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Abstract—Mobile edge caching/computing (MEC) has been emerging as a promising paradigm to provide ultra-high rate,
ultra-reliable, and/or low-latency communications in future wireless networks. In this paper, we introduce a novel MEC network
architecture that leverages the optimal joint caching-delivering with horizontal cooperation among mobile edge nodes (MENs). To that
end, we first formulate the content-access delay minimization problem by jointly optimizing the content caching and delivering decisions
under various network constraints (e.g., network topology, storage capacity and users’ demands at each MEN). However, such strongly
mutual dependency between the decisions creates a nested dual optimization that is proved to be NP-hard. To deal with it, we propose
a novel transformation method to transform the nested dual problem to an equivalent mixed-integer nonlinear programming (MINLP)
optimization problem. Then, we design a centralized solution using an improved branch-and-bound algorithm with the interior-point
method to find the joint caching and delivering policy which is within 1% of the optimal solution for small problem instances. Since the
centralized solution requires the full network topology and information from all MENs, to make our solution scalable, we develop a
distributed algorithm which allows each MEN to make its own decisions based on its local observations. Extensive simulations
demonstrate that the proposed solutions can reduce the total average delay for the whole network up to 40% compared with other
current caching policies. Furthermore, the proposed solutions also increase the cache hit ratio for the network up to 4 times, thereby
dramatically reducing the traffic load on the backhaul network.

Index Terms—Mobile edge caching, horizontal cooperative caching, joint caching-delivering, branch-and-bound, delay, interior-point.
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1 INTRODUCTION

THE proliferation of smart devices (e.g., smartphones,
tablets, wearable devices) and a massive demand for

emerging services (e.g., IoT, mobile videos, augmented and
virtual reality applications) will lead to an explosion of
mobile data traffic in the near future [1]. Moreover, new
services/applications (e.g., critical missions, safety, or real-
time entertainment) often require much lower latency (e.g.,
in order of 10 milliseconds or less) and/or higher reliability
(e.g., 99.999%). To cope with this ever-increasing traffic
demand and much more stricter quality of service, mobile
edge caching/computing (MEC) [2], [3], [4] has been pro-
posed as one of the most effective solutions. The key idea
of an MEC network is to distribute well-received contents
as well as computing resources closer to the mobile users
by deploying servers at the “edge” of the network, referred
to as mobile edge nodes/servers (MENs). By doing so, the
MEC network allows mobile users, instead of download-
ing contents from cloud/content servers (CSs), to access
contents and resources from nearby MENs. As such, MEC
helps to reduce the service latency and mitigate the network
congestion on the backhaul link [5]. The deployment of
MEC network also brings other significant benefits to the
mobile users, e.g., reliable wireless connections, high speed
data transfer, and low energy consumption, and reduces
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expensive operational as well as upgrading costs on the
backhaul link for the MEC network providers.

Despite of the advantages, the development of MEC
networks faces several inherent challenges, e.g., diverse
users’ demands, small coverage, and limited storage capac-
ity of each MEN [6]. To overcome these issues, cooperative
caching has been introduced recently. Cooperative caching
is a method which leverages the distribution of contents [7]
through the cooperation among MENs and provides effi-
cient workload distribution in a hierachical architecture [8].
In [9], the authors introduce an optimal cooperative content
placement strategy aiming to maximize the total hit rate of
contents for a heterogeneous cellular network (referred to
as the network hit rate). To achieve the optimal policy, the
scheme first caches contents randomly at different layers,
e.g., macro, pico, and femto nodes. Then, a stochastic geom-
etry is deployed to evaluate the request hit rate/probability
for the network. Based on the request hit rate evaluation
together with the caching storage capacities of MENs, the
maximum network hit rate then can be derived. Similar
to [7], the authors in [10] propose a distributed cooperative
caching architecture consisting of several local nodes such as
small cells or base stations to reduce the content delivery de-
lay. In this work, the network providers collaborate together
through sharing their MENs to avoid long service delay
from the content servers. For example, users of network
provider X can download contents from MENs of network
provider Y. In [11], a collaborative caching design based on
a tree architecture is considered. In this way, if a requested
content is not cached at the leaf node server, this node can
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download content from its directly connected parent node.
Based on this architecture, the authors introduce a two-
level cooperative caching group model to minimize the total
bandwidth cost for the system. The work is then extended
in [12] with network topology taken into account.

To minimize the service delay, most of the above coop-
erative caching solutions focus only on content placement
strategies (e.g., [5], [11], and [12]), but not on how content
should be delivered/routed. Among few works that inves-
tigate both caching and delivering strategies, the authors
in [13] introduce dual objective approaches to optimize
cooperative caching and delivering policy for heterogeneous
cellular networks (HetNets) with femtocells and D2D com-
munications. As such, after obtaining the optimal caching
strategy, the authors adopt an optimal content delivering
strategy to find the best MEN to serve if there are more than
one MENs caching the same requested content. Nonethe-
less, in this work, caching placement and delivery opti-
mizations are separately optimized, leading to a suboptimal
solution. A similar suboptimal solution is also found in [14].

Moreover, for all the aforementioned works, the authors
do not consider the cooperation among MENs (referred to
as horizontal cooperation) in delivering requested contents.
MENs are often launched in a close proximity where the
horizontal (wireless or even wire) connections among them
have much higher speed than that of the backhaul link or
those from MENs to the CSs. This fact, if leveraged properly,
facilitates the cooperation amongst MENs in jointly caching
and delivering contents to not only reduce the service delay
for mobile users but also improve the caching effectiveness
(by minimizing the backhaul traffic to the CSs).

In this paper, we introduce an optimal JOint Cooperative
cAching and Delivering framework (referred to as JOCAD)
that enables MENs to cooperate in caching and delivering
contents to mobile users. Specifically, we first propose a
novel MEC network architecture in which MENs can be
connected with each other directly (with high-speed con-
nections). Then, given the content demand distributions
(referred to as frequency-of-accesses) at MENs, various data
sizes, diverse MENs’ storage capacities, and network topol-
ogy (i.e., connections among the MENs and their band-
width), we aim to jointly address two essential questions:
(1) how to place contents at the MENs efficiently and (2)
how to choose the best routes to deliver requested contents.

Due to the strongly mutual dependency between content
placement and delivery decisions, the joint content caching
and delivering optimization problem turns to be intractable.
In particular, where to cache contents will be influenced by
the delivering decisions. Likewise, the decision to deliver
the contents will be impacted by the content placement
strategy. Consequently, this inter-dependency gives rise to
a nested dual optimization problem, that we prove to be
NP-hard. To tackle it, we propose a novel transforma-
tion method to transform the nested dual problem to an
equivalent mixed-integer nonlinear programming (MINLP)
optimization problem. By exploiting the unique structure
of this MINLP problem, we propose a centralized cooper-
ative caching-delivering solution (referred to as centralized
solution) using an improved branch-and-bound algorithm
with the interior-point method (iBBA-IPM) to find the joint
caching and delivering policy which is within 1% of the

optimal solution for small problem instances.
Nevertheless, the centralized solution requires a full

network topology and the information from all MENs,
making it prohibitively costly for large-scale systems, es-
pecially when the number of contents and MENs is huge.
Moreover, the centralized solution also requires coordi-
nation overhead from all MENs. To make our solution
scalable and reduce the complexity and communication
overheads among MENs, we develop a distributed coopera-
tive caching-delivering algorithm (referred to as distributed
solution) which allows each MEN to make its own deci-
sions based on its local observations, e.g., connections to
their neighbors. Extensive simulations demonstrate that the
proposed solutions can reduce the total average delay for
the whole network up to 40% compared with the most
FoA policy, and up to 25% compared with locally optimal
caching policy (i.e., without collaboration). Furthermore, the
proposed solutions also increase the cache hit ratio for the
network up to 4 times, thereby dramatically reducing the
traffic load on the backhaul network. The major contribu-
tions are summarized as follows:

• We design the JOCAD framework with mutual de-
pendency that utilizes the direct horizontal coopera-
tion among MENs to minimize the total delay for the
MEC network and traffic load on the backhaul links.
We show that the optimization problem is NP-hard.

• We then propose a novel transformation method
to transform the intractable original optimization to
an equivalent MINLP problem which we can adopt
effective mathematical tools to address.

