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Abstract

Identification of regions on a vibrating structure which radiate energy to
the far field is critical in many areas of engineering. Non-negative inten-
sity is a means to visualize contributions of local surface regions to sound
power from vibrating structures. Whilst the non-negative intensity has been
used for structures under deterministic excitation due to structural forces or
harmonic incident acoustic pressure excitation, it has not been considered
for analyzing a structure under stochastic excitation. This work analytically
formulates non-negative intensity in the wavenumber domain to investigate
the surface areas on a vibrating planar structure that are contributing to the
radiated sound power in the far field. The non-negative intensity is derived
in terms of the cross spectrum density function of the stochastic field and
the sensitivity functions of either the acoustic pressure or normal fluid par-
ticle velocity. The proposed formulation can be used for both infinite planar
structure and finite plate in an infinite baffle. To demonstrate the technique,
a simply supported baffled panel excited by a turbulent boundary layer as
well as an acoustic diffuse field is considered and those regions contributing
to the radiated sound power are identified. It is demonstrated that the non-
negative intensity distribution is dependent on the stochastic excitation. It
is also found that for a panel under stochastic excitation the more the non-
negative intensity distribution is concentrated within the panel surface, the
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more efficient the panel radiates sound to the far field.

Keywords: Acoustic radiation, non-negative intensity, surface contribution,
stochastic excitation, turbulent boundary layer, acoustic diffuse field

1. INTRODUCTION1

Reconstruction techniques of sound sources such as near-field acoustic2

holography (NAH), inverse boundary element method (BEM) and the equiv-3

alent sources methods are widely used in industry [1]. In many engineering4

applications, it is important to identify the regions on a vibrating structure5

which radiate energy to the far field. This identification can help design engi-6

neers to gain a deeper understanding about the noise generation mechanism,7

and it also allows targeted mitigation strategies to be explored. For exam-8

ple, noise reduction can be achieved by modifying geometry and structural9

properties. Acoustic intensity can help with identifying hot spots on the10

structure. However, intensity is usually highly bipolar and has positive and11

negative values that correspond to energy sources and sinks on the surface12

of the radiating structure. Therefore, the near-field cancellation effects occur13

when integrating the positive and negative components of the normal acous-14

tic intensity over the surface of the structure. Williams [2; 3] introduced the15

supersonic intensity (SSI) formulation in the wavenumber domain. The SSI16

was employed to locate the areas on the source surface which effectively con-17

tribute to the far-field pressure. The SSI eliminates the contribution to the18

pressure and the velocity on the source of the high wavenumber components19

(subsonic components), which are evanescent and do not contribute to the20

far field. The modified velocity and pressure obtained by considering only21

the wavenumber in the acoustic circle were termed supersonic velocity and22

supersonic pressure respectively.23

The SSI was computed in the space domain using a two-dimensional con-24

volution between the acoustic field and a spatial filter mask by Fernandez-25

Grande et al. [4]. The filter corresponds to the space domain representation26

of the acoustic circle. Hence, only the acoustic waves that propagate effec-27

tively to the far field were taken into account. The numerical technique was28

validated by an experimental study on planar radiators. Fernandez-Grande29

and Jacobsen [5] quantitatively examined the accuracy of the supersonic30

intensity. They quantified the error introduced by the finite measurement31

aperture. It was demonstrated that the error was substantial at low frequen-32
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cies. The study showed that using an extended aperture and/or an increased33

cut-off frequency the error can be diminished. Valdivia et al. [6] employed34

supersonic acoustic intensity to locate radiating regions on a vibrating struc-35

ture of arbitrarily shaped geometries. They removed the evanescent waves36

from the NAH measurement. A method based on a stable invertible repre-37

sentation of the radiated power operator was proposed. The stable invertible38

operator was derived using the equivalent source formulation and a complete39

spectral basis. The proposed method was validated using experimental data40

from a vibrating ship-hull structure.41

Magalhães and Tenenbaum [7] extended the SSI technique to consider42

arbitrarily shaped sources. Their work was based on the BEM and singu-43

lar value decomposition. Marburg et al. [8] formulated the non-negative44

intensity (NNI) using the BEM to identify the surface areas of a vibrating45

structure that contribute to the radiated sound power. The acoustic ra-46

diation modes were employed to compute the surface contributions of the47

structure for all boundaries of the acoustic domain. Williams [9] proposed48

two analytical formulae for the NNI based on the pressure and normal fluid49

particle velocity for planar structures under deterministic excitation. It was50

shown that both formulae yield almost identical results in prediction of the51

regions of a structure that emit sound to the far field.52

Junior and Tenenbaum [10] proposed an equivalent technique to the SSI53

based on the BEM called useful intensity. The technique does not require the54

construction of a hologram to evaluate the acoustic pressure from the known55

normal velocity field on the vibrating surface. Both the analytical SSI and56

the numerical useful intensity methods were used by Ferreira et al. [11] to57

examine the sound radiated from rectangular baffled panels. Eight differ-58

ent combinations of classical boundary conditions were considered. It was59

shown that the results obtained using the useful intensity were not strictly60

the same as those obtained using the SSI. The NNI based on the BEM was61

also employed to identify the surface areas of a rigid sphere and a rigid cylin-62

