
1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE
Transactions on Dependable and Secure Computing

1

A Mixing Scheme Using a Decentralized Signature
Protocol for Privacy Protection in Bitcoin

Blockchain
Ruiyang Xiao, Wei Ren, IEEE, Tianqing Zhu, IEEE, and Kim-Kwang Raymond Choo, IEEE

Abstract—Bitcoin transactions are not truly anonymous as
an attacker can attempt to reveal a user’s private information
by tracing related transactions. Existing approaches to protect
privacy (e.g. mixcoin, shuffle, and blinded token) suffer from a
number of limitations. For example, some approaches assume
the existence of a trusted third party, rely on exchanges among
various currencies, or broadcast sensitive details before mixing.
Therefore, there is a real risk of privacy breach or losing
tokens. Thus in this paper, we design a mixing scheme with one
decentralized signature protocol, which does not rely on a third
party or require a transaction fee. Specifically, our scheme uses
a negotiation process to guarantee transaction details, which is
monitored by the participants. Furthermore, the scheme includes
a signature protocol based on the ElGamal signature protocol and
secret sharing. The proposed scheme is then proven secure.

Index Terms—Blockchain, privacy protection, coin mixing,
multi-party signature.

I. INTRODUCTION

B ITCOIN has been known to be exploited by criminals,
for example for ransomware payment [1], [2]. This is

partly fulled by the fact or belief that Bitcoin transactions
are anonymous or impossible to trace, since one does not
necessarily need to use his/her real identity to create an
account. However, such a belief or perception is not truly
accurate, as each Bitcoin transaction is linked to at least one
other transaction in the previous block and all transactions in
the Bitcoin blockchain can be traced back to their origin. Even
if these anonymous addresses are not linked to real identities,
attackers can deduce from a user’s transaction network [3], [4]
and infer the user’s or owner’s real identities using techniques
such as clustering analysis [5], [6]. In addition, vulnerabilities
in a Bitcoin wallet can be exploited to recover either the
user’s identity or gain access to the Bitcoins stored in the
wallet [7], [8]. Thus, another individual (e.g. attacker or

R.Y. Xiao is with the School of Computer Science, China University of
Geosciences (Wuhan), Wuhan, China, 430074, and the School of Mathematics
and Physics, China University of Geosciences (Wuhan), Wuhan, Hubei, China,
430074.

W. Ren is with the School of Computer Science, China University of
Geosciences(Wuhan), Wuhan, China, 430074, the Hubei Key Laboratory
of Intelligent Geo-Information Processing, China University of Geosciences
(Wuhan), Wuhan, Hubei, China, 430074, and the Guizhou Provincial Key
Laboratory of Public Big Data, Guizhou University, Guizhou, P.R. China.
Corresponding Author email:weirencs@cug.edu.cn.

T.Q. Zhu is with the School of Software, University of Technology Sydney,
Ultimo, NSW 2007, Australia.

K.-K.R. Choo is with the Department of Information Systems and Cyber
Security, University of Texas at San Antonio, San Antonio, TX 78249-0631,
USA.

Manuscript received November 7, 2018; revised .

investigator) can trace existing Bitcoin transactions in the
blockchain to determine a particular user’s complete addresses,
their transaction network, and infer their real identities (also
using other available information).

Hence, several privacy-enhancing technologies have been
developed and such solutions can be broadly categorized into
the following:

1) Solutions that avoid having a real link between input and
output addresses in a transaction but require advanced
cryptographic technologies (e.g, coinjoin [9], [10], coin
shuffle [11] or blinded token [12], [13]).

2) Solutions that split the relationship between several
different addresses of a user but require the use of ad-
ditional currencies (e.g. Altcoin [3] and Zerocash[14]).

3) Solutions that prevent the tracing of user’s transactions.

In addition to these mixing approaches, a number of third-
party entities provide paid mixing services (e.g. Bitcoin Fog
[15], BitLaundry [16], Dark Wallet [17] and Bitmixer [18]),
although there are known limitations in such services (e.g.
delayed transaction, additional charges, and privacy breaches).
For example, schemes that require a third-party or additional
currencies require more time to complete the mixing service.
Also, users who mix coins with a third-party mixing server
or convert coins between pairwise currencies typically have to
pay for the service. Bitcoins (or other cryptocurrencies) are
also at risk of being stolen by mixing servers because the
servers possess all the valid signatures. In addition, a user’s
initial transactions can be exposed because mixing servers are
at risk of attack. Furthermore, one can predict another user’s
output addresses by tracing information on a bulletin board.

Therefore to mitigate these limitations, in this paper we
present a mixing scheme with a decentralized signature pro-
tocol that places specific emphasis on multiple-transaction
processes in Bitcoin (BTC) blockchain. Specifically, the con-
tributions of this paper are as follows:

1) To avoid unnecessary delays, we introduce a negotiation
process, where each user keeps his/her initial transaction
details secret. Thus, this requires less mixing time than
using a third-party.

2) To avoid incurring additional charges, we design a mix-
ing scheme that splits the direct relationships between
the initial input addresses and output addresses, in order
to ensure randomness and anonymity.

3) To protect privacy, we do not rely on third parties and
instead use a decentralized signature protocol based on

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE
Transactions on Dependable and Secure Computing

2

ElGamal signature protocol. In the protocol, detected
malicious behavior will be penalized by temporarily
suspending the associated assets.

Having introduced the paper, we will briefly review related
work in the next section (see Section II). In Section III, we
describe the problem formulation and other relevant materials.
In Section IV, we present our proposed approach, prior to
presenting the evaluation findings in Section V. We conclude
the paper in Section VI.

II. RELATED WORK

We will briefly describe key mixing approaches below.
Mixcoin: The Mixcoin process [19] is completed by a single

trusted third-party mixing server. Users only need to provide
their input addresses and related fresh output addresses. Ad-
ditionally, a number of transactions with multiple input and
output addresses need to be mixed by the third-party server.
However, there are several security issues. First, a malicious
third-party can steal the currency it is handling (e.g. by chang-
ing the output address). Also, as this third-party has access
to all original transactions, it becomes an attractive target to
cybercriminals seeking to steal the cryptocurrencies. In the
event that multiple users need to transfer fund to the same
address (e.g. for an international conference registration), this
mixing payment method means transactions are ambiguous,
and the recipient may find it challenging to identify which
payment is made by who. Lastly, such service is usually not
free.

