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Abstract 

GALA is a 30-residue, amphipathic peptide that self-assembles into multimeric, 

transmembrane pores in a pH-dependent fashion. In this study, we characterize the size, 

multimeric structure and cation selectivity of GALA pores in planar phospholipid bilayers 

using electrical impedance spectroscopy and molecular dynamics simulations. We demonstrate 

that in planar bilayers GALA pores are likely formed by six peptide monomers rather than 

eight to twelve monomers as previously reported in lipid vesicles. Besides, we show that in 

planar bilayers GALA pores exhibit previously unreported cation selectivity. We propose that 

the difference in predicted pore structure between planar bilayers and lipid vesicles exemplifies 

the importance of phospholipid bilayer structural properties on the aggregation of 

transmembrane helical structures.   
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In this letter, we demonstrate that the structure of multimeric, transmembrane pores formed by 

the peptide GALA in planar bilayers is different from the reported structure in lipid vesicles. 

In the previous studies1, using data from leakage assays, GALA pores were estimated to consist 

of 8-12 peptide monomers in unilamellar lipid vesicles (LUVs, 100 nm). Here we report that 

in planar lipid bilayers GALA pores are most likely composed of 6 monomers and exhibit ion 

selectivity based on cation hydration energies. Numerous studies investigate membrane 

curvature on how proteins interact with membranes, including protein recruitment, 

aggregation, localization, and curvate ‘sensing’ 2-8. However, the effect of mesoscale properties 

such as lipid bilayer asymmetry on the quaternary structure of transmembrane peptides is 

poorly understood and understudied.  

 

GALA is a 30-residue peptide (WEAALAEALAEALAEHLAEALAEALEALAA), designed 

by Subbarao et al9 to mimic the membrane insertion activity of viral fusion peptides, with 

insertion triggered by acidic pH10-11.  The repeat sequence of glutamic acid (Glu, E), alanine 

(Ala, A) and leucine (Leu, L) provide a hydrophobic sequence EAL with strong helical 

propensity12-13 while the titratable Glu side chain is responsible for the pH-dependent 

conformational change. At neutral pH GALA is unstructured. At acidic pH (pH < 6), the 

protonation of the Glu residues induces a conformational change to an a-helix9, 14. The pore-

forming and membrane-disrupting activity of GALA has been assessed in several studies using 

phospholipid vesicles and fluorescence leakage assays1, 9, 15-17. Maximal leakage was detected 

at acidic pH values (pH < 6.0) and increasing the peptide:lipid ratio also increased leakage 1, 

15. Parente et al. 1 developed a theoretical model that describes the kinetics of GALA-induced 

leakage as a bimodal pore-forming mechanism. Initially, individual peptides bind to the 

membrane surface where they aggregate. Once aggregates reach a critical size, peptides insert 

into the membrane to form stable pores, resulting in leakage. The theoretical model was fitted 

to experimental leakage data varying the fraction of peptides bound, the forward rate of 

aggregation and the number of peptides that form a pore.   From this model, as well as data 

from leakage assays with different sized molecules, the authors1 proposed that GALA “forms 

a transbilayer channel composed of 8-12 monomers”. In a later study, Nicol et al15 demonstrate 

this model can reproduce GALA-induced leakage from cholesterol-containing vesicles.  

  

This proposed model assumes a static, barrel-stave like pore formed by rigid, rod-like helices 

and provides little direct structural information. As such, this model ignores the inherent 
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flexibility of helical peptides in a fluid membrane or the effect of membrane structure on the 

pore structure. In this study, we combine tethered lipid bilayer membranes (tBLM) and swept 

frequency electrical impedance spectroscopy (EIS) with molecular dynamics (MD) simulations 

to characterize the structure of GALA pores in planar phospholipid bilayers.  

 

In tBLMs, a phospholipid bilayer is formed on a gold substrate by incorporating a small 

fraction of hydrophobic anchor molecules in the inner leaflet of a lipid bilayer. The majority 

of the lipids in the inner leaflet and all of the lipids in the outer leaflet are thus mobile, 

mimicking the fluidity of cell membranes (Fig S1A). EIS uses an AC frequency sweep to 

determine the impedance caused by the phospholipid bilayer, which is fitted to an equivalent 

circuit (Fig S1B) to obtain a measure of membrane conductivity. This enables tBLM/EIS to be 

used to monitor real-time membrane permeability of ions18. To get an upper limit of the 

conductivity of GALA pores in planar membranes, we carried out tBLM/EIS measures in the 

presence of organic cations tetraethylammonium (TEA, MW 130 g/mol) and choline (MW 104 

g/mol) (Fig S2). The cations TEA and choline are of similar size to the cation 8-amino 

naphthalene-l,2,3-trisulfonic acid (ANTS, MW 445 g/mol) (Fig S2), which was the permeant 

in the leakage assays by Parente et al1. After confirming the formation of stable ion-conducting 

GALA pores (Fig. S3) in phosphatidylcholine (POPC) membranes, increasing concentrations 

of choline.Cl or TEA.Cl was added to the POPC-tBLMs in the presence and absence of GALA 