der that contributes to the scattered sound power [12]. The same technique63

was applied to localize the surface areas of vibrating structure to radiated64

sound power [13; 14]. The surface contribution from a panel to the radiated65

sound power for different modes was numerically investigated [14]. The nu-66

merical results were validated by NAH measurements. Similar distributions67

of numerical and experimental NNI were observed at each mode. Liu et al.68

[15] used the NNI based on the BEM to investigate the effect of inhomo-69

geneous Rayleigh damping on the surface contributions to radiated sound70
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power. It was found that traveling waves propagate to the regions with71

higher damping. Wilkes et al. [16] applied the NNI method to a fluid-loaded72

steel spherical shell excited by a point/ring force. A hybrid finite element73

and fast multipole boundary element method (FMBEM) was used to solve74

the structural-acoustic problem. The boundary field was then used in the75

FMBEM solver to compute the NNI.76

Identification of source velocities on 3D structures in non-anechoic en-77

vironments using the inverse patch transfer functions (IPTF) method was78

first introduced by Aucejo et al. [17]. The direct patch transfer functions79

method can be used to predict the structural velocity or the sound pressure80

of a domain containing acoustic sources by calculating acoustic impedances81

of uncoupled sub-domains. The IPTF method can identify the unknown82

sources by measuring the coupling velocity at an arbitrarily defined surface83

surrounding the source. Vigoureux et al. [18] investigated rigorous crite-84

ria needed to obtain accurate results using IPTF to identify sources in a85

non-anechoic or reverberant environment on an irregularly shaped structure.86

Further, a procedure was proposed to compute intensity of the source and87

wall pressure without any additional measurement. A frequency band was88

detected for which the IPTF method was not providing accurate results.89

This was attributed to the presence of evanescent waves. Valdivia [19; 20]90

developed a method based on the spectral decomposition of the power op-91

erator that yielded an NNI expression to efficiently compute the supersonic92

components from acoustic pressure measurements for arbitrary geometries.93

Using numerical models it was shown that the proposed NNI matched the94

SSI.95

Stochastic excitations such as turbulent boundary layer (TBL) and acous-96

tic diffuse field (ADF) are widely encountered in transportation systems [21–97

23]. For example, aircraft, satellite, marine vessels, high speed trains and98

cars are subject to random and non-deterministic excitations throughout99

their operations. While surface contribution techniques such as the SSI and100

NNI have been developed for structures under deterministic excitation, they101

have not been applied for analyzing a structure under stochastic excitation.102

In this work, the NNI is analytically formulated for planar structures under103

stochastic excitation in the wavenumber domain. The proposed formulation104

is valid for both infinite planar structure and finite plate in an infinite baffle.105

Two formulae are developed for the NNI which are in terms of the cross spec-106

trum density function of the stochastic field and the sensitivity functions of107

either the acoustic pressure or normal fluid particle velocity. The technique108
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is implemented to identify the regions of a vibrating simply supported baf-109

fled panel contributing to the radiated sound power. Both TBL and ADF110

excitations are considered to illustrate the proposed technique.111

2. Radiated Acoustic Power112

The radiated acoustic power of an infinite planar structure or a finite plate
in an infinite baffle under stochastic excitation can be obtained by integrating
the normal active intensity Iact, corresponding to the cross spectrum between
the sound pressure and the normal fluid particle velocity denoted by Spvf ,
over the infinite boundary surface as follows [24; 25]

Πrad(ω) =

∫
∞

Iactdx =

∫
∞

Re
{
Spvf (x, ω)

}
dx, (1)

where x = (x, y), and ω is the angular frequency. The cross spectrum is
given by the following analytical expression [25]

Spvf (x, ω) =
1

4π2

∫
∞

Hp(x,k, ω)H∗v (x,k, ω)φpp(k, ω)dk, (2)

where ∗ denotes the complex conjugate. Hp(x,k, ω), Hv(x,k, ω) are sensi-113

tivity functions for the radiated pressure and the normal fluid particle ve-114

locity on the surface of structure, respectively. The sensitivity functions in115

the spatial domain are related to the spectral sensitivity functions in the116

wavenumber domain k̃, denoted by H̃p(k̃,k, ω) and H̃v(
˜̃k,k, ω), by inverse117

Fourier transform as follows118

Hp(x,k, ω) =
1

4π2

∫
∞

H̃p(k̃,k, ω)eik̃xdk̃, (3)

H∗v (x,k, ω) =
1

4π2

∫
∞

H̃∗v (k̃,k, ω)e−ik̃xdk̃. (4)

Using Eqs. (1)-(4), the radiated acoustic power of a planar structure under119

stochastic excitation can be written as follows [26]120

Πrad(ω) = Re

[(
1

4π2

)2 ∫
∞

∫
∞

H̃p(k̃,k, ω)H̃∗v (k̃,k, ω)φpp(k, ω)dkdk̃

]
, (5)
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where φpp(k, ω) is the cross spectrum density (CSD) function of the stochastic121

force. The sensitivity function of the normal fluid particle velocity on the122

panel surface is related to the sensitivity function of the sound pressure in123

the wavenumber domain as follows [24]124

H̃p(k̃,k, ω) =
ρaω

k̃z(k̃)
H̃v(k̃,k, ω), (6)

where125

k̃z(k̃) =


√
k2
a − k̃2

x − k̃2
y, k2

a ≥ k̃2
x + k̃2

y

i
√
k̃2
x + k̃2

y − k2
a, otherwise

 , (7)

and ka is the acoustic wavenumber, ρa is the fluid density, and k̃ = (k̃x, k̃y).126

