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Abstract Location-based services (LBS) have become an important part of people’s daily
life. However, while providing great convenience for mobile users, LBS result in a seri-
ous problem on personal privacy, i.e., location privacy and query privacy. However, existing
privacy methods for LBS generally take into consideration only location privacy or query
privacy, without considering the problem of protecting both of them simultaneously. In this
paper, we propose to construct a group of dummy query sequences, to cover up the query
locations and query attributes of mobile users and thus protect users’ privacy in LBS. First,
we present a client-based framework for user privacy protection in LBS, which requires not
only no change to the existing LBS algorithm on the server-side, but also no compromise
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2 Zongda Wu et al.

to the accuracy of a LBS query. Second, based on the framework, we introduce a privacy
model to formulate the constraints that ideal dummy query sequences should satisfy: (1)
the similarity of feature distribution, which measures the effectiveness of the dummy query
sequences to hide a true user query sequence; and (2) the exposure degree of user privacy,
which measures the effectiveness of the dummy query sequences to cover up the location
privacy and query privacy of a mobile user. Finally, we present an implementation algorithm
to well meet the privacy model. Besides, both theoretical analysis and experimental evalua-
tion demonstrate the effectiveness of our proposed approach, which show that the location
privacy and attribute privacy behind LBS queries can be effectively protected by the dummy
queries generated by our approach.

Keywords Location-based service · Location privacy · Query privacy · Privacy protection

1 Introduction

With advances in wireless communication and mobile positioning technologies, more and
more devices have been equipped with GPS receivers, which makes location-based services
(LBS) become increasingly popular. LBS refers to a variety of information services provid-
ed for mobile users based on the geographical location information supplied by the GPS
receivers [1,2]. For example, mobile users can send a LBS query to the server to obtain the
LBS result related to some point of interests (such as Hotel, Bar and Hospital). At present,
LBS has become one of the most promising mobile services, and have achieved great suc-
cess in the domains of society and business [2]. It has been reported that the revenue of LBS
has reached an annual global total of more than ten billion dollars. However, while pro-
viding great convenience for users, LBS result in people’s serious concerns on privacy [2,
3], specifically, including location privacy and query privacy. This is because for obtaining
LBS, mobile users have to report not only their current geographical locations (i.e., query
locations), but also the query content that they want to know (i.e., query attributes). Obvi-
ously, the information is private, based on which an attacker can easily infer not only users’
trajectory (which belongs to the category of location privacy), but also users’ sensitive pref-
erences (e.g., sensitive point of interests, which belongs to the category of query privacy).
It will result in a serious threat to the privacy of a mobile user if the private information
is released to an untrusted third party (e.g., the LBS server). The problem of user privacy
protection in LBS is causing people’s increasingly extensive concerns, i.e., it is becoming
an increasingly important problem how to protect the privacy of a user in LBS [3,4].

1.1 Motivations

A number of methods have been proposed to protect user privacy in LBS, including pseudonym
methods, obfuscation methods, encryption methods and dummy methods. (1) In a pseudonym
method, the user identification in a query is replaced with a temporal pseudonym, to discon-
nect the user identity from the query [5]. However, it is difficult for this kind of method
to resist the threat from data mining, i.e., the user identity can be mined from the position
information of a query [6]. Also, it cannot be applied to the system that requires identity au-
thentication [2]. (2) The basic idea of obfuscation methods is to generalize (using a cloaking
region [16]) or perturb (using noises [7]) the location information in a LBS query, to make it
difficult for an attacker to identify the user precise location. However, since each query has
been modified before being sent to the server, sometimes, this will result in a compromise to
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Protecting Location Privacy and Query Privacy in Location-Based Services 3

the query accuracy [2]. Besides, the implementation of a pseudonym or obfuscation method
is generally dependent on a third-party server, resulting in a bottleneck on efficiency and
privacy [2,6]. (3) The basic idea of encryption methods is to encrypt each user query, so as
to make it invisible to the untrusted server, and thus achieve the goal of privacy protection
(such as the privacy protection based on private information retrieval) [8]. However, this
kind of method generally requires the change to the existing LBS algorithm on the server,
and the support of additional hardware and algorithms, thereby, decreasing its actual usabil-
ity in practice. (4) In a dummy-based method, each user query is submitted together with a
group of dummy queries to the server to make it difficult for the untrusted server to infer the
location or attribute related to the user query [9,32]. However, the effectiveness of this kind
of method depends on the quality of dummy query construction, i.e., it is easily threatened
by inference attacks based on query feature distribution [2]. In addition, the existing meth-
ods generally consider only location privacy [9] or query privacy [32], without considering
both as a whole (e.g., the semantic association between the location and the attribute from
the same query), as a result, decreasing the quality of dummy query construction.

From the above, we conclude that an approach that can well protect users’ privacy
should meet the following requirements. (1) Ensuring the privacy behind each LBS query
sequence. Specifically, it should be difficult for an attacker (regardless of the prior knowl-
edge that the attacker has mastered) to infer user’s exact locations from the query sequence
(to protect location privacy), and user’s sensitive attributes (to protect query privacy). (2)
Ensuring the accuracy of each LBS query, i.e., the query result that a user obtains finally
should be the same before and after the privacy protection is introduced. (3) Ensuring the
usability of an existing LBS, i.e., the privacy protection should not require the change to
the LBS algorithm on the server-side and the support of additional hardware, and it should
not lead to a significant impact on the execution efficiency of a LBS query. Actually, for
the requirements (2) and (3), the privacy protection approach is required to be transparent to
both the mobile users of the client-side and the LBS algorithm of the server-side.

1.2 Contributions

This paper aims to propose an effective approach to simultaneously protect users’ location
privacy and query privacy in LBS, which should be able to address all the problems men-
tioned above, i.e., compared to existing methods, the main advantage of our approach is that
under the constraint of not changing the LBS algorithm, it can not only ensure the accuracy
and efficiency of each user query, but also prevent the untrusted server from identifying the
user locations and sensitive attributes from the query sequences. Specifically, the contribu-
tions of this paper are threefold.

Firstly, based on a client-based architecture, we present a system framework of LBS
privacy protection. In the framework, for each query issued by a mobile user, the client will
construct a group of dummy queries and then submits them together with the user query to
the server, making it difficult for the untrusted server to identify the user query. Next, the
client will filter out the LBS results that correspond to the dummy queries, and only return
the result corresponding to the user query to the user, as a result, ensuring the accuracy of
the result that the user obtains finally.

Secondly, based on the system framework, we introduce a privacy model to formulate
the requirements that ideal dummy query sequences should meet, i.e., which should not
only have similar feature distributions with the user query sequence, but also be able to
cover up the query privacy and location privacy behind the user query sequence. The feature
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4 Zongda Wu et al.

similarity makes it difficult for an attacker to identify the user query sequence from all the
query sequences. The cover-up of the dummy query sequences to the query privacy and
location privacy would reduce the exposure degree of user privacy on the untrusted server-
side.

Finally, based on the above system framework and privacy model, we implement an
algorithm that runs on a trusted client. The algorithm can well meet the requirements of user
privacy protection in LBS, i.e., which can construct a group of dummy query sequences
that well meet the privacy model. In addition, we have demonstrated the effectiveness of the
privacy model and its implementation algorithm by theoretical analysis and experimental
evaluation.

The rest of this paper is organized as follows. Section 2 briefly reviews related work.
Section 3 presents a system framework for user privacy protection in LBS, as well as a relat-
ed attack model. Section 4 formulates a privacy model for LBS, presents an implementation
algorithm to meet the privacy model, and analyzes the effectiveness of the privacy model
theoretically. Section 5 evaluates the privacy model and its implementation algorithm by
experiments. Finally, we conclude this paper in Section 6.

2 Related Work

In this section, we briefly review and analyze some privacy protection methods related to
LBS, specifically, including pseudonym methods (Section 2.1), obfuscation methods (Sec-
tion 2.2), encryption methods (Section 2.3) and dummy-based methods (Section 2.4).