Coinjoin: The coin mixing process [9], [10] is conducted
by a trusted third-party mixing server (i.e. a mixing server),
where multiple users agree to generate a combined transaction
with multiple inputs and outputs. This scheme also suffers
from several limitations. For example, each output address
must be a fresh new address because two users who share the
same output address would otherwise not be able to recognize
their own transaction details in a mixed transaction. As a
result, the mixing server knows each original transaction and,
if that mixing server is successfully compromised, then the
transaction details will be leaked. Users also need to pay
additional fees for this mixing service.

CoinShuffle: In this scheme, users broadcast their require-
ments, which include the amounts to be mixed. Users who
are in need of the same coins can join as one group [10],
[11]. They merely exchange each other’s output addresses
directly. However, finding a mixing group to join is difficult
and waiting for another can result in time wastage. Addition-
ally, because all users put their requirements on a bulletin
board, one can potentially infer another user’s real output
addresses from his/her mixed amount. Moreover, malicious
nodes may promise signatures and then refuse to sign after
gaining other valid signatures. Such malicious nodes may also
steal valid signatures for illegal uses, and CoinShuffle’s pun-
ishment mechanism has little to do with financial punishments.
Moreover, this scheme is completed without monitoring by a
trusted third party; therefore, it is hard to prove that a node is
malicious or dishonest.

Altcoin: In Altcoin [3], users convert their mixing coins
into other virtual currencies, such as Zerocoin [14]. After

the conversion, the users’ coins are aggregated. However, an
additional underlying protocol is needed for the conversion
between different currencies. In addition, the values of these
currencies fluctuate daily, and market fluctuations may occur
between pairwise currencies. This means users may not receive
the same amount of coins when the currency is returned.
Moreover, this conversion process incurs additional time.

Blinded token: In this scheme, a user randomly selects
other users to join and create mixing groups. A ”so-called”
trusted mixing server is selected by users from several third-
party mixing servers [13]. Without knowing the links between
the input addresses and output addresses [12], the selected
server verifies the validity of the signatures. However, the
mixing servers may become so busy that users experience
significant delays, and additional fees for the third-party still
apply.

Our proposed scheme seeks to split the initial links among
input addresses and output addresses. Therefore, similar to
mixing technologies like Mixcoin and Coinjoin, our scheme
can form multiple input addresses and multiple output address-
es in one transaction.

Although our scheme is on the basis of mixing technologies,
it uses each user rather than a third-party to form the final
transaction. In terms of replacing the mixing third party, we
introduce a multi-signature protocol dynamically formed by a
group of signers [20], which was first proposed by K. Itakura
and K. Nakamura [21] and was formally defined by Silvio
Micali, Kazuo Ohta, Leonid Reyzin [22].

III. PROBLEM FORMULATION

A. Adversary Model

Definitions of the problems are listed below:
Dishonest/cheating behaviour This includes both a user′is

and a third-party′is dishonest behavior. The former relates to a
user providing fake addresses, useless signatures, and doublge
spending transactions. The latter relates to a third party′is
deliberate behavior, such as counterfeiting output addresses,
signatures or transactions, leaking initial transaction details,
and refusing to provide mixing services.

Dishonest/malicious nodes Any individuals or organiza-
tions that behave dishonestly can be thought of as a dishon-
est/malicious node.

Third parties Third parties are divided into two categories:
negotiating third parties, which provide alternative chatting
services (e.g., Wechat, a BBS, WhatsApp), and mixing third
parties, which provide specific mixing services (e.g., Bitcoin
Fog, BitLaundry, Dark Wallet, Bitmixer).

B. Design Goals

We outlined three main disadvantages of existing schemes
in Section I and Section III-A: delay, extra charges, and
privacy breaches. Now, we provide more specific details of
our three design goals: time, coins, and privacy. Definitions of
the specific subgoals are listed below.

Time - Shorter waiting intervals Except for essential
transaction confirmation from the blockchain, users do not
need to wait for mixing services.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE
Transactions on Dependable and Secure Computing

3

Coins - No additional mixing fees The protocol should
not require additional fees for specific mixing services. But
transaction fees are allowed.

Privacy - Transaction security The security for trans-
actions requires non-linked input and output addresses, un-
predictable user identities, and untraceable initial transaction
details.

Privacy - Trustless third party environments Even if a
trusted third party is involved in the mixing procedure, it will
not have enough information to counterfeit transaction details
or even obtain the initial transaction details.

We explore a way in which each user can monitor the whole
mixing process without extra cost in time, coins, and privacy.

Secret sharing is used to prevent users from distributing
signatures to malicious nodes by placing all the group mem-
bers into an agreement using a secret. Secret sharing can split
a secret into different secret shares, or pieces, and distribute
them to each group member. If the available shares do not
equal the original amount, none of the group members can
recover the secret. Because transactions might be eliminated
if someone cheats the mixing process, we have added a
negotiation process that requires the participation of all users.
The validity of one transaction in the blockchain can be
verified through the signature, which is solely generated by
all related private keys.

Additionally, the ElGamal signature protocol [23] has been
proven to be secure because discrete logarithmic problems are
believed to be hard. The ElGamal signature protocol is suitable
for designing a shared secret, as ElGamal′is signature includes
a commitment, which makes it possible to prove every user′is
ownership of a private key.

IV. PROPOSED MIX SCHEME USING A DECENTRALIZED
SIGNATURE PROTOCOL

We propose a decentralized signature protocol that builds
on the ElGamal signature protocol, which defends against
malicious behavior by temporarily suspending assets.

However, before describing our approach, we first introduce
the basic model with a negotiation process. The basic model
somewhat mitigates the risk of a mixing server being compro-
mised because negotiation before mixing ensures that no one
else has direct access to anyone’s real transaction details. But
users still suffer from time waste in case that malicious nodes
refuse to sign their final transaction. Table I lists the notations
used in this protocol.