Substituting Eq. (6) in Eq. (5), the radiated acoustic power can be written127

either in terms of sound pressure or normal fluid particle velocity sensitivity128

functions as follows129

Πrad
p (ω) = Re

[
1

16π4ρaω

∫
∞

∫
∞

k̃∗z(k̃)
∣∣∣H̃p(k̃,k, ω)

∣∣∣2 φpp(k, ω)dk̃dk

]
. (8)

Πrad
v (ω) = Re

[
ρaω

16π4

∫
∞

∫
∞

1

k̃z(k̃)

∣∣∣H̃v(k̃,k, ω)
∣∣∣2 φpp(k, ω)dk̃dk

]
. (9)

The subscripts p and v correspond to the formulations based on the pres-130

sure and velocity sensitivity functions, respectively. Considering that the131

φpp(k, ω) is always real, the only function which could make the integrand132

in Eqs. (8) and (9) complex is k̃z(k̃). According to Eq. (7), k̃z(k̃) becomes133

purely imaginary when the wavenumbers are outside the acoustic circle de-134

fined by Ωa =
{

k̃ ∈ R2,
∣∣∣k̃∣∣∣ ≤ ka

}
. Therefore, only wavenumbers inside the135

acoustic circle contribute to the radiated acoustic power. Hence, Eqs. (8)136

and (9) can be rewritten as137

Πrad
p (ω) =

1

16π4ρaω

∫
∞

∫
k̃∈Ωa

√
k2
a − k̃2

x − k̃2
y

∣∣∣H̃p(k̃x, k̃y,k, ω)
∣∣∣2 φpp(k, ω)dk̃dk,(10)

Πrad
v (ω) =

ρaω

16π4

∫
∞

∫
k̃∈Ωa

1√
k2
a − k̃2

x − k̃2
y

∣∣∣H̃v(k̃x, k̃y,k, ω)
∣∣∣2 φpp(k, ω)dk̃dk.(11)
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3. Non-Negative Intensity138

In this section, an analytical formulation is presented for non-negative139

intensity (the active normal intensity) for planar structures under stochastic140

excitation to identify the areas of the vibrating structure that produce radia-141

tion to the far-field. The aim here is to develop a formula for IN(x, ω) which142

meets the two following conditions:143

1. The NNI must be always non-negative. This will prevent acoustic short-144

circuit in the adjacent areas on the surface of the structure.145

2. When integrating the NNI over the infinite boundary surface, it must146

produce the total sound power.147

To meet the first condition, similar to works by Marburg et al. [8] and148

Williams [9] the NNI can be defined as follows149

IN(x, ω) =
1

4π2

∫
∞

β(x,k, ω)β∗(x,k, ω)dk =
1

4π2

∫
∞

|β(x,k, ω)|2 dk, (12)

where β(x,k, ω) is a complex function which is not physically meaningful.150

It has been introduced in Eq. (12) to ensure that the NNI is always non-151

negative by definition. This satisfies the necessary condition for defining the152

NNI. The second condition for the NNI states that the total radiated acoustic153

power must be obtained by integrating the NNI over the infinite boundary154

surface155

Πrad(ω) =

∫
∞

IN(x, ω)dx. (13)

Eq. (13) can be rewritten in terms of β(x,k, ω) as follows156

Πrad(ω) =
1

4π2

∫
∞

∫
∞

β(x,k, ω)β∗(x,k, ω)dkdx =
1

4π2

∫
∞

∫
∞

|β(x,k, ω)|2 dkdx.(14)

To meet the second condition, we propose two new formulae for β(x,k, ω),157

one in terms of pressure sensitivity function and the other one based on158

the sensitivity function of normal fluid particle velocity. Both formulae are159
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dependent on the CSD function of the stochastic field. The two formulae are160

given by161

βp(x,k, ω) =

√
φpp(k, ω)

4π2
√
ρaω

∫
k̃∈Ωa

4

√
k2
a − k̃2

x − k̃2
yH̃p(k̃x, k̃y,k, ω)eik̃xdk̃. (15)

βv(x,k, ω) =

√
ρaωφpp(k, ω)

4π2

∫
k̃∈Ωa

1

4

√
k2
a − k̃2

x − k̃2
y

H̃v(k̃x, k̃y,k, ω)eik̃xdk̃. (16)

As can be seen from Eqs. (15) and (16), the integral domain is confined162

within the acoustic circle (k̃ ∈ Ωa) which means that k2
a ≥ k̃2

x + k̃2
y and k̃z(k̃)163

is real. These wavenumbers are associated with supersonic waves as their164

trace speeds are faster than the speed of sound. Whilst for the wavenumbers165

outside the acoustic circle, k̃z(k̃) is purely imaginary and the corresponding166

waves are called subsonic waves since they travel at phase speeds less than the167

speed of sound. The purpose of defining NNI is to identify local surfaces on168

a structure that are contributing to the far-field radiated sound. It is the far-169

field sound pressure that is normally of interest in engineering applications170

because this is the quantity to which a potential observer is typically exposed.171

The NNI enables the design engineers to identify the locations of unwanted172

sources of sound on the structure that make the most significant contributions173

to the far field. Therefore, only contributions of supersonic waves are taken174

into account and the subsonic components, which are evanescent and do not175

propagate to the far-field, are excluded.176

To prove that the two formulae given by Eqs. (15) and (16) result in the177

radiated sound power as that given by Eqs. (10) and (11), Eq. (14) should178

be evaluated using Eqs. (15) and (16). In what follows, the proof is given for179