• We develop the centralized solution using iBBA-IPM
to find the joint caching and delivering policy for the
MINLP problem which can achieve within 1% of the
optimal solution.

• We design the distributed solution to reduce the
complexity of the centralized solution. We demon-
strate that the distributed solution can achieve the
performance close to that of the centralized solution.

• We conduct extensive simulations to evaluate the
efficiency of the proposed framework and solutions.
These results also provide insightful information to
help the MEC service providers tradeoff between the
quality of service, e.g., delay, and the implementation
costs, e.g., the number of MENs and storage capacity.

The rest of this paper is organized as follows. Sec-
tion 2 describes the proposed network architecture and
model. Section 3 discusses the problem formulation and
the transformation method. The centralized and distributed
solutions are in Section 4 and Section 5, respectively. A case
study is given in Section 6, and then Section 7 shows the
simulation results. Conclusions are then drawn in Section 8.

2 MOBILE EDGE NETWORK ARCHITECTURE WITH
HORIZONTAL COOPERATION AMONGST MENS

The proposed MEC network architecture with direct hori-
zontal collaboration among the MENs is described in Fig. 1.
This architecture adopts a practical MEC model in 5G
networks proposed by The European Telecommunications
Standards Institute (ETSI) [15]. Each MEN in the network
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Fig. 1: Proposed MEC network architecture with direct
horizontal cooperation.

serves a set of mobile users in its coverage area and it
can communicate with its nearby MENs (the BS is also
considered as an MEN in the network) using either wireless
(e.g., Wi-Fi) or wire connections. Additionally, each MEN
is equipped with finite storage capacity to cache popular
contents. In this case, each MEN can implement periodic
updating strategies of the high-demand content placement
within a day at off-peak hours, e.g., at night, to reduce
traffic loads during peak hours [3], [16]. To route data traffic,
e.g., content requests and content downloads, from/to the
mobile users or other MENs, each MEN also utilizes a
user plane function (UPF). This UPF is connected to the
MEN and the storage capacity via N3 and N6 interfaces,
respectively [15]. Moreover, the mobile users can move
from one MEN’s coverage to another MEN’s area to create
connections for content requests.

When a content request is sent to an MEN, if the content
is cached locally at the MEN, it will send the content to
the user immediately through the UPF. If the content is not
stored locally at the MEN but at its neighboring MENs (i.e.,
directly connected to the MEN), the MEN will download the
content from the node which has the lowest delivery delay
before sending the requested content to the user. Otherwise,
the MEN will download the content from the CS via the BS1.
In this case, the BS requires to download the content from
the CS through the 5G core network (CN) [17]. Note that if
the MEN is the BS, it will check from MENs in the network
first, and if there is no MEN storing this content, it will
download the content from the CS via the 5G CN. In this
way, the proposed model can leverage the direct horizontal
cooperation among MENs to reduce content-access delay
for the users as well as traffic load on the backhaul network.

Let N = {1, . . . , n, . . . , N} denote the set of the MENs.
The BS is denoted by MEN-N . Each MEN-n has storage
capacity and the number of mobile users in its coverage
area denoted by sn and Un, respectively. B represents the
bandwidth between the BS and the CS. We also define
lmn ,∀n,m ∈ N , n 6= m as the bandwidth between MEN-

1. In practice, the bandwidth between the BS and CS is usually much
higher than among MENs [18]. Thus, downloading the content from
the CS via the BS will have lower delay than getting it through two
MEN-MEN hops.

n (note that B � lmn ) and MEN-m, and bun,∀n ∈ N
as the allocated bandwidth of a user u at MEN-n. Fur-
thermore, we define I = {1, . . . , i, . . . , I} as the set of
contents. Contents may have diverse data sizes denoted
by C = {c1, . . . , ci, . . . , cI}. We denote frequency-of-access
(FoA) of content i at MEN-n as f in.

3 JOINT COOPERATIVE CACHING AND DELIVER-
ING OPTIMIZATION PROBLEM

In this section, we first formulate the joint cooperative
caching and delivering optimization problem to minimize
the total average delay for the MEC network under various
network constraints as aforementioned. This nested dual
optimization problem is shown to be NP-hard. We then
propose a method to transform the intractable nested dual
optimization problem into the equivalent MINLP for which
we can develop effective solutions.

3.1 Decision Variables and Problem Analysis

We define x
def
= [x1, . . . ,xn, . . . ,xN ]T , where xn =

[x1
n, . . . , x

i
n, . . . , x

I
n] and xin ∈ {0, 1}, as the binary decision

vector of the MENs. The variable xin is defined as follows:

xin =

{
1, if content i is cached at MEN-n,
0, otherwise. (1)

When a user u at MEN-n requests a content i, the following
three cases are considered.

3.1.1 Case 1: MEN-n has the requested content
In this case, xin = 1, and thus the delay to download the
content will be

d∗case1
def
= xindα, (2)

where dα = ci
bun

.

3.1.2 Case 2: MEN-n does not have the requested content
but at least one of its directly connected MENs caches this
content
In this case, xin = 0. We denote Mi

n as the set of MENs
which are directly connected to MEN-n and store content i.
Because there is at least one MEN inMi

n caching the content
i, we can derive:

xim†
def
=

∏
m∈Mi

n

(1− xim) = 0, (3)

where

xim =


1, if content i is cached at MEN-m,

m 6= n,
0, otherwise.

(4)

As such, the MEN-n will download content i from one node
which has the lowest delivery time, and thus the delay to
download the content in this case will be:

d∗case2
def
= (1− xin)(1− xim†)(dα + dβ), (5)

where dβ
def
= min

m

(
[xim+(1−xim)V ] cilmn

)
, and V is a very large

constant number. Here, dβ represents the optimization prob-
lem to find an MEN-m which contains requested content i
and has the lowest delivery time. In addition, the V ensures
that MENs without containing the requested content i (i.e.,
xim = 0) are practically ignored.
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It is worth noting that our model is designed to take
the full advantage of direct horizontal cooperation among
MENs. In fact, MENs are often deployed in a close proximity
area. As such, the wire or wireless links among MENs are
often in place [10], [19] and usually much faster than the
links from MENs to the BS. In particular, if one of its directly
connected MENs stores content i, MEN-n will download
this content from one of these nodes instead of trying to
download the content from the CS or from another MEN
in the network via the BS. This strategy is to minimize the
latency, the traffic on the backhaul network as well as inside
the MEC network.

Note that in the case MEN-n is the BS, i.e., n = N , only
Case 1 and Case 2 can occur as the BS is directly connected to
the CS. We also do not consider direct connections between
MENs and the CS. This is due to the fact that the direct con-
nection between an MEN and the CS often has a very low
bandwidth capacity [18]. Another reason is that deploying
direct connections between MENs and the CS will cause
significant infrastructure deployment and operational costs
for the MEC service providers [14], [19], [20].

3.1.3 Case 3: MEN-n and all of its directly connected nodes
do not have the requested content
In this case, we have xin = 0 and xim†:r = 1. Then, there
are two possibilities. First, there is no MEN in the network
storing the content. Then, the content will be downloaded
from the CS via the BS, and the delay in this case will be

d∗case3
def
= (1− xin)xim†dδ, (7)

where dδ =
(
dα + ci

lNn
+ ci

B

)
. Second, if there is at least one

MEN in the network that is not directly connected to MEN-
n, say MEN-m (with some abusing of notation), storing this
content, MEN-n will download the content from either the
CS via the BS or from MEN-m via the BS or any intermediate
MEN (whichever has lower delivery delay). However, in
practice, as aforementioned the bandwidth between the BS
and CS is usually much higher than among MENs [18],
and thus the content will be downloaded from the CS in
the second case. Consequently, the delay to download the
content in Case 3 will be dδ .