2.1 Pseudonym Methods

The basic idea of pseudonym methods is to replace the user identification in a query with
a temporal pseudonym, to disconnect the user identity from the query [5]. A pseudonym
method is generally based on a centralized architecture, i.e., using a trusted third-party
server to publish, change and destroy the pseudonyms. However, as pointed out in [6], a
pseudonym method does not change the location and attribute information contained in a
user query, making it still likely for an attacker to infer the user identity from the query
content itself, i.e., the user privacy in LBS cannot be protected well by pseudonyms. In
[5], a mixing zone, which is a particular area where the pseudonyms of multiple users are
changed centrally, and the users are not allowed to submit queries or receive information, is
used to improve the effectiveness of pseudonyms, so as to make it more difficult to trace the
users. In [11,12], a mixing zone model with k-anonymity (where the number of users who
change their pseudonyms simultaneously is not less than k) is proposed, which can improve
the security of location privacy to a certain degree, due to considering the staying time of
each mobile user in a mixing zone. In [13], the authors design a delay-tolerant mixing zone,
where the time and location in a user query are replaced by a time interval and a location
area, respectively, so as to increase the probability of successfully constructing a mixing
zone. However, the service quality will be reduced, since users are not allowed to communi-
cate with servers in a mixing zone. To this end, a multiple-mixing-zone model are proposed
[14,15], to obtain a good balance between privacy protection and service quality. In sum-
mary, for a pseudonym method, it is difficult to resist the threat from data mining (i.e., the
user identity can be mined from the position information), and also difficult to be applied to
the systems that require identity authentication. In addition, for a pseudonym method, the
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Protecting Location Privacy and Query Privacy in Location-Based Services 5

k-anonymity [11,12] (i.e., the number of users in a mixing zone) is often used as the metrics
to evaluate the degree of location privacy protection.

2.2 Obfuscation Methods

The basic idea of obfuscation methods is to generalize or perturb the location information
in a LBS query, to make it difficult for an attacker to identify the user location. The location
generalization refers to replacing the user location with a generalized location area (called
a cloaking region), generally, which is constructed by a trusted third-party combined with
k-anonymity [2]. Some early methods [16] cannot ensure a predetermined privacy level for
continuous queries. Recent studies try to solve the issue. For example, in [17], the relevance
between users’ moving locations is used to construct cloaking regions; and in [18], a location
generalization method is proposed to guard against the exposure of the destination of user’s
moving trajectory. Besides, the privacy demands of mobile users are dynamic and diverse,
so in the construction of cloaking regions, we should consider users’ personalized demands.
In [19], the location privacy level can be adjusted self-adaptively within a certain range,
to meet users’ personalized demands of location privacy in continuous queries. In [20], a
user-centered location service framework is proposed, so as to balance the privacy level
and utility of a mobile user in advance. However, most of the obfuscation methods depend
on a third-party server, as a result, reducing the practicability of the methods [6]. For this
kind of methods, the k-anonymity (e.g., the number of locations in a cloaking region), the
location entropy (e.g., the area of a cloaking region) [2] or the expected estimation error
(e.g., the error between adversary estimation locations and user actual locations) [34] is
often used as the metrics to evaluate location privacy. The location perturbation refers to
intentionally adding some errors (or noises) into each query in a controllable fashion [7]. In
order to provide a better privacy guarantee, in recent studies, the differential privacy model
is used to control the quantity of errors being added into continuous queries, where the geo-
indistinguishability model [21] and its derivative models [22,23] are the most representative.

2.3 Encryption Methods

The basic idea of encryption methods is to encrypt users’ queries to make them invisible to
the untrusted server-side, to achieve the goal of privacy protection. An encryption method
generally will not reveal any user location information under the precondition of ensuring
the usability of LBS, thereby, achieving stricter privacy protection. Specifically, this kind of
techniques can be divided into two categories: privacy protection based on private informa-
tion retrieval (PIR) methods and privacy protection based on cryptographic protocol. The
PIR protocols were first used to safely access outsourced data on a network [24,25], which
allow users to retrieve information from a database, under the precondition that the server
does not know any request from the users. PIR can also be applied to LBS queries, but it
can support limited query modes due to using some complex encryption operations [6]. To
this end, PIR-based methods generally need to design the solution for a particular type of
spatial queries. For example, a PIR-based solution is proposed in [24] for nearest neigh-
bor queries; and a PIR-based protocol on top of trusted hardware is designed for k-nearest
neighbor queries. In addition, in [8], a solution focusing on shortest path queries, which are
different with traditional spatial queries, is proposed. However, the PIR protocol is general-
ly developed based on some cryptographic operations with high complexity, so it can only

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

ada
高亮

ada
高亮

ada
高亮

ada
高亮



6 Zongda Wu et al.

support limited LBS data access mode [26]. In a spatial switching method, an encryption
technique (e.g., space filling curves) is used to translate the location and attribute informa-
tion contained in a LBS query into the data in an encryption space, and then evaluate the
query in the encryption space, making that only the user himself can remap the translated
data into the original space [26,27,29]. For example, the location anonymity based on the
Hilbert curve is presented in [29]; and a new space switching method is then proposed to
solve the issues not considered by the Hilbert-based method. However, this kind of meth-
ods requires the change to the existing LBS algorithm on the server-side and the support
of additional hardware and algorithms, consequently, decreasing the actual usability of the
methods [2]. In addition, this kind of methods have no metrics on location privacy, which is
dependent on the security of PIR protocols or translation functions.

2.4 Dummy-based Methods

In dummy-based methods, user queries are submitted together with dummy queries to the
server, so as to make it difficult for the untrusted server to infer the true locations or attributes
of mobile users [9,10]. A dummy method is generally developed on a client-based architec-
ture, independent of a third-party server, resulting in a good usability. However, for a dummy
method, it is important how to ensure the construction quality of dummy queries, because
randomly constructed dummies generally cannot resist inference attacks based on data fea-
ture distributions [2]. To this end, many algorithms are proposed for dummy construction.
In [30], TrackMeNot for the first time proposed to hide each user query among randomly
constructed dummy queries, so as to protect the user query. However, the challenge in the
mechanism, as the authors pointed out, is that the dummy queries can often be ruled out eas-
ily, because they are randomly constructed and meaningless. Based on the assumption that
an attacker has mastered related side information and historical query sequences, the authors
in [9] propose to construct a group of dummy locations that have similar query frequency
feature with user locations, so as to protect user location privacy. In the method, a loca-
tion entropy that is developed based on location frequencies is used as the location privacy
metrics. In addition to location privacy, some researchers also attempt to leverage dummy
queries to protect textual privacy. For example, aiming at text retrieval, in [31], the authors
attempted to improve the quality of dummy queries based on a semantic space derived from
Wikipedia. However, the work takes into account only the textual feature of a single us-
er query, without considering the semantic relevance between users’ current queries and
users’ historical queries, consequently, making it still possible for an attacker of rich prior
knowledge to rule out the dummies. Then, the authors proposed a similar privacy protection
approach for book search service in a digital library [32]. In summary, most of the existing
methods did not fully consider the data distribution characteristics for users’ queries, and
also did not consider the semantic associations between query locations and query attributes
(e.g., it is not appropriate to query subway stations in the countryside), as a result, leading
to a negative impact on the quality of constructed dummy queries, and increasing the expo-
sure risk of user privacy [2]. Although the solution in this paper also belongs to the scope
of dummy-based methods, it considers location privacy and query privacy as a whole, and
constructs dummy queries by fully considering the location features, attribute features and
the association features between locations and attributes, as a result, improving the construc-
tion quality of dummy queries, and then the protection of user’s location privacy and query
privacy.
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Fig. 1 The system framework used by our approach, where the historical query sequences include true user
sequences and dummy sequences generated by the “constructing dummy queries” component.

3 Problem Statement

In this paper, we study an effective approach for the protection of user privacy in LBS,
which can meet the following requirements: (1) ensuring the privacy of each user query
(i.e., location privacy and query privacy); (2) ensuring the accuracy of each query result;
and (3) ensuring the usability of LBS. Below, we present the system model used by our
approach and then the attack model. In LBS, mobile users’ privacy can be divided into
location privacy and query privacy (or called attribute privacy). In Fig. 1, we show the system
framework used by this paper for the protection of user privacy, as well as an example of
how to protect user privacy (where A, B and C denote three locations). From Fig. 1, we see
that the system model consists of an untrusted server-side and many trusted client-sides. The
data processing of the system model can be briefly described as follows.

