cardiovascular system, being 

responsible for severe acute and chronic cardiac diseases. Acute cardiovascular-related pathologies 

including congestive heart failure and brain medullary cardiorespiratory dysfunction are among the 

more severe health problems associated with COVID-19 disease [14,40,49–51]. Although a damaging 
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correlation between cardiovascular disease (CVD) and COVID-19 susceptibility is widely accepted, 

the underlying reasons and the acute and long-term cardiac consequences are unclear [52]. On the 

one hand, COVID-19 may be a risk factor for CVD development through indirect action, including 

infection in the lungs causing an oxygen deficiency resulting in cardiac ischaemia, and further 

activating the immune system associated with a pronounced cytokine storm [53]. Whilst early 

activation of the immune response is important in virus control, persistent severe systemic 

inflammation (immune activation of cytokines, such as IL6 and TNF) and the release of troponin and 

natriuretic peptides, especially in predisposed patients (as present in immunocompromised patients, 

the elderly, and those with comorbidities such as diabetes and CVD) can result in organ failure. 

Inflammation can result in diffuse microangiopathy with thrombosis in the vascular system, a 

symptom observed in the pulmonary arteries in the lung pathology of COVID-19 patients. 

Myocarditis, heart failure, acute coronary syndrome, and cardiac arrhythmias, also resulting from 

acute inflammatory responses, lead to rapid deterioration and death [51]. On the other hand, it is 

undisputed that patients with comorbidities are more vulnerable to cardiac complications if they 

succumb to COVID-19 [54]. Patients with pre-existing CVD and hypertension are widely 

representative of poorer prognosis and have a higher risk of dying due to SARS-CoV-2 infection 

[51,55]. The ACE2 receptor, which is responsible for SARS-CoV-2 entry into host cells, is highly 

expressed in perivascular pericytes and cardiomyocytes. The suggestion is that direct infection of the 

cardiac cells may lead to myocardial, endothelial, and microvascular dysfunction and myocardial 

infarction [49,51]. However, ACE2 has well-documented cardioprotective effects, important in the 

regulation of the renin–angiotensin–aldosterone system (RAAS), influencing vasculature and blood 

pressure. Conversely, ACE2 is also upregulated in the failing human heart [49,52]. Therefore, whether 

the ACE2 receptor can be used to target therapy for COVID-19 patients, especially patients with 

underlying heart problems, is debatable [40,49–53,56]. As mentioned, the ACE2 receptor is also 

highly expressed on the surface of endothelial cells of COVID-19 patients, and an important specific 

pathogenic feature of COVID-19 patients is endotheliitis [6]. Endothelial dysfunction is also linked to 

the failing heart circulation and plays a vital role in the development and progression of CVD and 

heart failure [57], and needs to be addressed in any severe COVID-19 patient treatment plan. In 

COVID-19 treatments, it is important to keep in balance the principal pharmacological interactions 

between the drugs used in cardiovascular disease and the treatments and potential vaccines for 

COVID-19 patients. 

3.5. Vascular Endotheliitis Contribution to Multiorgan Failure in COVID-19 Patients  

Disruption of the vascular endothelium by the invasion of SARS-CoV-2 may lie at the core of 

multiorgan failure [6,58]. The vascular endothelial lining forms a protective barrier around blood 

vessels (arteries and veins), including the lining of the heart chambers and the lymphatic vessels [59]. 

This layer of endothelial cells is essential in the maintenance of vascular homeostasis, vascular 

integrity, and barrier function [59]. Endothelial cells line the surface of the entire circulatory system 

and contain the ACE2 receptor, making them directly vulnerable to SARS-CoV-2 virus invasion [6]. 

Although the major overt symptom of COVID-19 mortality is pneumonia, linking the SARS-CoV-2 

pandemic to a classic respiratory disease, one of the first critical adverse symptoms observed in many 

patients was major blood vessel damage in the lung pathology after death. The invasion of SARS-

CoV-2 into the endothelial cells throughout the vascular endothelium, or COVID-19-endotheliitis, 

may explain the systematic impaired microcirculatory function, leading to devastating multiorgan 

failure [60]. Around 20–30% of severe COVID-19 patients develop a “storm” of blood clots 

throughout their bodies [10]. The integrity of the vascular endothelial lining helps to prevent blood 

clot formation. The development of the COVID-19-related thromboembolic phenomenon (the higher 

frequency of small and large blood clots) in severely ill COVID-19 patients may, in part, be due to 

damage of the endothelial cells by SARS-CoV-2 infectivity, releasing proteins that trigger unusual 

clot formation into the blood vessels [10]. Damaged blood vessels are more susceptible to other 

opportunistic infections, potentially causing septicaemia (blood poisoning), which can also lead to 

multiorgan failure. Maintaining vascular endothelium integrity is key in controlling the immune 
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response, and this links with the critical role of SphK-S1P-S1PR in the control of endothelium 

integrity, which will be explored in a later section.  

3.6. Neurological Disease and COVID-19  

Coronaviruses are historically found to be neurotropic [61]. The majority of COVID-19 patients 

experience mild neurological symptoms such as headaches and loss of smell, neurological symptoms 

that suggest the coronavirus is affecting the brain [62]. More serious neurological symptoms 

experienced by COVID-19 patients range from encephalitis, encephalopathies, acute disseminated 

encephalomyelitis and myelitis, cerebrovascular disease and seizures, ischaemic strokes, 

intracerebral haemorrhages, and altered mental health status [63]. Recently, there is an unusual 

increase in cerebral venous thrombosis in both young and old COVID-19 patients whereby 

thrombotic occlusions cause a high risk of acute ischaemic strokes [64–66]. 

The cerebrovascular endothelium is critical in maintaining blood vessel integrity and 

cerebrovascular homeostasis. As mentioned, disruption of the vascular endothelial barrier and 

ensuing hyperinflammation are key features of COVID-19. Inflammation and loss of endothelial 

integrity contribute to brain oedema and poststroke neuronal injury. Earlier evidence supports SARS-

CoV direct invasion of the central nervous system (CNS), as reported in the brains of patients and in 

animal models, and spread of the virus through the synapse-connected route to the medullary 

cardiorespiratory centre [62]. The ACE2 receptor, required for SARS-CoV-2 cell entry, is present in 

brain vascular endothelium, and could facilitate direct viral entry into the host brain cells [63]. There 

are also a number of potential routes of SARS-CoV-2 entry into the brain that may cause direct 

damage including through the unprotected olfactory bulb, carriage across the blood–brain barrier 

(BBB) following viraemia, or by infected leukocytes. Alternatively, brain damage may be a result of 

hyperinflammation due to the body’s immune response (innate and adaptive) [63]. Recently, a 

probable case of Parkinson’s disease after SARS-CoV-2 infection has been reported with the 

suggestion of a causal association between SARS-CoV-2 infection and Parkinson’s disease [67]. 

Hence, monitoring of all COVID-19 patients for stroke [66,68] and potentially Parkinson’s, as well as 

early intervention, is recommended [67], especially with the strong possibility that “silent” brain 

damage caused by SARS-CoV-2 may be a price we pay later, and perhaps many years later. 

3.7. Rare Inflammatory Diseases Associated with COVID-19  

The current viewpoint is COVID-19 is mainly asymptomatic or shows mild symptoms with a 

better prognosis in most children [69,70]. Two rare inflammatory diseases, Kawasaki disease and a 

new inflammatory disease, named “paediatric inflammatory multisystem syndrome temporally 

associated with SARS-CoV-2” (PIMS-TS), are both causally linked to COVID-19. Without any clear 

scientific evidence, the prevalence of both of these rare diseases has increased following infection by 

SARS-CoVs [71–74]. Kawasaki disease causes the blood vessels to become inflamed due to over-

reaction of the immune system, with symptoms including fever, rash, bloodshot eyes, and joint pain 

[75]. Although symptoms for PIMS-TS are similar to Kawasaki, patients present with signs of toxic 

shock syndrome with severe abdominal pain, persistent fever, oxygen deprivation, rash, and 

conjunctivitis, with some children developing inflammation of the heart [71,72]. COVID-19 is 

speculatively emerging as a possible contributor to PIMS-TS symptoms in children [71].  