A. Basic Scheme

As mentioned a negotiation process reduces risks of a pri-
vacy leak, but this process is only required in a random-named
negotiation group to ensure users do not know each other. Our
scheme aims to create a new transaction, where links among
the original input and output addresses are randomly split. The
four steps are shown in Fig. 1.

1) Forming a random group
A node that needs to mix coins broadcasts a mixing

request, i.e., a MixRes on the bulletin board. No sensi-
tive details are included, such as output addresses, BTC

Fig. 1. Procedures of basic scheme

distributions, or private keys. Every node can choose to
create a new mixing group or join other node’s mixing
group.

For those who want to create a new mixing group
(Creator), Creator’s MixRes only includes creator’s
former transaction addresses, a mixing demand, a nonce,
a minimum number of group member, a end time, a
timestamp and a signature. Moreover, Creator’s sig-
nature signs all other information except itself in the
MixRes.

For those who want to join other node’s mixing
group (Participant), the MixRes includes participant’s
former transaction addresses, a mixing demand, the
nonce of creator’s MixRes, a timestamp and a signa-
ture, where participant’s signature also signs all other
information except itself in the MixRes.

Broadcasts with the same nonce before the creator’s
end time allow users to form a temporary mixing group.
Only if there exist no less than minimum number of
group members in creator’s MixRes will a mixing
group be created. Otherwise, the group shall be dis-
solved.

Suppose that there are m nodes in this group in
total(m ≥ 2), each node is denoted as Nodei (1 ≤
i ≤ m) in random order. Fig. 2 shows an example of
how the group is formed, which could be completed
on any social media platform allowing users to share
information (e.g., Wechat, a BBS, WhatsApp).

2) Negotiating a general transaction
As shown in Fig. 3 and Fig. 4, Nodei cre-

ates fresh accounts as output addresses and generates

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE
Transactions on Dependable and Secure Computing

4

TABLE I
NOTATIONS

Notation Description

MixRes A mixing request for mixing group members
m A sum of the nodes in the mixing group
Nodei A random temporary name of a user in a mixing group
NegResik A resolution request of Nodei’s initial mixing request
OutAddressik The output addresses in NegResik

Sumik The amount of BTC needed in NegResik

SatMessj A satisfaction message that Nodej can completely satisfy
PartSatMessj A satisfaction message that Nodej can partly satisfy
NegResik′ A new mixing transaction that Nodej can not satisfy
Sumik′ The amount of BTC needed in NegResik′

Assessmenti Node′is assessment of all broadcast messages
MixTran The final mixed transaction of this mixing group
p A random chosen prime number
g A primitive element in Z∗p =< Z/pZ\{0}, ∗ >
xi A random integer number of Nodei

ki An integer number with (ki, p− 1) = 1(1 ≤ i ≤ m) of Nodei

ri, hi, ti, si Transmitted data from Nodei

SIGN Signatures of MixTran

Sign1, Sign2, Sign3 An element of SIGN

Fig. 2. Formation of a random group

several disparate negotiating requests NegResik(k ≥
1, 1 ≤ i ≤ m). NegResik includes all output address
OutAddressik and the number of coins Sumik. Nodei
randomly chooses different nodes to send each negoti-
ating request to. At the same time, it receives requests
from other nodes.

Once a negotiating request NegResik is re-
ceived, Nodej (1 ≤ j ≤ m) in Fig. 5 judges
whether or not his/her former transaction address
has enough BTC to satisfy Sumik. If the answer
is yes, Nodej will generate a satisfaction message
SatMessj , and broadcast it among the mixing group.
SatMessj includes Node′js former transaction address,
OutAddressik and Sumik in NegRes′iks. Otherwise,
Nodej will firstly generate a part-satisfaction message
PartSatMessj and broadcast it among the mixing
group. Then, Nodej will generate a new negotiating

Fig. 3. Generating several disparate negotiating requests

Fig. 4. Sending several specific disparate negotiating requests

request NegResik′ and randomly choose another node
to send it to. PartSatMessj includes Node′js former

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE
Transactions on Dependable and Secure Computing

5

Fig. 5. Negotiating details separately

transaction address, the OutAddressik in NegRes′iks
and Node′js current amount of BTC. NegResik′ in-
cludes the OutAddressik in NegResik and the BTC
Sumik′ . Once a satisfaction message SatMessj or a
part-satisfaction message PartSatMessj is broadcast,
Node′js former transaction address will reduce its BTC
by an equal amount, to some extent.

Example (Here we take Node1 as an example to
illustrate the negotiating process):
(1)Suppose that Node1 generates three fresh address A,
B and C as his/her mixing output addresses. Node1’s
real mixing request are to send A 1 BTC, to send B
2BTC and to send C 3 BTC. Then Node1 chooses
a random number h between 1 and the size of group
member to divide his/her initial request NegRes1 into
several sub-request NegRes1i(where i = 1, 2, · · · , h).
Here we set h as 5. Therefore, Node1 can get that
NegRes11 is to send A 0.4 BTC and to send B 1 BTC,
NegRes12 is to send A 0.6 BTC, NegRes13 is to send
C 2.2 BTC, NegRes14 is to send B 1.8 BTC, NegRes15
is to send B 0.2 BTC and to send C 0.8 BTC.
(2)Node1 chooses 5 different nodes in mixing group to
send a sub-request secretly. At the same time, Node1
shall receive sub-requests from other nodes.
(3)Suppose that Node1 firstly receives a sub-request to
send H 3 BTC. Since Node1 has 6 BTC in total, he/she
can satisfy this sub-request and can have 3 BTC left.
Thus, he/she broadcasts a SatMess1 which includes
Node1’s former transaction hash, OutAddress1 = H
and Sum1 = 3.
(4)Suppose that Node1 then receives a sub-request
to send W 8 BTC. Since Node1 only has 3 BTC
left, he/she broadcast a PartSatMess1 which includes
Node1?s former transaction hash, OutAddress1 = W
and Sum1 = 3. Noted that there exist 5 BTC in this
received sub-request, Node1 regenerates a new sub-
request which aims at sending W 5 BTC and sends it to
another node.