βv(k, ω) and similar approach can be used to verify that βp(k, ω) also meets180

this condition. β∗v(k, ω) can be written as follows181

β∗v(x,k, ω) =

√
ρaωφpp(k, ω)

4π2

∫
˜̃k∈Ωa

1

4

√
k2
a −

˜̃k2
x −

˜̃k2
y

H̃∗v (˜̃kx,
˜̃ky,k, ω)e−i˜̃kxd˜̃k,(17)

substituting Eqs. (16) and (17) into Eq. (14)182
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Πrad
v (ω) =

ρaω

16π4

∫
∞

∫
˜̃k∈Ωa

∫
k̃∈Ωa

H̃v(k̃x, k̃y,k, ω)

4

√
k2
a − k̃2

x − k̃2
y

H̃∗v (˜̃kx,
˜̃ky,k, ω)

4

√
k2
a −

˜̃k2
x −

˜̃k2
y

dk̃ (18)

(
1

4π2

∫
∞

ei(k̃−˜̃k)xdx

)
d˜̃kφpp(k, ω)dk,

using the integral in the parenthesis in Eq. (18) corresponds to the Dirac
delta function which is given by [27]

1

4π2

∫
∞

ei(k̃−˜̃k)xdx = δ(k̃− ˜̃k), (19)

using this definition, Eq. (18) can be simplified to183

Πrad
v (ω) =

ρaω

16π4

∫
∞

∫
k̃∈Ωa

1√
k2
a − k̃2

x − k̃2
y

∣∣∣H̃v(k̃x, k̃y,k, ω)
∣∣∣2 φpp(k, ω)dk̃dk.(20)

This equation is exactly the same as Eq. (11). The NNI formulae can be184

obtained by substituting Eqs. (15) and (16) into Eq. (12)185

INp (x, ω) =
1

(4π2)3ρaω

∫
∞

∣∣∣∣∣∣∣
∫

k̃∈Ωa

4

√
k2
a − k̃2

x − k̃2
yH̃p(k̃x, k̃y,k, ω)eik̃xdk̃

∣∣∣∣∣∣∣
2

|φpp(k, ω)| dk,(21)

INv (x, ω) =
ρaω

(4π2)3

∫
∞

∣∣∣∣∣∣∣
∫

k̃∈Ωa

1

4

√
k2
a − k̃2

x − k̃2
y

H̃v(k̃x, k̃y,k, ω)eik̃xdk̃

∣∣∣∣∣∣∣
2

|φpp(k, ω)| dk.(22)

Due to the magnitude operation, these formulae are guaranteed to yield non-186

negative results.187

In Eq. (22), the term in the denominator tends to zero for the wavenum-188

bers on the acoustic circle. Generally, singular integrals can be numerically189
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evaluated as described in Refs [28; 29]. However, Singularity in Eq. (22) can190

be analytically removed using the following conversion formulae191

k̃x = k̃rcosθ; k̃y = k̃rsinθ, (23)

Eq. (22) can then be transformed to polar wavenumber coordinates as follows192

INv (x, ω) =
ρaω

(4π2)3

∫
∞

∣∣∣∣(∫ θ=2π

θ=0

∫ k̃r=ka

k̃r=0

k̃r

4

√
k2
a − k̃2

r

(24)

H̃v(k̃rcosθ, k̃rsinθ,k, ω)eik̃r(xcosθ+ysinθ)dk̃rdθ

)∣∣∣∣2 |φpp(k, ω)| dk.

Finally, the change of variable, k̃r = ka sinγ analytically removes the singu-193

larity from the integral. As such, Eq. (24) can be expressed by194

INv (x, ω) =
ρaωk

3
a

(4π2)3

∫
∞

∣∣∣∣(∫ θ=2π

θ=0

∫ γ=π
2

γ=0

sinγ
√

cosγeikasinγ(xcosθ+ysinθ) (25)

H̃v(kasinγcosθ, kasinγsinθ,k, ω)dγdθ

)∣∣∣∣2 |φpp(k, ω)| dk,

the rectangular method for the numerical integration in Eqs. (25) and (21),195

the NNI becomes196

INv (x, ω) =
ρaωk

3
a

(4π2)3

∑
k∈Ωt

∣∣∣∣( ∑
θ∈[0,2π]

∑
γ∈[0,π

2
]

sinγ
√

cosγeikasinγ(xcosθ+ysinθ) (26)

H̃v(kasinγcosθ, kasinγsinθ,k, ω)δγδθ

)∣∣∣∣2 |φpp(k, ω)| δk,

197

INp (x, ω) =
1

(4π2)3ρaω

∑
k∈Ωt

∣∣∣∣( ∑
k̃∈Ωa

4

√
k2
a − k̃2

x − k̃2
yH̃p(k̃x, k̃y,k, ω)eik̃xδk̃

)∣∣∣∣2(27)

|φpp(k, ω)| δk.