– Step 1. When each LBS query q0 = (l0, u0) (wherein, l0 and u0 denote a query lo-
cation and a query attribute, respectively) is issued by a user, the “constructing dummy
queries” component running on a client-side constructs a group of dummy LBS queries
q1, q2, ..., qm for q0, with the help of the historical query sequences, after taking into
consideration the requirements of security and efficiency. Then, the dummy queries are
submitted together with the user query to the server-side.

– Step 2. In the client-side, the “filtering query results” component finds out the result r0,
which corresponds to the user query q0, from all the query results r0, r1, r2, ..., rm that
are returned by the LBS algorithm on the server. Then, the component returns r0 to the
user, while discarding the other query results r1, r2, ..., rm.

Note that for a LBS query, timing information is also important (when, where and what
query is sent to the server). In our model, the time associated to each dummy query qi is
set approximately equal to that of its corresponding user query q0. From Fig. 1, we can
see that the system framework can ensure the accuracy of each LBS result that a mobile
user obtains finally, without the change to the existing LBS algorithm and the support of
additional hardware. In the system framework, the privacy protection is transparent to both
the LBS algorithm of the server-side and the mobile users of the client-side. Moreover, in
the system framework, both location privacy and query privacy of mobile users have been
taken into consideration, resulting in that users’ privacy can be better protected.

From Fig. 1, we can also see that the generated dummy queries play an important role
in the framework, i.e., the quality of them is the key to the LBS privacy protection, which
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8 Zongda Wu et al.

should be able to effectively mix up the true query locations and attributes of mobile user-
s. However, randomly generated dummy queries are generally easy to be ruled out by an
attacker who masters rich background knowledge, thus failed to protect user privacy. This
is mainly caused by the following three reasons. (1) The location query sequence (or the
attribute query sequence) from a mobile user has certain regularity. For example, the queries
issued by the same user during a period of time often occur in some fixed location areas (e.g.,
near the house or company of the user), and they are often centered on some fixed attribute
categories (e.g., a foodie user often like to query restaurants). In other words, the user query
sequences generally show regular data feature distributions. (2) There exists some semantic
association between the location and attribute from the same query (e.g., the query attribute
categories that different locations can support to query are different). For example, the lo-
cations from the countryside generally cannot support to query subway stations near them.
Thus, it is easy for an attacker to rule out dummy queries, based on the above two kinds of
feature distributions. (3) It is also possible for the generated dummy queries themselves to
reveal user privacy, e.g., the dummy locations should stay safe distances away from the user
locations (to protect location privacy), and the dummy attributes should be not relevant to
the sensitive categories (to protect query privacy). Otherwise, an attacker can know users’
privacy directly, without ruling out the dummy queries.

From the above, we conclude that the dummy query sequences constructed by the pri-
vacy algorithm on the client-side for a user query sequence should meet the following re-
quirements: (1) hiding the queries of a mobile user, i.e., having similar feature distributions
(specifically, including location feature distributions, attribute feature distributions, and se-
mantic relevance feature distributions between locations and attributes) with the user query
sequence, so as to make it difficult for an attacker to rule out the dummy query sequences;
and (2) covering up the location privacy and attribute privacy of a mobile user, i.e., the dum-
my queries should be not only semantically irrelevant to the sensitive attribute categories,
but also located at safe distances away from the true query locations of a mobile user. In
addition, in the system model, the dummy queries are constructed based on the user queries,
which may potentially leak the user information to some extent (e.g., some features shown
by the user queries), but we think that only the location or query privacy itself is sensitive
and needs to be protected.

In the system framework of Fig. 1, the server-side is untrusted, which is considered as
the biggest potential attacker [32], so we assume that an attacker has the following ability.
(1) The attacker has obtained all the query sequences from the client-side (including the true
query sequences submitted by mobile users and the dummy query sequences constructed
by our approach), so he can guess the user query sequence by analyzing the feature distri-
butions of location query sequences, the feature distributions of attribute query sequences,
and the semantic associations between query locations and query attributes. (2) The attack-
er has mastered rich background knowledge, such as the global geographical information
(including all the locations and their features) and the domain of query attributes. (3) The
attacker might also know the existence of the privacy algorithm deployed on the client, and
obtain a copy of the algorithm. However, the attacker should meet the following assump-
tion. The probability Pr(Q0|Qk,Q0) that a user query sequence Q0 can be distinguished
from a dummy sequence Qk by the attacker is reversely related to the feature similarity
sim(Qk,Q0) between them, i.e.,

Pr(Q0|Qk,Q0) ∝ 1− sim(Qk,Q0) (1)

Pr(Q0|Qk,Q0) = 0← sim(Qk,Q0) ≥ θ (2)
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Protecting Location Privacy and Query Privacy in Location-Based Services 9

4 Proposed Approach

In this section, based on the system model and attack model above, we propose our ap-
proach to protect user privacy in LBS. First, based on the system model, we define a privacy
model for user privacy protection called the (µ, ρ)-privacy model, which formulates the re-
quirements that the dummy query sequences should satisfy to protect user privacy, i.e., the
dummy query sequences should have similar feature distributions with the user query se-
quence, so as to hide the user queries; and they should be of suitable distances away from
the user locations, and semantically irrelevant to the user sensitive attribute categories, so as
to cover up the user location privacy and query privacy. Second, we present an implementa-
tion algorithm for the privacy model. Finally, we analyze the security of our approach.

4.1 Privacy Model

From the system model in Fig. 1, we see that when constructing dummy queries, we have to
consider not only both location privacy and attribute privacy, but also the feature relevances
between the current user query and the historical query sequences. Thus, a query sequence
is an important data structure, which is a time-ordered sequence consisting of many queries,
and can be denoted byQ = (qi)

n
i=1, where each query qi consists of a query location li and

a query attribute ui, and can be further denoted by qi = (li, ui). Hence, a query sequence
Q can be represented as a location query sequence L and an attribute query sequence U ,
denoted by Q = (L,U). Below, to simplify the presentation, we use Q0 = (q0i )

n
i=1, L0 =

(l0i )
n
i=1 and U0 = (u0

i )
n
i=1 to denote the genuine query sequences from mobile users, and

we use Qk = (qki )
n
i=1, Lk = (lki )

n
i=1 and Uk = (uk

i )
n
i=1 (k ≥ 1) to denote the generated

dummy query sequences. In Table 1, we describe key symbols used in this paper.

Table 1 Symbols and their meanings

Symbols Meanings

Q0 = (q0i )
n
i=1 A user query sequence

L0 = (l0i )
n
i=1 A user location query sequence

U0 = (u0
i )

n
i=1 A user attribute query sequence

Qk = (qki )
n
i=1 A dummy query sequence

Lk = (lki )
n
i=1 A dummy location query sequence

Uk = (uk
i )

n
i=1 A dummy attribute query sequence

Q = (L,U) A sequence Q, and its location query sequence L and attribute query se-
quence U

simF (L1,L0) The location frequency similarity between L1 and L0

simT (L1,L0) The location transfer similarity between L1 and L0

simF (U1,U0) The attribute frequency similarity between U1 and U0

simG(U1,U0) The category frequency similarity between U1 and U0

sig(g,U) The significance of a category g related to sequences U

First, we study the problem on location privacy protection. In a user location query
sequence, the frequency of occurrence of each query location is distributed regularly, not
randomly (e.g., the queries from the same user often occur in some fixed location areas), so
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10 Zongda Wu et al.

the frequency of occurrence of each query location is thought to be an important character-
istic that reflects the move mode of a mobile user [9], which can be used to distinguish the
true ones from the dummy locations. Therefore, we need to take into account the location
frequency features, so as to construct the quality dummy query locations.

Definition 1 (Location Frequency) The frequency of occurrence of a location li in a lo-
cation query sequence L is defined as follows.