Fig. 6. Verifications made before generating a final transaction

(5) Suppose that Node1 still receives sub-requests from
other nodes. But considering that he/she has no coins
left, Node1 directly sends his/her received sub-requests
to another node.

3) Generating the final transaction
Having finished step 2, each node verifies the

validity of these messages in two aspects. First, Nodei
(1 ≤ i ≤ m) judges whether or not its output
addresses OutAddressik(k ≥ 1) have received an
equal amount of BTC. This judgement aims to prevent
unsatisfactory requests. Then, by making comparisons
between the amount of coins in all satisfaction and part-
satisfaction messages and that in all mixing requests,
Nodei judges whether or not there any requests have
been omitted. As shown in Fig. 6, Nodei makes an
assessment Assessmenti based on both judgments and
then broadcasts it to the group. If, and only if, over
two-thirds of the group′is assessments have indicated
a verification will this group generate a final mixed
transaction MixTran. MixTran includes all input
addresses, all output addresses, new divisions of BTC
from step 2 and the hash values of MixTran (see
Fig. 7). Otherwise, this mixing group will be dissolved.

4) Sending the final transaction
Having completed Step 3, Nodei (1 ≤ i ≤ m)

will broadcast his/her Signi
MixTran among the

mixing group. Each node in this group is able
to collect everyone’s signature and broadcast
(MixTran, Sign1

MixTran, ..., Sign
m
MixTran) to

the internet. Therefore, even if malicious nodes refuse
to sign signatures to final transaction, other nodes in
this group will not suffer from BTC theft because the
final transaction is invalid.

This scheme uses a negotiation process to replace a third
party. Since messages, such as mixing requests and negotiating
requests, do not include the amount of BTC and the addresses
in the initial transaction, real identities cannot be predicted
using the final transactions.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE
Transactions on Dependable and Secure Computing

6

Fig. 7. Generating a MixTran

B. Advanced Scheme

The basic scheme introduces a negotiation process that
prevents nodes from knowing others’ initial transactions. And
it can be further extended to tackle shortcomings, such as
time wastes caused by malicious nodes not agreeing to sign
transactions, no substantial- finance punishments directing at
dishonest nodes even if their behaviors do not cause monetary
loss and so on.

The advanced scheme includes a decentralized signature
protocol based on basic scheme 8. Using this protocol, group
members combine to generate a new public address without
the participation of a mixing server. This group cannot recover
a signature if anyone is absent because it is solely generated
by all private keys. Moreover, unless a user accepts that his/her
BTC will be lost, no one is able to cheat because all BTC have
to be sent to their public address before negotiation.

1) Forming a random group
Considering that 1) Forming a random group in the

advanced scheme is the same as that of basic scheme,
we will simplify descriptions here.

2) Creating a public account
As shown in Fig. 9, the group chooses a prime

number p and a primitive element g ∈ Z∗p =<
Z/pZ\{0}, ∗ >. Each Nodei(1 ≤ i ≤ m) chooses a
random integer number xi as its private key.

After all the group members of Nodei have chosen
xi, Node1 calculates the following equation:

y1 ≡ gx1 mod p (1)

and sends y1 to Node2. Having received yj−1 from

Fig. 8. Advanced scheme procedures

Fig. 9. Creating a public account

Nodej−1 (2 ≤ j ≤ m− 1), Nodej calculates

yj ≡ y
xj

j−1 mod p (2)

and sends yj to Nodej+1. Finally, Nodem calculates

ym ≡ yxm
m−1 mod p (3)

and broadcasts ym among the group as a public key. The
mixing group computes the hash value hash(ym) and
sets it as the public mixing address.

3) Aggregating all mixing bitcoins
All group members gather to generate a transac-

tion GaTrans. GaTrans includes all nodes’ former
transaction addresses of the nodes, the amount of BTC
and a public mixing address. Only when all of them
have attached their signatures Signi

GaTrans, will the
transaction GaTrans become valid. Every node is able
to broadcast GaTrans to the internet. If any malicious
node refuses to sign, group can be dissolved.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE
Transactions on Dependable and Secure Computing

7

Fig. 10. Generating a final transaction

4) Negotiating a general transaction
Considering that 4) Negotiating a general transac-

tion in the advanced scheme is the same as that of basic
scheme, we will simplify descriptions here.

5) Generating a final transaction
Having completed Step 4, each node verifies the

validity of these messages in two aspects. To prevent
unsatisfactory requests, Nodei (1 ≤ i ≤ m) judges
whether or not all its output addresses will receive an
equal amount of BTC. By comparing the amount of
BTC in all satisfaction and part-satisfaction messages
and the amount in all mixing requests, Nodei deter-
mines whether or not any requests have been omit-
ted. As shown in Fig. 6, Nodei makes an assessment
Assessmenti based on both judgements and broadcasts
it to the group. If, and only if, over two-thirds of the
group’s assessments have indicated a verification will
this group generate a final mixed transaction MixTran.
MixTran in Fig. 10 includes all input addresses, all
output addresses, new divisions of BTC from Step 4
and hash values of GaTrans. Otherwise, this group will
be dissolved.

6) Signing the final transaction
Each Nodei chooses an integer number ki with

(ki, p− 1) = 1(1 ≤ i ≤ m).
As is illustrated in Fig. 11, Node1 calculates

r1 ≡ gk1 mod p (4)
h1 ≡ x1 ∗ gk1 mod p (5)

and sends (r1, h1) to Node2. After receiving
(rj−1, hj−1) from Nodej−1(2 ≤ j ≤ m − 1),

Fig. 11. The first step in signing a final transaction

Fig. 12. The second step in signing a final transaction

Nodej calculates

rj ≡ r
kj

j−1 mod p (6)

hj ≡ hj−1 ∗ xj ∗ gkj mod p (7)

and sends (rj , hj) to Nodej+1. Then Nodem calculates

rm ≡ rkm
m−1 mod p (8)

hm ≡ hm−1 ∗ xm ∗ gkm mod p (9)

and sets rm as part of a signature Sign1.
Additionally, Nodem in Fig. 12 calculates

tm ≡ gkm mod p (10)

and sends tm to Nodem−1. After receiving tj+1 from
Nodej+1(2 ≤ j ≤ m− 1), Nodej calculates

tj ≡ tj+1 ∗ gkj mod p (11)

and sends it to Nodej−1. Then Node1 calculates

t1 ≡ t2 ∗ gk1 mod p (12)

and sets t1 as part of a signature Sign2.