Ωt is a truncated wavenumber domain and δγ, δθ, δk and δk̃ are the in-198

crements in the numerical integration. For the ADF excitation, since the199
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normalized CSD function φ̃ADF
pp (kx, ky, ω) is null for the wavenumbers larger200

than the acoustic wavenumber, the truncated wavenumber domain is basi-201

cally the acoustic circle Ωa.202

It is also noteworthy that the NNI formulae expressed by Eqs. (26) and203

(27) can be used for both infinite planar structure and finite plate in an infi-204

nite baffle. To compute the NNI, one requires determination of the sensitivity205

functions. The sensitivity functions can be either calculated analytically or206

numerically. For example, the finite element method can be employed to207

obtain the sensitivity functions. In the following section, the NNI formula-208

tion is applied to a finite baffled panel for which the sensitivity functions are209

analytically determined.210

4. Application to Rectangular Baffled Panels211

A rectangular baffled panel excited by a stochastic pressure field is shown212

in Figure 1. The spatial average of the auto spectrum density (ASD) of the213

panel velocity is given by [30–32]214

Svv(x, ω) =
1

4π2

∫
∞

|Hvs(x,k, ω)|2 φpp(k, ω)dk, (28)

Stochastic excitation 

𝑥 

𝑦 
𝑧 

𝐿𝑥 

𝐿𝑦 

Figure 1: A baffled panel under stochastic excitation.

where Hvs(x,k, ω) is the sensitivity function of the panel velocity excited by215

a unit wall plane wave. The spatial average of the ASD of the panel velocity216
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is given by217 〈
V 2
〉

=
1

A

∫
A

Svv(x, ω)dA, (29)

A = LxLy is the panel surface area and Lx, Ly are the panel length and width218

in the x and y directions, respectively. Eqs. (28) and (29) can be evaluated219

using rectangular method as described in Ref [32]220

The ASD of the radiated pressure from the panel excited by the stochastic
field is also given by

Spp(x, ω) =
1

4π2

∫
∞

|Hp(x,k, ω)|2 φpp(k, ω)dk, (30)

assuming that CSD of the stochastic field is known, it can be seen from221

the equations in Sections 2-4 that to evaluate Πrad, Iact, I
N , Svv and Spp,222

the sensitivity functions of panel velocity, normal fluid particle velocity and223

radiated pressure have to be known. In what follows, determination of these224

sensitivity functions are discussed.225

4.1. Determination of the Sensitivity Functions226

For a simply supported rectangular panel excited by a unit wall plane
wave, the sensitivity function Hvs(x,k, ω) corresponding to the velocity at
point x is given by [32]

Hvs(x,k, ω) = iω
M∑
m=1

N∑
n=1

ψmn(k)ϕmn(x)

Ω(ω2
mn − ω2 + iηωωmn)

, (31)

Ω = ρshLxLy/4 is the modal mass. The modal frequencies are given by

ωmn =

√
D

ρsh

((
mπ

Lx

)2

+

(
nπ

Ly

)2
)
, (32)

where D = Eh3/(12(1−ν2)) is the flexural rigidity, E is the Young’s modulus
and ν is Poisson’s ratio. The modal forces ψmn are calculated by integration
over the panel surface as follows

ψmn(k) =

∫
A

ϕmn(x)e−i(kxx+kyy)dA = Ixm(kx)I
y
n(ky), (33)
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where ϕmn(x) are the panel mode shapes given by

ϕmn(x) = sin

(
mπx

Lx

)
sin

(
nπy

Ly

)
, (34)

and227

{Irs (kr)|(r, s) = (x,m) ∨ (y, n)} =


(
sπ

Lr

)
(−1)se−i(krLr) − 1

k2
r −

(
sπ

Lr

)2 , kr 6=
sπ

Lr

1
2
iLr, otherwise

 .(35)

At the interface between the panel and the acoustic domain, the structural228

velocity vs is equal to fluid particle velocity v in the normal direction, that229

is Hv(x,k, ω) = Hvs(x,k, ω). As such, the spectral sensitivity function of230

normal fluid particle velocity H̃v(k̃,k, ω) can be obtained analytically using231

a Fourier transform as follows232

H̃v(k̃,k, ω) =

∫
∞

Hv(x,k, ω)e−ik̃xdx =
M∑
m=1

N∑
n=1

amn(k̃, ω)ψmn(k), (36)

where233

amn(k̃, ω) = iω
ψmn(k̃)

Ω(ω2
mn − ω2 + iηωωmn)

, (37)

and ψmn and Irs are given by Eqs. (33)-(35).234

Since H̃p(k̃,k, ω) is related to H̃v(k̃,k, ω) by Eq. (6), to obtainHp(x,k, ω),235

one can compute the inverse Fourier transform of Eq. (6). However, in or-236

der to avoid an additional inverse Fourier transform we used an alternative237

approach based on the Lyamshev reciprocity principle [33; 34]. Figure 2238

illustrates the Lyamshev reciprocity principle for a baffled panel.239

According to Lyamshev reciprocity principle, the ratio of the pressure at
point x over the applied normal force at point x′ is equal to the ratio of the
normal velocity of the panel at point x′ over the volume velocity Qv of a
monopole source placed at point x, that is,

Hp/F (x,x′, ω) = Hv/Qv(x
′,x, ω), (38)
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Figure 2: Illustration of the Lyamshev reciprocity principle for a baffled panel.

where

Hv/Qv(x
′,x, ω) = iω

M∑
m=1

N∑
n=1

Fmn(x)ϕmn(x′)

Ω(ω2
mn − ω2 + iηωωmn)

, (39)

and

Fmn(x) =

∫
A

p(x,x′, ω)ϕmn(x′)dx′, (40)

where p(x,x′, ω) is the acoustic pressure generated by a monopole source and
is given by

p(x,x′, ω) =
iρaωQv

2πr
e−ikar, r = |x− x′| . (41)

The sensitivity function of the radiated pressure is given by

Hp(x,k, ω) =

∫
∞

Hp/F (x,x′, ω)e−ikx′dx′, (42)

substituting Eqs. (38)-(39) into Eq. (42), the sensitivity function Hp(x,k, ω)
can be written as follows