Fr(li,L) = |{l | l ∈ L ∧ l = li}| (3)

Below, we denote a subsequence consisting of the first m locations of the query sequence
L as Lm = (li)

m
i=1. Given a user location sequence L0 and a dummy location sequence

L1, based on Definition 1, we can obtain the following two location frequency vectors:
Fr(L0) = (Fr(l0i ,L0

i ))
n
i=1 and Fr(L1) = (Fr(l1i ,L1

i ))
n
i=1.

Definition 2 (Location Frequency Similarity) The location frequency similarity between
a dummy location query sequence L1 and a user location query sequence L0 can be mea-
sured by the generalized Jaccard similarity (denoted by EJ)1 between their location fre-
quency vectors Fr(L1) and Fr(L0), i.e.,

simF (L1,L0) = EJ
(
Fr(L1), F r(L0)

)
=

Fr(L1) · Fr(L0)

∥Fr(L1)∥2 + ∥Fr(L0)∥2 − Fr(L1) · Fr(L0)
(4)

Note that the cosine similarity2 is a more popular measure of similarity between two
non-zero vectors in a high-dimensional space, which is calculated by the cosine of the angle
(i.e., the angle difference) between the vectors, and not sensitive to the element values of
vectors. It may be suitable for measuring location frequency similarity. However, except the
angle difference, we here should slightly consider the difference of element values between
vectors, i.e., the similarity of two location query sequences is equal to 1 if and only if the
angle difference and value difference between their vectors are both equal to 0. Thus, we
choose the generalized Jaccard similarity in this paper.

In addition to location occurrence frequency, the transfer distance between two adjacent
query locations is also an important characteristic that reflects the move mode of a mobile
user. It is easy for an attacker to figure out the distance between any two locations, because
he has mastered the global map information. Thus, we also need to take into account the
distance transfer features to construct the dummy query locations.

Definition 3 (Location Transfer) For two locations l1 and l2, the transfer distance be-
tween them can be measured by the geographical distance between them (below, we use
dist(l1, l2) to denote the distance between l1 and l2).

Tr(l1, l2) =

{
0, l2 is null
dist(l1, l2), otherwise (5)

Given a user location sequence L0 and a dummy location sequence L1, based on Defini-
tion 3, we obtain the following two location transfer vectors: Tr(L0) = (Tr(l0i , l

0
i−1))

n
i=1

and Tr(L1) = (Tr(l1i , l
1
i−1))

n
i=1.

1 https://en.wikipedia.org/wiki/Jaccard index
2 https://en.wikipedia.org/wiki/Cosine similarity
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Protecting Location Privacy and Query Privacy in Location-Based Services 11

Definition 4 (Location Transfer Similarity) The location transfer similarity between a
dummy location query sequenceL1 and a user location query sequenceL0 can be measured
by the generalized Jaccard similarity between their corresponding location transfer vectors
Tr(L1) and Tr(L0), i.e.,

simT (L1,L0) = EJ
(
Tr(L1), T r(L0)

)
(6)

Now, we capture the most important two feature distributions of a location query se-
quence (Definitions 1 and 3). In this paper, we mainly take into account the two location
feature distributions to construct the dummy locations that are highly similar to the user
locations (Definitions 2 and 4), thereby, making it difficult for an attacker to rule out the
dummy locations, i.e., ensuring that the user locations can be well hidden by the dummy
locations. However, besides the location feature similarity, the dummy locations should also
keep safe distances from the user locations (i.e., the dummy locations are harmful to the
location privacy). Below, we define the privacy of user location.

Definition 5 (Location Privacy) Given a privacy parameter µ ≥ 1, a user location query
sequence L0 and a group of dummy location query sequences L, if |L| ≥ µ and satisfy the
following two requirements, then it is deemed that they can effectively ensure the µ-location
privacy of L0.

– Ensuring the location feature similarity. The location frequency feature and location
transfer feature of the user location sequence L0 should be similar to those of each
dummy location sequence Lk ∈ L, i.e.,

∀Lk ∈ L→ simF (L0,Lk) simT (L0,Lk) ≥ θ1 (7)

– Ensuring the user location security. Each location lki in a dummy query sequence Lk

should be of a safe distance away from the corresponding location l0i in the user query
sequence L0, i.e.,

∀Lk ∈ L ∧ ∀lki ∈ Lk → dist(lki , l
0
i ) ≥ θ2d

∗ (8)

In Equations 7 and 8, d∗ denotes the farthest geographical distance, and θ1 and θ2 are
two thresholds whose values are preset (in the experiment, we empirically set θ1 = 0.1 and
θ2 = 0.01). Here, for a dummy location, if its distance from a user location is greater than
θ2d

∗, then it has no impact on the location privacy; and for a dummy location sequence Lk,
if its similarity to a user sequence L0 is greater than θ1, then it cannot be distinguished from
the user sequence, i.e., Pr(Lk|Lk,L0) = 0.

Next, we study the problem of attribute privacy protection. Similarly, the attribute oc-
currence frequency is also an important characteristic of users’ queries. For example, the
queries from the same user during a period of time are often centered on some fixed or re-
lated attributes (e.g., travel enthusiasts like to query nearby attractions). More importantly,
because the attacker has known the entire attribute query sequences, he/she can easily figure
out the frequency value of occurrence of each attribute in a query sequence. To this end, we
need to consider the attribute frequency feature to construct the quality dummy attributes.

Definition 6 (Attribute Frequency) The frequency of occurrence of an attribute ui in an
attribute query sequence U is defined as follows.

Fr(ui,U) = |{u |u ∈ U ∧ u = ui}| (9)
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12 Zongda Wu et al.

A subsequence consisting of the first m attributes of the query sequence U can be denot-
ed by Um = (ui)

m
i=1. Given a user attribute sequence U0 and a dummy attribute sequence

U1, based on Definition 6, we can obtain the following two attribute frequency vectors:
Fr(U0) = (Fr(u0

i ,U0
i ))

n
i=1 and Fr(U1) = (Fr(u1

i ,U1
i ))

n
i=1.

Definition 7 (Attribute Frequency Similarity) The attribute frequency similarity between
a dummy attribute sequence U1 and a user attribute sequence U0 can be measured by
the generalized Jaccard similarity between their attribute frequency vectors Fr(U1) and
Fr(U0), i.e.,

simF (U1,U0) = EJ
(
Fr(U1), F r(U0)

)
(10)

In fact, categories are more generalized concepts than attributes, e.g., “Home Inn” (a
well-known hotel company) is an attribute, and “Express Hotel” and “Hotel” are categories,
whose occurrence frequency values can also well reflect the query mode of a mobile user. It
is easy for the attacker who masters the rich background knowledge to further figure out the
frequency of occurrence of a category in a query sequence, based on the attribute frequency
values. To this end, we also need to consider the category frequency feature to construct the
dummy query attributes.

Definition 8 (Category Frequency) A category indicates a set of attributes, which consists
of all the attributes belonging to the category. The frequency of occurrence of a category g
in an attribute query sequence U is defined as follows.

Fr(g,U) =
∑

ui∈g
Fr(ui,U) (11)

Let gi represent the category, which an attribute ui belongs to. Given a user attribute
sequence U0 and a dummy attribute sequence U1, based on Definition 8, we obtain two cat-
egory frequency vectors as: Gr(U0) = (Fr(g0i ,U0

i ))
n
i=1 and Gr(U1) = (Fr(g1i ,U1

i ))
n
i=1.