Finally, Node1 in Fig. 13 calculates

s1 ≡ (MixTrans− hm) ∗ k−11 mod (p− 1) (13)

and sends s1 to Node2. After receiving si−1 from
Nodei−1(2 ≤ i ≤ m− 1), Nodei calculates

si ≡ si−1 ∗ k−1i mod (p− 1) (14)

and sends si to Nodei+1. Then Nodem figures out

sm ≡ sm−1 ∗ k−1m−1 mod (p− 1) (15)

and sets sm as part of a signature Sign3.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE
Transactions on Dependable and Secure Computing

8

Fig. 13. The third step in signing a final transaction

Therefore, the final signature SIGN should be
(Sign1, Sign2, Sign3).

7) Broadcasting the final transaction
Each node in the mixing group can broadcast

(MixTran, SIGN) across the internet.
8) Verifying all signatures

To verify the validity of (MixTran, SIGN), each
node calculates

result = ySign2
m ∗ SignSign3

1 (16)

and judges whether result is equal to gHash(MixTrans)

or not. The miners will only put the final transaction
MixTran and signatures SIGN on the blockchain if
this judgement is true.

In our scheme, the decentralized signature protocol requires
aggregations of all mixed BTC to be aggregated and a new
public address. However, because every mixing group member
has to send his/her BTC to this public address, malicious
nodes are highly unlikely to fallaciously commit to sending
their BTC, which improves the security of the coin. Further,
since there is no one-to-one correspondence between input
addresses and output addresses, attackers can not analyze
transaction details to find real links through permutations and
combinations. This enhances the security of the information.

V. ANALYSES ON SECURITY AND PERFORMANCE

Our security analyses were conducted on the assumption of
three types of attacks: a key-only attack (KOA) where attackers
know public keys and signature verification functions, a known
message attack (KMA) where attackers possess messages and
related signatures, and a chosen message attack (CMA) where
attackers require users to sign some specific messages. We
conducted these security analyses to evaluate whether our sig-
nature protocol is safe or not. Before conducting these security
analyses, we first introduce a correctness proof to verify the
validity of proposed signature protocol. We also compared our
scheme’s mixing performance with other schemes to assess its
stability and the reliability of the processing environment.

A. Correctness Proof of Proposed Signature Protocol

In Sec IV, we proposed a decentralized signature protocol
to sign a final transaction. Suppose that the final transac-
tion shall be MixTran and the signature SIGN shall be
(Sign1, Sign2, Sign3), we can get

Sign1 = rm = gk1∗k2∗···∗km mod p (17)

Sign2 = t1 = gk1+k2+···+km mod p (18)

Sign3 = sm =(Hash(MixTran)− hm) ∗ k1−1 ∗ · · · ∗ km−1

mod (p− 1)

=(Hash(MixTran)− x1 ∗ x2 ∗ · · · ∗ xm

∗ gk1+k2+···+km) ∗ k1−1 ∗ · · · ∗ km−1

mod (p− 1)
(19)

Considering that

ySign2
m ∗ SignSign3

1 =gx1∗x2∗···∗xm∗Sign2 ∗ SignSign3

1

mod (p− 1)

=gx1∗x2∗···∗xm∗Sign2+k1∗k2∗···∗km∗Sign3

mod (p− 1)

=gx1∗x2∗···∗xm∗gk1+k2+···+km∗
g(Hash(MixTran)÷

gx1∗x2∗···∗xm∗gk1+k2+···+km)

mod (p− 1)

=g(Hash(MixTran) mod (p− 1)
(20)

Our proposed signature protocol is thus proven secure.

B. Security Analyses for KMA

Various hypotheses associated with KMAs are outlined
below along with a corresponding security analysis given a
theoretical environment.

To start, we assume that attackers only possess the final sig-
nature (MixTran, SIGN), the prime number p, the primitive
element g and the public key ym. These goal of the attackers is
to forge a valid signature for a virtual transaction V irTrans.
Hence, all parameters in a valid signature should follow the
equation rule:

ySign2
m ∗ SignSign3

1 = gHash(V irTrans) (21)

1) If an attacker randomly chooses a new Sign1 and wants
to find its corresponding Sign2 and Sign3, they will not
be able to calculate Sign2 and Sign3 using the current
approaches.

2) If an attacker randomly chooses a new Sign2 and wants
to find its corresponding Sign1 and Sign3, thet will not
be able to calculate SignSign3

1 . However, it is difficult
for this number to be spilt into a base number Sign1

and a exponent number Sign3. Even large quantities of
such numbers could not be broken down into two pieces.

3) If an attacker randomly chooses a new Sign3 and wants
to find its corresponding Sign1 and Sign2, they will
not be able to calculate Sign1 and Sign2 using current
approaches.

The examples above illustrate that this model has the ability
to defend against selective forgery.