3.2 Problem Formulation
Based on the aforementioned analysis, we then formulate
the joint cooperative caching and delivering optimization
problem (P1) to minimize the total average delay of the
MEC network as follows:

(P1) min
x
F (x), (8)

s.t.
I∑
i=1

xinci ≤ sn,∀n ∈ N , (9)

xin, x
i
m ∈ {0, 1},∀n,m ∈ N , n 6= m,∀i ∈ I, (10)

where the objective function F (x) is defined in Eq. (6) as
the total average delay at all MENs for all contents in the
MEC network. The constraints (9) guarantee that the total
size of all cached contents does not exceed the storage
capacity of each MEN. Additionally, the constraints (10)
specify that caching decision variables are binary. Based
on (P1), our optimization problem is considered to be a

nested dual binary nonlinear programming. In particular, binary
decision variables are multiplied and used in both inner
and outer minimization functions: (1) the outer level (OL)
is the main objective function F (x) to minimize the total
average delay of the network and (2) the inner level (IL) is
the optimal delivering decision problem, i.e.,

FIL(x) = dβ = min
m

(
[xim + (1− xim)V ]

ci
lmn

)
. (11)

The IL will try to find a directly connected node, i.e.,
MEN-m, which minimizes the delivery time to a requesting
mobile user as described in Case 2. Furthermore, the OL and
IL functions have a unique feature, i.e., mutual-dependency.
Specifically, on the one hand, where to cache contents (at
MENs) will influence on how to deliver the contents. On
the other hand, how to deliver contents (depending on
the network topology) will impact on how/where contents
should be cached at MENs. In this way, to address the OL
problem, we need to solve the IL problem by obtaining the
optimal value of m, i.e., which MENs to deliver. Further-
more, it is important to note that we cannot solve the IL
problem to find the optimal values of m separately because
the optimal values of m strongly depend on the variables
x (i.e., which contents are cached at which MENs). Conse-
quently, to minimize the total average delay for the network,
we need to simultaneously address the joint caching and
delivering optimization problem. In Lemma 1, we show that
the optimization problem in Eq. (8) is an NP-hard problem.

Lemma 1. The nested dual optimization (P1) is NP-hard.

Proof. See Appendix A.

3.3 Problem Transformation
In (P1), we need to simultaneously optimize the content
caching and delivering decisions. However, as discussed
above, the decisions to cache and to deliver the contents are
mutual dependent. Hence, the optimization problem is un-
fortunately not a typical bilevel optimization [21] in which
the inner and outer decision variables are independent. As
such, conventional techniques used in the bilevel optimiza-
tion are not applicable. To address this problem, we propose
a novel method to transform the intractable nested dual
optimization problem into an equivalent mixed-integer non-
linear programming (MINLP) optimization problem which
can be solved by using effective mathematical tools.

Specifically, we introduce a vector of functions Q(x) as
well as vectors of auxiliary variables z and binary variables
y to replace the IL problem FIL(x), and add appropriate
constraints to make the transformed problem to be equiv-
alent. In this case, Q(x) represents the IL problem. Par-
ticularly, Q(x)

def
= [Qn(x1), . . . , Qn(xm), . . . , Qn(xMn

)]T ,
where Qn(xm)

def
= [Q1

n(x1
m), . . . , Qin(xim), . . . , QIn(xIm)] and

Qin(xim)
def
= [xim + (1 − xim)V ] cilmn

. Then, we define
z = [ z1, . . . , zn, . . . , zN ] T with zn = [ z1

n, . . . , z
i
n, . . . , z

I
n] ,

where zin ∈ R+
0 , as the vector of FIL(x) solu-

tions for all contents and MENs. Furthermore, we
denote y = [y1, . . . ,ym, . . . ,yN ] T with ym =
[ y1
m, . . . , y

i
m, . . . , y

I
m] , yim ∈ {0, 1}, and m 6= n, as the

binary decision vector to help MEN-n, ∀n ∈ N to find
another directly connected MEN-m, m ∈ Mi

n, which has
the shortest time to deliver requested content i.



5

F (x) =
I∑
i=1

N∑
n=1

f in

[
Un∑
u=1

(
d∗case1 + d∗case2 + d∗case3

)]

=
I∑
i=1

N∑
n=1

f in

[
Un∑
u=1

(
xindα︸ ︷︷ ︸
Case 1

+ (1− xin)(1− xim†)
(
dα + min

m

(
[xim + (1− xim)V ]

ci
lmn

))
︸ ︷︷ ︸

Case 2

+ (1− xin)xim†dδ︸ ︷︷ ︸
Case 3

)]

=
I∑
i=1

N∑
n=1

f in

[
Un∑
u=1

(
xindα + (1− xin)

[
(1− xim†)(dα + dβ) + xim†dδ

])]
(6)

Given the vectors Q(x), z, and y, the new equivalent
optimization problem (P2), known as MINLP problem, can
be expressed as follows:

(P2) min
{x,y,z}

F (x,y, z), (12)

s.t. (9)-(10) and
zin ≥ Qin(xim)− V yim,∀n,m ∈ N ,m 6= n, ∀i ∈ I, (13)∑

m∈Mi
n

yim = M i
n − 1,∀n ∈ N ,∀i ∈ I, (14)

yim ∈ {0, 1},∀m ∈ N ,∀i ∈ I, (15)
zin ∈ R+

0 ,∀n ∈ N ,∀i ∈ I, (16)

where

F (x,y, z) =
I∑
i=1

N∑
n=1

f in

[
Un∑
u=1

(
xindα+

(1− xin)
[
(1− xim†)(dα + zin) + xim†dδ

])]
,

(17)

and M i
n is the cardinality of the set Mi

n. The constraints
(13) represent the condition to select one MEN-m which has
the lowest delivery time. In addition, the aim of constraints
(14) and (15) are to guarantee that only one variable yim
is set to be “0”, while the rest of variables are set to be
“1”. Specifically, M i

n − 1 indicates that when M i
n number

of directly connected MENs containing content i for MEN-n
are considered, we exclude one node which has yim = 0 (i.e.,
the selected MEN-m to deliver the content i). The equivalent
transformation is formally stated in Theorem 1.

THEOREM 1. The nested dual optimization problem (P1) is
equivalent to MINLP optimization problem (P2).

Proof. See Appendix B.

Based on (P2), we can simplify some parts of the objec-
tive function in Eq. (12) as

Ω
(
xin, x

i
m

) def
= xindα + (1− xin)(1− xim†)dα
+ (1− xin)xim†dδ,

(18)

Φ
(
xin, x

i
m

) def
= (1− xin)(1− xim†), (19)

the constraints (9) as

Θ
(
xin
) def

=
I∑
i=1

xinci − sn, (20)

and the constraints (14) as

Γ
(
yim
) def

=
∑

m∈Mi
n

yim − (M i
n − 1). (21)

Then, we have
F (x,y, z) =
I∑
i=1

N∑
n=1

f in

[
Un∑
u=1

(
Ω
(
xin, x

i
m

)
+ Φ

(
xin, x

i
m

)
zin

)]
,

(22)

and the MINLP problem (P2) becomes

(P3) min
{x,y,z}

F (x,y, z), (23)

s.t. (10), (15)-(16), and
Θ
(
xin
)
≤ 0,∀n ∈ N , (24)

Qin
(
xim
)
− V yim − zin ≤ 0,∀n,m ∈ N ,m 6= n,∀i ∈ I, (25)

Γ
(
yim
)

= 0,∀n ∈ N ,∀i ∈ I. (26)

4 CENTRALIZED COOPERATIVE CACHING-
DELIVERING SOLUTION

To address (P3), in this section, we introduce an improved
branch-and-bound algorithm (iBBA) which can effectively
achieve the near-optimal joint caching and delivering policy
for the whole network.

4.1 iBBA with Interior-Point Method
We adopt branch-and-bound algorithm (BBA) [22] which re-
duces the time complexity and leverages the characteristics
of binary variables to find the final solution of (P3). The BBA
has been commercially popular (in CPLEX by IBM [23] or in
SBB by GAMS [24]) and it can work very effectively to solve
integer programming problems. Nonetheless, to solve the
non-linearity and continuous relaxation of (P3), we employ
the interior-point method (IPM) which has polynomial time
complexity [25]. The IPM is considered to be robust and
efficient method to address function evaluations and second
derivative information for large-scale and sparse nonlinear
problem [26] (as implemented in IPOPT [27] and in KNI-
TRO [28]. Overall, both BBA and IPM can be integrated to
handle binary and continuous variables of (P3) efficiently.