3.8. The Cytokine Storm (Hyperinflammation, Morbidity and Mortality)  

Inflammation, in general, is a beneficial and highly regulated reaction to any hazardous insult 

to the body, such as in response to a pathogen to eliminate any impending threat and injury, and to 

repair any damage to restore and maintain homeostasis [76,77]. With acute viral overload, the 

immune response goes into overdrive, resulting in hyperinflammation, producing excessive 

cytokines. The “cytokine storm syndrome” is an important, consistent, and central theme in COVID-

19 literature [13,78,79]. Understanding the mechanisms underlying the COVID-19-specific cytokine 

storm and targeting and quelling the hyperinflammatory response is necessary for the prevention of 



Int. J. Mol. Sci. 2020, 21, 7189 7 of 36 

 

severe morbidity and death in the current COVID-19 pandemic, and also in any future viral 

outbreaks. This hyperinflammatory “out of control” immune response is common in many types of 

infectious—viral, bacterial, and non-infectious—diseases, cancer, and any flares in 

immunoinflammatory diseases, and is not COVID-19 specific [80]. Although there are many 

similarities, there are, however, subtle differences in COVID-19 infections that need to be taken into 

consideration. Without an understanding of the full complexity of COVID-19 disease, alleviating the 

symptoms of the cytokine storm with current drugs may not be sufficient, and may, in some cases, 

be detrimental. As previously briefly mentioned, there are specific vasculature pathobiological 

features that distinguish COVID-19 from other equally severe respiratory diseases, such as influenza 

viral infections [46]. These are mainly associated with atypical changes in endothelial morphology 

and functionality [6,46]. Therefore, maintaining a balance between a beneficial immune response to 

enable viral elimination and a hyperinflammatory response, which in most cases is detrimental, may 

be a matter of timing in therapy regimes. We will later discuss how SphK/S1P plays a vital role in 

endothelial homeostasis and the regulation of inflammation in pathogenicity, and how we can 

potentially target specific components of this pathway in adjunct viral treatments. 

4. Current Strategies for the Prevention and Treatment of COVID-19  

4.1. COVID-19—Vaccine Development Targets 

No vaccine or specific antiviral therapy for human-infecting coronaviruses have been approved 

to date. Herd COVID-19 prevention by vaccination is on the horizon but with months (and possibly 

years) to go before any approval [81,82]. The average time required to develop a vaccine is 2–5 years. 

Once a vaccine becomes available, it needs to undergo extensive preclinical trials with testing in cell 

culture and animals, from phases I to IV human clinical trials to the safety of use and efficacy, and 

then approval for use by the appropriate regulatory bodies, followed by mass production and 

ensuring global access [83]. Vaccines need to be safe for human use and accessible to all countries for 

world immunity to control the pandemic.  

COVID-19 vaccine development includes: (i) inactivated or live attenuated virus, (ii) subunit 

vaccines, which use part of the virus to mount an immune response, (iii) genetic vaccines (delivering 

messenger RNA to cells to counteract the virus RNA), (iv) viral vector vaccines engineered to produce 

part of the viral protein to mount an immune response, and (v) targeting the viral reproductive 

machinery [84,85].  

Vaccine targets include antibodies to prevent SARS-CoV-2 host cell entry [38]. The coreceptors 

ACE2 and TMPRSS2 are prime neutralising antibody targets for blocking SARS-CoV-2 entry into host 

cells to stem host infectivity [22,38]. Although these target receptors sound promising, we do not fully 

understand the efficacy and adverse side effects of blocking these receptors, especially on the heart 

where they mediate important functions in the regulation of RAAS [38,49,52,86], and the fact ACE2 

receptors are found on the endothelial cells lining the vascular circulatory system. Molecularly 

targeted therapies in the pipeline will still need extensive testing before clinical use.  

4.2. Current COVID-19 Vaccine Clinical Trials  

The ongoing marathon to develop the ideal COVID-19 vaccine is one of the world’s biggest 

challenges to date and is constantly evolving by the day. There are hundreds of vaccines currently 

being developed worldwide and a few promising trials are briefly described. When starting this 

review, scientists at the Jenner Institute, Oxford University, ChAdOx1 nCoV-19, had just developed 

a genetically altered adenovirus which causes a common cold in chimpanzees that cannot grow in 

humans; now, it is undergoing the final stages of stage III clinical trials (ClinicalTrials.gov Identifier 

NCT04324606). The ChAdOx1 nCoV-19 vaccine expresses a spiked glycoprotein, which is the protein 

enabling the SARS-CoV-2 to enter human cells via the ACE2 receptor. Hopefully, by recognising this 

spiked protein on the ChAdOx1 nCoV-19 vaccine, the body will develop an immune response and 

help to prevent viral entry into human host cells. However, clinical trials have been questioned due 

to an adverse reaction to the ChAdOx1 nCoV-19 vaccine (AstraZeneca). Recent developments also 
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include “molecular clamp” technology, which clamps the viral glycoprotein spike in shape for 

immune recognition and neutralisation, and clinical trials of this technology commenced in Australia 

on 13 July 2020 [87]. Another promising COVID-19 clinical trial (BRACE, identifier NCT04327206), 

spearheaded by the Australian Murdoch Children’ Research Institute (MCRI) Melbourne, is using 

the bacille Calmette–Guerin (BCG) vaccine. BCG is a vaccine against tuberculosis, not a specific 

COVID-19 vaccine, and aims to boost the host’s innate immune system to reduce the prevalence and 

severity of SARS-CoV-2 infectivity. The antiviral drug, remdesivir, a nucleotide analogue that inhibits 

viral RNA polymerases [88], has been shown to reduce COVID-19 symptoms and is currently in 

limited clinical use. An interim analysis of the Adaptive COVID-19 Treatment Trial (ACTT) found 

remdesivir aids recovery 31% faster than a placebo, with approximately 3.6% benefit in survival 

[85,89]; however, there are concerns with liver damage in some patients [90]. Other promising 

vaccines are: mRNA1273 (Moderna therapeutics; Clinical trial identifier, NCT04283461); BNT162b2 

(Pfizer; Clinical trial identifier, NCT04380701); CoronaVac (Sinovac; Clinical trial identifier, 

NCT04383574); Ad5-nCoV (CanSino Biologics; Clinical trial identifier, NCT04313127); Sputnik 

V/Gam-COVID-Vac (The Gamaleya National Center of Epidemiology and Microbiology: Clinical 

trial identifier, NCT04436471). It is envisaged that an antiviral vaccine alone will not beat this disease 

and combinational therapy will still be required for control and prevention.  

4.3. COVID-19 Vaccine Limitations  

Limitations in the development of a COVID-19 vaccine include the number of COVID-19 trial 

vaccine recipients who prove to be resistant to SARS-CoV-2 infection and monitoring of the adverse 

vaccine side effects. Even in the event of a successful vaccine, it is highly likely a vaccine would be 

required every year and would have to be revisited due to the prevalence of viral mutations. A 

vaccine would most likely kerb SARS-CoV-2 spread, meaning there will still be a need to find a drug 

that will reduce the severity of the COVID-19 symptoms. Given the virulent nature of SARS-CoV-2 

and the urgency of curbing the pandemic, fast-track repurposing of known drugs is an attractive 

proposition to stem the pandemic and circumvent any complications associated with the 

development of new vaccines and anti-SARS-CoV-2 drugs [91].  

4.4. Current COVID-19 Treatment  

In 1918, the flu pandemic was controlled by distancing, strict hygiene, quarantine, surveillance 

of communities, and notification of suspected cases [92]. Over 100 years later, in the absence of a 

vaccine, sadly, current prevention of SARS-CoV-2 infections has not changed; rather, these methods 

have been advanced by the technology of contact tracing. Early detection and quarantine of suspected 

and confirmed COVID-19 patients, early diagnosis, and supportive treatment, including oxygen 

therapy and antibacterial drugs to prevent pneumonia, are the most effective measures available. 

Current treatments include the management of symptoms alongside repurposing of such nonspecific 

antiviral agents, corticosteroids, herbal drugs, and the controversial antimalarial drugs [93]. Most 

COVID-19 patients will recover from the disease with standard care; however, immunocompromised 

patients, elderly patients with comorbidities, and vulnerable children (with undefined 

predisposition), are more likely to develop a hyperinflammatory response and need intubation and 

protective mechanical ventilator support to alleviate symptoms [40,49–53,56]. Severely affected 

COVID-19 patients are more likely to die from acute respiratory failure (ARDS), including pulmonary 

oedema or cardiovascular problems, causing acute myocarditis and inflammation of the heart 

muscle. The chronic and more long-term effects of COVID-19 are unknown making treatment 

difficult to manage. 

COVID-19 Treatment—Targeting Vasculature Failure  

As recently highlighted, vasculature failure may be one of the major underlying causes of 

COVID-19 mortality [6,46]. Approximately 40% of COVID-19-related deaths are due to 

cardiovascular complications, supporting that COVID-19 is looking more like a vascular infection in 
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preference to a purely respiratory problem. Multiorgan inflammation, including the lungs, ear, 

kidneys, liver, bowel, and multiple severe blood clots, suggested impeded blood flow and the 

proposition that COVID-19 was also a vasculature sickness. Therefore, the theory is that conventional 

antiviral therapies are insufficient and potentially a drug that stabilises the vascular endothelium 

may be a more effective antiviral therapy for COVID-19 patients. The concept of using antistatins to 

reduce cardiovascular complications, thrombotic events, and inflammation as a protection and to 

mitigate endothelial dysfunction due to SARS-CoV-2 infection is currently being considered [94]. 