Hp(x,k, ω) =
M∑
m=1

N∑
n=1

amn(k, ω)Fmn(x), (43)

where Fmn(x) is given by Eq. (40) and can be numerically computed using240

rectangular method.241
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Table 1. Dimensions and material properties of the panel
Parameter Value
Young’s modulus, E (GPa) 70
Poisson’s ratio, ν 0.3
Mass density, ρs (kg/m3) 2700
Length, Lx (mm) 480
Width, Ly (mm) 420
Thickness, hs (mm) 3.17
Damping loss factor, η 0.005

5. Results and Discussion242

A rectangular baffled panel with simply-supported boundary conditions243

is considered. The dimensions and material properties of the panel are listed244

in Table 1. The fluid density and kinematic viscosity were set to 1.225 kg/m3
245

and 1.511 × 10−5 m2/s, respectively.246

247

5.1. Modeling TBL and ADF Excitations248

The surface contributions of the panel to the radiated sound power under249

two different stochastic excitations, namely TBL and ADF are examined.250

The CSD of the stochastic field can be expressed in terms of the ASD function251

Ψpp(ω) and the normalized CSD function of the stochastic field φ̃pp(k, ω) as252

follows [35; 36]253

φpp(k, ω) = Ψpp(ω)φ̃pp(k, ω). (44)

Eq. (44) can be used to evaluate the CSD of both the ADF and TBL
excitations. A unity ASD is assumed for both excitations. The normalized
CSD functions given in Appendix A were also used to evaluate the TBL and
ADF excitations, respectively. For TBL excitation, it is assumed that the
TBL is stationary, homogeneous and fully developed over the panel surface.
Moreover, it is assumed the vibration of the panel does not alter the wall
pressure field (WPF). The Mellen model described in Appendix A was used
to evaluate the CSD function of the WPF [37]. The TBL parameters were
estimated based on theoretical formula for a flat panel from literature and
are given in Table 2 [32]. The convective velocity Uc was approximated as
follows [32; 38]

Uc ∼= U∞(0.59 + 0.3e−0.89δ∗ω/U∞), (45)
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Table 2. TBL parameters at a flow speed of 40 m/s
Parameter Value
TBL thickness δ (m) 0.0349
TBL displacement thickness δ∗ (m) 0.0044
Wall shear stress τ (Pa) 2.5228

where U∞ is the free flow velocity and δ∗ is boundary layer displacement254

thickness.255

256

5.2. Determination of Cut-off Wavenumbers and Wavenumber Resolutions257

It has previously been reported when a panel is excited by a TBL, the258

effect of convected ridge can be neglected for frequencies well above the aero-259

dynamic frequency [26; 32]. Therefore, to predict the vibroacoustic response260

of the panel the cut-off wavenumber can be defined based on the flexural261

wavenumber. This is due to the filtering effect of the structure. In this262

study, it was confirmed that the same criterion can be used to evaluate the263

NNI. One can plot the forcing function and sensitivity function to illustrate264

the filtering effect. To do this, Eq. (22) can be further written in a compact265

form as follows266

INv (x, ω) =

(
1

4π2

)∫
∞

∣∣∣H̃N(x,k, ω)
∣∣∣2 φpp(k, ω)dk, (46)

where H̃N(x,k, ω) is the NNI sensitivity function given by267

H̃N(x,k, ω) =

√
ρaωk3

a

4π2

( ∑
θ∈[0,2π]

∑
γ∈[0,π

2
]

sinγ
√

cosγeikasinγ(xcosθ+ysinθ) (47)

H̃v(kasinγcosθ, kasinγsinθ,k, ω)δγδθ

)
Figure 3(a) presents a map of the NNI sensitivity function at (x, y) =268

(0.4 m,0.4 m) and for ky = 0. The black dashed lines correspond to the269

panel flexural wavenumbers. It can be seen that the sensitivity function270

reaches its maximum values at wavenumbers smaller than or close to the flex-271

ural wavenumbers. However, for the wavenumbers larger than the flexural272

wavenumbers the magnitude of the function is still considerable, particularly273
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at resonance frequencies. Figure 3(b) shows the TBL forcing function, corre-274

sponding to the CSD of the WPF. The convective wavenumbers are denoted275

by the dash-dotted line. Figure 3(c) presents the product of the sensitivity276

function and forcing function. It can be observed from Figure 3(c) that most277

of the wavenumbers larger than flexural wavenumber are filtered out. There-278

fore, only wavenumbers smaller than flexural wavenumbers contribute to the279

NNI. However, a small effect of the convective ridge on the product of the280

sensitivity function and forcing function can be observed around 150 Hz and281

350 Hz. Whilst this contribution is not significant, the effect of the convective282

ridge was taken into account here as the cut-off wavenumber was defined as283

twice the flexural wavenumber at the highest frequency of interest. In fact, a284

cut-off wavenumber of kcut-off = 2kp,max was selected. Therefore, a wavenum-285

ber range of [−2kp,max, 2kp,max] was used in both the streamwise and spanwise286

directions where kp,max = (ωmax

√
ρsh/D)1/2 is the flexural wavenumber of the287

panel at the maximum frequency of interest denoted by ωmax. The wavenum-288

ber resolutions were set to δkx = δky = 0.25 (1/m), and δγ, δθ were set to289

π/60. These values were determined using a convergence study. It should290

also be pointed out that although the NNI sensitivity function was plotted291

at a certain point on the panel, the same filtering effect occurs for all the292

points on the panel and similar behavior could be observed if the maps were293

plotted at a different point.294
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(a)

(b)

(c)

Figure 3: Maps of the (a) NNI sensitivity functions
∣∣∣H̃N (x,k, ω)

∣∣∣2 (dB, ref.