Given the aforementioned BBA and IPM, we develop a
two-level approach to effectively address (P3). In particular,
the BBA is used as outer-level approach which creates
continuous nonlinear subproblems by relaxing binary con-
straints of (P3), and then the IPM is applied as inner-level
approach to solve the subproblems. In this way, the optimal
solutions of subproblems attained from the IPM may not be
integral (some variables do not have binary values). Thus,
the BBA is then used again to find the feasible (integral)
solutions until the final solution of (P3) is found.

To find the final solution of (P3) using the BBA, we recall
binary variable vectors x and y, and non-integer variable
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vector z. Given I number of contents and N number of
MENs, the number of variables of vector x, y, and z are
Jx = Jy = Jz = I × N . The BBA first relaxes all binary
variables xin, xim, and yim of (P3) into continuous variables
at the root problem (RP). In the (RP), the relaxed binary
variables are bounded by 0 ≤ xin, x

i
m, y

i
m ≤ 1. Then, the

(RP) can be expressed as follows:

(RP) min
{x,y,z}

FRP(x,y, z), (27)

s.t. (24)-(26) and
0 ≤ xin, xim, yim ≤ 1, zin ∈ R+

0 ,

∀n,m ∈ N ,m 6= n, ∀i ∈ I, (28)

where FRP(x,y, z) = F (x,y, z) in Eq. (22).

If all variables xin, xim, and yim are binary values (i.e.,
feasible solution is obtained), the algorithm will stop imme-
diately. Otherwise, it will break the (RP) into subproblems
(SPs), i.e., branch problems. In this case, the (SP)s fix one
of relaxed decision variables (i.e., xin, xim, or yim) to be “0”
at the left branch and “1” at the right branch. We denote
the fixed decision variable to be ζ ∈ {xin, xim, yim} with
FSP(x,y, z) = FRP(x,y, z).

In the BBA, each iteration does not need to search all
branch problems (or leaves). Instead, (SP) is pruned if one
of these two following conditions is met: (1) Ψc > βU or
(2) ξ < τ . In this case, Ψc and βU refer to the current
total average delay and the upper bound of the total av-
erage delay. Meanwhile, ξ and τ represent the integrality
between relaxed and rounded decision variables G, where
G = {xin, xim, yim}, and integrality gap threshold, respec-
tively. Then, the final solutions x̂in, x̂im, ŷim, and ẑin with
∀n,m ∈ N ,m 6= n, ∀i ∈ I are obtained if the total average
delay Ψ̂ = Ψ ≤ Ψc for all xin, xim, yim, and zin in the problem,
where Ψ refers to the incumbent total average delay. To
guarantee that the near-optimal solution exists, we set an
optimality tolerance η as a non-negative value. Specifically,
x̂in, x̂im, ŷim, and ẑin are η−optimal when the total average
delay Ψ̂ is tightened within the bounds and the difference
between upper bound βU and lower bound βL is less than
the optimality tolerance as expressed below:

βL ≤ Ψ̂ ≤ βU and βU − βL ≤ η. (29)

While the BBA handles the feasibility of the (SP)s and
the optimality of (P3), the interior-point method (IPM) is
used to solve the nonlinear continuous relaxation of the
(SP)s. In particular, we derive an interior-point subproblem
(IP) from the (SP) as the approximated problem with
additional logarithmic barrier functions and non-negative
slack variables to eliminate the inequality operators such
that:

FIPγ (x,y, z,σ1,σ2,σ3,σ4) =

FSP(x,y, z)− γ
[ N∑
j1=1

log σj11 +
M∑
j2=1

log σj22

+

Jx+Jy∑
j3=1

log σj33 +

Jx+Jy∑
j4=1

log σj44

]
,

(30)

and
(IP) min

{ x,y,z,
σ1,σ2,σ3,σ4

}
FIPγ (x,y, z,σ1,σ2,σ3,σ4), (31)

s.t. Θ
(
xin
)

+ σj11 = 0,∀n, j1 ∈ N , (32)

Qin
(
xim
)
− V yim − zin + σj22 = 0,∀j2 ∈ [1,M ],

∀n,m ∈ N ,m 6= n,∀i ∈ I, (33)
Γ
(
yim
)

= 0,∀n ∈ N ,∀i ∈ I, (34)

G− σj33 = 0, G+ σj44 = 1,

∀j3, j4 ∈ [1, Jx + Jy],∀n,m ∈ N ,m 6= n,∀i ∈ I, (35)
zin ∈ R+

0 ,∀n ∈ N ,∀i ∈ I, (36)

where M
def
=

I∑
i=1

N∑
n=1

M i
n, γ > 0 is the barrier parameter

[29], σ1,σ2 ∈ R+
0 are slack variables in the inequality

constraints (24) and (25), respectively, and σ3,σ4 ∈ R+
0

are slack variables for lower and upper bounds of
G in the inequality constraints (28), respectively.
In this case, we define σ1

def
= [σ1

1 , . . . , σ
j1
1 , . . . , σ

N
1 ],

σ2
def
= [σ1

2 , . . . , σ
j2
2 , . . . , σ

M
2 ], σ3

def
= [σ1

3 , . . . , σ
j3
3 , . . . , σ

Jx+Jy
3 ],

and σ4
def
= [σ1

4 , . . . , σ
j4
4 , . . . , σ

Jx+Jy
4 ]. To make

FIPγ (x,y, z,σ1,σ2,σ3,σ4) equal to the minimum
FSP(x,y, z), we need to update γ in decreasing order
for each iteration such that it converges to zero. To solve
the approximated problem FIPγ (x,y, z,σ1,σ2,σ3,σ4), a
conjugate gradient technique [30] is adopted to minimize
a quadratic approximation of the approximated problem
at each step. Let L(p,σ,λ) denote the Lagrangian
expression containing the objective function in Eq. (31)
along with the corresponding constraints (32)-(35) and a
vector of non-negative Lagrangian multipliers λ, where
λ contains λj11 ,∀j1 ∈ N , λ

j2
2 ,∀j2 ∈ [1,M ], λj33 ,∀j3 ∈

[1, Jx + Jy], λj44 ,∀j4 ∈ [1, Jx + Jy], and λj55 ,∀j5 ∈ [1, Jz].
Then, L(p,σ,λ) can be expressed by

L(p,σ,λ) = FSP(p)− γ
[ N∑
j1=1

log σj11 +
M∑
j2=1

log σj22

+

Jx+Jy∑
j3=1

log σj33 +

Jx+Jy∑
j4=1

log σj44

]
+

N∑
j1=1

λj11

(
Θ
(
xin
)

+ σj11

)

+
M∑
j2=1

λj22

(
Qin
(
xim
)
− V yim − zin + σj22

)

+

Jx+Jy∑
j3=1

λj33

(
G− σj33

)
+

Jx+Jy∑
j4=1

λj44

(
G+ σj44 − 1

)

+
Jz∑
j5=1

λj55 Γ
(
yim
)
,

(37)
where p = (x,y, z) and σ = (σ1,σ2,σ3,σ4). We first
need to obtain the Lagrangian multipliers by solving the
following equation before using the conjugate gradient:

∇pL(p,σ,λ) = ∇pFSP(p) +
N∑
j1=1

λj11 ∇pΘ
(
xin
)

+
M∑
j2=1

λj22 ∇p

(
Qin
(
xim
)
− V yim − zin

)
+

Jx+Jy∑
j3=1

λj33 ∇pG

+

Jx+Jy∑
j4=1

λj44 ∇pG+
Jz∑
j5=1

λj55 ∇pΓ
(
yim
)

= 0.

(38)
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Then, we can use a step size (∆p,∆σ) iteratively to mini-
mize the quadratic approximation such that:

min
{∆p,∆σ}

F (∆p,∆σ), (39)

s.t. Θ
(
xin
)

+ W1∆p + ∆σ = 0,∀n ∈ N , (40)

Qin
(
xim
)
− V yim − zin + W2∆p + ∆σ = 0,

∀n,m ∈ N ,m 6= n, ∀i ∈ I, (41)
G+ W3∆p + ∆σ = 0, G− 1 + W4∆p + ∆σ = 0,

∀n,m ∈ N ,m 6= n, ∀i ∈ I, (42)
Γ
(
yim
)

+ W5∆p = 0,∀n ∈ N ,∀i ∈ I, (43)

where

F (∆p,∆σ) = ∇pFSP(p)T∆p +
1

2
∆pT∇2

pL(p,σ,λ)∆p

+ γeTS−1∆σ +
1

2
∆σTS−1A∆σ,

(44)
e is a vector of ones corresponding to sizes of Θ

(
xin
)
,(

Qin
(
xim
)
− V yim − zin

)
, and G, S and A are the diagonal

matrices with the elements of σ and λ on the diagonal,
respectively. Furthermore, W = (W1,W2,W3,W4,W5)
represents the Jacobian of the constraint functions Θ

(
xin
)
,(

Qin
(
xim
)
− V yim − zin

)
, G, and Γ

(
yim
)
.