However, treatments with statins for COVID-19 patients come with some controversy, one being that 

statins are known to upregulate the ACE2 receptor (the receptor for SARS-CoV-2), therefore the jury 

is still out [94–96].  

Although anti-inflammatory agents would not routinely be recommended for SARS-CoV-2 

patients, the timely intervention of nonspecific anti-inflammatory and immunosuppressive drugs, 

alongside antiviral drugs, oxygen therapy, intubation, and protective mechanical ventilator support, 

has been proposed to alleviate symptoms for severely affected COVID-19 patients to reduce mortality 

[15,97]. Curbing hyperinflammation is especially relevant for COVID-19 patients with pulmonary 

oedema and hyaline membrane formation to prevent ARDS development and ongoing chronic 

problems.  

5. Targeting SphK/S1P/S1PR in Viral Infection and Alleviation of COVID-19 Symptoms  

A proven vaccine or treatment to suppress the severity of COVID-19 disease and reduce 

morbidity and mortality is not available (as discussed in Section 4 above). This multifaceted complex 

disease needs a systemic and systematic approach to block viral replication and alleviate the acute 

and chronic symptoms of COVID-19 disease (as overviewed in Section 3). Sphingolipid signalling 

plays integral roles in viral replication, activation of the immune response, and importantly, in 

maintaining vasculature integrity. Modulation of sphingolipid signalling has demonstrated many 

beneficial effects, including limiting inflammation, selective vascular barrier protection, regulating 

blood coagulation, cardioprotection, and neuroprotection to name a few of the COVID-19 symptoms. 

Hence, selective targeting of SphK-S1P-SIPRs to alleviate the acute and chronic effects of SARS-CoV-

2 infection, as anti-COVID-19 adjunct therapies is worth considering. The complexity of SphK-S1P 

signalling and the seemingly opposing actions of SphK and S1P intra- and extracellular signalling on 

viral infection outcomes are discussed in more detail in this section. FDA-approved sphingolipid-

based drugs are already available for immune-based diseases, and repurposing of these drugs to treat 

COVID-19 disease is on the cards with three FDA-approved sphingolipid-based drugs currently in 

clinical trials (reviewed in more detail in Section 6). 

5.1. The Sphingosine Kinase Rheostat  

Sphingolipids are ubiquitous key components of the lipid membrane and act as signal 

transduction molecules inside and outside of the cell [98–100]. Sphingosine is one of the sphingolipids 

important in these cellular processes. Sphingosine is produced by the action of ceramidase on 

ceramide in the sphingolipid pathway [101]. The phosphorylation of sphingosine to its active form, 

S1P, is catalysed by the SphK isozymes (SphK1 and SphK2) and their isoforms [100–103]. In turn, S1P 

is dephosphorylated by S1P lyase as part of the sphingolipid (SphK/S1P) rheostat. In its 

phosphorylated form, S1P acts as an intra- and extracellular messenger contributing to cellular 

signalling cascades and pathological processes referred to as an “outside–inside” S1P signalling, or 

paracrine/autocrine, mechanism of action [98,99,104]. The isoenzyme SphK1 has also been found to 

be released from the cell and contributes to S1P synthesis in the extracellular environment, as well as 

internal, autocrine activation [104,105]. Signalling by secreted S1P is mediated mainly through a 

family of transmembrane G protein-coupled receptors (GCPRs), designed as EDG isoforms or S1P 

receptors (S1PR1-5) [106–108]. However, both intra- and extracellular S1P action can occur 

independently of its cognate receptors [98,99]. Different S1PRs are expressed on various cell and 

tissue types and each of the S1PRs are coupled to different G-alpha subunits, extending the diversity 

of intracellular signalling processes in normal development and pathogenicity (Figure 1) [109–111]. 
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Of the five S1P receptors (S1PR1-5), S1PR1-3 are expressed predominantly in vascular endothelium, the 

central nervous system (CNS), and the immune system, S1PR4 expression predominates in lymphoid 

tissue, and S1PR5 is found mostly in the CNS, immune natural killer cells and spleen [112–114].  

The pleiotropic nature of S1P-S1PR paracrine signalling enables a wide range of physiological 

functions. Paracrine plasma-S1P in vascular endothelium and the lymphatic system is well 

characterised and known to maintain homeostasis and confer protection against vascular barrier 

dysfunction.  

 

Figure 1. Schematic summary of Sphingosine 1 Phosphate (S1P)/S1PR (G-protein-coupled 

receptor) agonist and antagonist signalling. There are five S1PR (G-protein-coupled receptors) 

differentially expressed depending on cell type. Diversity of intracellular signalling is dependent on 

the differential targeting and binding of S1P to the S1P receptors, which results in internalisation of 

the S1P receptor and Gi-mediated downstream activation of effector pathways. S1P agonists and 

antagonists (described in Table 1) bind to cognate transmembrane S1PRs on the cell and are designed 

to block or activate S1PR action. S1P antagonists are depicted with the symbol. Adapted from 

[102,115]. 
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5.2. SphK-S1P-S1PR1 Autocrine and Paracrine Inflammatory Actions 

SphK/S1P signalling in innate and adaptive immune responses, both in immune trafficking and 

activation, is well-recognised and S1P/S1PRs are important mediators in multiple immune disorders 

[116,117]. Depending on the cellular environment, SphK-S1P action can be either pro- or anti-

inflammatory [116,118]. This conundrum was observed in SphK1 and SphK2 knockout mice, 

whereby some studies demonstrated reduced colonic and synovial inflammation in TNF-induced 

arthritis [119] and others reported normal acute and chronic inflammatory responses [120]. Autocrine 

action of SphKs is believed to play a critical role in the regulation of S1P inflammatory innate and 

adaptive immune responses in inflammatory diseases, and in response to pathogens. There is some 

evidence in the literature that intracellular SphK1 might be considered proinflammatory and SphK2 

considered anti-inflammatory based on SphK1- and SphK-null mice studies [121]. However, as 

demonstrated in SphK1-null and SphK2-null mice, there is some redundancy in function, obscuring 

the distinct functions of the two SphK isozymes [122]. The subcellular localisation of the individual 

SphK isozymes, as well as the locations of the S1PRs, which vary with tissue type, influence S1P 

activity, and the distinct, individual, and common, roles they play in viral pathogenesis, and 

inflammation in particular.  

5.3. Autocrine SphK-S1P Response in Systemic Inflammation and the Immune Response 

The immune response is the body’s main protection against viruses; however, with SARS-CoV-

2 infection, there appears to be a critical point where the immune response alters from a protective 

response to a destructive hyperinflammatory response [123]. Therefore, understanding the 

immunopathogenesis of COVID-19 and blocking hyperinflammation (cytokine storm) is critical for 

effective therapies.  

Cytokine responses are vital to evoke a host defence against pathogens [124]. The first line of 

defence, the innate immune response, needs to be able to detect and block pathogen infectivity. 

Individuals with an effective innate immune response recover faster when infected with a novel 

virus. Inflammatory cytokines such as interferons (IFNs) and tumour necrosis factor alpha (TNF) 

have evolved to mediate viral tropism in both a positive and negative manner at different levels of 

infection [124]. In 1998, Xia and colleagues demonstrated that the pleiotropic cytokine TNF induces 

intracellular SphK1 and activation of S1P to mediate endothelial cell activation, and adhesion 

molecule expression, thereby providing a mechanism for endothelial cell activation during systemic 

inflammation and the immune response [125]. Intracellular activation of SphK1 also associates with 

the TNF-receptor-associated factor 2 (TRAF2) and generates S1P locally, within the cell, mediating 

TNF-stimulated nuclear factor kappa B (NFkB), promoting cell survival and proinflammatory 

mediators [126,127]. SphK1 activation is also important for lipopolysaccharide (LPS)-induced IL6 

production and is implicated in exacerbation of inflammatory responses [128]. Intracellular 

generation of S1P in the cytoplasmic has also been shown to function as an epigenetic coregulator in 

LPS-induced lung inflammation [129]. 

Thus SphK1-S1P has two seemingly opposing modes of action (the yin and yang of SphK1 

action). In response to infection, SphK1 activation and the export of S1P have a positive effect in 

protecting vascular endothelial barrier function (paracrine effect), whilst intracellular SphK1-S1P 

signalling stimulates proinflammatory cytokine release (autocrine effect) in the fight against 

infection. Excess cytokine release, contributed by SphK/S1P signalling, has the potential to contribute 

to detrimental hyperinflammatory responses or the cytokine storm.  