(Fig 3A, B). The absolute conductance depends on the number of GALA pores present, which 

cannot be controlled in our experiments. Thus, a comparison of the conduction slopes from the 

different ions necessitates normalization to the initial membrane conduction obtained at 25 mM 

for each cation tested. This provides a quantitative measure of the ability of GALA pores to 

conduct ions (Fig 3C). As seen in Fig 3, there is no concentration-dependent increase in the 

membrane conduction for choline or TEA, indicating that these cations are unable to pass 

through the GALA pore.  
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Fig. 1. tBLM/EIS measurements of conductance for the organic cations choline and 

Tetraethylammonium across POPC bilayers with GALA (□) and without GALA (●) at pH 5 5 

(n = 6, otherwise mentioned). (A) Absolute change in conductance with increasing 

concentration of choline. (B) Absolute change in conductance with increasing concentration of 

Tetraethylammonium. (C) Relative change in conductance with increasing concentration of 

choline and Tetraethylammonium. Errors represent ± standard error of the mean from 

replicates. Error bars are absent when error bars are smaller than the symbol. All measurements 

were taken at room temperature. 

 
 

The inability of choline to pass through the GALA pore in the bilayer would indicate that the 

pore in our planar bilayer is much smaller than the pore size estimated from leakage assays in 

vesicles. To provide structural information, we carried out a series of MD simulations of GALA 
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pores formed by either six, seven or eight peptide monomers embedded into POPC membranes, 

and solvated with choline and Cl- ions. These simulation systems are referred to as Hex, Hept 

and Oct, respectively. For each system, a sequence of position restrained simulations was 

carried out, followed by a 400-ns production run. For all systems, a stable pore formed after 

approximately 200 ns, as assessed by time-dependent Root Mean Square Deviation data (Fig 

S4A). Clustering analysis was used to ensure that all structures analyzed are representative of 

conformations sampled in a given simulation.  

 

Most helices are slightly tilted concerning the bilayer normal to match the hydrophobic 

thickness of the phospholipid bilayer (Fig S5), and all three systems show stable, water-filled 

pores (Fig. 2). Besides, most helices deviate from an ideal, straight helix and their 

transmembrane alignment or tilt varies. As a result, the GALA pores observed in the 

simulations differ from the idealized polygons used to estimate pore sizes. The pores contain 

the following average number of water molecules: Hex 26 ± 3; Hept 145 ± 10; Oct 149 ± 9, 

suggesting that Hex pores contain significantly fewer water molecules than Hept and Oct pores.  

 

 
Fig 2: Structure of GALA pores in the presence of choline chloride. Representatitive structures 

of Hexagon (Hex), Heptagon (Hept), and Octatong (Oct) pores obtained from  the last 100 ns 

of a 400-ns MD simulation of GALA pores in the presence of choline chloride. Side view refers 

to structures viewed parallel to the membrane normal. Top and bottom view refer to structures 

viewed perpendicular to the membrane normal. Peptides are shown in cartoon representation 

(cyan). Water molecules (red-white) inside the pore and choline ions are shown as van der 
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Waals spheres (red-white and blue, respectively). Lipids and water outside the pore are omitted 

for clarity.  

 

The simulations suggest that both Oct and Hept pores are large enough for choline to pass 

through the channel. In the Hept pore, the choline ion is observed to enter the pore despite parts 

of the pore being obscured by a lipid molecule. In contrast, the Hex pores are likely too small 

for choline to pass through. We repeated simulations of Hex, Hept, and Oct pores in the 

presence of NaCl using the same approach as for simulations with choline chloride (Fig 3). As 

before, stable pores were formed after ~200 ns of unrestrained MD simulations (Fig S4B). No 

discernible difference in the overall structure of pores in the presence of NaCl was observed. 

As before, the Hept and Oct pores contain significantly more water than the Hex pores (Hex 

16 ± 3; Hept 110 ± 9; Oct 161 ± 14). Na+ ions were observed to pass the Hept, or Oct pores 

fully solvated, and for Oct pores, several Na+ ions can be present inside the pore simultaneously 

(Fig. 3). Similarly, simulations of Hex, Hept, and Oct pores in the presence of CaCl2 showed 

that Ca2+ ions could permeate Hept and Oct pores in a fully solvated state (Fig. S6). 

 

 
Fig 3: Structure of GALA pores in the presence of NaCl. Representatitive structures of 

Hexagon (Hex), Heptagon (Hept), and Octatong (Oct) pores obtained from  the last 100 ns of 

a 400-ns unrestrained MD simulation of GALA pores in the presence of NaCl. Side view refers 

to structures viewed parallel to the membrane normal. Top and bottom view refer to structures 

viewed from along the membrane normal. Peptides are shown in cartoon representation (cyan). 

Water molecules inside the pore are shown as van der Waals spheres (red-white), and sodium 
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ions are shown as blue van der Waals spheres. Lipids and water outside the pore are omitted 

for clarity. Images of the pores in the membrane environment can be found in Fig S5 in the 

supplementary data. 