4.2 Algorithm Complexity and Convergence Analysis
of iBBA-IPM

Algorithm 1 describes the pseudocode of the iBBA-IPM
solution. First, we evaluate the complexity of the algorithm.
The complexity of Algorithm 1 is the lowest when the final
solutions x̂in, x̂

i
m, ŷ

i
m, ẑ

i
n with ∀n,m ∈ N ,m 6= n, ∀i ∈ I

and the final total average delay Ψ̂ are found at (RP).
However, the complexity becomes higher when (SP)s are
active at left and right branches of the iBBA-IPM’s tree. In
particular, we apply a depth-first search method by selecting
the latest created (SP) as the next (SP) [31] to find the t-th
total average delay, i.e., Ψt. Suppose that T is the expected
number of total average delays Ψt,∀t ∈ [1, T ], searched in
the iBBA-IPM’s tree, given that the first solution is found
at depth %. This T is bounded above and below by linear
functions of % to achieve polynomial complexity. This is
formally described in Theorem 2.

THEOREM 2. Given that the first solution is found at depth
% in the iBBA-IPM’s tree, the expected number of total average
delays searched in the iBBA-IPM’s tree, i.e., T , follows polynomial
complexity at the depth % when T is bounded above and below by
linear functions of %.

Proof. See Appendix C.

Next, we show that the iBBA-IPM algorithm converges
after a finite number of steps under the optimality tolerance
η > 0 of the optimization problem in (P2). This is formally
stated in Theorem 3.

THEOREM 3. The iBBA-IPM algorithm converges after a finite
number of steps under the optimality tolerance η > 0. Specifically,
there exists step θη ∈ N for any η > 0 such that:

β
(θη)
U − β(θη)

L ≤ η, (45)

and β(θη)
U is within the optimality tolerance of the F (x,y, z).

Algorithm 1 Centralized Solution with iBBA-IPM

1: Ra: the set of ra active problems, rc: the current problem
2: Set G = {xin, xim, yim} ∈ [0, 1], zin ∈ R+

0 , ∀n,m ∈
N , m 6= n, ∀i ∈ I

3: rc ← ra ← 1 /* Set root problem */
4: βL ← −∞, βU ← +∞, Ψ← βU
5: Set τ and η /* Integrality gap & optimality tolerance */
6: Solve (RP) for rc
7: if ∀xin, xim, yim ∈ {0, 1} then
8: Store x̂in, x̂

i
m, ŷ

i
m, ẑ

i
n, and Ψ̂, ∀n,m ∈ N , ∀i ∈ I

9: return /* Prune all active problems */
10: end if
11: while Ra 6= ∅ and βU − βL > η do
12: rc ← ra /* an (SP) based on the depth-first search */
13: ra ← ra − 1 /* Remove the (SP) from the set */
14: Solve subproblem (IP) for rc
15: if (IP) for rc is infeasible then
16: Prune rc, exit
17: else
18: Set current G and zin, ∀n,m ∈ N , ∀i ∈ I
19: Calculate ξ ← |G− round(G)|
20: if ξ < τ then
21: if Ψc < Ψ then
22: Store current G and zin, ∀n,m ∈ N , ∀i ∈ I
23: Set Ψ← Ψc and βU ← Ψc

24: end if
25: Prune rc, exit
26: else
27: Choose ζ ∈ G
28: ra ← ra + 2 /* Add 2 (SP)s to the set */
29: Update βL ← Ψc

30: Update the constraints with ζ ← 0, ζ ← 1, exit
31: end if
32: end if
33: Store x̂in, x̂

i
m, ŷ

i
m, ẑ

i
n, and Ψ̂, ∀n,m ∈ N , ∀i ∈ I

34: end while

Proof. See Appendix D.

5 DISTRIBUTED COOPERATIVE CACHING-
DELIVERING SOLUTION

Despite the fact that the aforementioned centralized solution
can find the final solution within 1% to minimize the total
average delay for the whole network, it faces two issues.
First, the centralized solution requires a centralized com-
puter with the whole network topology and information
to be able to solve the nested dual optimization prob-
lem. Second, it incurs significant communication overheads
among MENs, especially for a large number of MENs. In
this section, we introduce a distributed suboptimal solution,
which can address these issues. Specifically, under the dis-
tributed solution, each MEN first finds the locally optimal
caching policy based on the local users’ demands and its
storage capability. Then, each MEN will communicate with
its directly connected nodes to find cooperation through
discovering the duplicate contents.

To obtain locally optimal caching policy under the dis-
tributed solution, each MEN-n needs to consider three cases
when its local user u requests content i:
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Yes

No

No

Yes

Start

Fig. 2: Flowchart of cooperation scheme among MENs for
the distributed solution.

• Case 1: If MEN-n has the requested content, the delay
to deliver the content will be xindα, where dα = ci

bun
.

• Case 2: If MEN-n does not have the requested content
but the BS (MEN-N ) has the content, the MEN-n
will download the content from the BS, and thus the
delay will be (1− xin)xiNd

‡
β , where d‡β

def
=
(
dα + ci

lNn

)
.

• Case 3: If MEN-n and the BS do not have the re-
quested content, the content will downloaded from
the CS via the BS, and thus the delay will be
(1− xin)(1− xiN )dδ , where dδ =

(
dα + ci

lNn
+ ci

B

)
.

Note that Case 2 is ignored when users connected directly to
the BS. Moreover, since the bandwidth between the BS and
CS is usually much higher than that among MENs [18], for
Case 3, the delay to download the content when users are
connected to the BS directly becomes (1 − xiN )d‡δ , where
d‡δ

def
=
(
dα + ci

B

)
. Based on the aforementioned analysis,

we then formulate the locally optimal caching optimization
problem, i.e., optimal caching at each node without horizon-
tal cooperation, for MEN-n (where n ∈ [1, N − 1]) as (P4)
with the following equation:

(P4) min
x
Fn(x), (46)

s.t
I∑
i=1

xinci ≤ sn, n ∈ [1, N − 1], (47)

xin, x
i
N ∈ {0, 1}, n ∈ [1, N − 1],∀i ∈ I, (48)

and for the BS as (P5) with the following expression:

(P5) min
x
FN (x), (49)

s.t
I∑
i=1

xiNci ≤ sN , (50)

xiN ∈ {0, 1},∀i ∈ I, (51)

where

Fn(x) =
I∑
i=1

f in

[
Un∑
u=1

(
xindα+

(1− xin)xiNd
‡
β + (1− xin)(1− xiN )dδ

)]

=
I∑
i=1

f in

[
Un∑
u=1

(
xindα+

(1− xin)
(
xiNd

‡
β + (1− xiN )dδ

))]
,

(52)

and

FN (x) =
I∑
i=1

f iN

[
UN∑
u=1

(
xiNdα + (1− xiN )d‡δ

)]
. (53)

It is shown that the problems (P4) and (P5) are stan-
dard binary linear programming which are generally NP-
complete [32]. Nonetheless, the optimization occurs at each
MEN only with a much lower number of variables (than the
centralized problem). In this way, those problems then can
be solved effectively using popular solvers.

After obtaining the locally optimal caching decisions at
each MEN, the cooperation among MENs to find the dupli-
cate contents is then carried out. In particular, each MEN-n
will consider the duplication of its current cached contents
with current ones of its directly connected MEN-m, where
m ∈Mi

n, at a particular time. The flowchart in Fig. 2 shows
how the cooperation among MENs work in this solution.
The key idea of this cooperation process is that we need
to find the minimum total average delay Ψ in the network
by minimizing the duplicate contents among MENs. The
process terminates when all candidate contents have been
checked at each MEN-n. The complete pseudocode of the
distributed solution is shown in Algorithm 2.