Definition 9 (Category Frequency Similarity) The category frequency similarity between
a dummy attribute sequence U1 and a user attribute sequence U0 can be measured by
the generalized Jaccard similarity between their category frequency vectors Gr(U1) and
Gr(U0), i.e.,

simG(U1,U0) = EJ
(
Gr(U1), Gr(U0)

)
(12)

Now, based on Definitions 8 and 10, we can construct dummy attribute query sequences
highly similar to the user attribute query sequence, making it difficult the attacker to rule
out the dummy attributes, and as a result ensuring that the user attributes can be hidden
effectively. However, in addition to the attribute feature similarity, the dummy attributes
should be able to effectively reduce the exposure degree of each user sensitive attribute
on the untrusted server-side, so as to cover up the user attribute privacy. Different from
the query locations, not all the query attributes are sensitive and need to be protected, and
different users often have different sensitive attributes. Thus, we introduce a concept of
sensitive attribute categories, to allow a user to assign in advance the sensitive attribute
categories that need to be protected (i.e., all the attributes belonging to these categories are
sensitive). Below, the user sensitive attribute categories are denoted by G∗. Moreover, for the
non-sensitive attributes in a user query sequence, we no longer construct the dummy query
attributes for them. Below, we first define the significance of an attribute category, and then
the privacy of user attribute.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Protecting Location Privacy and Query Privacy in Location-Based Services 13

Definition 10 (Category Significance) The significance of an attribute category g related
to a group of attribute sequences U is defined as follows.

sig(g,U) =
∑

U∈U Fr(g,U)∑
U∈U

∑
ui∈U Fr(ui,U)

(13)

Definition 11 (Attribute Privacy) Given a privacy parameter ρ ≥ 1, a user attribute
query sequence U0 and a group of dummy attribute query sequences U, if U satisfy the
following two requirements, then it is deemed that they can effectively ensure the ρ-attribute
privacy of U0.

– Ensuring the attribute feature similarity. The attribute frequency feature and category
frequency feature of the user attribute sequence U0 should be similar to those of each
dummy attribute sequence Uk ∈ U, i.e.,

∀Uk ∈ U→ simF (Uk,U0) simG(Uk,U0) ≥ θ3 (14)

– Ensuring the user attribute security. Based on the dummy attribute sequences U, the
significance of each sensitive category g∗ ∈ G∗ can be reduced effectively, i.e.,

∀g∗ ∈ G∗ → sig(g∗, {U0})
sig(g∗, {U0} ∪ U)

≥ ρ (15)

In Equation 14, θ3 is a threshold similar to θ1, whose value is empirically set to 0.1
in the experiment. In Definitions 5 and 11, we formulate the requirements of user location
privacy and user attribute privacy, respectively. However, a location and an attribute from
the same user query are not independent of each other, actually, between which there exists
some semantic association, i.e., for different locations, the attribute categories that they can
support to query may be different to each other. For example, it is suitable to query nearby
subway stations in Beijing, but it is not suitable in the countryside. Thus, such semantic
association is an important characteristic to distinguish the dummy queries from the user
queries. Based on Definitions 5 and 11, after considering the semantic associations between
query locations and attributes, we further define the LBS privacy.

Definition 12 (LBS Privacy) Given a user query sequence Q0 = (L0,U0), and a group
of dummy query sequences Q, if there is a subset Q′ = (L′,U′) of Q, which satisfy the
following three requirements, then it is deemed that the query sequences Q can ensure the
(µ, ρ)-privacy ofQ0.

– Ensuring the µ-location privacy. The dummy location sequences L′ corresponding to
Q′ can ensure the µ-location privacy of the user location sequence L0.

– Ensuring the ρ-attribute privacy. The dummy attribute sequences U′ corresponding to
Q′ can ensure the ρ-attribute privacy of the user attribute sequence U0.

– Ensuring the semantic association between locations and attributes. For each query qki
(we denote it as qki = (lki , u

k
i )) belonging to any query sequenceQk ∈ Q′, the category

gki of the attribute uk
i should be well matched with the location lki , i.e., gki ∈ G(lki ),

where G(lki ) denotes all the categories that the location lki can support to query.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

ada
高亮



14 Zongda Wu et al.

Algorithm 1: Constructing a new dummy query for a non-empty query sequence

Input: (1) A new user query q0i = (l0i , u
0
i ); (2) a non-empty user query sequenceQ0 = (L0,U0);

(3) a dummy query sequenceQk = (Lk,Uk); and (4) related thresholds (e.g., θ1, θ2, θ3).
Output: A new dummy query qki = (lki , u

k
i ) associated with the dummy query sequenceQk .

1 begin
2 set (d1, d2)← estimate(Lk,L0, θ1), (d3, d4)← estimate(Uk,U0, θ3); setQ ← ⊘,

L ← ⊘; /* initialization */
3 whileQ = ⊘ do
4 set L →

{
l | l /∈ L ∧ |Tr(l, lki−1)− Tr(l0i , l

0
i−1)| ≤ d1

}
; /* obtain a set of

dummy location candidates, which have similar distance
transfer features with the user location */

5 foreach l ∈ L do /* remove the dummy locations with dissimilar
frequency features, or with unsafe distances */

6 if
(
d2 ≤ |Fr(l,Lki )− Fr(l0i ,L0i )|

)
∨
(
dist(l, l0i ) < θ2 · d∗

)
then set

L ← L− {l}
7 foreach l ∈ L do /* remove the dummy locations only related to

the sensitive categories */
8 if |G(l)− G∗| = 0 then set L ← L− {l} ; /* G(l) denotes the

attributes l supports to query */

9 if g0i /∈ G∗ then /* if the current query attribute isn’t sensitive

*/
10 setQ ←

{
(l, u0

i ) | l ∈ L
}

; continue ; /* stop the current loop (g0i is

the category of u0
i ) */

11 foreach l ∈ L do
12 set U ← { u |u ∈ g ∧ g ∈ G(l)− G∗ ∧ |Gr(g,Uk

i )−Gr(g0i ,U0
i )| ≤

d3 ∧ |Fr(u,Uk
i )− Fr(u0

i ,U0
i )| ≤ d4 };

13 from U , randomly select an attribute u, and then setQ ← Q∪ {(l, u)} ;
/* generate a dummy candidate for the current user query

*/

14 fromQ, randomly select a query as a new dummy query qki associated with the dummy query
sequenceQk .

4.2 Implementation Algorithm

In this subsection, we discuss the algorithm implementation for the LBS privacy model.
Specifically, we discuss: (1) how to construct a dummy query (including a dummy location
and a dummy attribute) according to the user historical query sequence and the dummy
historical query sequences; (2) how to construct a dummy query when the historical query
sequences are empty; and (3) based on Steps 1 and 2, how to construct a group of dummy
queries for a user query, such that the generated dummy query sequences can well ensure
the (µ, ρ)-privacy of the user query sequence.

In Step 1, we construct a dummy query that meets the following requirements as much
as possible: (1) the dummy query has a similar feature (i.e., location frequency, location
transfer, attribute frequency and category frequency) with the user query; and (2) the dummy
query is not only of a safe distance away from the user location, but also irrelevant to the
user sensitive categories. It can be seen that on the one hand, there may be many dummy
queries that can meet the above requirements (i.e., the solution is non-unique); on the other
hand, there also may be no dummy queries that meet the requirements, when the thresholds
θ1, θ2 and θ3 (see Definitions 5 and 11) are set to stricter values. In Step 1, we only attempt
to search one solution that can well meet the above requirements, instead of the optimal
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Algorithm 2: Constructing a new dummy query for an empty query sequence.

Input: A user query q01 = (l01, u
0
1), and related threshold parameters.

Output: A new dummy query qk1 = (lk1 , u
k
1).

1 begin
2 setQ ← ⊘; set L# ← L# − {l01}; /* initialization (L# denotes a set of

all the locations) */
3 whileQ = ⊘ do
4 obtain a smaller subset L of L#, satisfying ∀l ∈ L → dist(l, l0i ) ≥ θ2 · d∗;
5 foreach l ∈ L do /* remove the dummy locations only related to

the sensitive categories */
6 if |G(l)− G∗| = 0 then set L ← L− {l}
7 if g0i /∈ G∗ then Q ← {(l, u0

i ) | l ∈ L}; continue ; /* stop the current loop

*/
8 foreach l ∈ L do
9 U ← {u |u ∈ g ∧ g ∈ G(l)− G∗};

10 from the set U , randomly select an attribute u, and then setQ ← Q∪ {(l, u)} ;
/* generate a dummy query candidate. */

11 from the candidate setQ, randomly select a query as the dummy query qk1 corresponding to the
user query q01 .

solution. Algorithm 1 details the implementation of Step 1. From Algorithm 1, it can be
seen that we use a greedy strategy to construct a dummy query qki for the user query q0i ,
i.e., we do not take into account the dummy query construction for the subsequent user
queries, when constructing a dummy query for the current user query. In addition, in the
privacy model, the similarity thresholds θ1 and θ3 are designed for query sequences, and the
algorithm is designed for single queries, thus the algorithm introduces four new similarity
thresholds d1, d2, d3 and d4 (to replace θ1 and θ3), which can be estimated based on θ1 and
θ3.