Pa−1m3s−2rad2), (b) CSD function of the wall pressure spectrum using the Mellen model
φpp(k, ω) (dB, ref. 1 Pa2m2s rad−2), and (c) result obtained by the product of (a) and (b)
normalized by the maximum value at each frequency (dB, ref. 1 Wm2). The black dashed
lines in (a) and (c) correspond to the panel flexural wavenumber; the white dashed-dot
line in (b) and (c) corresponds to the convective wavenumber.
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5.3. Vibroacoustic Response of the Panel295

Figures 4 and 5 respectively present the spatial average of the ASD of296

the panel velocity and the radiated sound power of the panel under the TBL297

and ADF excitations. The TBL excitation strongly excites the structure298

at the aerodynamic coincidence frequency, fc, which occurs when the flex-299

ural wavenumber given by kp = (ω
√
ρsh/D)1/2 is equal to the convective300

wavenumber kc = ω/Uc, that is, fc = U2
c

√
ρsh/D/(2π) [39]. For the param-301

eters chosen here and at a flow speed of 40 m/s, fc=29 Hz. It can be seen302

from both figures that except at very low frequencies the spectral levels of303

the velocity and the sound power of the panel under the ADF excitation are304

significantly higher than those for the panel excited by the TBL (a unity305

ASD of the stochastic field was assumed for both excitations). Further, the306

shape and trend of the panel velocity response under the TBL excitation is307

very similar to that under the ADF excitation. However, a different behav-308

ior for the radiated sound power can be observed in Figure 5. The radiated309

sound power between resonance frequencies for the ADF excitation is rela-310

tively flat whilst the sound power at those frequencies form a curved shape311

in the spectra for the TBL excitation.312

Figure 4: Predicted mean quadratic velocity spectra for the TBL and ADF excitations
(dB ref. 1 (m/s)2/Hz).
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Figure 5: Predicted acoustic power of the panel under the TBL and ADF excitations (dB
ref. 1 × 10−12(W)).

Figure 6 shows the radiation efficiency of the panel for both the ADF and
TBL excitations. The radiation efficiency of a panel is given by [40]

σ =
Πrad

Aρaca 〈V 2〉
, (48)

vertical lines in Figure 6 indicate the resonance frequencies of the panel, the313

mode number for each resonance frequency has also been shown ((m,n) mode314

means an m mode in the x-direction and an n mode in the y-direction). It315

can be observed from Figure 6 that at very low frequencies the radiation316

efficiency of the panel is independent of the excitation force, and at higher317

frequencies the radiation efficiency of the panel under the ADF excitation318

is generally higher than that of the panel excited by the TBL, particularly319

at non-resonance frequency, the ADF excited panel efficiently radiates sound320

to the acoustic domain. At resonance frequency, the radiation frequency is321

almost the same for both excitations.322
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Figure 6: Radiation efficiency of the panel under the TBL and ADF excitations.

5.4. The NNI Calculation323

To identify the surface contributions of the panel to the radiated sound324

power under the ADF and TBL excitations, the NNI has been computed at325

four discrete resonance frequencies of 177 Hz, 307 Hz, 691 Hz and 924 Hz as326

well as at two non-resonance frequencies of 630 Hz and 700 Hz. The maps327

of Svv, Spp, Iact and IN at the selected frequencies are presented in Figures 7328

and 8 for the panel under the TBL and ADF excitations, respectively. It can329

be observed that regardless of excitation, at each frequency (particularly at330

the resonance frequencies) the map of Svv is very similar to that of Spp. This331

is not surprising as Spp was evaluated on the surface of the panel, and the332

sensitivity functions of velocity and pressure have similar characteristic and333

are related to each other by Eq. (6). Figures 7 and 8 show that the active334

normal intensity Iact of the panel excited by the ADF is higher than that335

under the TBL excitation, this is consistent with the sound power results336

presented in Figure 5. Further, it can be seen that the maps of Iact for both337

excitations are very similar and the patterns at the resonance frequencies are338

highly dominated by the mode shapes.339

For the TBL excitation, the NNI shows a distribution where mainly the340

edges and corners of the panel are significantly contributing to the radi-341

ated sound. This is consistent with the concept of edge and corner modes342
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introduced by Maidanik [41]. For example, at 177 Hz the edge mode is con-343

tributing to the far-field sound power while at 307 Hz, 691 Hz, 700 Hz and344

924 Hz the corner modes are the main contributor. At 630 Hz, a large surface345

located between the center and two edges of the panel generates propagative346

waves to the far field. For the ADF excitation at 177 Hz and 924 Hz a similar347

NNI distribution to those of TBL excitation in Figure 7 can be observed. At348

these two resonance frequencies, regardless of excitation, only edge and cor-349

ner modes are contributing to the radiated sound. Figures 7 and 8 show that350

the NNI distribution for the panel under the TBL excitation at 307 Hz and351

700 Hz are mainly at the corners of the panel while for the ADF excitation352

the NNI is distributed along the diagonal of the panel with high intensity in353

the middle of the panel. Further, at 630 Hz the hot spots are formed as two354

separate vertical ellipses for the TBL excited panel while for the ADF excited355