The distributed solution algorithm has polynomial com-
plexity. This is shown by the double looping when each
content i is checked at each MEN-n. In addition, if an MEN-
n has duplicate contents with at least one directly connected
MEN-m, the MEN-n will check the rest of the contents (i.e.,
I∗ = I − 1). Obviously, the algorithm has polynomial time
complexity O(I ×N × I∗).

6 ILLUSTRATIVE CASE STUDY

To show the efficiency of the proposed solutions using direct
horizontal cooperation among MENs, we present an illus-
trative example in Fig. 3. We use 4 nodes (i.e., 3 MENs and
the BS) and 30 available contents with various frequency-of-
accesses. The content size is uniformly distributed between
50MB and 200MB. We set the storage capacity at 600MB
for MEN-1 to MEN-3 and 1GB for the BS. Suppose that the
bandwidth between MEN-n and MEN-m (∀n,m ∈ N , and
n 6= m) is equal. Based on the aforementioned parameter
settings, each MEN and the BS can cache up to 4-7 contents.

As seen in Fig. 3, we show caching policies obtained by
the locally optimal policy and the proposed solutions (i.e.,
distributed and centralized solutions). Thanks to horizontal
cooperation among MENs in the proposed solutions, MENs
can share cached contents to minimize the total average
delay for the whole network instead of minimizing the delay
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Algorithm 2 Distributed Solution

1: Initialize xin ∈ 0, 1,∀n ∈ N , ∀i ∈ I from locally optimal
policy problems (P4) and (P5)

2: Check s∗n,∀n ∈ N /* Current capacity of each MEN */
3: Calculate Ψ /* total average delay of Fn(x) in problem

(P4) and FN (x) in problem (P5) */
4: for ∀i ∈ I do
5: for ∀n ∈ N do
6: if xin = xim = 1,∀m ∈Mi

n ⊂ N ,m 6= n then
7: Set s∗n ← s∗n − ci
8: Select i∗, i∗ 6= i,∀i∗ ∈ I
9: if s∗n + ci∗ ≤ sn then

10: Set xi
∗

n ← 1 /* Store new candidate content */
11: Obtain information from MEN-m,∀m ∈Mi

n

12: Calculate Ψc
n /* Current total average delay */

13: end if
14: end if
15: end for
16: Compute the average of all Ψc

n’s, ∀n ∈ N into Ψc

17: if Ψc < Ψ then
18: Update xin,∀n ∈ N , ∀i ∈ I
19: Ψ← Ψc

20: end if
21: end for
22: Store final x̂in,∀n ∈ N , ∀i ∈ I
23: Calculate final Ψ̂ using the solution in Line 22

MEN-1
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2 3 19 20 22 24 27
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solution
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Fig. 3: An example of caching policies obtained by locally
optimal policy, distributed and centralized solutions.

for each individual MEN (as in the locally optimal policy).
For example, under the centralized solution, there is no
duplicate content cached at all MENs (i.e, each MEN has
different set of contents), and thus the number of contents
cached at MENs in the network can be maximized (i.e., 19 of
30 available contents are cached in the network). In this way,
the centralized solution can find the near-optimal caching
and delivering policy based on the full network topology
and information of all nodes in the network.

For the distributed solution, few duplicate contents are
cached at MENs. Specifically, content 16 is cached at MEN-
1 and MEN-3, while content 17 is stored at MEN-2 and
MEN-3. The reason is that the distributed solution cannot
achieve optimal solution even though the duplicate con-
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Fig. 4: Evaluation of proposed solutions against optimal
solution.

tents at all MENs are minimized. However, compared with
locally optimal policy, the distributed solution has much
better disparate content distribution due to the horizontal
cooperation (i.e., 17 of 30 available contents are cached
in the network). When we use the locally optimal policy,
more duplicate contents are produced (i.e., only 13 of 30
available contents are cached in the network) due to the lo-
cally caching optimization at each MEN (without horizontal
cooperation among MENs).

7 SIMULATION RESULTS

We perform simulations to evaluate the performance of
the proposed solutions, i.e., centralized and distributed
solutions, with those of other caching policies including
greedy policy [11], [20], most FoA policy [3], [33], locally
optimal policy [6], [34], and guaranteed greedy policy [14],
[35]. For the greedy policy, contents are cached as many
as possible. For the most FoA policy, contents with high
FoA are prioritized to be cached. For the locally optimal
policy, the MENs minimize their own delays without con-
sidering the cooperation. For the guaranteed greedy policy,
contents which maximize caching gain are greedily added
into caching storage under guaranteed (1 − 1/e) factor of
the optimal solution. In all simulations, the content size is
randomly generated using a uniform distribution between
100 and 300MB, while the FoAs of all MENs follow a Zipf
distribution based on the ranks of the contents [10], [19]
with shape parameter set at 0.1. The bandwidth between
an MU and its associated MEN, and between two directly
connected MENs are set at 10 and 45Mbps, respectively.
Furthermore, bandwidth between an MEN and the BS is
10Mbps and between the BS and the CS is 60Mbps. Note
that the bandwidth between two MENs is usually higher
than that between an MEN and the BS because in practice
two directly connected MENs are often placed in the same
area or close to each other where wired or fast wireless
connections can be used [10], [19].

7.1 Evaluation of Proposed vs. Optimal Solutions

Fig. 4 demonstrates the total average delay performance
between our proposed solutions, i.e., centralized and dis-
tributed solutions, and optimal solution when the stor-
age capacity increases from 1 to 2GB and 15 contents are
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Fig. 5: Average delay vs storage capacity.

available for 2 MENs. Here, we only consider small-size
problems due to the exponential complexity of finding the
optimal solution using the exhaustive searching scheme. It
can be seen that although the proposed centralized solu-
tion cannot guarantee the optimal solution for the original
problem, its performance can achieve very close (less than
1% gap) to that of the optimal solution obtained by the
exhaustive searching scheme. Furthermore, the proposed
distributed solution still can provide reasonable total aver-
age delay gap within 13% to the optimal solution and the
gap becomes smaller as the storage capacity increases.

7.2 Total Average Delay
In this section, we evaluate the total average delay under the
influence of various storage capacities, number of contents,
and number of MENs. In particular, we use 0 to 10GB
caching capacity, 50 to 200 number of available contents,
and 2 to 10 number of MENs. Moreover, the content size is
uniformly distributed between 100MB and 300MB.

7.2.1 Effects of Storage Capacity
Fig. 5 shows the trend of the total average delay in the MEC
network with 200 considered available contents as the stor-
age capacity increases from 0 to 10GB. It is observed that as
the storage capacity increases, the average delays obtained
by all policies are reduced, and the centralized solution
outperforms all other policies. Specifically, when the storage
capacity is 10GB, the average delay obtained by the central-
ized solution is 35% lower than the locally optimal policy,
37% lower than the guaranteed greedy policy, 52% lower
than the most FoA policy, and 66% lower than the greedy
policy. This is because the MENs can collaborate together
to improve caching efficiency for the whole network when
the centralized solution is used. In constrast, conventional
policies (i.e., greedy, most FoA, guaranteed greedy, and
locally optimal policies) do not consider cooperative caching
among the MENs, and thus requested contents can only be
downloaded from the CS (through the BS) if the contents are
not stored at the associated MEN of the requesting users.
For the distributed solution, although it cannot achieve
the optimal solution, its performance is always better than
the conventional policies, and the gap with the centralized
solution is only within 12%.

We then observe the average delay from each partici-
pating MEN and the BS in Fig. 6. In general, each MEN

in Fig. 6(a)-(d) follows the same trend as Fig. 5. How-
ever, an interesting result can be seen in Fig. 6(e). In our
framework, we leverage the direct horizontal collaboration
among MENs to minimize the average delay for the whole
network. As such, since all nodes are also connected to the
BS directly, the BS must sacrifice its performance to reduce
the overall network delay by allowing other nodes to cache
more popular contents. Nonetheless, even the BS sacrifices,
its performance is still greater than those of the greedy and
most FoA policies, and close to those of the locally optimal
and guaranteed greedy policies.