Considering the equation

ySign2
m ∗ SignSign3

1 = gHash(MixTrans) (22)

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE
Transactions on Dependable and Secure Computing

9

The form of this equation can be changed to draw a new
conclusion

Hash(MixTrans) =(x1 ∗ x2 ∗ ... ∗ xm) ∗ Sign2

+ (k1 ∗ k2 ∗ ... ∗ km) ∗ Sign3 mod (p− 1)
(23)

Users can not change xi unless they break it down because
the public keys and a public address are solely generated
through xi. Therefore, we can assume that each node Nodei
does not choose a different nonce ki in both transactions and
that the attacker’s aim must be to falsify a valid signature.
Thus, in the advanced scheme, users will not change

Sign1 = rm = gk1∗k2∗···∗km mod (p− 1) (24)

Sign2 = t1 = gk1+k2+...+km mod (p− 1) (25)

hm = x1 ∗ x2 ∗ ... ∗ xm ∗ gk1+k2+...+km mod (p− 1) (26)

Hence, every two signatures will have the following relation-
ships [24]:

In the first transaction (MixTrans1, SIGN =
(Sign1, Sign2, Sign13)):

Hash(MixTrans1) =(x1 ∗ x2 ∗ ... ∗ xm) ∗ Sign2+

(k1 ∗ k2 ∗ ... ∗ km) ∗ Sign13 mod (p− 1)
(27)

In the second transaction (MixTrans2, SIGN =
(Sign1, Sign2, Sign23)):

Hash(MixTrans2) =(x1 ∗ x2 ∗ ... ∗ xm) ∗ Sign2+

(k1 ∗ k2 ∗ ... ∗ km) ∗ Sign23 mod (p− 1)
(28)

Then we have

Hash(MixTrans2)−Hash(MixTrans1) = (k1 ∗ k2 ∗ ...
∗ km) ∗ (Sign23 − Sign13) mod (p− 1)

(29)
In this case, MixTrans1,MixTrans2, Sign13 and

Sign23 are available to everyone. Given that

d = gcd(Sign23 − Sign13, p− 1) (30)

we have d|(Sign23 − Sign13) along with d|p− 1.
Using the definition

Hash(MixTrans)min = MixTrans2−MixTrans1
d (31)

Signmin = Sign23−Sign13
d (32)

pmin = p−1
d (33)

we have

Hash(MixTrans)min = (k1∗k2∗...∗km)∗Signmin mod pmin

(34)
gcd(Signmin, pmin) = 1 (35)

Note that

(k1∗k2∗...∗km) = Hash(MixTrans)min∗(Sign−1min) mod pmin

(36)
Moreover, Sign1 is also public to everyone, which means that
attackers can derive k1 ∗ k2 ∗ ... ∗ km by testing

Sign1 = gk1∗k2∗...∗km mod p (37)

This example implies that the security of our scheme relies
on random nonce ki and the number of transactions. ki can
not be used for a second time. That is to say, once users need
to sign a different transaction, their ki must be changed.

C. Security Analysis for KOA

An attacker, who only has the prime number p, the primitive
element g, and the public key ym, may randomly choose a pair
of numbers (u, v), where 1 ≤ u, v ≤ p−1 and gcd(v, p−1) =
1. They will then be able to calculate

Sign1 = Sign2 = g−u ∗ yvm mod p (38)
Sign3 = −Sign1 ∗ v−1 mod (p− 1)(39)

Hash(MixTrans) = −u ∗ Sign3 mod (p− 1) (40)

Subsequently, they can claim SIGN =
(Sign1, Sign2, Sign3) and Hash(MixTran) =
Hash(MixTrans) as the real final transaction parameters.
However, in reality even if Hash(MixTran) is available,
attackers can not recover valid MixTran due to residence
of Hash function. Moreover, this may require us to make an
extra value check on Sign1 and Sign2 in the verification
process, where there should be such a little possibility that
Sign1 = Sign2.

D. Security Analysis for CMA

Assume that one specific transaction MixTran1

and its corresponding valid signature SIGN1 =
(Sign11, Sign12, Sign13) is available to all attackers.
In this case, the attacker’s aim is to forge a different
transaction.

First, attackers can analyze the equation

ySign12 ∗ Sign1Sign13
1 = gHash(MixTrans1) (41)

Then they can square both sides to produce a new equation

(ySign12
m ∗ Sign1Sign13

1)2 = y2∗Sign12
m ∗ Sign12∗Sign13

1

= g2Hash(MixTrans1)

(42)
In this equation, attackers can forge an artificial but valid
transaction 2Hash(MixTrans1) and signature SIGN1

′
=

(Sign11, 2 ∗ Sign12, 2 ∗ Sign13).
Though these artificial messages may pass above signature

validation, everyone will recognize them as spurious because
it is impossible for one transaction hash 2hash(MixTran1)
to find its corresponding transaction MixTrans′1. So attackers
may hardly find such a specific transaction. This example
implies that our scheme can defend against a CMA.

E. Performance Analyses

In our scheme, users have to send their money to the public
address, thus reducing a malicious node′s dishonest behavior.
They cannot play tricks during the mixing process because
honest nodes will not agree to sign a fake transaction. This
punishment protocol is reflective of human nature, and typifies
our signature protocol′s security.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE
Transactions on Dependable and Secure Computing

10

TABLE II
COMPARISONS BETWEEN SEVERAL MIXING SCHEMES

Protocol
Transaction

Security

Trustless
third
party

environments

No
additional

mixing
fees

Shorter
waiting
hours

Mixcoin
√

× × ×
Coinjoin

√
× × ×

CoinShuffle
√ √ √

×
Altcoin

√
× × ×

Blinded Token
√

× ×
√

Our scheme
√ √ √ √

Turning to the performance of existing mixing protocols,
Table. II provides a comparison of the basic characteristics of
each along with our proposed scheme.

The major difference between our scheme and others lies
in the use of a third party. In schemes like mixcoin, coinjoin,
coinshuffle, and blinded token, a third-party mixing server is
required to provide mixing services. However, our proposed
scheme merely requires a social media platform that enables
users to communicate with each other. No additional underly-
ing design is needed. Therefore, our background compatibility
is improved because users do not need to install a specific
application or software to build the environment.

Without extra mixing services, users in our scheme have
more choices for information transfer than in other solutions.
Neither a medium or an attacker will have an explicit object
to monitor or use to breach privacy because users have a
wide range of communication approaches to select from. This
differs from other schemes where attackers may have specific
targets like BitLaundry, Bitmixer, or Dark Wallet, which
increases security risks. In the real world, safe communication
applications are much more available to users, compared with
a trusted mixing server.

Moreover, a busy server is much more likely to break down
since it needs to handle huge amounts of transactions at a
time. Our scheme will always be reliable because separate
mixing groups can choose distinct mixing environments in-
dependently, which makes social media platform more stable.
Furthermore, users in our scheme do not need to pay addi-
tional charges for mixing services because most social media
platforms provide free chatting service.