Similarly to SphK1, SphK2 has the same capacity to phosphorylate sphingosine to S1P, therefore 

teasing out and interpreting the distinct downstream functions of the two isozymes has been, and 

still is, difficult. Differing subcellular localisations within the cells and different kinetic properties 

provide distinct, as well as compensatory and redundant, signalling events [102,103]. SphK2, known 

to be located in the nucleus, endoplasmic reticulum, and mitochondria, is mainly associated with 

intracellular S1P activation, whereas SphK1, located mainly in the cytoplasm, is associated with S1P 

“outside–inside” events. SphK2 has been linked to both pro- and anti-inflammatory responses. From 

observations in SphK2-deficient mice (SphK2-/-), SphK2 was believed to be a negative regulator of 
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inflammation [121]. However, in the SphK2-/- mouse, the elevation of SphK1-S1P expression 

compensated for the lack of SphK2, thus blurring the true effect of SphK2 activation [121]. Evidence 

for the proinflammatory effects of SphK2 includes SphK2-S1P regulation of histone acetylation 

(HDAC-1/2) and the transcription of proinflammatory genes in the nucleus, thus promoting the 

inflammatory response [130,131].  

Alternatively, SphK2 has been shown to have an anti-inflammatory response in human 

macrophages, which are the main regulators of inflammation [132]. In the experiments conducted by 

Weigert et al., overexpression of SphK2 suppressed NF-κB transcriptional activity and cytokine 

release [132]. Early degradation of SphK2 was shown to elicit macrophage activation, and late 

upregulation of SphK2 may be involved in terminating inflammatory cytokine production; however, 

it is important to note that these actions were shown to be independent of S1P activity, as 

demonstrated by using a SphK2 kinase-dead mutant [132]. Thus, modulation of S1P activity, either 

through SphK1 or SphK2 or the specific S1P lyase, would be a novel therapeutic approach in 

inflammatory control. 

The use of specific inhibitors or inhibitors that preferentially target SphK1 and/or SphK2, are 

currently in use, as are developments to help delineate the functions of each SphK isozyme (Table 2) 

[133]. In addition, inhibitors of S1P and/or S1PR1-5, are also being evaluated (Figure 1 and Table 1) 

and developed for clinical application in multiple complex diseases including autoimmune diseases, 

chronic inflammatory diseases, diabetes, and multiple organ failure [102,110,134].  

Table 1. Comparative selectivity of the S1P modulators. 

S1P Modulator S1PR Selectivity References 

Agonists 

# FTY720 

*# Fingolimod and phosphorylated fingolimod (Trade 

name: Gilenya) 

S1P1 > S1P5 > S1P4 > S1P3 
[127,135–

139] 

S1P-specific antibody Depletion of S1P [112] 

*# CS-0777 S1P1 > S1P5 > S1P3 [140] 

* Ponesimod (ACT-128800) S1P1 > S1P5 > S1P3 [141] 

*# Ozanimod (RPC1063) S1P1 > S1P5 [141] 

* Ceralifimod (ONO-4641) S1P1>S1P5>S1P4 [142,143] 

* Siponimod (BAF312) S1P1 > S1P5 > S1P4 [144] 

* GSK2018682 S1P1 > S1P5 [141] 

SEW2871 S1P1 [145–147] 

AUY954 S1P1  [148,149]  

* Amiselimod (MT-1303) S1P1, S1P4, S1P5 [141] 

* Etrasimod (APD334) S1P1, S1P4, S1P5 [150] 

* ASP4058 S1P1, S1P5 [151,152] 

* Mocravimod (KRP-203) S1P1>S1P4 [153,154] 

AAL(R) and phosphorylated AAL(R) 

(FTY720 analogue) 

S1PR1, S1PR3, S1PR4 

S1PR5 
[155–157] 

CYM-5442 S1P1 [158,159] 

VPC23153 S1P4 [160,161]  

W-061 S1P1 > S1P5 > S1P4 > S1P3 [142,162]  

* Cenerimod S1P1 [163] 

# CYM-5478  S1P2 [164] 

SB649146  S1P1 [165–167] 

Antagonists 

VPC44116 

VPC23019 

VPC25239 

S1P1 and/or S1P3 
[112] 

[168] 

TASP0277308 S1P1 [169] 
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** Sonepcizumab (Mab) S1P1 [170] 

W146 S1P1 [171,172] 

JTE-013 S1P2 [173,174] 

NIBR-0213 S1P1 [171] 

Note: Adapted from [102]. More in-depth reviews [112,134,175–177]. * Currently in clinical trials, refer 

to [178] for more details. # agonists known to act as functional antagonists. ** Sonepcizumab—

monoclonal antibody (Mab) binds to S1P and prevents S1P/S1PR interaction. 

Table 2. Sphingosine kinase (SphK) inhibitors. 

SphK Inhibitor SphK Selectivity References 

SKi (2-(p-hydroxyanilino)- 4-(p-chlorophenyl)thiazole) 

or SK1-II 
SphK1 and SphK2 [112,179,180] 

Safingol SphK1 and SphK2 [181] 

L-threo-dihydrosphingosine (DHS) SphK1 and SphK2 [182] 

N,N-dimethyl-D-erythro-sphingosine (DMS)  SphK1 and SphK2 [112] 

B-5354c, F-12509A (Natural products) SphK1 and SphK2 [112] 

ABC294735 SphK1 and SphK2 [179] 

Amgen 82 SphK1 and SphK2 [183] 

Amidine-based range of sphingosine analogues SphK1 and SphK2 [112] 

MP-A08 SphK1 and SphK2 [141] 

ST-1083 SphK1 and SphK2 [184] 

S-15183a and S-15183b (Natural product) Not specified [112] 

SKI-V Noncompetitive? [185] 

PF-543 ((R)-(1-(4-((3-methyl-5-

(phenylsulfonylmethyl)phenoxy) 

methyl)benzyl)pyrrolidin-2-yl)methanol), SK1-5c 

(CAY10621), SK1-178, VPC96091 (36a), CB5468139 

SphK1 
[186] 

[180,187] 

SKI-I SphK1 [188–190] 

LCL351 SphK1 [191] 

Compound inhibitors 51 and 54 SphK1 [141,192] 

Balanocarpol SphK1 [193] 

VPC94075 SphK1 [157] 

1-deoxysphinganines 55-21 and 77-7 

(induces proteasomal degradation -SK1) 
SphK1 [194] 

RB-005 SphK1 [195] 

(S)-FTY720 vinylphosphonate SphK1 [196] 

Genzyme SphK1 [183,197] 

Peretinoin (NIK333) SphK1 [198,199] 

ABC294640  SphK2 [112,200] 

SG-12 and SG14 (sphingosine analogue) SphK2 [201] 

SLC5111312 and SLM6041434 SphK2 [202] 

F02 thiourea adduct of sphinganine SphK2 [194] 

VT-ME6 SphK2 [203] 

(2S,3S,4R)-Pachastrissamine SphK2 [204] 

Trans-12a and Trans-12b SphK2 [203] 

SLR080811, SLP120701 SphK2 [180] 

K145 SphK2 [180] 

Adapted from [205]. 

5.4. The S1P/S1PR Paracrine “Outside–Inside” Response  

Here, we refer to the “outside–inside” response specifically related to extracellular S1P binding to 

transmembrane proteins, the S1PRs or G-protein-coupled receptors, on the outer cell surface, acting 
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as an intracellular second messenger, to activate a wave of intracellular signalling events, (Figure 1) 

[178].  

In response to external stimuli, including proinflammatory cytokines, SphK1 translocates to the 

plasma membrane, close to the sites of sphingosine production and localisation, resulting in a 

transitory elevation of S1P expression. S1P is then exported by specific transporters into the 

extracellular environment as an extracellular first messenger [18,206,207]. S1P can, in turn, activate 

cognate receptors (S1PR1-5) on neighbouring cells and self, acting in a paracrine manner [18]. S1P 

binding to S1P receptors differentially regulates the innate immune response, as reviewed extensively 

by Bryan et al. [117]. Plasma S1P is carried in the bloodstream by albumin or the high-density 

lipoprotein (HDL)-apolipoprotein M (ApoM) [208,209]. There is evidential support for albumin-

bound-S1P to exert different physiological responses compared to S1P bound to HDL-ApoM, 

whereby high levels of HDL-ApoM-S1P have a protective role in vascular and endothelial function 

[208,209].  

ApoM carries S1P preferentially to S1PR1,3 and induces S1PR internalisation and Gi downstream 

activation of effector pathways [208,209] (Figure 1). Many of the intracellular second messenger 

signalling pathways remain obscure and somewhat controversial. The most studied S1P outside–

inside S1P receptor pathway is the S1P/S1PR1 pathway signalling. Extracellular S1P complexes with 

S1PR1 forming complexes with ß-arrestin to regulate intracellular effector pathways, including 

tyrosine kinase signalling (extracellular signal-regulated kinase-1/2 [ERK-1/2]), the platelet-derived 

growth factor receptor ß (PDGFRß), and the PKB/mammalian target of rapamycin (mTOR pathway) 

[210]. Thus, S1P/S1PR1 intracellular signalling is believed to control various biological responses 

including growth, differentiation, cell migration and trafficking, and in addition, pathological 

inflammatory responses.  