7.2.2 Effects of Number of Contents
Fig. 7 presents the total average delay as the number of
contents increases from 50 to 200 contents. We fix the
storage capacity for all MENs (including the BS) at 5GB.
As expected, for a given storage capacity, if the number
of contents increases, the average delays obtained by all
policies increase. The reason is that the mobile users can-
not download more contents from their directly connected
MENs. Instead, the MENs need to download the contents
from other nodes more frequently. Nevertheless, due to the
collaboration, the average delay obtained by the centralized
solution is still much lower by 15% up to 55% than those of
all other conventional policies. Furthermore, the distributed
solution can achieve the performance very close to that
of the centralized solution especially when the number of
contents is low.

7.2.3 Effect of Number of MENs
Fig. 8 shows the total average delay when we increase the
number of MENs from 2 to 10. We fix the storage capacity
of all MENs and the number of contents at 10GB and 200
contents, respectively. Interestingly, as the number of MENs
increases, the total average delays obtained by the greedy,
most FoA, guaranteed greedy, and locally optimal policies
increase gradually. The reason is that these methods do not
consider the collaboration among the MENs, and thus when
the number of MENs increases, the delay at each MEN will
contribute to the total delay of the network, yielding to an
increasing trend.

Nevertheless, the total average delay obtained by the
distributed solution first dramatically decreases when the
number of MENs increases from 2 to 4 (the same trend
applies for the centralized solution). Then, the total average
delay of the distributed solution slightly rises. However, it
is still much lower by as much as 29% compared with other
conventional policies as the number of MENs increases.
The reason of increasing trend in the total delay is that
each MEN does not have full knowledge of the content
caching decisions in the whole network. Thus, the MEN
may download the content from the CS (through the BS)
eventhough not directly connected MENs may cache the
requested content. In contrast, due to the centralized control,
the centralized solution can slightly reduce more delay and
remain stable when the number of MENs exceeds 8. In this
case, the total average delay of the centralized solution is
at least 40% lower than those of other conventional policies.
Specifically, the centralized solution can utilize the efficiency
of collaboration among the MENs, and thus as the num-
ber of MENs increases, more connections will be created,
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Fig. 6: Average delay vs storage capacity for the MENs and the BS.
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thereby better leveraging the collaboration among MENs.
We also notice that the delay reduction of the centralized
solution gets saturated after the number of MENs reaches
a given number, indicating that all available contents are
cached at MENs. Fig. 8 also provides useful information to
help the MEC service providers effectively deploy MENs.

7.3 Cache Hit Ratio Probability

To further evaluate the performance of the proposed solu-
tions, we conduct simulations to show the cache hit ratio
of the caching policies. Specifically, we generate incoming
content requests randomly using a uniform distribution. In
addition, we consider two types of the cache hit ratio: (1)
local-hit and (2) global-hit. The former represents the cache
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Fig. 8: Average delay vs number of MENs.

hit ratio at each individual MEN, while the latter captures
the cache hit ratio from the whole network. Specifically, we
denote hn as the local-hit of MEN-n. Then, the average cache
hit ratio for the whole network of other caching policies (i.e.,
greedy, most FoA, guaranteed greedy, and locally optimal
policies) htot is

htot
def
=

1

N

[N−1∑
n=1

hn +NhN

]
, (54)

and of the proposed solutions h∗tot is

h∗tot
def
=

1

N

N∑
n=1

(
hn +

∑
m∈Mi

n,m 6=n

hm
)
,∀i ∈ I, (55)
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where hN and
∑

m∈Mi
n,m6=n

hm are the global-hit for the con-

ventional policies and the proposed solutions, respectively.
Fig. 9 presents the average cache hit ratios for all sce-

narios. Note that, for the greedy policy we only show the
local-hit because the greedy policy is based on the sizes of
contents only, and thus the MENs and the BS have the same
set of cached contents. As observed in Fig. 9, the average
cache hit ratios of most FoA, guaranteed greedy, and locally
optimal policies are greater than that of the greedy policy
because they have less duplicate contents on the MENs. In
particular, the MENs may have different users’ demands,
and thus they may cache dissimilar contents. For the dis-
tributed and centralized solutions, by leveraging the direct
horizontal collaboration, their cache hit ratios (including
local-hit and global-hit) are up to 4 times greater than those
of other policies. These figures also clearly show impacts of
the collaboration among MENs. In particular, although the
local-hit may not always be the best (because MENs may
sacrifice to cache contents for other nodes to minimize the
average delay for the whole network), the total cache hit
ratio for the network obtained by the centralized solution
always achieves the highest value. It is also worth noting
that when the total cache hit ratio in the network increases,
the traffic load on the backhaul network will be reduced.

8 CONCLUSION

In this paper, we have introduced the effective joint co-
operate caching and delivering framework (JOCAD) by
leveraging direct horizontal cooperation among MENs. This
framework aims to minimize the total average delay for the
MEC network and lessen the network traffic on the backhaul
network. To address the optimal joint caching and deliv-
ering problem, we have proposed the novel transforma-
tion method together with the improved branch-and-bound
algorithm with the interior-point method. To reduce the
complexity and communication overheads among MENs,
we have also introduce distributed cooperative caching-
delivering solution which minimizes the duplicate contents
among directly connected MENs. Through the simulation
results, we have shown that the proposed solutions can
significantly outperform other caching policies in terms of
the total average delay and cache hit ratio. Furthermore,
the results can provide useful knowledge for MEC service
providers to tradeoff between the quality of service and
the implementation costs in the MEC network. To further
guarantee the performance, in the future work, we will
develop effective distributed algorithms which can theoreti-
cally show the bounds and compare their performance with
the current proposed solutions.
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APPENDIX A
PROOF OF LEMMA 1

To prove this Lemma, we prove that one special case of
the problem is NP-Complete. Specifically, in the problem
(P1), let’s not take into account the delivering problem. In
particular, if MEN-n does not have the requested content, it
will download the content directly from the CS via the BS.
Then, the problem (P1) can be formulated as follows:

min
x
F (x) = min

x

I∑
i=1

N∑
n=1

f in

[
Un∑
u=1

(
xindα + (1− xin)dδ

)]
.

(56)
Based on Eq. (56), the problem becomes binary linear pro-
gramming (with I × N number of binary variables) which
was proved to be NP-complete in [32] and [36]. Since the
special case problem is at least as hard as the hardest
problems in NP (i.e., NP-complete problem), the nested dual
binary nonlinear programming problem (P1) is NP-hard.

APPENDIX B
PROOF OF THEOREM 1

In the following, we will prove that if x∗ is the optimal
solution of (P1), then it is also the optimal solution of (P2)
and vice versa. We first recall the inner minimization FIL(x)
in (P1) as follows:

min
m

(
[xim + (1− xim)V ]

ci
lmn

)
def
=

min
m

(
Qin(xi1), . . . , Qin(xim), . . . , Qin(xiMi

n
)
)
,

(57)

where Qin(xim)
def
= [xim + (1 − xim)V ] cilmn

and M i
n is the total

number of directly connected MENs containing content i
for MEN-n, with ∀m ∈ Mi

n ⊂ N ,∀n ∈ N ,m 6= n,∀i ∈ I .
Then we can rewrite the objective function in Eq. (8) into

min
x
F (x) = min

x

I∑
i=1

N∑
n=1

f in

[
Un∑
u=1

(
Ω
(
x
)
+

Φ
(
x
)

min
m

(
Qin(xi1), . . . , Qin(xim), . . . , Qin(xiMi

n
)
))]

,

(58)

where x = (xin, x
i
m) with ∀n,m ∈ N ,m 6= n, ∀i ∈ I .

Suppose that x∗ = (x̂in, x̂
i
m),∀n,m ∈ N ,m 6= n, ∀i ∈ I

is the optimal solution of F (x) in Eq. (58). Without loss
of generality, m = kin will be selected as the MEN which
represents the minimum delivering decision to download
content i for MEN-n if the following condition satisfies:

Qin(x̂im=kin
) ≤ Qin(x̂im 6=kin),

∀n,m, kin ∈ N ,m 6= n, kin 6= n, ∀i ∈ I.
(59)

Hence, min
x

F (x) can achieve the optimal objective function
as follows:

F (x∗) =
I∑
i=1

N∑
n=1

f in

[
Un∑
u=1

(
Ω
(
x∗
)

+ Φ
(
x∗
)
Qin(x̂im=kin

)

)]
.