In Algorithm 1, we first obtain a set of dummy location candidates L that have similar
location transfer features with the user location l0i (Line 4). Second, from the candidate set
L, we remove the dummies whose frequency features are not similar with that of l0i , or
whose distances away from l0i are unsafe (Lines 5-6). Third, we search a dummy attribute
u for each dummy location l ∈ L, so as to construct a set of dummy query candidates Q,
where the dummy attribute u is not only required to have similar attribute frequency and
category frequency features with the user attribute u0

i , but also required to be semantically-
irrelevant with the sensitive attribute categories and well-matched with the dummy location
l (Line 12). Finally, from the candidate setQ, we randomly select a query as a dummy query
qki of the user query q0i . Moreover, for the user query q0i , if its attribute u0

i is not sensitive,
we will no longer construct its corresponding dummy attribute (i.e., the current loop will be
terminated at Line 10). To simplify the algorithm presentation, we assume that in Algorithm
1 there exists at least one solution (i.e., the condition at Line 3 will not always be true). It can
be seen that the output of Algorithm 1 is uncertain, i.e., the same input will lead to different
output, because at Lines 13 and 14, the output dummy query qki is selected randomly from
two larger sets U and Q, so as to better ensure the security (see Section 4.3). Moreover, the
amount of uncertainty introduced by the algorithm is determined by the sizes of U and Q,
and the sizes of U andQ are indirectly controlled by θ1 and θ3, so the amount of uncertainty
is positively related to the values of θ1 and θ3. In addition, at the worst case (i.e., at Line 4,
we need to obtain all the locations in the map), the time complexity of Algorithm 1 is equal
to O(|L#|), where L# denotes all the locations in the map.
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16 Zongda Wu et al.

In Step 2, we study how to construct a dummy query when the historical sequences are
empty (i.e.,Qk andQ0 are null). At this time, we no longer need to consider the features of
location frequency, location transfer, attribute frequency and category frequency, and only
need to consider how to construct a dummy query for the current user query, which is of a
safe distance from the user location, and irrelevant to the user sensitive categories. Algorithm
2 details the implementation of Step 2. It can be seen that a greedy strategy is also used,
because we cannot know the subsequent user queries when processing the current user query,
and it is difficult to establish an accurate prediction model to predict the subsequent query
locations and query attributes that will be issued by the user. In addition, it can be seen that
the output of Algorithm 2 is also uncertain so as to better ensure the security. At the worst
case, the time complexity of Algorithm 2 is equal to O(|L#|).

In Step 3, we focus on how to construct a set of dummy queries for a user query, actually,
which can be solved by running Algorithm 1 or 2 several times. From Definitions 5 and 11,
we know that the privacy parameter µ denotes the number of the dummy location sequences
that a user wants to construct, and the parameter ρ denotes the number of the constructed
attribute sequences if sig(g∗,Uk) = 0. Thus, the running time of Algorithm 1 or 2 for the
construction of a dummy query set should be approximately equal to max(µ, ρ). In addition,
from Algorithms 1 and 2, we see that it is somewhat possible that the candidate setQ cannot
meet the requirements in Definition 12. However, in the two algorithms, for the construction
of dummy query candidates, we try our best to make the candidates in accordance not only
with the requirements of location feature similarity and location privacy (Definition 5), but
also with the requirements of attribute feature similarity and attribute privacy (Definition
11). The experimental results presented in Section 5 also demonstrate that the dummy query
sequences constructed by our approach can well ensure the (µ, ρ)-privacy, and the running
efficiency of the algorithms is reasonable.

4.3 Security Analysis

From the system model, we see that in a LBS query process, the order that the user query
q0i occurs in the query set

{
qki

}m

k=0
is random. However, the attacker can classify each

query to know which queries belong to the same sequence (i.e., rearrange all the queries to
form several independent sequences), according to the analysis of the location and attribute
features of the historical query sequences recorded by the server. Below, we discuss what can
an attacker deduce about the user locations or sensitive attributes, according to the collected
LBS query sequences Q = (L,U)?

Definition 13 (Level I Privacy) A dummy-based system has Level I privacy protection, if
the user query sequenceQ0 can be effectively hidden in a group of dummy query sequences
Q, i.e., the probability that an attacker can distinguish the user query sequence Q0 from
{Q0} ∪Q is equal to 1/(1 + |Q|).

Remark 1 The LBS system developed based on our approach has Level I privacy protection.

Rationale. According to the attack model in Section 3.2, the attacker can guess based
on the prior knowledge that the feature distributions of a user query sequence are particular.
However, each dummy sequence Qk ∈ Q constructed by our approach has highly similar
location and attribute feature distributions with the user sequence Q0, i.e., the feature simi-
larity between Qk and Q0 is greater than θ1 (for Lk and L0) or θ3 (for Uk and U0). Thus,
based on the implications of θ1 and θ3, we know that Qk cannot be distinguished from Q0
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according to the location or attribute features. In addition, due to the rich prior knowledge,
the attacker can guess based on the semantic associations between locations and attributes.
However, for each dummy sequence Qk, the dummy location and dummy attribute from
the same query are well matched with each other, i.e., the attacker cannot identify out Qk

according to the semantic associations between locations and attributes. From the above, we
conclude that the probability that the attacker can distinguish the user sequenceQ0 from Q
is equal to 1/(1 + |Q|). �

Based on Remark 1 and the attack model, we can conclude that our approach can resist
from some existing location privacy attacks, such as colluding attacks and inference attacks.
(Case 1) The attacker can collude with some users to predict the location privacy and query
privacy of other users. However, the attacker, who has almost controlled the server-side,
has mastered rich background knowledge, thus the ability of the attacker cannot be further
enhanced by colluding with some users, or increasing the number of colluding users, i.e.,
our approach is colluding attack resistant. (Case 2) The attacker can infer a user query
sequence according to the mastered background knowledge. However, due the high feature
similarity between each dummy sequence Qk and the user sequence Q0, it is difficult for
the attacker to distinguish Qk from Q0 , i.e., the probability that Qk is inferred as the user
sequence is equal to that of Q0, so our approach is inference attack resistant. (Case 3) The
attacker might also obtain a copy of the privacy algorithm. At this time, the attacker can in
turn input each query qti in the set {qki }mk=0, and then test whether the privacy algorithm
outputs the others {qki }mk=0 − {qti}. If successfully, then it indicates that qti is a user query.
However, such an attempt will not succeed, because all the dummy locations and attributes
in our algorithms are randomly selected from larger sets (see Lines 13 and 14 in Algorithm
1, and Lines 10 and 11 in Algorithm 2), i.e., the same data input will lead to different output.
Thus, the attacker cannot infer the user queries by running our algorithm several times with
different submitted queries.

Definition 14 (Level II Privacy) A dummy-based system has Level II privacy protection,
if it has Level I privacy, and the location privacy and query privacy behind each user query
sequence Q0 can be effectively covered up by a group of dummy query sequences Q, i.e.,
the exposure degree of the location privacy and query privacy on {Q0} ∪ Q is not greater
than 1/(1 + |Q|) of the original onQ0.

Remark 2 The LBS system developed based on our approach has Level II privacy protec-
tion.