panel the NNI was contained within a large horizontal ellipse. According to356

Figures 7 and 8, in addition to the corner modes which effectively generate357

supersonic waves to the far field for both excitations at 691 Hz, there is a358

hot spot in the middle of the panel for the ADF excitation which radiates359

energy to the far field. Results in Figures 7 and 8 revealed that the NNI360

distribution depends on the excitation type and frequency.361

It should be noted that since normal fluid particle velocity is zero over362

the baffle (outside the panel surface), the active normal intensity is also zero363

everywhere on the baffle. Therefore, plotting Iact over the panel surface364

shows the total intensity pattern, and the total radiated sound power can be365

evaluated by taking the integral of Iact over the panel surface. However, the366

NNI is not necessarily zero on the baffle. To obtain the total sound power367

from the NNI, its entire distribution over the infinite boundary surface has to368

be considered as indicated by Eq. (13). Hence, the whole NNI distributions369

are plotted over a large boundary surface at z = 0 for the selected frequencies370

as shown in Figures 9 and 10. The solid white lines in the maps indicate371

the rectangular panel under ADF/TBL excitations. Figures 9 and 10 show372

that the maxima of the NNI are usually located outside the panel surface,373

particularly at low frequencies as shown in Figure 9(a) and (b). The NNI374

distributions shown in Figures 7 and 8 are basically small parts of the whole375

distributions at most selected frequencies. The total NNI distribution in376

Figures 9 and 10 can be considered as an image of the excitation sources377

viewed by the acoustic domain. For instance, Figure 9 shows that at 177 Hz378

the size of each hot spot is around 1 m which corresponds to the half acoustic379

wavelength. Hence, the spatial resolution of the NNI is directly related to380
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the acoustic wavelength.381

As can be seen in Figure 9(c) almost the whole area of the panel under382

the ADF excitation is contributing to the radiated sound. At this frequency383

a high radiation is expected, this is consistent with the results in Figure 6384

where the radiation efficiency of the panel is close to 100 % (i.e. σ = 1) at385

630 Hz . From the maps of the NNI at the peaks of the radiation efficiency386

(results are not shown here), it was confirmed that concentration of the NNI387

distribution within the panel surface results in high radiation efficiency of the388

panel under the ADF/TBL excitations. The formulation derived here can389

be applied to identify hot spots of a structure under stochastic excitations.390

Further, it can give an insight into the radiation efficiency of the structure391

based on the NNI distribution over the structural-acoustic boundary surface.392

Figure 7: Maps of Svv, Spp, Iact and IN for the panel under the TBL excitation at a flow
velocity of U∞ = 40 m/s and at selected frequencies of (a) 177 Hz, (b) 307 Hz, (c) 630 Hz,
(d) 691 Hz, (e) 700 Hz and (f) 924 Hz.
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Figure 8: Maps of Svv, Spp, Iact and IN for the panel under ADF excitation at a flow
velocity of U∞ = 40 m/s and at selected frequencies of (a) 177 Hz, (b) 307 Hz, (c) 630 Hz,
(d) 691 Hz, (e) 700 Hz and (f) 924 Hz.
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(a)

(b)

(c)

Figure 9: Comparison of the NNI between the panel under ADF excitation (left column)
and under TBL excitation (right column) over a large surface at z = 0 for selected fre-
quencies of (a) 177 Hz, (b) 307 Hz, (c) 630 Hz.
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(a)

(b)

(c)

Figure 10: Comparison of the NNI between the panel under ADF excitation (left col-
umn) and under TBL excitation (right column) over a large surface at z = 0 for selected
frequencies of (a) 691 Hz, (b) 700 Hz and (c) 924 Hz.
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6. Conclusions393

The non-negative intensity was analytically formulated in wavenumber394

domain for planar structures subject to random excitations. To calculate395

the NNI, the CSD of the stochastic field and either the sensitivity function396

of pressure or normal fluid particle velocity were required. The proposed397

formulation can be used for both infinite planar structure and finite plate398

in an infinite baffle. The NNI was used to quantify the regions on a simply399

supported baffled panel excited by the TBL and ADF which radiate energy400

to the far field. Comparing maps of the ASD of the pressure and panel401

velocity, and active intensity with those of the NNI at different frequencies402

revealed that the NNI is a powerful tool to identify hot spots on the panel403

surface which contribute to the sound power. It was also found that the NNI404

distribution is dependent on the excitation type as well as on the frequency of405

excitation. It was shown that the more the NNI distribution is concentrated406

within the panel surface, the higher the radiation efficiency becomes. In other407

word, high radiation efficiency can be achieved if the most area of the panel408

contributes to the radiated sound power, and this can be identified using the409

NNI.410
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Appendix A: The normalized CSD function of TBL and ADF ex-415

citations416

The Mellen model417

The Mellen normalized wavenumber-frequency model is given by [37]418

φ̃TBL
pp (kx, ky, ω) =

2π(αxαy)
2kc(

(αxαykc)2 + (αxky)2 + α2
y (kx − kc)

2)3/2
, (A.1)

where kc = ω/Uc, αx = 0.1 and αy = 0.77.419
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The ADF model420

The normalised CSD function of the ADF in the wavenumber-frequency421

space is given by [42].422

φ̃ADF
pp (kx, ky, ω) =


2π

ka
√
k2
a − k2

x − k2
y

, k2
a > k2

x + k2
y

0, k2
a ≤ k2

x + k2
y

 , (A.2)
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