Development of S1PR agonists and antagonists are of interest to the pharmaceutical industry, 

due to their high potential in the treatment of immune-mediated diseases and cancer. Table 1 

provides a comparative list of the S1P modulators, which are currently in use to understand the 

biology of the S1PRs as well as their usefulness as therapeutics. 

5.5. The Sphingolipid Pathway in Coronavirus Infection and Replication 

Enveloped RNA viruses, such as SARS-CoVs are very much dependent on the host’s lipid 

biosynthesis, and there are a growing number of examples in which the sphingolipid pathway and 

SphK/S1P intracellular signalling has been shown to play an integral role in viral permissiveness and 

replication [101,211–215]. Viruses exploit the host cell metabolism in all stages of their life cycle with 

the sphingolipid rheostat central in this process [101]. Sphingolipids serve as coreceptors during viral 

entry, modulate the virus replication cycle, and influence the antiviral immune response [216]. Cells 

overexpressing SphK1 are more susceptible to viral infection with increased virus replication and 

produce more virus proteins than the control cells. SphK2 colocalise with viral RNA and blocking 

SphK2 significantly impairs viral function [133,183]. 

Viral infection leads to rearrangement of cellular membranes and manipulation of the lipid 

metabolism to support viral entry and virus particle production. Viruses manipulate cellular 

signalling. Examples of viral exploitation of SphK/S1P are influenza [217], measles [213], hepatitis B 

[218], dengue virus [219], the respiratory syncytial virus (RSV), hepatitis B virus (HBV), and hepatitis 

C viruses (HCV) [220].  

The influenza virus is a good example of an enveloped virus taking advantage of the host 

sphingolipid metabolism in the process of replication and to modulate the host defence system. 

Influenza infection increases intracellular SphK1-S1P and SphK-activated signalling pathways such 

as (1) NF-kB and ERK and (2) MAPK and PI3K/AKT, which are necessary for viral protein synthesis, 

the amplification of progeny virus, and nuclear export and transport of viral ribonucleoprotein (RNP) 

complexes to facilitate the production of infectious viral particles, respectively [212,221]. Conversely, 

blocking SphK or S1P lyase, the enzyme that irreversibly converts S1P back to sphingosine; inhibits 

influenza virus proteins; interferes with the ERK-AKT pathway; blocks the activation of Ran-binding 

protein 3 (RanBP3), a cofactor for chromosome region maintenance (CRM1); and inhibits the CRM1-
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mediated nuclear viral export of infectious progeny viruses [211,212]. Thus, inhibition of SphK1 was 

shown to impair the influenza viral life cycle. Similarly, the measles virus (MV), an enveloped RNA 

virus, was also shown to manipulate SphK-S1P signalling by inducing a transient increase in S1P, 

activating the metabolic mTORC1 pathway, and heat shock protein 90 (hsp90), which are vital for 

efficient MV replication [222]. Virus uptake was not affected by the SphK inhibitor, SKI-II, and the 

ceramidase inhibitor, ceranib-2; however, impairment of mTORC1 and HsP90 created a hostile 

environment for viral replication [222]. These experiments were conducted in primary human 

peripheral blood lymphocytes and human B cells [222]. Inhibitors of intracellular SphK1/S1P may 

have a place in adjunct therapy in restricting viral replication and viral load in SARS-CoV-2 in the 

current SARS-CoV-2 pandemic. 

5.6. The S1P/S1PR1 Response to Inflammatory Lung Viral Infections 

Once SARS-CoV-2 enters the chest it can cause inflammation, pneumonia, ARDS, and sepsis 

complications with irreparable damage to the lungs. There is no specific treatment; however, in 

extreme cases, mechanical ventilation is the only option. Extended use of mechanical ventilation in 

the treatment of the more severe COVID-19 respiratory problems is associated with ventilator-

induced lung injury (VILI), characterised by loss of alveolar permeability and the influx of 

inflammatory cytokines contributing to excessive lung stress and increased morbidity [223]. In a 

study by Suryadevara et al., using a well-characterised VILI mouse model, S1P lyase inhibition, thus 

increasing S1P levels, demonstrated a protective role for SphK1 and S1P against VILI [224]. Hence, 

patients suffering from lung damage, from viral hyperinflammation or mechanical injury, may have 

some therapeutic benefit by restoring S1P levels, either by increasing production through SphK1 or 

by preventing the degradation of S1P. 

Previous reports have identified SphK, S1P, and S1P receptors as key modulators of pulmonary 

diseases [225,226], with S1P/S1PR signalling linked to pulmonary inflammation caused by viral 

infections, such as the influenza virus [217,227,228]. The mortality of patients with the H5N1 strain 

of influenza was associated with high pharyngeal virus loads and hypercytokinemia [229]. Within 

the lung, S1PR1 is expressed on the endothelial cells and lymphocytes [230]. In infectious diseases, 

S1PR1 influences recruitment and the trafficking of innate immune cells, macrophage polarisation, 

and plasmacytoid dendritic cell functions [117]. Extracellular S1P binding to S1PR1 also plays a dual 

role in inflammation by the activation of intracellular inflammatory signalling pathways during viral 

infections. During influenza (H1N1) infection, S1PR1 agonists protected mice, and ferrets against 

acute immunopathologic damage in influenza infections [217,227,228]. Using an endothelial cell-

specific inducible S1PR1 knockout mouse line (S1PR1-ECKO), S1PR1 gene ablation resulted in an 

increased inflammatory reaction with the aggravation of lung injury, massive exudation, and highly 

oedematous, with vascular haemorrhaging and a significant increase in inflammatory cell infiltration, 

in response to H1N1 influenza virus challenge [217]. Heightened levels of responsive 

cytokines/chemokines in S1PR1-ECKO were also observed, indicating an aberrant pulmonary 

immune response. In the study by Teijaro et al., S1P/S1PR1 was shown to mediate two signalling 

pathways involved in inflammatory reactions, MAPK and NFkB, in H1N1-infected mice [230]. 

Teijaro et al. demonstrated that S1PR1 agonists suppress cytokines and innate immune cell 

recruitment, thus inhibiting early proinflammatory cytokine expression and innate immune cell 

build-up, which blunts the cytokine storm [230]. Activation of S1PR1 using a S1PR1 agonist, CYM-

5442, was protective against viral challenge in control mice, but not in the S1PR1-ECKO mice, 

highlighting the importance of S1PR1 signalling in the control of viral infection. Thus, selectively 

targeting S1P1 receptors, as central orchestrators of cytokine storm suppression, may prove to be 

promising in alleviating the severity of diseases where amplification of the cytokine storm is a 

significant pathological manifestation [230], such as demonstrated in acute and chronic COVID-19 

patients. As such, S1P analogues have been successful in reducing lung tissue inflammation and 

injury in response to viral diseases in preclinical mouse models [231]. Conversely, as briefly 

mentioned in Section 5.3, intracellular SphK-S1P signalling has been demonstrated to regulate LPS-
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induced inflammation in lung endothelium, whereby LPSs have been very effective in the activation 

of signals to induce an antiviral response [129]. 

5.7. SphK/S1P/S1PRs in Maintaining Vascular Integrity 

Catastrophic vascular endothelial failure is a distinctive feature emerging from severe SARS-

CoV-2 infection, as described in the postmortems of COVID-19 patients [6,232]. Loss of vascular 

endothelial integrity underlies the major severe COVID-19 symptoms of hyperinflammation, 

oedema, and tissue ischaemia. The S1P-S1PR signalling pathway is crucial in maintaining vascular 

endothelial integrity. Abnormalities in this signalling network lead to devastating consequences, 

morbidity, and death. Most of our understanding of the roles of S1P signalling in the vasculature is 

derived from in vivo mouse models and in vitro primary human umbilical vein endothelial cells 

(HUVEC) [17,233–236]. Mice deficient in SphK1 and SphK2 die prematurely from haemorrhages, 

resulting from a dysfunction in vascular development [122]. SphKs play vital roles in vascular 

function both by enabling and secreting the active form of sphingosine (S1P) essential in vascular 

formation (angiogenesis and vasculogenesis), blood pressure homeostasis, barrier protection and 

integrity, and vascular tone (mainly through SIPRs1-3) [110,237,238]. S1P is also important in the 

migration and differentiation of endothelial cells lining the inside wall of the blood vessels. 

Pathophysiology of the endothelial cells plays a vital role in lung disorders, cardiovascular diseases, 

and heart failures, such as impaired coronary development and systemic perfusion, and has a major 

impact on morbidity and death [57]. 