Rationale. According to the privacy model and its algorithms given in Section 4.2, each
dummy location lki ∈ Qk has a safe distance (greater than θ2d

∗) from its user location
l0i ∈ Q0 (i.e., it has no impact on the location privacy on l0i ), so each dummy location
sequence Qk has no impact on the location privacy on Q0, i.e., the exposure degree of the
location privacy on {Q0} ∪Q is reduced to 1/(1 + |Q|) of the original onQ0. In addition,
for each sensitive category g∗, because

∑
uk

i ∈Uk Fr(uk
i ,Uk) =

∑
u0

i∈U0 Fr(u0
i ,U0) and

Fr(g∗,Uk) = 0, based on Definition 10, we can easily prove that sig(g∗, {U0}) = (1 +
|Q|) ·sig(g∗, {{U0}∪U}. Thus, we conclude that the exposure degree of the query privacy
on {Q0} ∪Q is reduced to 1/(1 + |Q|) of the original onQ0. �

It can be observed that compared to Definition 13, Definition 14 presents higher secu-
rity. If a LBS system meets Level II privacy, then it first means that the attacker cannot
know which one in {Q0} ∪ Q is the user query sequence. At this time, based on the prior
knowledge that the queries from the same user over a period of time often occur in some
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Fig. 2 The experimental results for the location feature similarity
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Fig. 3 The experimental results for the attribute feature similarity

fixed locations, the attacker can still guess the user locations by computing the frequency
of occurrence of each location in L. However, for each high frequency location obtained
by the attacker, the probability that it is a true user location is only equal to 1/(1 + |L|),
because in L each user location has been covered up by |L| dummy locations with safe dis-
tances away from it. Likewise, for each high frequency attribute (or category) in U, either it
is not sensitive, or the probability that it is a sensitive attribute (or category) is only equal to
1/(1+ |U|). In summary, it is difficult for the attacker to guess the user location privacy and
attribute privacy in a LBS system with Level II privacy.

5 Experiment Evaluation

From the security analysis in Section 4.3, it can be seen that the security of our approach is
dependent on the quality of constructed dummy query sequences, i.e., whether the dummy
query sequences can effectively hide the user query sequence (Level I privacy), and whether
the dummy query sequences can effectively cover up the location privacy and query privacy
behind the user query sequence (Level II privacy). In this section, we evaluate the effective-
ness of the dummy query sequences by experiments. The experiments consists of two parts:
(1) the first part evaluates the feature distribution similarity of the dummy query sequences
to the user query sequence; and (2) the second part evaluates the effectiveness of the dummy
query sequences to cover up users’ location privacy and query privacy.

5.1 Experimental Setup

First, we briefly describe the experimental setup, including the reference dataset, user query
sequences and algorithm candidates.
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(1) Reference dataset. In the experiments, we adopted the real check-in data from
Gowalla3 supplied by the SNAP repository [33]. Gowalla is an online location-based social
network application, where users share their current locations by checking-in the applica-
tion, so each check-in record consists of userid, time, location (latitude and longitude) etc.
Firstly, we selected 1000 users and selected 1000 check-in records for each user. Secondly,
we divided the geographic region (its upper left coordinate is about (20,−11) and right low-
er coordinate is about (60, 20)) covered by all the check-in records into 100× 100 location
subregions and 1000× 1000 location cells (i.e., locations). Thirdly, we divided all the loca-
tion subregions into 10 categories, and assigned the category for each subregion according
to the density (which is computed by the number of check-in records located at the subre-
gion). Finally, from the category system supplied by a Baidu points-of-interest application4,
we selected 25 attribute categories in advance, and for each location category (10 in total),
we randomly assigned the attribute categories that it can support to query, making that giv-
en any location lki , based on the location category it belongs to, we can know the attribute
categories G(lki ) that it can support to query.

(2) User query sequences. For generating a user query sequence Q0, we need to con-
struct a location sequence L0 and an attribute sequence U0. Here, each location sequence
L0 was chosen from the check-in data from Gowalla. Below, we show how to construct
the attribute sequence U0. First, we in advance randomly assigned the attributes for each
attribute category (averaging 40 attributes per category). Second, to construct each attribute
u0
i for U0, we randomly selected the attribute category g0i of u0

i from all the preset cate-
gories according to a standard normal distribution, and then randomly selected the attribute
value of u0

i from all the preset attributes belonging to g0i according to a uniform distribution.
In the above process, the number of the sensitive categories contained in each user attribute
sequence is an experimental parameter and can be adjusted dynamically.

(3) Algorithm candidates. In the experiments, we used the following four dummy-
based algorithm candidates: (1) Privacy, i.e., the approach proposed in this paper; (2) Priva-
cyLS [9], which constructs dummy queries to protect the location privacy by considering the
location frequency feature; (3) PrivacyQS [31], which constructs dummy queries to protect
the query privacy by considering the query context; and (4) Random (used as the baseline),
which uses a random way to construct dummy locations and dummy attributes. In the exper-
iments, we did not compare against other algorithms mentioned in the related work section,
since they are designed under different privacy models (i.e., pseudonym, obfuscation or en-
cryption), so they are incomparable to our approach.

5.2 Feature Distribution Similarity

In the first group of experiments, we aim to evaluate the effectiveness of the dummy query
sequences produced by our approach to hide the user query sequences (i.e., the feature distri-
bution similarity between the user query sequences and the dummy query sequences). Here,
we use the metrics developed based on the privacy model in Section 4.1, combined with
the location entropy proposed in [9]. For an algorithm candidate A (Privacy, PrivacyLS,
PrivacyQS or Random) and a user query sequence Q0 = (L0,U0), let Q = (L,U) denote
a group of dummy query sequences generated by the candidate A for the user sequence
Q0. Then, the location feature similarity metrics for the candidate A can be formulated as

3 http://snap.stanford.edu/data/loc-gowalla.html
4 http://map.baidu.com
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follows:
simFr(A) = min

Lk∈L
simFr(Lk,L0) (16)

simTr(A) = min
Lk∈L

simTr(Lk,L0) (17)

simLoc(A) =
1

2
(simTr(A) + simFr(A)) (18)

Similarly, based on Definitions 7 and 9, we define the attribute feature similarity metrics
for the candidate A, respectively denoted by simFu(A), simGr(A) and simAtt(A). Finally,
we define the location and attribute relevance metric for the candidate A as follows (where
gki denotes the category of the attribute uk

i of the query qki , and G(lki ) denotes the attribute
categories the location lki of qki supports to query).

revLA(A) = min
Qk∈Q

|{qki | qki ∈ Qk ∧ gki ∈ G(lki )}|
|Qk| (19)

It is obvious that for each of the above metrics, a higher value is better, which means
that the dummy query sequences have more similar feature distributions with the user query
sequence, making it difficult for an attacker to identify the user query sequence from the
set Q ∪ {Q0}. In the experiments, the length of each user query sequence is fixed to 1000
(i.e., |L0| = 1000). The experiment results are shown in Figs. 2 to 4, where the value of
each point is the average of 50 running results, and the caption of each subfigure denotes
the related metric used in the experiments. In addition, the X axis denotes the number of
generated dummy query sequences; and the Y axis denotes the metric value between the
user query sequence and the dummy query sequences. In Fig. 2, the experimental results
of PrivacyQS are not presented, because the location privacy issue is not considered in
the algorithm. Similarly, the experimental results of PrivacyLS are not presented in Fig. 3,
because it does not consider the attribute privacy.

From Fig. 2, it can be seen that compared to those of the baseline Random approach,
the dummy locations constructed by Privacy or PrivacyLS exhibit a much better feature
distribution similarity with the user query locations. Specifically, the overall similarity from
Random is less than 0.2, and the overall similarity from Privacy or PrivacyLS is greater than
0.6. Also, it can be seen that compared to PrivacyLS, the dummy locations constructed by
our recommended Privacy have a better overall feature similarity (close to 1.0). This is be-
cause PrivacyLS only takes into account the location frequency feature, without considering
the location transfer feature (see the result in the subfigure (b)). From Fig. 3, we see that the
dummy attributes constructed by Privacy or PrivacyQS exhibit a much better feature dis-
tribution similarity, compared to those from Random, and the dummy attributes constructed
by Privacy further exhibit much better overall feature similarity than those from PrivacyQS
(because the category frequency feature is not considered by PrivacyQS). Specifically, the
feature similarity of the dummy attributes constructed by Privacy is close to 1.0, and the
similarity almost remains unchanged, with the changing of the number of dummy query se-
quences. Finally, from Fig. 4, we also see that the dummy query sequences constructed by
Privacy or PrivacyQS exhibit good relevance between the locations and the attributes (all
close to 1.0); and those from Random or PrivacyLS exhibit worse relevance, because the
location and attribute relevance feature is not considered by them.