 

The MD simulations suggest that in planar membranes the Hept and Oct are large enough for 

Na+ ions to pass through the pore in a fully solvated state but have to be partially desolvated to 

pass through a hexameric GALA pore. The free energy of hydration (Ghydration) for monovalent 

cations is significantly less negative (i.e. more favorable) than for divalent cations 19 (Table 

S1).  

 

If cations need to partially desolvate to pass through hexameric GALA pores in planar 

membranes, we would expect that the concentration-dependent change in conductance would 

be significantly different for mono- and divalent cations. This would be reflected in different 

slopes in the conductance vs concentration data. To test this, we repeated tBLM/EIS 

experiments with mono- and divalent cations. For this, increasing concentrations of the 

monovalent cations LiCl, NaCl and KCl, and divalent cations CaCl2, MgCl2 and SrCl2 were 

added to POPC-tBLMs in the presence and absence of GALA. Measurements were conducted 

at pH five and ion concentrations, as chloride salts, were increased from 25 mM to 250 mM 

using 25 mM increments. As a control, the same titration was conducted in the absence of 

GALA peptide where minimal background membrane conduction was observed. There is a 

linear, concentration-dependent increase in membrane conduction with increasing ion 

concentration for all mono- and divalent cations (Fig S7). As before, to enable comparison 

between different ions, conductance data were normalized to the initial membrane conduction 

obtained at 25 mM for each cation tested. Fig. 4 shows comparisons of normalized conductance 

for monovalent and divalent cations, respectively.  
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Fig 4. tBLM/EIS measurements of conductance across POPC bilayers in the presence of GALA 

comparing three different ion types at pH 5. (A) Relative change in conductance with 

increasing concentration of monovalent alkali cations lithium, sodium and potassium. (B) 

Relative change in conductance with increasing concentration of divalent alkaline cations 

magnesium, calcium, and strontium. (C) Mean of the slope gradients plotted against DGhydration. 

Error bars represent ± standard error of the mean from replicates. Error bars are absent when 

error bars are smaller than the symbol. All measurements were taken at room temperature. (n 

= 6, otherwise mentioned) 
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The slope of the normalized, concentration-dependent membrane conduction provides us with 

some information of the selective ion permeability of the GALA pore with a steeper slope 

indicating a higher ion permeability. Comparing the normalized slopes for Li+, Na+ and K+ (Fig 

4A) show no statistical difference between Li+, Na+ and K+. No difference was observed 

between the alkaline earth metals tested (See Fig. 4B for Ca2+, Mg 2+ and Sr2+). However, all 

of the alkaline earth metal slopes were significantly lower than K+ and Na+, and the difference 

between Li+ and Ca2+ was not significant. When the gradient of the slopes was compared 

against  DGhydration energy of the cations (Table S1) a trend is observed suggesting desolvation 

energies are a determining factor for ion conduction through the GALA pore (Fig. 4 C).  

 
Our data from tBLM/EIS and simulations suggest that GALA forms smaller pores in planar 

membranes compared to vesicles. Specifically, the smaller Hex pore, which contains 

significantly fewer water molecules and is capable of only a modest desolvation energy-based 

ion selectivity. More interestingly, our data indicate that the structure and size of GALA pores 

are different in  LUVs compared to planar membranes. The data from two previous studies 1, 

15 clearly shows that ANTS leaks through pores in vesicles. In contrast we report that TEA and 

choline, which are of similar size to ANTS, do not leak through pores in planar membranes. 

The experimental conditions in previous experiments and the ones reported here are 

comparable with respect to phospholipids used, pH and ionic strengths of buffers. The most 

obvious difference is the use of planar bilayers vs LUVs. While curvature itself may be minimal 

in LUVs, several studies have reported that LUVs composed of zwitterionic phospholipids 

exhibit differences in lipid packing, area per lipid, hydration or charge distribution21-24 caused 

by asymmetry between the inner and outer bilayer leaflets. This asymmetry may impart 

distortive forces on GALA pores that change the aggregation of the monomers and thus affect 

pore size. The increased lipid packing 25-26 and increased order of interfacial water27 caused by 

low pH, might further exassabated the asymmetry.  

Finally, GALA provides a simple and tunable model system to study the effect of lipid bilayer 

asymmetry on the structure of transmembrane peptide pores, and more generally the spatial 

arrangement of transmembrane helices; an impact that is poorly understood.  
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Supporting Information 

The supporting information contain details of the methods for the tBLM/EIS experiments and 

all MD simulations and additional results. These include the structure of the organic cations 

choline, TEA and ANTs, as well as a Table listing the ionic radii and solvation energies of 

cations used in this study. Additional results include data showing the formation of stable 

GALA pores in membranes at pH 5, the RMSD vs time graphs for demonstrating the stabilyt 

of pores in the MD simulations, the structure and position of of these pores in a membrane 

environment, structure of GALA pores in the presence of CaCl2.  
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