Red blood cells, platelets, fibroblasts, and vascular endothelium are rich sources of plasma-S1P, 

whereby S1P acts as a pleiotropic lipid mediator critical for the regulation of vascular and immune 

cells through activation of its cognate receptors (SIPR1-3) [239]. In addition, lymphatic endothelial cells 

are the main source of lymph secreted S1P [240]. 

In blood and lymph vessels, S1P concentrations are naturally high, and conversely, S1P 

expression is low in cells and tissues due to the higher activity of S1P dephosphorylation enzymes 

(endoplasmic reticulum-resident S1P lyase) inside the cells [240]. High blood S1P levels are essential 

for S1P functions, including blood vessel integrity, and recruitment of inflammatory cells [115]. In 

addition, S1P signalling has a central role in the regulation of lymphocyte trafficking whereby the 

S1P gradient needs to be maintained between the systemic circulation and tissues for egress of newly 

formed T cells from the thymus, and movement of mature T and B cells from secondary lymphoid 

organs [241,242]. 

Plasma-S1P levels are tightly regulated, having a rapid turnover of approximately 15 min. S1P 

is constitutively produced by SphK1 and SphK2 (sphingosine to S1P) and degraded by S1P lyase, 

specific phosphatases (SPP1 and 2), and lysophospholipid phosphatase 2 (LL3) [17,243]. SphK1 and 

SphK2 both contribute to S1P extracellular egress to maintain plasma-S1P levels [244]. Deletion of 

either SphK isozyme, in vivo and in vitro, demonstrate complementary, compensatory, as well as 

distinct functions in maintaining plasma-S1P levels and vascular endothelial integrity [233]. The 

continuous supply of S1P from the endothelial cells contributes significantly to vascular integrity and 

homeostasis, through stabilisation of endothelial adherens junctions and prevention of microvessel 

leakage [17,243]. As previously mentioned, (HDL)-apolipoprotein M (ApoM) and (Albumin-S1P) 

have different functional properties [208,209]. Christoffersen et al. demonstrated circulating plasma-

SIP bound to HDL-Apo M (ApoM) is important for basal endothelial function and vascular protection 

[209]. S1P-signalling was found to be more stable when bound to HDL-ApoM compared to albumin-

S1P. In the absence of HDL-ApoM-S1P, in ApoM-null mice, the endothelial cell barrier function was 

impaired, even in the presence of albumin-S1P [208]. Albumin-S1P, as opposed to HDL-ApoM-S1P, 

exhibits differential effects on the trafficking and stabilisation of S1PR1 signalling [208]. This 

highlights a significant role for HDL-ApoM-S1P in maintaining vascular homeostasis. During 

inflammation, activation of SphK1-dependent S1P, or inflammation-induced cell death releasing 

active SphK2 into the extracellular space, helps to maintain extravascular S1P levels and vascular 

integrity [245]. 
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In addition, secreted S1P can be protective against chronic inflammation, as demonstrated in 

animal models whereby during acute and chronic inflammation plasma-S1P limits disruption of the 

vascular endothelial layer and reduces oedema [246]. Endothelial defects can be rectified in some 

cases by increases in plasma HDL-ApoM-S1P binding to S1PR1 to induce adherens junctions and 

vascular integrity, thereby protecting the vascular barriers. HDL-ApoM-S1P also suppresses 

proinflammatory cytokine signalling and angiogenic signals, such as VEGF growth signalling, to 

maintain vascular integrity [115]. Thus, maintaining plasma-HDL-ApoM-S1P levels may be 

beneficial in suppressing inflammation, sepsis, and other pathological conditions [115]. 

Differential Roles of S1P1-3 Receptors in Vascular Function and Regulation 

Of all the S1P receptors, only S1PR1-3 are expressed in the vascular endothelial cells, S1PR1 being 

the most abundant [247]. S1PR1 is the most well-studied S1P receptor as it is ubiquitously expressed 

in innate immunity, mediating functions in most innate immune cells [117]. The removal of S1PR1 

(Edg1) in mouse models is embryonic-lethal and has some compensatory functions for S1PR2-

3[234,248]. S1PR1 blocks the formation of new blood vessels (a negative regulator of angiogenesis), 

regulates cellular adhesion and motility (strengthens the adherens junctions), and restricts sprouting 

angiogenesis through regulation of the vascular endothelial growth factor 2 (VEGFR2) signalling and 

internalisation [235]. The deletion of S1PR1 (S1PR1 null mice) results in disorganisation of the aorta 

and endothelial hyperplasia, vascular leakage, exaggerated and ectopic endothelial sprouting and 

embryonic lethality [235,247]. Activation of S1PR1 prompts the release and circulation of new blood 

platelets to prevent blood loss during injury, and mice lacking S1PR1 develop severe blood clotting 

(thrombocytopenia) [236]. S1PR2 and S1PR3 expressed in the vascular endothelial, albeit in lower 

amounts compared to S1PR1, have some redundant and compensatory functions, as well as 

independent functions in endothelial development via the Gi signalling pathway (Figure 1) [114]. 

One recognised role of S1PR2 is to oppose the activity of S1PR1. S1PR2 has been shown to repel rather 

than attract cells in response to S1PR1 [249]. The deletion of all three S1P receptors in S1PR1-3 null mice 

demonstrate a more severe vascular phenotype than S1PR1 null. Individual S1PR2-null, or S1PR3-null, 

demonstrate no overt adverse phenotype; however, double-null S1PR2 and S1PR3 show partial 

embryonic lethality and vascular development [114]. 

Further studies characterising the three S1P receptors (S1PR1-3) functions demonstrate 

differential roles for the receptors in homeostasis and disease. As reported by Zhao et al., the 

inhibition of S1P lyase increased S1P levels in lung tissue and bronchoalveolar lavage fluids, resulted 

in reduced lung injury, by stemming alveolar flooding, and inflammation, providing some 

endothelial barrier protection [250]. Therefore, injection of the S1P lyase inhibitor to maintain S1P 

levels in the blood has been suggested as a potential therapy to maintain vascular endothelial barrier 

function. However, the full story proves to be not so simple. This barrier-protective effect was only 

demonstrated by S1P binding to S1PR1, not S1PR2 or S1PR3 [17]. When S1PR2 and S1PR3 were activated 

by S1P, disruption was observed in the alveolar and vascular barriers, with increased permeability, 

and conversely, blocking these receptors was found to be beneficial [251,252]. S1P receptor agonists 

and antagonists have been developed to block one or more of the S1PR receptors (Figure 1). 

5.8. SphK/S1P/S1PR1 Role in Thrombosis 

One of the unusual and life-threatening side effects in COVID-19 patients is unusual blood 

clotting, believed to occur as a direct action of the virus on the arteries themselves, resulting in 

uncommon strokes in younger patients, pulmonary embolisms, immune complications, and 

multiorgan failure [10]. The commonly used blood thinners for the dissemination of blood clots are 

not reliable and young and old patients are dying [10]. As early as 1957, sphingosine was shown to 

be associated with the prevention of blood clot formation [253]. Blood platelets are the body’s natural 

defence to prevent excessive bleeding in the event of blood vessel damage, are involved in vascular 

wall repair, and are likely key effector cells in immune and inflammation response to infection [254]. 

Conversely, blood platelets are heavily involved in the process of arterial thrombosis [243]. Platelets 

express large amounts of SphK which produce and secrete abundant amounts of S1P when activated 
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[243]. They lack the S1P lyase enzyme, which degrades S1P; therefore, platelets can store a ready 

source of S1P in response to platelet activation [243]. 

S1P/S1PR1 activation is associated with the haemostasis-related mechanisms of the coagulation 

system [255]. One of the many proposed roles of S1P in the blood, through its activation of S1PR1, is 

a master regulator of efficient thrombopoiesis, as demonstrated in mice where severe 

thrombocytopenia was observed in a mouse model lacking S1PR1, and activation of the S1P/ S1PR1 

signalling promoted the release of new platelets into the bloodstream [236]. Biological effects of S1P 

release in the vasculature include the prevention of platelet aggregation, and thrombosis-related 

vascular diseases [255,256]. Upon vascular injury, thrombus formation and stabilisation require 

persistent platelet recruitment and activation. S1P-secretion from human platelets is stimulated by 

thrombin (thrombin induces SphK expression to produce S1P), S1P in turn, activates S1PR1 and Gi-

dependent activation of Rac-1 signalling, via cross-talk with endothelial protein C receptor, and one 

of the beneficial consequences of this later action is to limit and counteract thrombin-induced 

endothelial damage [257]. Thus, thrombin both enhances endothelial generation of S1P and also 

limits its own action through differential regulation of S1P/S1PR signalling pathways. The integrity 

of thrombus formation was shown to be dependent on SphK2 activation of S1P in a mouse model, 

where deficiency in SphK2 resulted in defective platelet aggregation and arterial thrombosis [258]. 