From the above, we conclude that the dummy query sequences constructed by our ap-
proach have a highly similar feature distribution with the user query sequence (close to 1.0),
thereby, making it difficult for an attacker to rule out the dummy query sequences, i.e., the
user query sequences can be effectively hidden by the dummy query sequences constructed
by our approach.
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Fig. 4 The experimental results for the location and attribute relevance

���� ���� � � ������� ���� ������

���� ���� � � ������� ���� ������

���	 ���	 � 
 ������� ���� ������


�	
 
�	
 � � ����	�
 
��� ���	�


���� ���� � 	 ������� ���� ������

	��� 	��� � � �����
� 	��� ����
�

���� ���� � � ������� �����	 ������

�
�

�
�
�
�
��
�

�

��� ������ �� ���  ����!��" "���#�$

%&'()*+,- .)/012

%&'()*+ %&'()*+3-

(a) priLoc (200)

���� ���� � � �������� ���� ���	��

���� ���� � � �����	�� ���� ������

��
� ��
� � � �������� ���	 ������

��	
 ��	
 � 	 ����	��� ���� ������

	��� 	��� � 
 �����
 	��� �����



��� 
��� � � ������ 
��� ���	��

���	 ���	 � � ����
�	
 �����
 ������

�
�

�
�
�
�
��
�

�

��� ������ �� ���  ����!��" "���#�$

%&'()*+,- .)/012

%&'()*+ %&'()*+3-

(b) priLoc (600)

���� ���� � � ������ ���� ������

���� ���� � � �����	�� ���� ������

��
� ��
� � � �������� ���� ������

���	 ���	 � � �������� ���� �����	

���� ���� � 
 �����	�	 ���� ������


��� 
��� � � ������ 
��� ������


��� 
��� � 	 �������	 �����
 ������

�

�
�

�
�
�
�
��
�

�

��� ������ �� ���  ����!��" "���#�$

%&'()*+,- .)/012

%&'()*+ %&'()*+3-

(c) priLoc (1000)

Fig. 5 The experimental results for the user location privacy protection
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Fig. 6 The experimental results for the user attribute privacy protection

5.3 Privacy Exposure Degree

In the second group of experiments, we aim to evaluate the effectiveness of the dummy
query sequences produced by our approach to cover up the location privacy and attribute
privacy behind the user query sequences (so as to reduce the exposure degree of the user
privacy). Here, we use privacy metrics developed based on Definitions 5 and 11. Given an
algorithm A and a user query sequence Q0 = (L0,U0), let Q = (L,U) denote a group
of dummy query sequences generated by the candidate A for the user sequence Q0, and
G∗ denote the user sensitive attribute categories. Then, the location privacy metric and the
attribute privacy metric can be formulated as follows (where {lki } denotes all the dummy
locations in L corresponding to the user location l0i ):

priLoc(A) = min
l0i∈L0

|{l|l ∈ {lki }, dist(l, l0i ) ≥ θ2d
∗}| (20)

priAtt(A) = min
g∈G∗

sig(g∗, {U0})/sig(g∗, {U0} ∪ U) (21)

Note that Equation 20 (location privacy) combined with Equation 18 (location feature
similarity) can be used to count the number of the dummy locations that have not only indis-
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tinguishable feature distributions but also privacy-lossless distances with the user locations,
thus the location privacy metric is accordant to the k-anonymity (a widely-used privacy met-
ric) to a certain extent. Also, Equation 21 is similar. For the two metrics, a higher value is
better, which means a smaller exposure degree of the user locations or sensitive attributes,
resulting in better effectiveness to cover up the location privacy or query privacy behind the
user query sequence. The experimental results are shown in Figs. 5 and 6, where the value
of each point is the average of 50 running results. In Fig. 5, the caption of each subfig-
ure denotes the length of each user location sequence (i.e., |L0|, which is set to 200, 600 or
1000). In Fig. 6, the caption of each subfigure denotes the number of the sensitive categories
related to each user attribute sequence (i.e., |G∗|, which is set to 1, 3 or 5) and the length
of each user location sequence (i.e., |L0|). In addition, the X axis denotes the number of
dummy query sequences constructed for each user query sequence; and the Y axis denotes
the location privacy metric or the attribute privacy metric.

From Fig. 5, it can be seen that compared to those of Random or PrivacyQS, the dummy
location sequences constructed by Privacy or PrivacyLS exhibit much better effectiveness
on covering up the user location privacy. Specifically, the effectiveness to cover up the us-
er location privacy is almost positively relevant to the number of dummy query sequences
constructed for each user query sequence, independently of the length of each user loca-
tion sequence (i.e., |L0|). From Fig. 5, it can be also seen that PrivacyQS has the worst
performance in terms of location privacy security (equal to 0), because the location privacy
problem is not considered by the approach at all (i.e., each dummy location sequence is the
same to its corresponding user location query sequence). From Fig. 6, it can be seen that the
dummy attribute sequences constructed by the Privacy approach have good effectiveness to
cover up the user query privacy (i.e., which can effectively reduce the exposure degree of
the sensitive attribute categories), and the effectiveness is almost positively relevant to the
number of constructed dummy query sequences, independently of the length of each user
query sequence and the number of the sensitive attribute categories. Also, it can be seen
that the dummy query sequences constructed by PrivacyQS or Random can also reduce the
exposure degree of the sensitive attribute categories, but the performance stability is worse
than the Privacy approach. This is because the two algorithms do not select dummy at-
tributes from the non-sensitive categories when constructing dummy attribute sequences. In
addition, PrivacyLS has the worst effectiveness on attribute privacy protection, because the
attribute privacy issue is not considered by the approach.

From the above, it can be concluded that the dummy query sequences from our approach
can not only reduce the exposure degree of the user sensitive attributes but also the exposure
degree of the user locations, making it difficult for an attacker to obtain the user query
locations or query attributes under the precondition of not identifying out the user query
sequence, i.e., the location privacy and query privacy can be effectively covered up by the
dummy sequences constructed by our approach.

6 Conclusion

Location-based services (LBS) have become an important part of people’s daily life. Howev-
er, while providing great convenience for users, LBS result in a serious problem on personal
privacy, i.e., location privacy and query privacy. To this end, in this paper, we proposed an
approach for protecting user personal privacy in location-based services (LBS), whose basic
idea is to construct dummy query sequences to cover up the user locations and attributes, and
in turn protect user personal privacy in LBS. First, we used a client-based system framework

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

ada
高亮



Protecting Location Privacy and Query Privacy in Location-Based Services 23

that requires not only no change to the existing LBS algorithms, but also no compromise to
the accuracy of a LBS query. Second, based on the framework, we introduced a privacy
model to formulate the constraints that ideal dummy query sequences should satisfy. Third,
we present an implementation algorithm to construct dummy query sequences that can well
meet the privacy model.

Finally, both theoretical analysis and experimental evaluation have demonstrated the
effectiveness of our approach: (1) the dummy query sequences constructed by the approach
can effectively hide the user queries, i.e., having highly-similar feature distributions with the
user query sequence, including the features of location sequences, the features of attribute
sequences, and the relevance features between query locations and query attributes, thereby,
making it difficult for an attacker to rule out the dummy queries; (2) the dummy query
sequences constructed by the approach can effectively cover up users’ query privacy and
location privacy, i.e., they are not only semantically irrelevant to the user sensitive attribute
categories, but also far distant from the user locations; and (3) it does not cause serious
performance overheads on the running efficiency. Thus, we conclude that our approach can
be used to effectively protect user privacy in LBS.

In summary, this paper presents a valuable study attempt to the protection of user pri-
vacy in LBS. The main theoretical and practical implications of our study is to propose an
effective approach for the protection of users’ location privacy and query privacy in LBS,
and compared with other existing works, the proposed approach can ensure the security of
users’ LBS privacy on the untrusted server-side, without jeopardizing the usability, accuracy
and efficiency of each LBS query. As a result, it is easy for our approach to be integrated
with an existing LBS application, i.e., our approach has a positive impact on the construc-
tion of a privacy-preserving LBS application. However, for the practical application of the
proposed approach, there are still some limitations that we need to further study and solve,
e.g., since LBS applications are of various forms (e.g., Mobile Terminal), we need to study
how to implement a seamless connection between our approach and each kind of application
interface.
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