(60)

Next, from MINLP problem (P2), we can also obtain the
following expression:

min
{x,y,z}

F (x,y, z) =

min
{x,y,z}

I∑
i=1

N∑
n=1

f in

[
Un∑
u=1

(
Ω
(
x
)

+ Φ
(
x
)
zin

)]
,

(61)

s.t. (13)-(16).

Given the optimal solution x∗ = (x̂in, x̂
i
m),∀n,m ∈ N ,m 6=

n, ∀i ∈ I from the Eq. (58), we can rewrite the Eq. (61) by:

min
{x∗,y,z}

F (x∗,y, z) =

min
{x∗,y,z}

I∑
i=1

N∑
n=1

f in

[
Un∑
u=1

(
Ω
(
x∗
)

+ Φ
(
x∗
)
zin

)]
,

s.t.


zin ≥ Qin(x̂im)− V yim,∀n,m ∈ N ,m 6= n,∀i ∈ I,∑
m∈Mi

n

yim = M i
n − 1,∀n ∈ N ,∀i ∈ I,

yim ∈ {0, 1},∀m ∈ N ,∀i ∈ I,
zin ∈ R+

0 ,∀n ∈ N ,∀i ∈ I.
(62)

Then, consider all feasible values of yim in Eq. (62). Based on
the constraints

∑
m∈Mi

n

yim = M i
n − 1, there are one MEN-m

with yim = 0 and M i
n − 1 MENs with yim = 1. Suppose that

m = κin, where ∀κin ∈ Mi
n,∀n ∈ N ,∀i ∈ I , is the current

MEN which has yim=κin
= 0. Thus, zin ≥ Qin(x̂im=κin

) for
m = κin and zin ≥ Qin(x̂im 6=κin

) − V for m 6= κin. Since V is
a very big value, we can eliminate the rest of the constraints
when m 6= κin. As a result, only zin ≥ Qin(x̂im=κin

),∀n ∈
N ,∀i ∈ I is applied for each possible optimization as
follows:

min
{x∗,z}

F (x∗, z) =

min
{x∗,z}

I∑
i=1

N∑
n=1

f in

[
Un∑
u=1

(
Ω
(
x∗
)

+ Φ
(
x∗
)
zin

)]
,

s.t. zin ≥ Qin(x̂im=κin
),∀n ∈ N ,∀i ∈ I.

(63)

If z∗ = ẑin, ∀n ∈ N ,∀i ∈ I is also the optimal solution, then
the possible optimal objective value F (x∗, z∗) for each κin is

F (x∗, z∗) =
I∑
i=1

N∑
n=1

f in

[
Un∑
u=1

(
Ω
(
x∗
)

+ Φ
(
x∗
)
ẑin

)]
, (64)

where ẑin = Qin(x̂im=κin
),∀n ∈ N ,∀i ∈ I . Therefore, we can

derive:

F (x∗) =
I∑
i=1

N∑
n=1

f in

[
Un∑
u=1

(
Ω
(
x∗
)

+ Φ
(
x∗
)
Qin(x̂im=κin

)

)]
.

(65)
Based on Eq. (59), from each MEN-n we can choose an
MEN-m to download content i with minimum delivering
time, i.e., Qin(x̂im=kin

) ≤ Qin(x̂im 6=kin
). In other words, the

selected node κin in (P2) is the same as the selected node kin
in (P1), ∀n ∈ N and ∀i ∈ I . As a result, if x∗ is the optimal
solution of (P1), it is also the optimal solution of (P2).

Similarly, if (x∗,y∗, z∗) is the optimal solution of (P2),
we can prove that x∗ is also the optimal solution of (P1).
We recall MINLP problem (P2) in Eq. (61). Given that x∗ =
(x̂in, x̂

i
m), y∗ = ŷim, and z∗ = ẑin,∀n,m ∈ N ,m 6= n, ∀i ∈ I
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are the optimal solutions of (P2) such that

ẑin = Qin(x̂im=κin
),∀n ∈ N ,∀i ∈ I, (66)

where m = κin,∀n ∈ N ,∀i ∈ I is the current MEN which
has ŷim=κin

= 0. After ignoring other MENs when m 6=
κin,∀n ∈ N ,∀i ∈ I because of ŷim6=κin = 1 and the influence
of big value V , then we have

F (x∗, z∗) =
I∑
i=1

N∑
n=1

f in

[
Un∑
u=1

(
Ω
(
x∗
)

+ Φ
(
x∗
)
ẑin

)]
, (67)

where ẑin = Qin(x̂im=κin
),∀n ∈ N ,∀i ∈ I , and thus

F (x∗) =
I∑
i=1

N∑
n=1

f in

[
Un∑
u=1

(
Ω
(
x∗
)

+ Φ
(
x∗
)
Qin(x̂im=κin

)

)]
.

(68)
From (P1), we also have m = kin, where ∀kin ∈

Mi
n,∀n ∈ N ,∀i ∈ I , as the selected MEN which indicates

the minimum delivering decision to download content i for
MEN-n if

Qin(x̂im=kin
) ≤ Qin(x̂im6=kin),

∀n,m, kin ∈ N ,m 6= n, kin 6= n, ∀i ∈ I.
(69)

Considering the condition in Eq. (66) and Eq. (69), there
exists MENs such that m = κin = kin,∀n ∈ N and ∀i ∈ I .
Hence, without loss of generality, we can achieve the final
optimal objective value of (P1) as follows:

F (x∗) =
I∑
i=1

N∑
n=1

f in

[
Un∑
u=1

(
Ω
(
x∗
)

+ Φ
(
x∗
)
Qin(x̂im=κin

)

)]

=
I∑
i=1

N∑
n=1

f in

[
Un∑
u=1

(
Ω
(
x∗
)

+ Φ
(
x∗
)
Qin(x̂im=kin

)

)]
,

(70)
which is the same as F (x∗, z∗) in Eq. (67). Thus, we can
conclude that (P1) is equivalent to (P2).

APPENDIX C
PROOF OF THEOREM 2
We adopt this proof from [31] and [37]. Suppose that
Tρ specifies the expected number of total average delays
searched in the depth ρ. Then, we obtain that T0 = 1 at root
problem (RP) and Tρ ≥ 1 for ρ ≥ 1, i.e., at subproblems
(SPs). Thus, we can derive T by

T = 1 +

%∑
ρ=1

≥ 1 +

%∑
ρ=1

1 ≥ 1 + %. (71)

Furthermore, there exists a constant ς such that T% ≤ ς ≤
T∞ for all %, where T∞ = lim

%→∞
T%, and T0 ≤ T1 ≤ . . . ≤

T% ≤ ς . Then, we can express that

T ≤ 1 +

%∑
ρ=1

ς ≤ 1 + ς%. (72)

From Eq. (71) and Eq. (72), it implies that 1+% ≤ T ≤ 1+ς%.
Alternatively, we can state that T is linear (or polynomial)
at the depth %.

APPENDIX D
PROOF OF THEOREM 3
We adopt this proof from [38]. Given that the t-th total
average delay Ψt = arg min

t
FSP(x,y, z), and ψt is a search

region to obtain Ψt for some θt < t. Then, there exists φ > 0
such that for η > 0 and any x, y, z, we have

FSP(x,y, z) ≤ φ =⇒ βU (Ψt)− βL(Ψt) ≤ η. (73)

Then, ψt should also have FSP(x,y, z) ≤ φ when t = t̂ ∈ N.
Based on Eq. (73), we can obtain

βU (ψt̂)− βL(ψt̂) ≤ η. (74)

Since ψt̂ is split (to create two new subproblems) at step θt̂,
then βL(ψt̂) = β

(θt̂)
L . As a result, the condition becomes

β
(θt̂)
U − β(θt̂)

L ≤ βU (ψt̂)− β
(θt̂)
L ≤ η, (75)

and thus β(θt̂)
U ≤ βU (ψt̂). Next, consider that the final total

average delay Ψ̂ is obtained at x∗, y∗, and z∗. To satisfy a
condition that β(θt̂)

L ≤ Ψ̂, the following expression can be
obtained based on Eq. (75):

β
(θt̂)
U − Ψ̂ ≤ β(θt̂)

U − β(θt̂)
L ≤ η, (76)

where β(θt̂)
U is shown within the optimality tolerance η of

the F (x,y, z).