5.9. SphK/S1P/S1PR and Sepsis 

Potentially life-threatening sepsis is a major complication in COVID-19 patients. Sepsis is 

characterised by a hyperinflammatory systemic response, reducing the body’s ability to deal with 

opportunistic bacterial infection in the bloodstream, and triggering changes that can damage multiple 

organ systems. Sepsis-related mortality is linked to endothelial dysfunction and microvascular 

thrombosis underlying multiple organ failure. Although we have a limited understanding of the 

connection between S1P and sepsis, serum levels of S1P, especially HDL-ApoM-S1P are 

compromised in septic patients and are inversely associated with sepsis disease severity 

[254,259,260]. Sepsis is also associated with increased S1PR2, whereby S1PR2 positivity is associated 

with increased severity of sepsis, and deficiency of S1PR2 in a sepsis mouse model improved bacterial 

clearance and survival [261]. S1PR2 also modulates endotoxin-induced inflammation in the 

endothelium [259]. In experimental sepsis in mice, impaired function of the heart was improved by 

administration of FTY720, or by deletion of SphK2, which in both cases resulted in increased serum-

S1P levels, and preservation of cardiac function [260]. S1P is a potent regulator of endothelial 

integrity; therefore, a reduction in the levels of S1P may contribute to sepsis-induced organ failure by 

promoting capillary leakage and impaired tissue perfusion contributing to opportunistic bacterial 

invasion and colonisation. 

5.10. SphK/S1P/S1PR and Cardioprotection. 

Long-term or permanent heart damage is one of the extreme symptoms of COVID-19. There is 

a broad consensus that S1P signalling plays a critical role in cardioprotection, by maintaining cardiac 

cell survival and function [262,263]. Receptors for S1P are present in cardiac vascular endothelial and 

smooth muscle cells, as well as cardiac fibroblasts [262,263]. The S1P receptors are involved in the 

remodelling, differentiation, and proliferation of cardiac fibroblasts (mainly S1PR3) [262]. S1PR 

knockout studies in mice strongly suggest that both S1PR2 and S1PR3 mediate cardioprotection from 

ischaemia/reperfusion injury in vivo [262]. Conversely, significant increases in cardiac S1P, SphK1 

and S1PR1 are observed in postmyocardial infarction (MI) associated with the proinflammatory 

response, and inhibition of this inflammatory pathway may benefit patients with MI [263]. 

5.11. SphK/S1P in Neuroinflammation and Neurodegeneration 

Thromboembolic events are becoming frequently observed characteristics of COVID-19, with 

young people presenting with cerebral venous system thrombosis [64,65]. SphK/S1P regulates all the 

different brain cell populations and is involved in most fundamental cell processes, including neural 
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development and survival. The role of SphK/S1P in the brain is complex and has been likened to a 

“double-edged sword” in the brain [264]. SphK/S1P mediate vital signalling pathways involved in 

the infiltration of peripheral immune cells in the CNS during neuroinflammation; however, the 

protective immune response can quickly change into chronic neuroinflammation and can lead to 

neurodegeneration, impaired cognition, and synaptic losses [265,266]. S1PR1 and S1PR2 are expressed 

in the blood vessels of the brain where they mediate distinguishable cellular responses during an 

acute ischaemic event. S1PR1 activation protects blood–brain-barrier (BBB) function and attenuates 

inflammation whilst most studies suggest that S1PR2 promotes BBB loss of integrity and elicits a 

proinflammatory phenotype [267]. Thus, selective S1PR1 ligands, particularly at the cerebrovascular 

level, are gaining an appreciation as effective modulators of stroke pathogenesis due to the ability to 

preserve BBB integrity and to attenuate the development of vascular inflammation [268]. The recent 

probable association between SARS-CoV-2 infection and Parkinson’s disease has triggered the notion 

that COVID-19 patients have an increased risk of developing Parkinson’s disease later in life and 

possibly other long-term neurological disorders [67]. Recently reported, a positive neuroprotective 

effect of S1PR modulators (SEW2871 and FTY720, Table 1) in a preclinical mouse model, 

demonstrated reduced neuroinflammation and prevention of Parkinson’s disease symptoms [147], 

further supporting ongoing S1P-therapy in the prevention of chronic COVID-19 neurological 

dysfunction. 

6. Repurposing Anti-SphK-S1P-S1PR Compounds in Curtailing COVID-19 Symptoms 

6.1. FTY720 in the Prevention of SARS-CoV-2 Infection and Therapy for COVID-19 Patients 

The repositioning or repurposing of existing drugs to help reduce COVID-19 symptoms helps 

to fast-track therapy. Toxicity studies, safe drug dosage, routes of administration, and adverse 

outcomes are currently available for many drugs. Fingolimod (FTY720, Gilenya®, Novartis-2-amino-

2-[2-(4-octylphenyl)ethyl]propane-1,3-(diol)), a first-in-class S1PR immunomodulator, used 

successfully in multiple sclerosis, is now in clinical trials as a potential adjuvant therapy for COVID-

19 patients (Clinicaltrials.gov Identifier: NCT04280588). As one of the best-characterised 

sphingolipid-based drugs, it is a prime candidate for COVID-19 treatment. Many of the studies 

supporting the use of this candidate modulator are based on both in vitro (cell culture) and in vivo 

(animal, and a vast accumulation of human clinical data) data. As with most drugs, the outcome is 

very much dependent on the dosage and timing of drug administration. 

FTY720 is a sphingosine analogue and, like sphingosine, requires SphK for phosphorylation and 

activation, and is, therefore, classified as a prodrug. FTY720 acts as a substrate and is transformed 

into its active state, FTY720-P, by the action of SphK (SphK1 and SphK2) isozymes, with a much 

higher affinity for SphK2 (30-fold more efficient), compared to SphK1 [269]. Activated FTY720 

(FTY720-P) acts paradoxically as both an agonist and antagonist. FTY720 is an unselected agonist for 

four of the five G-protein-coupled-S1PRs, namely S1PR1,3,4,5 (Figure 1). However, unlike the naturally 

produced S1P, FTY720-P also acts as a selective antagonist for S1PR1 by specifically inducing S1PR1 

internalisation and downregulation [266,270]. In this way, the intracellular S1PR1-mediated signalling 

pathway is desensitised (see Section 5.4, The S1P/S1PR Paracrine “Outside–Inside” Response). 

One of the potential positive effects of FTY720-P antagonism of S1PR1 in COVID-19 therapy is 

the curbing of hyperinflammation or “the cytokine storm”. Lymphocytes normally circulate between 

the blood (high levels of S1P) and the lymphoid tissue (low levels of S1P) as regulated through the 

S1P gradient whereby S1P binds to S1PR1,3,4,5 receptors on the lymphocytes signalling them to travel 

to the lymph [115]. The binding of FTY720-P to the S1PR1 on lymphocytes leads first to activation and 

then subsequent S1PR1 downregulation (i.e., by the internalisation and degradation of S1PR1 on the 

lymphocytes), thus preventing aggressive infiltration of lymphocytes from the lymphoid tissue into 

the blood, bringing about a state of peripheral lymphopenia, and limiting the inflammatory response 

[115]. Thus, FTY720-P can limit blood vessel damage caused by excessive inflammation. 

S1P/S1PR1-3 is essential for maintaining vascular integrity. Similarly, FTY720, and a selective 

S1PR1 agonist, AUY954 (Figure 1, Table 1), have been shown to reduce microvascular permeability as 
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well as inflammation in animal models [246]. Conversely, two specific S1PR1 antagonists, W146 and 

NIBR-0213 (Figure 1 and Table 1), demonstrated loss of capillary integrity in animal models [146,271]. 

These combined results essentially imply that the agonist effect of the S1P-mimetics may be 

useful in suppressing damage to blood vessels and preserving blood vessel barrier integrity, whilst 

the antagonist effects of FTY720-P reduce inflammation by reducing aggressive lymphocyte egress. 

In contrast to most immunosuppressants, FTY720 sequestration of lymphocytes in the lymphoid 

tissue appears not to cause cytotoxicity [178,272]. 

The S1P1 receptors have been likened to the central orchestrators of cytokine storm suppression 

in pathogenesis [230], therefore, a secondary effect of FTY720 is through desensitisation of 

intracellular S1PR pathways by acting as a functional antagonist, thus acting to deactivate the 

potential inflammatory S1PR intracellular pathways [217,227,228] (also see Section 3.1, The S1P/S1PR 

Paracrine “Outside–Inside” Response). 

The FTY720 prodrug can pass through the blood–brain barrier (BBB) and exert several direct 

effects in the CNS, from neuroprotection to reduction of neuroinflammation. As an approved FDA-

drug, FTY720 may help in early intervention and prevention of the more severe neurological side 

effects of COVID-19. One such example is FTY720-P inhibition of aggressive egress of lymphocytes 

to the CNS by lymphocyte confinement in the lymphoid tissues, thus limiting neuroinflammation 

[266] (see Section 5.11 SphK/S1P in Neuroinflammation and Neurodegeneration). A second example 

is the potential of reduction of blood clots in the brain underlying the causation of strokes in younger 

COVID-19 patients [10]. 