Other schemes also have fixed long waiting periods to
confirm transactions because their mixing servers require users
to wait several hours for a safe transaction. For example,
a user who only needs to mix 1 BTC may have to spend
hours in waiting, not to mention that many users trade in
less than 1 BTC. Our scheme takes less time than current
schemes because even though the communication procedure
is somewhat lengthy, users do not have to wait several hours
for it to begin. Lastly, the scheme is based on smaller groups,
which increases flexibility.

In view of the P2P size involved in transactions, there exist
three negotiation process which includes forming a random
group, negotiating a general transaction and signing the final

transaction. First, since the random group is formed in a
billboard, every node merely require send one request. Thus,
the time complexity of this process is O(m). Second, in
process of negotiating a general transaction, we can suppose
that there exist a complete graph, where each node in graph
represents a user and each edge in graph represents the
interaction between two nodes. Therefore, the time complexity
of negotiation process is liner related to number of edges.
Noted that there are m nodes in one graph, its time complexity
here shall be O(m2) because there are m(m−1)

2 edges in the
directed graph and m(m − 1) edges in the undirected graph.
Finally, since each node only transfer once in each round
where there are four rounds in total, time complexity in signing
process turns out to be O(m). To sum up, time complexity in
the whole transaction is O(m2).

F. Further Discussion on Extensive Designs

As with all proposals, this scheme has some limitations and
some areas for improvement.

First, significant loading times are tolerable because our
mixing scheme focuses more on security. However, users who
need mixing services urgently should be able to choose a
very small group over a large group to further improve speed.
Additionally, to reduce wasted time, each user must have a
stable network environment. Unstable network environments
create interruptions to the mixing processes. Suspensions may
waste even more time by forcing the mixing group to reform.

Further, the processes in our scheme require a discussion
platform for negotiation. For efficiency, a convenient social
media platform is needed to ensure that all users can com-
municate with each other. But this ignores various language
barriers. Additionally, users are required to retain their chat
records to avoid denials in the negotiation process until the
final transactions have been signed.

To improve our proposed signature protocol, we can extend
a verification process during each P2P interaction. One pos-
sible solution is to introduce the concept of zero knowledge
proof (which is short for ZK-Proof) in aims of keeping any
transaction detail as a secret. Only ciphertexts are available to
any other nodes. In this way, no one else except user itself
will have access to this user’s initial transaction details.

Moreover, for a better performance without a mixing third
party, nodes in a mixing group can conduct broadcast process-
es in a lightweight blockchain among themselves. Apart from
that, not only assessments but also verifications can be easily
completed through smart contracts.

VI. CONCLUSION

In this paper, we proposed a mixing scheme with a de-
centralized signature protocol for privacy protection in a
BTC blockchain. We not only designed a specific negotiation
process among mixing users to circumvent the need for a
third party but also introduced a distribution method to collect
private keys. Our scheme can reduce the risks of privacy
breaches in cryptocurrency mixing processes and, since it does
not require a mixing server, additional charges for mixing

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE
Transactions on Dependable and Secure Computing

11

services can also be avoided. Neither a fresh address nor two
users asking for the same amount of money is required.

However, there are still challenges to decrease mixing wait
times in blockchain technology (e.g., transaction confirmations
loads and proof of work). Therefore, our next work will ad-
dress higher efficiency environments and place more emphasis
on less negotiation time.

ACKNOWLEDGMENT

This research was financially supported by the Major Sci-
entific and Technological Special Project of Guizhou Province
(No. 20183001), the Open Funding of Guizhou Provincial
Key Laboratory of Public Big Data (No. 2018BDKFJJ009,
No. 2017BDKFJJ006), the National Science Foundation China
(No. 61502362), and the Open Funding of Hubei Provincial
Key Laboratory of Intelligent Geo-Information Processing
(No. KLIGIP2016A05).

REFERENCES

[1] D. Y. Huang, M. M. Aliapoulios, V. G. Li, L. Invernizzi, E. Bursztein,
K. McRoberts, J. Levin, K. Levchenko, A. C. Snoeren, and D. McCoy,
“Tracking ransomware end-to-end,” in IEEE Symposium on Security and
Privacy. IEEE, 2018, pp. 618–631.

[2] K. Liao, Z. Zhao, A. Doupe, and G.-J. Ahn, “Behind closed doors:
measurement and analysis of cryptolocker ransoms in bitcoin,” in APWG
Symposium on Electronic Crime Research. IEEE, 2016, pp. 1–13.

[3] J. Herrera-Joancomartí, “Research and challenges on bitcoin anonymity,”
in Data Privacy Management, Autonomous Spontaneous Security, and
Security Assurance, J. Garcia-Alfaro, J. Herrera-Joancomartí, E. Lupu,
J. Posegga, A. Aldini, F. Martinelli, and N. Suri, Eds. Cham: Springer
International Publishing, 2015, pp. 3–16.

[4] J. Herrera-Joancomartí and C. Pérez-Solà, “Privacy in bitcoin trans-
actions: New challenges from blockchain scalability solutions,” in
Modeling Decisions for Artificial Intelligence, V. Torra, Y. Narukawa,
G. Navarro-Arribas, and C. Yañez, Eds. Cham: Springer International
Publishing, 2016, pp. 26–44.

[5] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun,
“Evaluating user privacy in bitcoin,” in Financial Cryptography and
Data Security, A.-R. Sadeghi, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 34–51.

[6] F. Reid and M. Harrigan, An Analysis of Anonymity in the Bitcoin
System. New York, NY: Springer New York, 2013, pp. 197–223.

[7] L. Van Der Horst, K.-K. R. Choo, and N.-A. Le-Khac, “Process memory
investigation of the bitcoin clients electrum and bitcoin core,” IEEE
Access, vol. 5, pp. 22 385–22 398, 2017.

[8] T. Volety, S. Saini, T. McGhin, C. Z. Liu, and K.-K. R. Choo, “Cracking
bitcoin wallets: I want what you have in the wallets,” Future Generation
Computer Systems, vol. 91, pp. 136–143, 2019.