Approximately 20% of COVID-19 patients experience cardiovascular symptoms, with 

approximately 40% of deaths related to cardiovascular complications [14,40,49,50,51]. As mentioned, 

maintenance of S1P/S1PR signalling plays an important and protective role against cardiovascular 

endothelial dysfunction; however, overstimulation of the inflammatory response by S1P/S1PR1 is also 

a major factor in heart disease and heart failure. Blocking the S1P/S1PR1-mediated inflammatory 

response by FTY720 administration has been shown to exhibit positive effects against heart disease 

[57], and, as observed in ischaemia and hypoxic injury mouse models, it has been proven to be 

protective against acute and chronic myocardial injury [263,273]. 

Other potential beneficial effects of FTY720 agonism on S1PR1,3,4,5 in COVID-19 treatment include 

the regulation of thrombopoiesis through S1PR4 activation. Severe SARS-CoV-2 infections can lead 

to sepsis, a fatal side effect in COVID-19 patients, mediated by inflammation-elicited endothelial 

barrier leakage and cytokine release; however, this can be alleviated by FTY720 [274]. 

On a note of caution, prolonged treatment has been shown to compromise barrier function, 

increasing permeability and vasculature leakage in cell and mouse models [115,275–277]. 

Controversially, FTY720 increases lymphopenia, which is associated with a poorer prognosis and 

death, especially in younger COVID-19 patients [278,279]. Nonetheless, the beneficial effects of 

FTY720 on hyperinflammation, vascular integrity, thrombosis, sepsis, and heart disease associated 

with severe COVID-19, as discussed in this review, could alleviate the worsening symptoms 

associated with these severe COVID-19 cases. Hence, timing and dosage of FTY720 are important, 

“too much of a good thing can turn bad”. 

Whilst FTY720 is a prime candidate for COVID-19 adjunct therapy, due to its proven safety and 

efficacy as an immunomodulator, there are potential detriments with continuous use and overuse of 

this drug. New generations of S1PR agonist and antagonist drugs have/are being developed and 

some are currently undergoing clinical trials. An updated list can be viewed in Table 1 

[115,133,141,183,280]. 

In the past two years, two additional selective S1PR immunomodulatory drugs have been FDA-

approved. In March 2019, Mayzent (Siponimod, Novartis) was approved, and in March 2020, 

Ozanimod. Both drugs are agonists for S1PR1 and S1PR5. 

6.2. Ozanimod—A safer COVID-19 Alternative S1PR Therapy 

Recently, Ozanimod (RPC1063, molecular formula, C23H24N4O3, trade name Zeposia®), a more 

specific S1PR agonist drug, targeting two SIP receptors (S1PR1,5) [281], has received FDA approval 
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(March 2020) as an immune modulator [282]. Similarly to FTY720, binding of Ozanimod to S1PR1,5 

leads to the internalisation and degradation of the S1P receptors and a reduction in circulating 

lymphocytes. Unlike FTY720-P, Ozanimod does not bind and activate S1PR3 [281]. This may confer a 

drug advantage in the clinic, as Ozanimod does not demonstrate cardiac conduction abnormalities 

or hypertension, and there was no evidence of fibrosis observed in the clinical use of FTY720 [281]. 

Having a much shorter half-life, Ozanimod (t1/2 is 19 h in humans), compared to FTY720 (t1/2 is 24–25 

h in humans), and with a much shorter lymphocyte recovery (Ozanimod = three days compared to 

FTY720 = 4–8 weeks), confers some advantages including flexibility of treatment with other immune 

modulators if complications do occur with S1PR-targeted treatment. Two examples where the rapid 

cessation of immune modulators was imperative are provided. The first is the occurrence of 

opportunistic infections, where treatment with FTY720 was linked to several cases of opportunistic 

fungal infections where, if left untreated, could have caused severe fungal meningitis, as cited [117]. 

In a second example S1PR1 inhibitors are known teratogens and, therefore, cannot be used during 

pregnancy. In this case, the washout period is much longer with FTY720 compared to Ozanimod 

[281]. 

6.3. Opaganib—A SphK2 Specific Inhibitor in COVID-19 Therapy 

Recently, Opaganib (ABC294640, 3-(4-chlorophenyl)-adamantane-1-carboxylic acid (pyridin-4-

ylmethyl) amide, or trade name Yeliva®) [133,196], a specific SphK2 inhibitor, has been listed to start 

global randomised phase II/III clinical trials for COVID-19 patients (ClinicalTrials.gov Identifier: 

NCT04467840), and a United States randomised phase II study (ClinicalTrials.gov Identifier: 

NCT04414618). Opaganib is a sphingosine mimetic, which competitively binds SphK2, thus 

preventing phosphorylation of sphingosine to its active form S1P and, therefore, effectively reducing 

intracellular levels of S1P and reducing intracellular signalling-induced inflammatory pathways 

[200]. 

SphK2 is a critical host factor in viral replication, supporting a conceivable role in the replication-

transcriptional complex of positive single-stranded RNA viruses. Therefore, blocking SphK2 using 

Opaganib reduces both viral reproduction and minimises the potential risk of resistance due to viral 

mutation development [200]. 

An intriguing attribute of SphK2 is that blocking SphK2 leads to increased circulating S1P levels 

in mice (three times the normal level), whereas blocking SphK1 results in decreased levels of 

circulating S1P (approximately half the normal level) [133]. As circulating S1P is important in 

vascular integrity, there is some validity in opanganib therapy, on the one hand, reducing the viral 

load by inhibiting viral replication and pathological inflammation, whilst, on the other hand, 

increasing S1P production through SphK1 activation to maintain vascular endothelial integrity. 

One of the perceived negative downsides of using SphK2 inhibitors is that SphK2 deletion 

increases inflammatory cytokine production and macrophage activation [132], which may contribute 

to detrimental side effects for COVID-19 patients. However, in preclinical studies, Opaganib has 

demonstrated anti-inflammatory properties against pathological inflammation, decreased fatality in 

an influenza virus mouse model, and improved Pseudomonas aeruginosa-induced lung injury [214]. In 

a recently completed clinical trial for “compassionate use” (ClinicalTrials.gov Identifier: 

NCT04435106), in a small cohort of Opaganib treated COVID-19 patients with severe symptoms, the 

drug was safe and well tolerated, with clinical and laboratory improvement in all patients. 

7. Concluding Remarks 

Effective innate and adaptive inflammatory immune responses are important in curtailing virus 

infection. When the virus has invaded the host cell, it is difficult to eradicate and the body’s immune 

system may overreact (i.e., a hyperinflammatory response), as demonstrated effectively in the case 

of many COVID-19 patients. A unifying theme underlying most of the COVID-19 symptoms is the 

loss of vascular integrity affecting the major organs of the body, including the lungs, heart, and brain. 

Specific targeting of components of the SphK/S1P/S1PRs signalling pathway can subvert many of the 

severe complications of COVID-19, including (a) reduction of the hyperinflammatory response 
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(cytokine storm) whilst preserving vascular endothelial integrity, which is seemingly a major route 

of COVID-19 maliciousness in multiorgan failure (specifically protection against pulmonary, 

neurological and cardiovascular symptoms), (b) reduction/prevention of blood disorders such as 

thrombotic complications (clot formation), (c) attenuation of sepsis and importantly, (d) overall 

averting rapid clinical COVID-19 patient deterioration. 

We started writing this review based on a question, “can modulating the SphK-S1P-S1PR 

pathway reduce severe COVID-19 disease symptoms?” From historical and contemporary data on 

the involvement of the sphingolipid pathway in viral infections, inflammation, and vascular integrity 

there is strong support demonstrating a role for modulating components of the SphK-S1P-S1PR in 

COVID-19 disease management. The immunomodulatory properties of the sphingolipids produce a 

plethora of beneficial effects, not only in curtailing SARS-CoV-2 infectivity and treatment of COVID-

19, but also for the ongoing management of the acute and chronic severe side effects of COVID-19. 

To date, three S1P-based FDA-approved drugs, FTY720, Ozanimod, and Opaganib are being 

repurposed for COVID-19 treatment and are currently in clinical trials highlighting the potential for 

targeting the SphK-S1P-S1PRs to reduce COVID-19 symptoms. However, more specific agonist and 

antagonist drugs targeted to individual and multiple S1P receptors have been developed (Tables 1 

and 2), firstly, to explore the complex biological signalling and function of the SphK isozymes and 

the five S1PRs (G-protein-coupled transmembrane receptors), and, secondly, to assess their potential 

as therapeutics. S1P-S1PR targeting, alongside antiviral treatment, may prove to be beneficial in the 

prevention of COVID-19 deaths and the control of future coronavirus infections. 
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