[9] S. Meiklejohn and C. Orlandi, “Privacy-enhancing overlays in bitcoin,”
in Financial Cryptography and Data Security, M. Brenner, N. Christin,
B. Johnson, and K. Rohloff, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 127–141.

[10] T. Ruffing and P. Moreno-Sanchez, “Valueshuffle: Mixing confiden-
tial transactions for comprehensive transaction privacy in?bitcoin,” in
Financial Cryptography and Data Security, M. Brenner, K. Rohloff,
J. Bonneau, A. Miller, P. Y. Ryan, V. Teague, A. Bracciali, M. Sala,
F. Pintore, and M. Jakobsson, Eds. Cham: Springer International
Publishing, 2017, pp. 133–154.

[11] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “Coinshuffle: Practical
decentralized coin mixing for bitcoin,” in Computer Security - ESORICS
2014, M. Kutyłowski and J. Vaidya, Eds. Cham: Springer International
Publishing, 2014, pp. 345–364.

[12] L. Valenta and B. Rowan, “Blindcoin: Blinded, accountable mixes for
bitcoin,” in Financial Cryptography and Data Security, M. Brenner,
N. Christin, B. Johnson, and K. Rohloff, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 112–126.

[13] E. Heilman, F. Baldimtsi, and S. Goldberg, “Blindly signed contracts:
Anonymous on-blockchain and off-blockchain bitcoin transactions,” in
Financial Cryptography and Data Security, J. Clark, S. Meiklejohn, P. Y.
Ryan, D. Wallach, M. Brenner, and K. Rohloff, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 43–60.

[14] C. Garman, M. Green, I. Miers, and A. D. Rubin, “Rational zero: Eco-
nomic security for zerocoin with everlasting anonymity,” in Financial
Cryptography and Data Security, R. Böhme, M. Brenner, T. Moore, and
M. Smith, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,
pp. 140–155.

[15] “Bitcoin fog,” http://bitcoinfog.org.
[16] “Bitlaundry,” http://app.bitlaundry.com.
[17] “Dark wallet,” http://www.darkwallet.is.
[18] “Bitmixer,” https://bitmixer.io/.
[19] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W.

Felten, “Mixcoin: Anonymity for bitcoin with accountable mixes,” in
Financial Cryptography and Data Security, N. Christin and R. Safavi-
Naini, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp.
486–504.

[20] L. Harn and J. Ren, “Efficient identity-based r-
sa multisignatures,” Computers and Security, vol. 27,
no. 1, pp. 12 – 15, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404808000059

[21] K. Itakura and K. Nakamura, “A public key cryptosystem suitable for
digital multisignatures,” NEC Research and Development, vol. 71, pp.
1 – 8, 1983.

[22] S. Micali, K. Ohta, and L. Reyzin, “Accountable-subgroup
multisignatures: Extended abstract,” in Proceedings of the 8th
ACM Conference on Computer and Communications Security, ser.
CCS ’01. New York, NY, USA: ACM, 2001, pp. 245–254. [Online].
Available: http://doi.acm.org/10.1145/501983.502017

[23] T. Elgamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” IEEE Transactions on Information Theory, vol. 31,
no. 4, pp. 469–472, Jul 1985.

[24] W. Ren, Digital signature and security protocol. Tsinghua university
press, 2015, pp. 15–18.

Ruiyang Xiao is a student at the School of Com-
puter Science and the School of Mathematics and
Physics, China University of Geosciences (Wuhan),
China. She has been pre-admitted by University
of Science and Technology of China (USTC). Her
research interests include blockchain and privacy
protection.

Wei Ren currently is a Professor at the School of
Computer Science, China University of Geosciences
(Wuhan), China. He was with the Department of
Electrical and Computer Engineering, Illinois Insti-
tute of Technology, USA in 2007 and 2008, the
School of Computer Science, University of Neva-
da Las Vegas, USA in 2006 and 2007, and the
Department of Computer Science, The Hong Kong
University of Science and Technology, in 2004 and
2005. He obtained his Ph.D. degree in Computer
Science from Huazhong University of Science and

Technology, China. He has published more than 70 refereed papers, 1
monograph, and 4 textbooks. He has obtained 10 patents and 5 innovation
awards. He is a senior member of the China Computer Federation and a
member of IEEE.

Tianqing Zhu received her BEng and MEng de-
grees from Wuhan University, China, in 2000 and
2004, respectively, and a Ph.D degree from Deakin
University in Computer Science, Australia, in 2014.
Dr Tianqing Zhu is currently a senior lecturer at
the School of Software in University of Technology
Sydney, Australia. Before that, she was a lecturer at
the School of Information Technology, Deakin Uni-
versity, Australia, from 2014 to 2018. Her research
interests include privacy preservation, data mining,
and network security.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2938953, IEEE
Transactions on Dependable and Secure Computing

12

Kim-Kwang Raymond Choo (SM’15) received
his Ph.D. in Information Security in 2006 from
the Queensland University of Technology, Australia.
He currently holds the Cloud Technology Endowed
Professorship at The University of Texas at San
Antonio (UTSA). In 2016, he was named the Cyber-
security Educator of the Year - APAC (Cybersecurity
Excellence Awards are produced in cooperation with
the Information Security Community on LinkedIn),
and in 2015 he and his team won the Digital Foren-
sics Research Challenge organized by Germany’s

University of Erlangen-Nuremberg. He is the recipient of the 2018 UTSA
College of Business Col. Jean Piccione and Lt. Col. Philip Piccione Endowed
Research Award for Tenured Faculty, IEEE TrustCom 2018 Best Paper Award,
ESORICS 2015 Best Research Paper Award, 2014 Highly Commended
Award by the Australia New Zealand Policing Advisory Agency, Fulbright
Scholarship in 2009, 2008 Australia Day Achievement Medallion, and British
Computer Society’s Wilkes Award in 2008. He is also a Fellow of the
Australian Computer Society, and an IEEE Senior Member.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on October 17,2020 at 07:07:44 UTC from IEEE Xplore. Restrictions apply.

